Estimation for a discretely observed small diffusion process with a linear drift

Matsukubo, Junichi
Graduate School of Mathematics, Kyushu University

Matsuzaki, Ryo
Graduate School of Mathematics, Kyushu University

Uchida, Masayuki
Faculty of Mathematics, Kyushu University

http://hdl.handle.net/2324/3356
Estimation for a discretely observed small diffusion process with a linear drift

J. Matsukubo, R. Matsuzaki
M. Uchida

MHF 2005-11

(Received March 7, 2005)
Estimation for a discretely observed small diffusion process with a linear drift

Junichi Matsukubo, 1Ryo Matsuzaki and 2Masayuki Uchida

1Graduate School of Mathematics, Kyushu University
Ropponmatsu, Fukuoka 810-8560, Japan
2Faculty of Mathematics, Kyushu University
Ropponmatsu, Fukuoka 810-8560, Japan

Abstract. We study an asymptotically efficient estimator for drift parameters of a one-dimensional small diffusion process with a linear drift. A martingale estimating function can be constructed for this model, and an estimator obtained from the estimating function has an explicit form. Under the situation where the sample path is observed at \(n \) regularly spaced time points \(t_k = k/n \) on the interval \([0, 1]\), we consider asymptotic properties of the estimator as a small dispersion parameter \(\varepsilon \to 0 \) and \(n \to \infty \) simultaneously.

AMS 2000 subject classifications: Primary 62M05; Secondary 62F12.

Key words and phrases: Martingale estimating function, diffusion process with small noise, discrete time observation, parametric inference.

Abbreviated Title: Estimation for a linear drift.

1 Introduction

Consider a one-dimensional diffusion process defined by the stochastic differential equation (SDE) as follows:

\[
\begin{align*}
\,dX_t & = b(X_t, \theta)\,dt + \varepsilon \sigma(X_t)\,dw_t, \ t \in [0, 1], \ \varepsilon \in (0, 1), \\
X_0 & = x_0,
\end{align*}
\]

where \(x_0 \) and \(\varepsilon \) are known constants, \(\theta \in \Theta \) with \(\Theta \) being a compact convex subset of \(\mathbb{R}^p \), \(b \) is an \(\mathbb{R} \)-valued function defined on \(\mathbb{R} \times \Theta \), \(\sigma \) is an \(\mathbb{R} \)-valued function defined on \(\mathbb{R} \), and \(w \) is a one-dimensional standard Wiener process. We assume that the drift \(b \) is known apart from the parameter \(\theta \). The type of data is discrete observations of the process \(X_t \) at \(n \) regularly spaced time points \(t_k = k/n \) on the fixed interval \([0, 1]\), that is, \(X_n = (X_{t_k})_{0 \leq k \leq n} \). The asymptotics is when \(\varepsilon \to 0 \) and \(n \to \infty \) simultaneously.

The above process \((1)\), which is called a small diffusion process, is often applied to a model of mathematical finance, see Yoshida (1992b), Kunitomo and Takahashi (2001), Takahashi and Yoshida (2004) and references therein. Because of it, our interest is in statistical inference for small diffusion processes. For a continuously observed sample path \(X_1 = \{X_t; t \in [0, 1]\} \), the log-likelihood function is

\[
l_{\varepsilon}(\theta) = \frac{1}{\varepsilon^2} \int_0^1 b(X_t, \theta)\sigma^{-2}(X_t)dX_t - \frac{1}{2\varepsilon^2} \int_0^1 b(X_t, \theta)\sigma^{-2}(X_t)b(X_t, \theta)dt. \tag{2}
\]
The maximum likelihood estimator (MLE) is given by \(l_c(\hat{\theta}^{(ML)}_c) = \sup_{\theta \in \Theta} l_c(\theta) \). The asymptotic properties of the MLE have been studied carefully, see Kutoyants (1984, 1994) and Yoshida (1992, 2003). These continuous paths, however, are hardly observed. Therefore, in practice, statistical inference for a discretely observed small diffusion is regarded as important.

As for asymptotically efficient estimation of a drift parameter based on discrete observations, we can refer the following two papers. Genon-Catalot (1990) proposed two contrast functions. One is based on a discretization of the likelihood (2) as follows.

\[
U_{\varepsilon,n}(\theta) = \frac{1}{\varepsilon^2} \sum_{k=1}^{n} b(X_{t_{k-1}}, \theta) \sigma^{-2}(X_{t_{k-1}}) \left(X_{t_k} - X_{t_{k-1}} - \frac{1}{2n} b(X_{t_{k-1}}, \theta) \right). \tag{3}
\]

The maximum contrast estimator (MCE) is defined by \(U_{\varepsilon,n}(\hat{\theta}^{(S)}_{\varepsilon,n}) = \sup_{\theta \in \Theta} U_{\varepsilon,n}(\theta) \). She showed that the MCE \(\hat{\theta}^{(S)}_{\varepsilon,n} \) has asymptotic efficiency under \((\varepsilon n)^{-1} \to 0 \) as \(\varepsilon \to 0 \) and \(n \to \infty \). The other is based on a Gaussian approximation of the sample path as follows.

\[
\Lambda_{\varepsilon,n}(\theta) = -\frac{1}{2} \sum_{k=1}^{n} \left\{ \frac{X_{t_k} - X_{t_{k-1}}}{\varepsilon} - \frac{H_{t_k}(\theta)}{H_{t_{k-1}}(\theta)} (X_{t_{k-1}} - X_{t_{k-1}}(\theta)) \right\}^2,
\]

where \(H_t(\theta) = \exp \left\{ \int_0^t \frac{\partial}{\partial \theta} (X_s(\theta), \theta) ds \right\} \) and \(X_0(\theta) \) is the solution of the ordinary differential equation (ODE): \(dX_t^0(\theta) = b(X_t^0(\theta), \theta) dt, X_0^0 = x_0 \). The MCE \(\hat{\theta}^{(G)}_{\varepsilon,n} \) defined by \(\Lambda_{\varepsilon,n}(\hat{\theta}^{(G)}_{\varepsilon,n}) = \sup_{\theta \in \Theta} \Lambda_{\varepsilon,n}(\theta) \) has asymptotic efficiency under the weak condition that \(\varepsilon \sqrt{n} = O(1) \) as \(\varepsilon \to 0 \) and \(n \to \infty \). Laredo (1990) presented the following estimation procedure. First, solve the function \(V(u) \) from the ODE: \(\frac{\partial}{\partial u} V(u, \theta) = b(u, \theta) \sigma^{-2}(u), V(x_0, \theta) = 0 \). Next, create a process \(\{Y_t\}_{0 \leq t \leq 1} \) such that \(Y_t = X_{t_{k-1}} + \frac{t-t_{k-1}}{t_k-t_{k-1}} (X_{t_k} - X_{t_{k-1}}) \) for \(t_{k-1} \leq t \leq t_k \). Then, the contrast function of Laredo (1990) is as follows.

\[
\hat{l}_{\varepsilon,n}(\theta) = \frac{1}{\varepsilon^2} \left\{ V(Y_1, \theta) - \frac{1}{2} \int_0^1 b^2(Y_s, \theta) \sigma^{-2}(Y_s) ds \right\}.
\]

She proved that the MCE \(\hat{\theta}^{(L)}_{\varepsilon,n} \) defined by \(\hat{l}_{\varepsilon,n}(\hat{\theta}^{(L)}_{\varepsilon,n}) = \sup_{\theta \in \Theta} \hat{l}_{\varepsilon,n}(\theta) \) is asymptotically efficient under \((\varepsilon n)^{-1} \to 0 \) as \(\varepsilon \to 0 \) and \(n \to \infty \). Among these three estimators, \(\hat{\theta}^{(G)}_{\varepsilon,n} \) is the best because of the weak condition of asymptotics.

In the same way as in Bibby and Sørensen (1995), it is possible to discuss a martingale estimating function \(M_{\varepsilon,n}(\theta) = (M_{\varepsilon,n}^{(i)}(\theta))_{i=1,\ldots,p} \), where for \(i = 1, \ldots, p \),

\[
M_{\varepsilon,n}^{(i)}(\theta) = \frac{1}{\varepsilon^2} \sum_{k=1}^{n} \left(\frac{\partial b}{\partial \theta_i} \right) (X_{t_{k-1}}, \theta) \sigma^{-2}(X_{t_{k-1}}) (X_{t_{k-1}} - E_{\theta}[X_{t_k} | X_{t_{k-1}}]). \tag{6}
\]

Uchida (2004) showed that under some regularity conditions, an M-estimator \(\hat{\theta}^{(M)}_{\varepsilon,n} \) obtained from the estimating equation \(M_{\varepsilon,n}(\theta) = 0 \) is asymptotically efficient under the weakest condition that \(\varepsilon \to 0 \) and \(n \to \infty \). Although the conditional expectation \(E_{\theta}[X_{t_k} | X_{t_{k-1}}] \) does not generally have an explicit form for diffusion processes, the estimator \(\hat{\theta}^{(M)}_{\varepsilon,n} \) is the best of the above four estimators in the case that the conditional expectation is explicitly obtained. In particular, when the drift term is linear, that is, \(b(x, \theta) = \theta_1 + \theta_2 x \), the conditional expectation always has an explicit expression.

In this paper, we consider the one-dimensional SDE with a linear drift \(b(x, \theta) = \theta_1 + \theta_2 x \). Compared with SDE (1), it seems that the model we treat is somewhat restricted. However,
there are a number of examples for financial models and it is an appealing model from the viewpoint of asymptotically statistical estimation.

This paper is organized as follows. In section 2, we present an explicit martingale estimating function. An M-estimator obtained from the martingale estimating function has asymptotic efficiency as \(\varepsilon \to 0 \) and \(n \to \infty \). Section 3 gives three examples and simulation studies. Section 4 is devoted to the proof of the result stated in section 2.

2 Martingale estimating functions

In this paper, we consider the following one-dimensional SDE

\[
2 \text{Martingale estimating functions}
\]

\[dX_t = (\theta_1 + \theta_2 X_t)dt + \varepsilon \sigma(X_t)dw_t, \ t \in [0, 1], \ \varepsilon \in (0, 1], \quad (7) \]

where \(x_0 \) and \(\varepsilon \) are known constants, \(w \) is a one-dimensional standard Wiener process, \(\theta_1 \) and \(\theta_2 \) are unknown parameter and assume that \(\theta_2 \neq 0 \). Let \(\theta_0 = (\theta_{1,0}, \theta_{2,0}) \) be a true value of \(\theta = (\theta_1, \theta_2) \) and assume that \(\theta_0 \in \Theta \subset \mathbb{R}^2 \). Let \(X^0_t \) be the solution of the ODE: \(dX^0_t = (\theta_{1,0} + \theta_{2,0} X^0_t)dt, \ X^0_0 = x_0 \). Define that \(C^\infty(\mathbb{R}; \mathbb{R}) \) is a space of functions \(h \) which satisfies the following conditions: (i) \(h : \mathbb{R} \to \mathbb{R} \) is continuously infinitely differentiable with respect to \(x \), (ii) for \(n \geq 0 \), there exists \(C > 0 \) such that \(|\theta^n/\partial x^n h(x)| \leq C(1 + |x|)^C \) for \(\forall x \in \mathbb{R} \). Let \(I(\theta_0) = \left(I^{(i,j)}(\theta_0) \right)_{i,j=1,2} \) denote the asymptotic Fisher information matrix, where

\[
\begin{align*}
I^{(1,1)}(\theta) &= \int_0^1 \sigma^{-2}(X^0_s)ds, \ I^{(2,2)}(\theta) = \int_0^1 (X^0_s)^2 \sigma^{-2}(X^0_s)ds, \\
I^{(1,2)}(\theta) &= I^{(2,1)}(\theta) = \int_0^1 (X^0_s)\sigma^{-2}(X^0_s)ds.
\end{align*}
\]

We make the following assumptions.

Assumption 1 (i) Equation (1) has a unique strong solution on \([0,1]\). (ii) For \(\forall m > 0 \), \(\sup_{0 \leq t \leq 1} E[|X_t|^m] < \infty \). (iii) \(\sigma(x) \in C^\infty(\mathbb{R}; \mathbb{R}) \). (iv) \(\inf_x \sigma^2(x) > 0 \). (v) \(I(\theta_0) = \left(I^{(i,j)}(\theta_0) \right)_{i,j=1,2} \) is positive definite.

Since Ito’s formula yields that

\[X_t = e^{\theta_2 t} \left[X_0 - \frac{\theta_1}{\theta_2} (e^{-\theta_2 t} - 1) + \varepsilon \int_0^t e^{-\theta_2 s} \sigma(X_s)dw_s \right], \]

the conditional expectation is as follows:

\[E \left[X_{\frac{t}{n}} | X_0 = x \right] = e^{\theta_2 \frac{t}{n}} x + \frac{\theta_1}{\theta_2} (e^{\theta_2 \frac{t}{n}} - 1). \]

We then have the martingale estimating function \(M_{\varepsilon,n}(\theta) \) of the model (7),

\[
M_{\varepsilon,n}(\theta) = \begin{pmatrix}
\varepsilon^{-2} \sum_{k=1}^n \sigma^{-2}(X_{k-1}) \left\{ X_{k-1} - e^{\theta_2 \frac{t}{n}} X_{k-1} - \frac{\theta_1}{\theta_2} (e^{\theta_2 \frac{t}{n}} - 1) \right\} \\
\varepsilon^{-2} \sum_{k=1}^n X_{k-1} \sigma^{-2}(X_{k-1}) \left\{ X_{k-1} - e^{\theta_2 \frac{t}{n}} X_{k-1} - \frac{\theta_1}{\theta_2} (e^{\theta_2 \frac{t}{n}} - 1) \right\}
\end{pmatrix}, \quad (8)
\]
Let \(\hat{\theta}_{\varepsilon,n}^{(M)} = (\hat{\theta}_{\varepsilon,n}^{(1)}, \hat{\theta}_{\varepsilon,n}^{(2)}) \) be the solution of the estimating equation \(M_{\varepsilon,n}(\hat{\theta}_{\varepsilon,n}^{(M)}) = 0 \). It then follows that
\[
\hat{\theta}_{\varepsilon,n}^{(1)} = n \log \left(\frac{g_2 g_3 - g_4 g_4}{(g_2)^2 - g_1 g_3} \right) \frac{1}{g_1} \left(\frac{g_2 g_3 - g_4 g_4}{(g_2)^2 - g_1 g_3} - 1 \right)^{-1} \left[g_3 - g_2 \left(\frac{g_2 g_3 - g_4 g_4}{(g_2)^2 - g_1 g_3} \right) \right],
\]
\[
\hat{\theta}_{\varepsilon,n}^{(2)} = n \log \left(\frac{g_2 g_3 - g_4 g_4}{(g_2)^2 - g_1 g_3} \right),
\]
where
\[
g_1 = \sum_{k=1}^{n} \frac{1}{\sigma^2(X_{t_{k-1}})}, \quad g_2 = \sum_{k=1}^{n} \frac{X_{t_{k-1}}}{\sigma^2(X_{t_{k-1}})}, \quad g_3 = \sum_{k=1}^{n} \frac{X_{t_k}}{\sigma^2(X_{t_{k-1}})},
\]
\[
g_4 = \sum_{k=1}^{n} \frac{X_{t_k} X_{t_{k-1}}}{\sigma^2(X_{t_{k-1}})}, \quad g_5 = \sum_{k=1}^{n} \frac{X_{t_k}^2}{\sigma^2(X_{t_{k-1}})}.
\]

The main result is as follows.

Theorem 1 Suppose that assumption 1 holds true. Then, as \(\varepsilon \to 0 \) and \(n \to \infty \), \(\hat{\theta}_{\varepsilon,n}^{(M)} \to \theta_0 \) in probability and \(\varepsilon^{-1}(\hat{\theta}_{\varepsilon,n}^{(M)} - \theta_0) \to N\left(0, I^{-1}(\theta_0)\right) \) in distribution.

It follows from theorem 1 that the estimator \(\hat{\theta}_{\varepsilon,n}^{(M)} \) is asymptotically efficient under the general condition that \(\varepsilon \to 0 \) and \(n \to \infty \). This means that in the sense of the asymptotics with respect to \(\varepsilon \) and \(n \), the estimator \(\hat{\theta}_{\varepsilon,n}^{(M)} \) is better than the three estimators, \(\hat{\theta}_{\varepsilon,n}^{(S)} \), \(\hat{\theta}_{\varepsilon,n}^{(G)} \) and \(\hat{\theta}_{\varepsilon,n}^{(L)} \).

3 Examples

In this section, we study the asymptotic behaviour of our estimators for three examples through simulations. In all examples, for each \(\varepsilon = 0.1, 0.05, 0.01 \) and \(n = 5, 10, 50 \), we simulated 1000 independent sample paths with \(\theta = \theta_0 \) (true parameter value) and the initial value \(x_0 \). The simulations were done by using the Euler-Maruyama scheme, see Kloeden and Platen (1992).

For each sample path, the estimator \(\hat{\theta}_{\varepsilon,n}^{(M)} \) in theorem 1 was calculated. In order to evaluate the estimator \(\hat{\theta}_{\varepsilon,n}^{(M)} \), we also calculate the three estimators, \(\hat{\theta}_{\varepsilon,n}^{(S)}, \hat{\theta}_{\varepsilon,n}^{(G)} \) and \(\hat{\theta}_{\varepsilon,n}^{(L)} \). For the resulting 1000 values of the estimators, the means and the standard deviations of the estimators were computed.

3.1 The Ornstein-Uhlenbeck process

Consider the one-dimensional diffusion process defined by the SDE
\[
dX_t = -\theta X_t dt + \varepsilon dw_t, \quad t \in [0, 1], \; \varepsilon \in (0, 1], \; X_0 = x_0, \tag{9}
\]
where \(x_0 \) and \(\varepsilon \) are known constants and \(\theta > 0 \) is an unknown parameter. This diffusion process is a version of the Ornstein-Uhlenbeck process. By setting that \(\varepsilon = 0 \), the dynamical system is \(X_t^0(\theta) = x_0 e^{-\theta t} \). Furthermore, the asymptotic Fisher information is \(I(\theta_0) = x_0^2 (1 - e^{-2\theta_0})/(2\theta_0) \).

Since the first contrast function in Genon-Catalot (1990) is
\[
U_{\varepsilon,n}(\theta) = -\frac{1}{\varepsilon^2} \sum_{k=1}^{n} \theta X_{t_{k-1}} \left(X_{t_k} - X_{t_{k-1}} + \frac{1}{2n} \theta X_{t_{k-1}} \right),
\]
the MCE is given by
\[\hat{\theta}_{\varepsilon,n}^{(S)} = -\frac{1}{n} \sum_{k=1}^{n} X_{t_{k-1}} (X_{t_k} - X_{t_{k-1}}). \]

The second contrast function in Genon-Catalot (1990) is
\[\Lambda_{\varepsilon,n}(\theta) = -\frac{\theta}{1 - e^{-2\theta/n}} \sum_{k=1}^{n} (X_{t_k} - e^{-\theta/n} X_{t_{k-1}})^2. \]

Since the MCE does not have an explicit form, we will obtain an approximate solution by using numerical analysis. The contrast function in Laredo (1990) is given by
\[\tilde{l}_{\varepsilon}^{(L)}(\theta) = \frac{1}{2\varepsilon^2} \left\{ -\theta (X_1^2 - x_0^2) - \theta^2 \left\{ \frac{1}{n} \sum_{k=1}^{n} X_{t_{k-1}} X_{t_k} + \frac{1}{3n} \sum_{k=1}^{n} (X_{t_k} - X_{t_{k-1}})^2 \right\} \right\}. \]

Solving \(\partial_{\theta} \tilde{l}_{\varepsilon}^{(L)}(\theta) = 0 \), we obtain the MCE
\[\hat{\theta}_{\varepsilon,n}^{(L)} = -\frac{1}{n} \sum_{k=1}^{n} X_{t_{k-1}} X_{t_k} + \frac{1}{3n} \sum_{k=1}^{n} (X_{t_k} - X_{t_{k-1}})^2. \]

The estimator obtained from the martingale estimating function is
\[\hat{\theta}_{\varepsilon,n}^{(M)} = n \left\{ \log \left(\sum X_{t_{k-1}}^2 \right) - \log \left(\sum X_{t_k} X_{t_{k-1}} \right) \right\}. \]

Table 1 shows the means and the standard deviations of the four estimators for \(\theta = 10 \) and \(x_0 = 20 \). For the case that \(n \leq 10 \), though \(\hat{\theta}_{\varepsilon,n}^{(S)} \) and \(\hat{\theta}_{\varepsilon,n}^{(L)} \) have considerable biases, \(\hat{\theta}_{\varepsilon,n}^{(G)} \) and \(\hat{\theta}_{\varepsilon,n}^{(M)} \) perform quite well. For the case that \(n \) is large, there is no difference between the three estimators, \(\hat{\theta}_{\varepsilon,n}^{(S)}, \hat{\theta}_{\varepsilon,n}^{(L)} \) and \(\hat{\theta}_{\varepsilon,n}^{(M)} \). In this model, both \(\hat{\theta}_{\varepsilon,n}^{(G)} \) and \(\hat{\theta}_{\varepsilon,n}^{(M)} \) are acceptable. It is worth mentioning that \(\hat{\theta}_{\varepsilon,n}^{(M)} \) has a simple expression while \(\hat{\theta}_{\varepsilon,n}^{(G)} \) does not have an explicit form.

| \(\varepsilon \) | \(n \) | \(\hat{\theta}_{\varepsilon,n}^{(S)} \) | mean | s.d. | \(\hat{\theta}_{\varepsilon,n}^{(L)} \) | mean | s.d. | \(\hat{\theta}_{\varepsilon,n}^{(G)} \) | mean | s.d. | \(\hat{\theta}_{\varepsilon,n}^{(M)} \) | mean | s.d. |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.10 | 5 | 4.33002 | 0.00553 | 6.39373 | 0.00971 | 10.04956 | 0.04121 | 10.04987 | 0.04121 |
| 0.10 | 10 | 6.33991 | 0.00960 | 8.66041 | 0.01662 | 10.05079 | 0.02622 | 10.05101 | 0.02622 |
| 0.10 | 50 | 9.10495 | 0.01846 | 9.98336 | 0.02213 | 10.05047 | 0.02585 | 10.05070 | 0.02575 |
| 0.05 | 5 | 4.33006 | 0.00276 | 6.39385 | 0.00486 | 10.04998 | 0.02062 | 10.05006 | 0.02062 |
| 0.05 | 10 | 6.33979 | 0.00480 | 8.66030 | 0.00831 | 10.05061 | 0.01311 | 10.05066 | 0.01311 |
| 0.05 | 50 | 9.10479 | 0.00923 | 9.98336 | 0.01106 | 10.05045 | 0.01129 | 10.05051 | 0.01129 |
| 0.01 | 5 | 4.33009 | 0.00055 | 6.39392 | 0.00097 | 10.05027 | 0.00413 | 10.05027 | 0.00413 |
| 0.01 | 10 | 6.33970 | 0.00096 | 8.66017 | 0.00166 | 10.05040 | 0.00262 | 10.05040 | 0.00262 |
| 0.01 | 50 | 9.10468 | 0.00185 | 9.98327 | 0.00221 | 10.05037 | 0.00226 | 10.05037 | 0.00226 |
3.2 The geometric Brownian motion

We treat the one-dimensional diffusion process defined by

\[dX_t = \theta X_t dt + \varepsilon X_t dw_t, \quad t \in [0, 1], \quad \varepsilon \in (0, 1), \quad X_0 = x_0, \]

(10)

where \(\theta > 0 \) is an unknown parameter, \(x_0 \) and \(\varepsilon \) are known constants. This model is called the geometric Brownian motion. Note that the dynamical system with \(\varepsilon = 0 \) is given by \(X_t^0(\theta) = x_0 e^{\theta t} \) and the asymptotic Fisher information is \(I(\theta_0) = 1 \).

The first contrast function in Genon-Catalot (1990) is

\[U_{\varepsilon,n}(\theta) = \frac{1}{\varepsilon^2} \sum_{k=1}^n \frac{\theta}{X_{t_{k-1}}} (X_{t_k} - X_{t_{k-1}} - \frac{\theta}{2n} X_{t_{k-1}}). \]

Solving the estimating equation \(\partial \theta U_{\varepsilon,n}(\theta) = 0 \), we have the MCE

\[\hat{\theta}^{(S)}_{\varepsilon,n} = \sum_{k=1}^n \frac{X_{t_k} - X_{t_{k-1}}}{X_{t_{k-1}}}. \]

Although the second contrast function in Genon-Catalot (1990) is given by

\[\Lambda_{\varepsilon,n}(\theta) = -\frac{n}{2x_0^2} \sum_{k=1}^n (e^{-\theta t_k} X_{t_k} - e^{-\theta t_{k-1}} X_{t_{k-1}})^2, \]

the MCE can not be explicitly derived. As in the previous subsection, we need to compute an approximate estimator. The contrast function in Laredo (1990) is described as

\[\tilde{l}_\varepsilon(\theta) = \frac{1}{\varepsilon^2} \left\{ \theta \log |X_1| - \theta \log |x_0| - \frac{\theta^2}{2} \right\} \]

and the MCE is

\[\hat{\theta}^{(L)}_{\varepsilon,n} = \log |X_1| - \log |x_0|. \]

The estimator based on the martingale estimating function is given by

\[\hat{\theta}^{(M)}_{\varepsilon,n} = n \left\{ \log \left(\sum \frac{X_{t_k}}{X_{t_{k-1}}} \right) - \log n \right\}. \]

Table 2 gives the means and the standard deviations of the four estimators in the situation where \(\theta = 3 \) and \(x_0 = 2 \). Since \(\hat{\theta}^{(S)}_{\varepsilon,n} \) has a considerable bias in all cases, it should not be used in this setting. For the case that \(\varepsilon = 0.1 \), both \(\hat{\theta}^{(G)}_{\varepsilon,n} \) and \(\hat{\theta}^{(L)}_{\varepsilon,n} \) have small biases while \(\hat{\theta}^{(M)}_{\varepsilon,n} \) performs quite well. Here we note that because \(\hat{\theta}^{(L)}_{\varepsilon,n} = \log |X_1| - \log |x_0| \), \(\hat{\theta}^{(L)}_{\varepsilon,n} \) is independent of \(n \). This means that \(\hat{\theta}^{(L)}_{\varepsilon,n} \) has asymptotic efficiency as \(\varepsilon \to 0 \). For this reason, \(\hat{\theta}^{(L)}_{\varepsilon,n} \) is not a good estimator in the situation that \(\varepsilon \) is not so small. If \(n = 50 \) and \(\varepsilon \geq 0.05 \), we see that \(\hat{\theta}^{(G)}_{\varepsilon,n} \) has a considerable bias. For the case that \(n = 50 \), there seems no big difference between the three estimators \(\hat{\theta}^{(L)}_{\varepsilon,n} \), \(\hat{\theta}^{(G)}_{\varepsilon,n} \) and \(\hat{\theta}^{(M)}_{\varepsilon,n} \). Therefore we conclude that \(\hat{\theta}^{(M)}_{\varepsilon,n} \) is better than the others in all cases.
Table 2: (The geometric Brownian motion) The mean and standard deviation of the estimators, which are determined from 1000 independent simulated sample paths for \(\theta = 3 \) and \(x_0 = 2 \).

| \(\varepsilon \) | \(n \) | \(\hat{\theta}^{(S)}_{\varepsilon,n} \) | \(\text{mean} \) | \(\text{s.d.} \) | \(\hat{\theta}^{(L)}_{\varepsilon,n} \) | \(\text{mean} \) | \(\text{s.d.} \) | \(\hat{\theta}^{(C)}_{\varepsilon,n} \) | \(\text{mean} \) | \(\text{s.d.} \) | \(\hat{\theta}^{(M)}_{\varepsilon,n} \) | \(\text{mean} \) | \(\text{s.d.} \) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.10 | 5 | 4.10311 | 0.18635 | 2.99008 | 0.10200 | 3.01052 | 0.10506 | 2.99484 | 0.10244 |
| 0.10 | 10 | 3.49317 | 0.13819 | 2.99008 | 0.10200 | 3.03649 | 0.10952 | 2.99546 | 0.10246 |
| 0.10 | 50 | 3.08758 | 0.10858 | 2.99008 | 0.10200 | 3.24911 | 0.13646 | 2.99589 | 0.10228 |
| 0.05 | 5 | 4.10279 | 0.09299 | 2.99449 | 0.05100 | 2.99928 | 0.05159 | 2.99545 | 0.05110 |
| 0.05 | 10 | 3.49284 | 0.06894 | 2.99449 | 0.05100 | 3.00566 | 0.05243 | 2.99561 | 0.05111 |
| 0.05 | 50 | 3.08731 | 0.05422 | 2.99449 | 0.05100 | 3.05678 | 0.05681 | 2.99572 | 0.05107 |
| 0.01 | 5 | 4.10250 | 0.01857 | 2.99550 | 0.01020 | 2.99569 | 0.01022 | 2.99554 | 0.01020 |
| 0.01 | 10 | 3.49259 | 0.01377 | 2.99550 | 0.01020 | 2.99595 | 0.01024 | 2.99555 | 0.01020 |
| 0.01 | 50 | 3.08711 | 0.01083 | 2.99550 | 0.01020 | 2.99797 | 0.01036 | 2.99555 | 0.01020 |

3.3 The Cox-Ingersoll-Ross process

The Cox-Ingersoll-Ross model is defined by the following one-dimensional SDE

\[
dX_t = (\alpha + \beta X_t) dt + \varepsilon \sqrt{X_t} dw_t, \quad t \in [0,1], \quad \varepsilon \in (0,1], \quad X_0 = x_0, \tag{11}\]

where \(x_0 \) and \(\varepsilon \) are known constants, \(\alpha \) and \(\beta \) are unknown parameters and we assume that \(\alpha > 0 \) and \(\beta < 0 \). Let \(\theta = (\alpha, \beta) \). The dynamical system is given by \(X_t^0(\theta) = \left[(\alpha + \beta x_0)e^{\beta t} - \alpha \right] / \beta \).

The components of the asymptotic Fisher information matrix are

\[
I^{(1,1)}(\theta_0) = -\frac{1}{\alpha_0} \left\{ \beta_0 + \log(\beta_0 C - \alpha_0) - \log(\beta_0 C e^{\beta_0} - \alpha_0) \right\},
I^{(2,2)}(\theta_0) = \frac{1}{\beta_0} (C e^{\beta_0} - \alpha_0 - C), \quad I^{(1,2)}(\theta_0) = I^{(2,1)}(\theta_0) = 1,
\]

where \(C = x_0 + \alpha_0 / \beta_0 \).

The first contrast function in Genon-Catalot (1990) is expressed as follows:

\[
U_{\varepsilon,n}(\theta) = \frac{1}{\varepsilon^2} \sum_{k=1}^{n} \left\{ X_{t_k} - X_{t_{k-1}} - \frac{1}{2n} (\alpha + \beta X_{t_{k-1}}) \right\}.
\]

The solutions which satisfy \(\partial_\alpha U_{\varepsilon,n}(\theta) = \partial_\beta U_{\varepsilon,n}(\theta) = 0 \) are

\[
\hat{\alpha}(S)_{\varepsilon,n} = \frac{\sum_{k=1}^{n} (X_{t_k} - X_{t_{k-1}}) - \frac{1}{n} \sum_{k=1}^{n} X_{t_{k-1}} \sum_{k=1}^{n} X_{t_k} - X_{t_{k-1}}}{1 - \frac{1}{n^2} \sum_{k=1}^{n} X_{t_{k-1}} \sum_{k=1}^{n} X_{t_k}^{-1}},
\]

\[
\hat{\beta}(S)_{\varepsilon,n} = \frac{\sum_{k=1}^{n} X_{t_k} - X_{t_{k-1}} - \frac{1}{n} \sum_{k=1}^{n} (X_{t_k} - X_{t_{k-1}}) \sum_{k=1}^{n} X_{t_k}^{-1}}{1 - \frac{1}{n^2} \sum_{k=1}^{n} X_{t_{k-1}} \sum_{k=1}^{n} X_{t_k}^{-1}}.
\]

The second contrast function in Genon-Catalot (1990) is

\[
\Lambda_{\varepsilon,n}(\theta) = -\frac{1}{2} \sum_{k=1}^{n} e^{2 \beta t_k} \int_{t_{k-1}}^{t_k} e^{-2 (\beta s - \beta)} \left[(\alpha + \beta x_0) e^{\beta s} - \alpha \right] ds.
\]
By using the martingale estimating functions, the estimators are given by

\[\hat{\beta}_{\varepsilon,n}^{(L)} = \frac{1}{IJ-1} [J(\log |X_1| - \log |X_0|) - X_1 + x_0] , \]

and the MCEs can be expressed as

\[\hat{\alpha}_{\varepsilon,n}^{(L)} = \frac{1}{IJ-1} [I(X_1 - x_0) - \log |X_1| + \log |x_0|] . \]

For \(\alpha = 1, \beta = -3 \) and \(x_0 = 10 \), the simulation results of the four estimators for \(\alpha \) and \(\beta \) are given in tables 3 and 4, respectively. For the case that \(n = 5 \), \(\hat{\alpha}_{\varepsilon,n}^{(S)} \) and \(\hat{\alpha}_{\varepsilon,n}^{(L)} \) has considerable biases while both \(\hat{\alpha}_{\varepsilon,n}^{(G)} \) and \(\hat{\alpha}_{\varepsilon,n}^{(M)} \) work well. We can say that \(\hat{\alpha}_{\varepsilon,n}^{(M)} \) is a good estimator with a small variance in all cases. Speaking of \(\beta \), we see that \(\hat{\beta}_{\varepsilon,n}^{(M)} \) performs very well in all cases. Note that both \(\hat{\alpha}_{\varepsilon,n}^{(L)} \) and \(\hat{\beta}_{\varepsilon,n}^{(L)} \) also work very well when \(n = 50 \).

Table 3: (The Cox-Ingersoll-Ross process) The mean and standard deviation of the estimators for \(\alpha \), which are determined from 1000 independent simulated sample paths for \(\alpha = 1, \beta = -3 \) and \(x_0 = 10 \).

<table>
<thead>
<tr>
<th>(\varepsilon)</th>
<th>(n)</th>
<th>(\hat{\alpha}_{\varepsilon,n}^{(S)})</th>
<th>mean</th>
<th>s.d.</th>
<th>(\hat{\alpha}_{\varepsilon,n}^{(L)})</th>
<th>mean</th>
<th>s.d.</th>
<th>(\hat{\alpha}_{\varepsilon,n}^{(G)})</th>
<th>mean</th>
<th>s.d.</th>
<th>(\hat{\alpha}_{\varepsilon,n}^{(M)})</th>
<th>mean</th>
<th>s.d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>5</td>
<td>0.75954</td>
<td>0.16780</td>
<td>0.65683</td>
<td>0.21300</td>
<td>0.99537</td>
<td>0.71616</td>
<td>1.01175</td>
<td>0.22945</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>10</td>
<td>0.87598</td>
<td>0.19225</td>
<td>0.91668</td>
<td>0.22059</td>
<td>1.02786</td>
<td>0.62927</td>
<td>1.01458</td>
<td>0.22578</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>50</td>
<td>0.98675</td>
<td>0.21811</td>
<td>1.00129</td>
<td>0.22440</td>
<td>1.30557</td>
<td>0.55896</td>
<td>1.01685</td>
<td>0.22541</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>5</td>
<td>0.75527</td>
<td>0.08348</td>
<td>0.65610</td>
<td>0.10621</td>
<td>1.00736</td>
<td>0.35551</td>
<td>1.00502</td>
<td>0.11408</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>10</td>
<td>0.86876</td>
<td>0.09558</td>
<td>0.91547</td>
<td>0.10995</td>
<td>1.01521</td>
<td>0.31698</td>
<td>1.00593</td>
<td>0.11220</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>50</td>
<td>0.97686</td>
<td>0.10850</td>
<td>1.00001</td>
<td>0.11187</td>
<td>1.08924</td>
<td>0.30132</td>
<td>1.00653</td>
<td>0.11212</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>5</td>
<td>0.75315</td>
<td>0.01664</td>
<td>0.65503</td>
<td>0.02120</td>
<td>1.00406</td>
<td>0.07078</td>
<td>1.00195</td>
<td>0.02273</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>10</td>
<td>0.86552</td>
<td>0.01904</td>
<td>0.91402</td>
<td>0.02194</td>
<td>1.00443</td>
<td>0.06332</td>
<td>1.00203</td>
<td>0.02235</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>50</td>
<td>0.97258</td>
<td>0.02162</td>
<td>0.99844</td>
<td>0.02232</td>
<td>1.00748</td>
<td>0.06175</td>
<td>1.00209</td>
<td>0.02234</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4: (The Cox-Ingersoll-Ross process) The mean and standard deviation of the estimators for β, which are determined from 1000 independent simulated sample paths for $\alpha = 1, \beta = -3$ and $x_0 = 10$.

<table>
<thead>
<tr>
<th>ε</th>
<th>n</th>
<th>$\hat{\beta}_{c,n}^{(S)}$</th>
<th>mean</th>
<th>s.d.</th>
<th>$\hat{\beta}_{c,n}^{(L)}$</th>
<th>mean</th>
<th>s.d.</th>
<th>$\hat{\beta}_{c,n}^{(G)}$</th>
<th>mean</th>
<th>s.d.</th>
<th>$\hat{\beta}_{c,n}^{(M)}$</th>
<th>mean</th>
<th>s.d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>5</td>
<td>-2.25774</td>
<td>0.04769</td>
<td></td>
<td>-2.82332</td>
<td>0.07713</td>
<td></td>
<td>-3.00078</td>
<td>0.14510</td>
<td></td>
<td>-3.00403</td>
<td>0.8697</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>10</td>
<td>-2.59519</td>
<td>0.06264</td>
<td></td>
<td>-2.95597</td>
<td>0.08204</td>
<td></td>
<td>-3.00369</td>
<td>0.13070</td>
<td></td>
<td>-3.00491</td>
<td>0.8460</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>50</td>
<td>-2.91691</td>
<td>0.07978</td>
<td></td>
<td>-3.00013</td>
<td>0.08458</td>
<td></td>
<td>-3.04132</td>
<td>0.11921</td>
<td></td>
<td>-3.00552</td>
<td>0.8473</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>5</td>
<td>-2.25777</td>
<td>0.02382</td>
<td></td>
<td>-2.82455</td>
<td>0.03855</td>
<td></td>
<td>-3.00376</td>
<td>0.07245</td>
<td></td>
<td>-3.00352</td>
<td>0.0433</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>10</td>
<td>-2.59456</td>
<td>0.03129</td>
<td></td>
<td>-2.95712</td>
<td>0.04099</td>
<td></td>
<td>-3.00444</td>
<td>0.06594</td>
<td></td>
<td>-3.00380</td>
<td>0.04225</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>50</td>
<td>-2.91551</td>
<td>0.03985</td>
<td></td>
<td>-3.00125</td>
<td>0.04226</td>
<td></td>
<td>-3.01484</td>
<td>0.06336</td>
<td></td>
<td>-3.00399</td>
<td>0.04231</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>5</td>
<td>-2.25824</td>
<td>0.00476</td>
<td></td>
<td>-2.82571</td>
<td>0.00771</td>
<td></td>
<td>-3.00454</td>
<td>0.01446</td>
<td></td>
<td>-3.00419</td>
<td>0.00868</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>10</td>
<td>-2.59494</td>
<td>0.00625</td>
<td></td>
<td>-2.95824</td>
<td>0.00819</td>
<td></td>
<td>-3.00457</td>
<td>0.01320</td>
<td></td>
<td>-3.00422</td>
<td>0.00844</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>50</td>
<td>-2.91577</td>
<td>0.00796</td>
<td></td>
<td>-3.00235</td>
<td>0.00845</td>
<td></td>
<td>-3.00501</td>
<td>0.01297</td>
<td></td>
<td>-3.00424</td>
<td>0.00846</td>
<td></td>
</tr>
</tbody>
</table>

4 Proof

Proof of Theorem 1. In order to prove theorem 1, it suffices to show (A1)-(A6) in Uchida (2004). It is so easy to prove (A1)-(A5) that we will do just (A6). That is,

$$
\sup_{\theta \in \Theta} \left\{ \frac{1}{n} \sum_{k=1}^{n} \frac{\partial b}{\partial \theta_i}(X_{t_k-1}, \theta) \sigma^{-2}(X_{t_k-1}) \frac{\partial F}{\partial \theta_j}(X_{t_k-1}, \theta) \right\} - I^{(i,j)}(\theta) \to 0
$$

in probability as $\varepsilon \to 0$ and $n \to \infty$, where $b(x, \theta) = \theta_1 + \theta_2 x$ and $F(x, \theta) = E_\theta[X_{1/n} | X_0 = x]$. It follows from Uchida (2004) that

$$
\sup_{\theta \in \Theta} \left| \frac{1}{n} \sum_{k=1}^{n} \frac{\partial b}{\partial \theta_i}(X_{t_k-1}, \theta) \sigma^{-2}(X_{t_k-1}) \left\{ \frac{\partial F}{\partial \theta_j}(X_{t_k-1}, \theta) - \frac{1}{n} \frac{\partial b}{\partial \theta_j}(X_{t_k-1}, \theta) \right\} \right| \to 0
$$

in probability as $\varepsilon \to 0$ and $n \to \infty$. Thus, it is enough to show that

$$
\sup_{\theta \in \Theta} \left\{ \frac{1}{n} \sum_{k=1}^{n} \frac{\partial b}{\partial \theta_i}(X_{t_k-1}, \theta) \sigma^{-2}(X_{t_k-1}) \left\{ \frac{\partial F}{\partial \theta_j}(X_{t_k-1}, \theta) - \frac{1}{n} \frac{\partial b}{\partial \theta_j}(X_{t_k-1}, \theta) \right\} \right\} \to 0
$$

(12)

in probability as $\varepsilon \to 0$ and $n \to \infty$. Setting that for $i, j = 1, 2$,

$$
\alpha_{i,j}(x, \theta) = \frac{\partial b}{\partial \theta_i}(x, \theta) \sigma^{-2}(x) \left\{ \frac{\partial F}{\partial \theta_j}(x, \theta) - \frac{1}{n} \frac{\partial b}{\partial \theta_j}(x, \theta) \right\},
$$

one has

$$
\begin{align*}
\alpha_{1,1}(x, \theta) &= \frac{1}{\sigma^2(x)} \left[\frac{1}{\theta_2} (e^{\theta_2} - 1) - \frac{1}{n} \right], \\
\alpha_{2,1}(x, \theta) &= \frac{x}{\sigma^2(x)} \left[\frac{1}{\theta_2} (e^{\theta_2} - 1) - \frac{1}{n} \right], \\
\alpha_{1,2}(x, \theta) &= \frac{1}{\sigma^2(x)} \left[\frac{1}{x e^{\theta_2}} - \frac{\theta_1}{\theta_2} (e^{\theta_2} - 1) + \frac{\theta_1}{n \theta_2} e^{\theta_2} - \frac{1}{n} \right], \\
\alpha_{2,2}(x, \theta) &= \frac{x}{\sigma^2(x)} \left[\frac{1}{x e^{\theta_2}} - \frac{\theta_1}{\theta_2} (e^{\theta_2} - 1) + \frac{\theta_1}{n \theta_2} e^{\theta_2} - \frac{1}{n} \right].
\end{align*}
$$
It is obvious that for \(i, j = 1, 2 \),

\[
\left| \sum_{k=1}^{n} \alpha_{i,j}(X_{t_{k-1}}, \theta) \right| \to 0
\]

in probability as \(\varepsilon \to 0 \) and \(n \to \infty \). Let \(C \) be a constant independent of \(\varepsilon \) and \(n \). Define that \(\theta_A = (\theta_{A1}, \theta_{A2}) \) and \(\theta_B = (\theta_{B1}, \theta_{B2}) \). In order to prove (12), it is sufficient to show the following inequalities (cf. theorem 20 in Appendix I of Ibragimov and Has’minskii (1981)): For \(i, j = 1, 2 \) and \(m > 1 \),

\[
E \left[\left\{ \sum_{k=1}^{n} \alpha_{i,j}(X_{t_{k-1}}, \theta) \right\}^{2m} \right] \leq C \quad (13)
\]

\[
E \left[\left\{ \sum_{k=1}^{n} \left[\alpha_{i,j}(X_{t_{k-1}}, \theta_A) - \alpha_{i,j}(X_{t_{k-1}}, \theta_B) \right] \right\}^{2m} \right] \leq C |\theta_A - \theta_B|^{2m}. \quad (14)
\]

We only show that \(\alpha_{1,1} \) satisfies the above two inequalities. For the proof of (13),

\[
E \left[\left\{ \sum_{k=1}^{n} \alpha_{1,1}(X_{t_{k-1}}, \theta) \right\}^{2m} \right] = E \left[\left\{ \sum_{k=1}^{n} \frac{1}{\sigma^2(X_{t_{k-1}})} \left[\frac{1}{\theta_A^2} \left(e^{\frac{\theta_A^2}{n} - 1} \right) - \frac{1}{n} \right] \right\}^{2m} \right]
\]

\[
\leq C \frac{1}{n} \left\{ \sum_{k=1}^{n} E \left[\left\{ \frac{1}{\sigma^2(X_{t_{k-1}})} \right\}^{2m} \right] \right\}
\]

\[
\leq C.
\]

Moreover, for the proof of (14),

\[
E \left[\left\{ \sum_{k=1}^{n} \left[\alpha_{1,1}(X_{t_{k-1}}, \theta_A) - \alpha_{1,1}(X_{t_{k-1}}, \theta_B) \right] \right\}^{2m} \right]
\]

\[
\leq n^{2m-1} \left\{ \sum_{k=1}^{n} E \left[\left\{ \frac{1}{\theta_{A2}^2} \left(e^{\frac{\theta_{A2}^2}{n} - 1} \right) - \frac{1}{\theta_{B2}^2} \left(e^{\frac{\theta_{B2}^2}{n} - 1} \right) \right\}^{2m} \right] \right\}
\]

\[
\leq C n^{-1} (\theta_{A2} - \theta_{B2})^{2m} \left\{ \sum_{k=1}^{n} E \left[\frac{1}{[\sigma(X_{t_{k-1}})]^{4m}} \right] \right\}
\]

\[
\leq C |\theta_A - \theta_B|^{2m}.
\]

The rest can be shown in the same way as in the proof of \(\alpha_{1,1} \). This completes the proof.

Acknowledgements

This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan under Kyushu University 21st Century COE Program, Development of Dynamic Mathematics with High Functionality. The third author was partially supported by the Japan Society for the Promotion of Science under Grants-in-Aid for Scientific Researches.
References

MHF2003-1 Mitsuhiro T. NAKAO, Kouji HASHIMOTO & Yoshitaka WATANABE
A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems

MHF2003-2 Masahisa TABATA & Daisuke TAGAMI
Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients

MHF2003-3 Tomohiro ANDO, Sadanori KONISHI & Seiya IMOTO
Adaptive learning machines for nonlinear classification and Bayesian information criteria

MHF2003-4 Kazuhiro YOKOYAMA
On systems of algebraic equations with parametric exponents

MHF2003-5 Masao ISHIKAWA & Masato WAKAYAMA
Applications of Minor Summation Formulas III, Plücker relations, Lattice paths and Pfaffian identities

MHF2003-6 Atsushi SUZUKI & Masahisa TABATA
Finite element matrices in congruent subdomains and their effective use for large-scale computations

MHF2003-7 Setsuo TANIGUCHI
Stochastic oscillatory integrals - asymptotic and exact expressions for quadratic phase functions -

MHF2003-8 Shoki MIYAMOTO & Atsushi YOSHIKAWA
Computable sequences in the Sobolev spaces

MHF2003-9 Toru FUJII & Takashi YANAGAWA
Wavelet based estimate for non-linear and non-stationary auto-regressive model

MHF2003-10 Atsushi YOSHIKAWA
Maple and wave-front tracking — an experiment

MHF2003-11 Masanobu KANEKO
On the local factor of the zeta function of quadratic orders

MHF2003-12 Hidefumi KAWASAKI
Conjugate-set game for a nonlinear programming problem
MHF2004-1 Koji YONEMOTO & Takashi YANAGAWA
Estimating the Lyapunov exponent from chaotic time series with dynamic noise

MHF2004-2 Rui YAMAGUCHI, Eiko TSUCHIYA & Tomoyuki HIGUCHI
State space modeling approach to decompose daily sales of a restaurant into time-dependent multi-factors

MHF2004-3 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiro YAMADA
Cubic pencils and Painlevé Hamiltonians

MHF2004-4 Atsushi KAWAGUCHI, Koji YONEMOTO & Takashi YANAGAWA
Estimating the correlation dimension from a chaotic system with dynamic noise

MHF2004-5 Atsushi KAWAGUCHI, Kentarou KITAMURA, Koji YONEMOTO, Takashi YANAGAWA & Kiyofumi YUMOTO
Detection of auroral breakups using the correlation dimension

MHF2004-6 Ryo IKOTA, Masayasu MIMURA & Tatsuyuki NAKAKI
A methodology for numerical simulations to a singular limit

MHF2004-7 Ryo IKOTA & Eiji YANAGIDA
Stability of stationary interfaces of binary-tree type

MHF2004-8 Yuko ARAKI, Sadanori KONISHI & Seiya IMOTO
Functional discriminant analysis for gene expression data via radial basis expansion

MHF2004-9 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiro YAMADA
Hypergeometric solutions to the q-Painlevé equations

MHF2004-10 Raimundas VIDUNAS
Expressions for values of the gamma function

MHF2004-11 Raimundas VIDUNAS
Transformations of Gauss hypergeometric functions

MHF2004-12 Koji NAKAGAWA & Masakazu SUZUKI
Mathematical knowledge browser

MHF2004-13 Ken-ichi MARUNO, Wen-Xiu MA & Masayuki OIKAWA
Generalized Casorati determinant and Positon-Negaton-Type solutions of the Toda lattice equation

MHF2004-14 Nalini JOSHI, Kenji KAJIWARA & Marta MAZZOCO
Generating function associated with the determinant formula for the solutions of the Painlevé II equation
MHF2004-15 Kouji HASHIMOTO, Ryohei ABE, Mitsuhiro T. NAKAO & Yoshitaka WATANABE
Numerical verification methods of solutions for nonlinear singularly perturbed problem

MHF2004-16 Ken-ichi MARUNO & Gino BIONDINI
Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete versions

MHF2004-17 Ryuei NISHII & Shinto EGUCHI
Supervised image classification in Markov random field models with Jeffreys divergence

MHF2004-18 Kouji HASHIMOTO, Kenta KOBAYASHI & Mitsuhiro T. NAKAO
Numerical verification methods of solutions for the free boundary problem

MHF2004-19 Hiroki MASUDA
Ergodicity and exponential β-mixing bounds for a strong solution of Lévy-driven stochastic differential equations

MHF2004-20 Setsuo TANIGUCHI
The Brownian sheet and the reflectionless potentials

MHF2004-21 Ryuei NISHII & Shinto EGUCHI
Supervised image classification based on AdaBoost with contextual weak classifiers

MHF2004-22 Hideki KOSAKI
On intersections of domains of unbounded positive operators

MHF2004-23 Masahisa TABATA & Shoichi FUJIMA
Robustness of a characteristic finite element scheme of second order in time increment

MHF2004-24 Ken-ichi MARUNO, Adrian ANKIEWICZ & Nail AKHMEDIEV
Dissipative solitons of the discrete complex cubic-quintic Ginzburg-Landau equation

MHF2004-25 Raimundas VIDŪNAS
Degenerate Gauss hypergeometric functions

MHF2004-26 Ryo IKOTA
The boundedness of propagation speeds of disturbances for reaction-diffusion systems

MHF2004-27 Ryusuke KON
Convex dominates concave: an exclusion principle in discrete-time Kolmogorov systems
MHF2004-28 Ryusuke KON
Multiple attractors in host-parasitoid interactions: coexistence and extinction

MHF2004-29 Kentaro IHARA, Masanobu KANEKO & Don ZAGIER
Derivation and double shuffle relations for multiple zeta values

MHF2004-30 Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Generalized partitioned quantum cellular automata and quantization of classical CA

MHF2005-1 Hideki KOSAKI
Matrix trace inequalities related to uncertainty principle

MHF2005-2 Masahisa TABATA
Discrepancy between theory and real computation on the stability of some finite element schemes

MHF2005-3 Yuko ARAKI & Sadanori KONISHI
Functional regression modeling via regularized basis expansions and model selection

MHF2005-4 Yuko ARAKI & Sadanori KONISHI
Functional discriminant analysis via regularized basis expansions

MHF2005-5 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
Point configurations, Cremona transformations and the elliptic difference Painlevé equations

MHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
Construction of hypergeometric solutions to the q-Painlevé equations

MHF2005-7 Hiroki MASUDA
Simple estimators for non-linear Markovian trend from sampled data: I. ergodic cases

MHF2005-8 Hiroki MASUDA & Nakahiro YOSHIDA
Edgeworth expansion for a class of Ornstein-Uhlenbeck-based models

MHF2005-9 Masayuki UCHIDA
Approximate martingale estimating functions under small perturbations of dynamical systems

MHF2005-10 Ryo MATSUZAKI & Masayuki UCHIDA
One-step estimators for diffusion processes with small dispersion parameters from discrete observations

MHF2005-11 Junichi MATSUKUBO, Ryo MATSUZAKI & Masayuki UCHIDA
Estimation for a discretely observed small diffusion process with a linear drift