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Abstract. For a multi-dimensional diffusion process with small dispersion parameter ε, an
asymptotically efficient estimator of the drift parameter is studied. When the sample path is
observed at n regularly spaced time points tk = k/n, k = 0, 1, . . . , n, we investigate asymptotic
properties of a one-step estimator derived from an approximate estimating function under the
situation when ε → 0 and n →∞ simultaneously.
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1 Introduction

We consider a family of d-dimensional diffusion processes defined by the following stochastic
differential equations:

dXt = b(Xt, θ)dt + εσ(Xt)dwt, t ∈ [0, 1], ε ∈ (0, 1], (1)
X0 = x0,

where θ ∈ Θ̄, Θ is an open bounded convex subset of Rp and Θ̄ is the closure of Θ. Further, x0

and ε are known constants, b is an Rd-valued function defined on Rd×Θ̄, σ is an Rd⊗Rr-valued
function defined on Rd, and w is an r-dimensional standard Wiener process. We assume that
the drift b is known apart from the parameter θ. The type of data considered in this paper is
discrete observations of X at n regularly spaced time points tk = k/n on the fixed interval [0, 1],
that is, (Xtk)0≤k≤n. The asymptotics we consider is when ε → 0 and n → ∞ simultaneously.

Parametric inference based on small diffusion asymptotics for diffusion processes is well-
developed together with applications to mathematical finance. For continuously observed small
diffusions, see Kutoyants (1984, 1994) and Yoshida (1992, 2003). Moreover, there are a number
of papers on estimation of the parameter for a discretely observed diffusion process with a small
dispersion parameter, see Genon-Catalot (1990), Laredo (1990), Sørensen (2000), Sørensen and
Uchida (2003) and Uchida (2004a, 2004b, 2004c). As for the estimation of the drift parameter,
it seems that the following three papers are fundamental. Genon-Catalot (1990) presented two
kinds of contrast functions, U(θ) and Λ(θ) (see p. 102 and p. 103 in Genon-Catalot (1990)).
She proved that an estimator obtained from the first contrast function U(θ) is asymptotically
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efficient under (εn)−1 → 0 and an estimator derived from the second contrast function Λ(θ)
has asymptotic efficiency under ε

√
n = O(1). Laredo (1990) studied an estimator which has

asymptotic efficiency under
(
εn2
)−1 → 0. Recently, Uchida (2004a) proposed an approximate

martingale estimating function based on a martingale estimating function proposed in Bibby and
Sørensen (1995). The estimator obtained from the estimating function has asymptotic efficiency
under

(
εn`
)−1 → 0 for a natural number `. We note that the first contrast function U(θ) in

Genon-Catalot (1990) and the estimating function in Uchida (2004a) are explicitly obtained,
while the contrast function in Laredo (1990) and the second contrast function Λ(θ) in Genon-
Catalot (1990) do not generally have explicit forms. Furthermore, even if all contrast functions
have explicit expressions, the estimators are not always derived from the contrast functions
because of their complicated forms.

In order to overcome this difficulty, we study a one-step estimator which handles well even in
such ill cases. The Newton-Raphson method is widely known as a practical method to obtain an
approximate solution when we can not solve a non-random equation. The one-step estimator is
constructed in the same way as this method. For details of one-step estimators, see, for example,
Ferguson (1996), Van der Vaart (1998) and Sakamoto and Yoshida (1999).

This paper is organized as follows. In section 2, we propose a one-step estimator and describe
the conditions that the one-step estimator has consistency, asymptotic normality and asymptotic
efficiency under

(
εn`
)−1 → 0 as ε → 0, n → ∞ for a natural number `. Section 3 gives two

examples and simulation studies. For the first example, the contrast function in Laredo (1990)
can not be explicitly obtained. The contrast function Λ(θ) in Genon-Catalot (1990) does not
have an explicit form in both examples. The proof of the result is given in section 4.

2 One-step estimator

Let θ0 be a true value of θ and assume that θ0 ∈ Θ. Let X0
t be the solution of the ordinary

differential equation: dX0
t = b(X0

t , θ0)dt, X0
0 = x0. Let C∞,3

↑ (Rd×Θ;Rd) be a space of functions
f which satisfies the following conditions: (i) f : Rd ×Θ −→ Rd is infinitely differentiable with
respect to x and continuously differentiable with respect to θ up to order 3, (ii) for n, ν satisfying
| n |≥ 0, 0 ≤| ν |≤ 3, there exists C > 0 such that supθ∈Θ | δν∂nf(x, θ) |≤ C(1+ | x |)C for ∀x ∈
Rd. Here, n = (n1, n2, . . . , nd), ν = (ν1, ν2, . . . , νp) are multi-indices, | n |= n1 + n2 + · · ·+ nd,
| ν |= ν1 + ν2 + · · · + νp, ∂n = ∂n1

1 ∂n2
2 · · · ∂nd

d , δν = δν1
1 ∂ν2

2 · · · ∂νp
p , ∂i = ∂/∂x1 and δj = ∂/∂θj

.
Let C∞↑ (Rd;Rd ⊗ Rr) be a space of functions h which satisfies the following conditions: (i)
h : Rd −→ Rd ⊗Rr is continuously infinitely differentiable with respect to x, (ii) for | n |≥ 0,
there exists C > 0 such that | ∂nh(x) |≤ C(1+ | x |)C for ∀x ∈ Rd. Moreover, let σT be
the transposition of σ, P−→ be the convergence in probability and d−→ be the convergence in
distribution henceforth.

In this paper we make the following assumptions.
(A1) Equation (1) has a unique strong solution on [0,1].
(A2) For ∀m > 0, sup0≤t≤1 E [| Xt |m] < ∞.

(A3) b(x, θ) ∈ C∞,3
↑ (Rd × Θ̄;Rd), σ(x) ∈ C∞↑ (Rd;Rd ⊗Rr).

(A4) infx det
[
σσT (x)

]
> 0,

[
σσT (x)

]−1 ∈ C∞↑ (Rd;Rd ⊗Rd).
(A5) I(θ0) =

(
Ii.j(θ0)

)
i,j=1,2,...,p

is positive definite, where

Ii.j(θ) =
∫ 1

0

[
δib(X0

s , θ)
]T [

σσT (X0
s )
]−1[

δjb(X0
s , θ)

]
ds.
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For ` ∈ N, an approximate martingale estimating function Gε,n,`(θ) =
(
G

(i)
ε,n,`(θ)

)
i=1,2,...,p

proposed in Uchida (2004a) is as follows:

G
(i)
ε,n,`(θ) = ε−2

n∑
k=1

[
δib(Xtk−1

, θ)
]T [

σσT (Xtk−1
)
]−1

Pk,`(θ), (2)

Pk,`(θ) = Xtk −
∑̀
j=0

1
j!nj

L̃j
θg(Xtk−1

),

L̃θg(x) =
d∑

i=1

bi(x, θ)∂ig(x),

where g(x) = x and bi(x, θ) is the i-th element of b(x, θ). For example, when ` = 2,

G
(i)
ε,n,2(θ) = ε−2

n∑
k=1

[
δib(Xtk−1

, θ)
]T [

σσT (Xtk−1
)
]−1

(
Xtk −Xtk−1

− 1
n

b(Xtk−1
, θ)
)

.

An estimator obtained from the estimating function Gε,n,`(θ) has the following asymptotic
properties. For details of the result, see Uchida (2004a).

Theorem 1 (Uchida (2004a)) Let ` ∈ N. Assume (A1)-(A5). Then, an estimator θ̂ε,n,`, which
solves Gε,n,`(θ) = 0, exists with a probability tending to one as ε → 0 and n → ∞ under Pθ0,
and θ̂ε,n,`

p−→ θ0 as ε → 0 and n → ∞. Moreover, if
(
εn`
)−1 → 0 as ε → 0 and n → ∞,

ε−1(θ̂ε,n,` − θ0)
d−→ N(0, I−1(θ0)).

It follows from theorem 1 that an estimator derived from the estimating function Gε,n,`(θ) has
asymptotic efficiency under

(
εn`
)−1 → 0 as ε → 0 and n → ∞. It seems that the estimation

procedure works well. However, there is a disadvantage that we can not generally obtain an
explicit estimator because the estimating function Gε,n,`(θ) has complicated form when l is large.

In order to conquer this difficulty, we suggest a one-step estimator as follows. For an initial
estimator θ̂

(0)
ε,n,`, a one-step estimator θ̂

(1)
ε,n,` is defined by

θ̂
(1)
ε,n,` = θ̂

(0)
ε,n,` −

[
∂θGε,n,`(θ̂

(0)
ε,n,`)

]−1
Gε,n,`(θ̂

(0)
ε,n,`). (3)

We then have the following theorem.

Theorem 2 Let ` ∈ N. Assume (A1)-(A5). Moreover, assume that an initial estimator θ̂
(0)
ε,n,`

satisfies ε−1(θ̂(0)
ε,n,` − θ0) = OP (1) under

(
εn`
)−1 → 0 as ε → 0 and n → ∞. Then, under(

εn`
)−1 → 0 as ε → 0 and n →∞,

(i) ε−1(θ̂(1)
ε,n,` − θ0)−

[
I(θ0)

]−1
εGε,n,`(θ0) = oP (1),

(ii) ε−1(θ̂(1)
ε,n,` − θ0)

d−→ N
(
0,
[
I(θ0)

]−1
)
.

By theorem 2, in order to get an asymptotically efficient estimator it is essential to obtain an
initial estimator with the property that ε−1(θ̂(0)

ε,n,` − θ0) = OP (1) under
(
εn`
)−1 → 0 as ε → 0

and n →∞. One of sufficient conditions of an initial estimator is that ε−1(θ̂(0)
ε,n−θ0) = OP (1) as

ε → 0 and n → ∞. Note that the estimator θ̂
(0)
ε,n is independent of `. For estimators satisfying

that ε−1(θ̂(0)
ε,n − θ0) = OP (1) as ε → 0 and n →∞, see Uchida (2004b, 2004c).

3



3 Examples

In this section, we give two examples and examine the performance of the one-step estimator
through simulation studies. One thousand sample paths are generated by the Euler-Maruyama
scheme, see Kloeden and Platen (1992). We set that ε = 0.01, 0.05, 0.1 and n = 10, 50. In order
to obtain a one-step estimator θ̂

(1)
ε,n,3, the approximate martingale estimating function defined

by (2) is treated with ` = 3. For an initial estimator, we use the estimator obtained from an
approximate martingale estimating function based on an eigenfunction, see Uchida (2004c). In
order to evaluate the estimator θ̂

(1)
ε,n,3, we also calculate the estimator obtained from the first

contrast function U(θ) in Genon-Catalot (1990) and the estimator in Laredo (1990), which are
denoted by θ̂

(S)
ε,n and θ̂

(L)
ε,n , respectively. In both examples, the second contrast function Λ(θ)

in Genon-Catalot (1990) does not have an explicit form. As for the contrast function lε(θ)
presented by Laredo (1990), it is not explicitly obtained in the first example. For each of the
estimators, the means and standard deviations are computed.

3.1 Non-linear model 1

We consider a non-linear model defined by the stochastic diffusion equation,

dXt = θ cos Xtdt + εXtdwt, t ∈ [0, 1], ε ∈ (0, 1], X0 = x0,

where x0 and ε are known constants and θ is an unknown parameter. Let X0
t be the solution

of the differential equation, dX0
t = θ cos X0

t dt,X0
0 = x0. Since X0

t does not have an explicit
form, we can not explicitly get the contrast function Λ(θ). The contrast function lε(θ) is not
also explicitly derived for this diffusion model. Note that in order to obtain lε(θ), we need to
have the function V (x, θ) satisfying that

V (x, θ)− V (x0, θ) =
∫ x

x0

θ cos u

u2
du.

Unfortunately, the function V (x, θ) can not have an explicit expression. For this reason, we
treat the estimating function defined by (2).

For ` = 3, the estimating function Gε,n,3(θ) in (2) is given by

Gε,n,3(θ) =
1
ε2

{
n∑

k=1

cos Xtk−1

X2
tk−1

(Xtk −Xtk−1
)− θ

n

n∑
k=1

cos2 Xtk−1

X2
tk−1

+
θ2

2n2

n∑
k=1

cos2 Xtk−1
sinXtk−1

X2
tk−1

− θ3

6n3

n∑
k=1

cos2 Xtk−1
(sin2 Xtk−1

− cos2 Xtk−1
)

Xtk−1

}
.

Since the estimating equation Gε,n,3(θ) = 0 is not solvable, we consider a one-step estimator.
In the same way as in Uchida (2004c), an initial estimator is obtained from the estimating

function

Hε,n(θ) =
n∑

k=1

cos Xtk−1

X2
tk−1

{
ϕ(Xtk)− e−λ(θ)/nϕ(Xtk−1

)
}

,

where λ(θ) = θ and

ϕ(x) =
cos(x/2) + sin(x/2)
cos(x/2)− sin(x/2)

.
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It then follows that the initial estimator θ̂
(0)
ε,n satisfying that Hε,n(θ) = 0 is given by

θ̂(0)
ε,n = n

{
log

n∑
k=1

cos Xtk−1
ϕ(Xtk)

X2
tk−1

− log
n∑

k=1

cos Xtk−1
ϕ(Xtk−1

)
X2

tk−1

}
.

By the result of Uchida (2004c), the estimator θ̂
(0)
ε,n has asymptotic normality as ε → 0 and

n → ∞. Therefore, theorem 2 implies that the one-step estimator θ̂
(1)
ε,n,3 defined by (3) is

asymptotically efficient, namely, under (εn3)−1 → 0 as ε → 0 and n →∞,

ε−1(θ̂(1)
ε,n,3 − θ0)

d−→ N(0, I(θ0)−1),

where

I(θ0) =
∫ 1

0

cos2 X0
t

(X0
t )2

dt.

Table 1 shows the simulation results for the two estimators, θ̂
(S)
ε,n and θ̂

(1)
ε,n,3, in the situation

where θ = 1 and x0 = 0.5. For the case that n = 10, θ̂
(S)
ε,n has a considerable bias while θ̂

(1)
ε,n,3 is

still unbiased. When n = 50, it seems that there is no big difference between the two estimators.
We see that θ̂

(1)
ε,n,3 performs quite well in all cases.

Table 1: (Non-linear model) The mean and standard deviation of the estimators, which are
determined from 1000 independent simulated sample paths for θ = 1 and x0 = 0.5.

θ̂
(S)
ε,n θ̂

(1)
ε,n,3

n ε mean s.d. mean s.d.
0.10 10 0.975953 0.105133 1.007391 0.112336
0.10 50 1.002238 0.110424 1.008725 0.111927
0.05 10 0.970827 0.052081 1.001763 0.055602
0.05 50 0.995715 0.054673 1.002085 0.055405
0.01 10 0.969524 0.010350 1.000317 0.011044
0.01 50 0.993944 0.010865 1.000280 0.011009

3.2 Non-linear model 2

We consider another non-linear model defined by the stochastic differential equation

dXt =
(

α

Xt
− βXt

)
dt + εdwt, X0 = x0,

where x0 and ε are known constants and α and β are unknown parameters. Here we assume that
the state space is the positive real line. Furthermore, we set that θ = (α, β). Let X0

t denote the
solution of the differential equation, dX0

t =
(
α0/X0

t − β0X
0
t

)
dt,X0

0 = x0. As in the previous
subsection, the second contrast function Λ(θ) can not be explicitly obtained because X0

t does
not have an explicit form. We can explicitly derive the contrast function lε(θ), but we note that
the asymptotics which the estimator θ̂

(L)
ε,n works is under (εn2)−1 → 0 as ε → 0 and n →∞. In
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this subsection, we consider the estimating function which works under (εn3)−1 → 0 as ε → 0
and n →∞.

By (2) with ` = 3, the two-dimensional estimating function Gε,n,3(θ) = (G(1)
ε,n,3(θ), G

(2)
ε,n,3(θ))

is as follows.

G
(1)
ε,n,3(θ) =

1
ε2

n∑
k=1

1
Xtk−1

[
Xtk −Xtk−1

− 1
n

(
α

Xtk−1

− β

)
− 1

2n2

(
− α2

X3
tk−1

+ β2Xtk−1

)

− 1
6n3

(
3α3

X5
tk−1

+
αβ2

Xtk−1

− 3α2β

X3
tk−1

− β3Xtk−1

)]
,

G
(2)
ε,n,3(θ) = − 1

ε2

n∑
k=1

Xtk−1

[
Xtk −Xtk−1

− 1
n

(
α

Xtk−1

− β

)
− 1

2n2

(
− α2

X3
tk−1

+ β2Xtk−1

)

− 1
6n3

(
3α3

X5
tk−1

+
αβ2

Xtk−1

− 3α2β

X3
tk−1

− β3Xtk−1

)]
.

As seen in the previous subsection, it is too difficult to derive an explicit estimator from the
estimating function. Therefore, we need to take a one-step estimator.

In order to obtain an initial estimator, we consider the estimating functions of Uchida (2004c)
as follows.

H(1)
ε,n(θ) =

n∑
k=1

1
Xtk−1

{
ϕ(Xtk , θ)− e−λ(θ)/nϕ(Xtk−1

, θ)
}

,

H(2)
ε,n(θ) =

n∑
k=1

Xtk−1

{
ϕ(Xtk , θ)− e−λ(θ)/nϕ(Xtk−1

, θ)
}

,

where ϕ(x, θ) = α − βx2 and λ(θ) = 2β. By solving the estimating equation that Hε,n(θ) = 0,
the estimators for α and β are

α̂(0)
ε,n = β̂(0)

ε,n

A− e−2β̂
(0)
ε,n/nB

(1− e−2β̂
(0)
ε,n/n)C

,

β̂(0)
ε,n = −n

2
log

AD − CE

BD − CF
,

respectively, where

A =
n∑

k=1

X2
tk

Xtk−1

, B =
n∑

k=1

Xtk−1
, C =

n∑
k=1

1
Xtk−1

,

D =
n∑

k=1

Xtk , E =
n∑

k=1

Xtk−1
X2

tk
, F =

n∑
k=1

X3
tk−1

.

It follows from the result of Uchida (2004c) that the estimator θ̂
(0)
ε,n = (α̂(0)

ε,n, β̂
(0)
ε,n) is asymptotically

normal as ε → 0 and n → ∞. Therefore, theorem 2 yields that the one-step estimator θ̂
(1)
ε,n,3

defined by (3) has asymptotic efficiency, that is,

ε−1(θ̂(1)
ε,n,3 − θ0)

d−→ N(0, I(θ0)−1)
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under (εn3)−1 → 0 as ε → 0 and n →∞, where

I(1,1)(θ0) =
∫ 1

0

1
(X0

t )2
dt, I(1,2)(θ0) = I(2,1)(θ0) = −1, I(2,2)(θ0) =

∫ 1

0
(X0

t )2dt.

In the setting that α = 10, β = 1 and x0 = 1, the simulation results of the three estimators
for α and β are given in tables 2 and 3, respectively. For the case that n = 10, both α̂

(S)
ε,n and α̂

(L)
ε,n

have considerable biases while α̂
(1)
ε,n,3 works well. In the situation where n is not so large, it is

reasonable to use α̂
(1)
ε,n,3 for this model. For the situation where n = 50, α̂

(S)
ε,n still has a small bias

while both α̂
(L)
ε,n and α̂

(1)
ε,n,3 are unbiased with small variances. We can say that α̂

(1)
ε,n,3 is better

than the others in all cases. For the simulation results of β, we observe the same phenomenon as
α. In the case that n = 10, both β̂

(S)
ε,n and β̂

(L)
ε,n have such serious significant biases that we can

not use them in this setting. For the case that n = 50, β̂
(S)
ε,n has a small bias and there seems no

difference between β̂
(L)
ε,n and β̂

(1)
ε,n,3. It is worth mentioning that β̂

(1)
ε,n,3 performs quite well even if

n is not so large and ε is not so small.

Table 2: (Non-linear model 2) The mean and standard deviation (s.d.) of the three estimators
determined from 1000 independent simulated sample paths for α = 10, β = 1 and x0 = 1.

α̂
(S)
ε,n α̂

(L)
ε,n α̂

(1)
ε,n,3

ε n mean s.d. mean s.d. mean s.d.
0.10 10 6.98508 0.03127 8.98324 0.04847 10.44851 0.08243
0.10 50 9.29033 0.04892 9.97759 0.05622 10.01142 0.05666
0.05 10 6.98469 0.01563 8.98286 0.02424 10.44687 0.04121
0.05 50 9.28963 0.02445 9.97724 0.02810 10.01059 0.02832
0.01 10 6.98442 0.00313 8.98254 0.00485 10.44591 0.00824
0.01 50 9.28920 0.00489 9.97690 0.00562 10.01008 0.00566

Table 3: (Non-linear model 2) The mean and standard deviation (s.d.) of the three estimators
determined from 1000 independent simulated sample paths for α = 10, β = 1 and x0 = 1.

β̂
(S)
ε,n β̂

(L)
ε,n β̂

(1)
ε,n,3

ε n mean s.d. mean s.d. mean s.d.
0.10 10 0.59291 0.00811 0.82724 0.01050 1.05620 0.01610
0.10 50 0.90386 0.01084 0.99485 0.01194 1.00092 0.01202
0.05 10 0.59284 0.00406 0.82717 0.00525 1.05593 0.00805
0.05 50 0.90371 0.00542 0.99477 0.00597 1.00075 0.00601
0.01 10 0.59278 0.00081 0.82711 0.00105 1.05576 0.00161
0.01 50 0.90362 0.00108 0.99470 0.00119 1.00065 0.00120
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4 Proof

In order to prove the result, we introduce some notation and two lemmas. For lemmas 1 and 2
put later on, we set that Kε,n,`(θ) =

(
Ki,j

ε,n,`(θ)
)
i,j=1,2,...,p

and K(θ) =
(
Ki,j(θ)

)
i,j=1,2,...,p

, where

Ki,j
ε,n,`(θ) = δjG

(i)
ε,n,`(θ),

Ki,j(θ) =
∫ 1

0

[
δjδib(X0

s , θ)
]T [

σσT (X0
s )
]−1

B(X0
s , θ0, θ)ds− Ii,j(θ)

and B(x, θ0, θ) = b(x, θ0)− b(x, θ).

Lemma 1 (Uchida (2004a)) Let ` ∈ N. Assume (A1)-(A4). Then, as ε → 0 and n →∞,

sup
θ∈Θ̄

∣∣ε2Kε,n,`(θ)−K(θ)
∣∣ P−→ 0.

Lemma 2 (Uchida (2004a)) Let ` ∈ N. Assume (A1)-(A4). If
(
εn`
)−1 → 0, then, as ε → 0

and n →∞,

εGε,n,`(θ0)
d−→ N (0, I(θ0)) .

For proofs of lemmas 1 and 2, see Uchida (2004a).

Proof of Theorem 2. Following the proof of asymptotic efficiency for one-step estimators
presented in Yoshida (2004), we will prove theorem 2. Consider the following event A0 defined
by

A0 =
{

θ̂
(0)
ε,n,` ∈ Θ̄, δθGε,n,`(θ̂

(0)
ε,n,`) ∈ A, θ̂

(1)
ε,n,` ∈ Θ̄

}
,

where A is a whole set of non-singular matrices. First of all, we will show that P (A0) −→ 1. It
follows from the assumption of the initial estimator θ̂

(0)
ε,n,` that

P (θ̂(0)
ε,n,` ∈ Θ̄) −→ 1. (4)

By using the mean value theorem,∣∣∣ε2
[
Gε,n,`(θ̂

(0)
ε,n,`)−Gε,n,`(θ0)

]∣∣∣ = ∣∣∣∣∫ 1

0
ε2δθGε,n,`

(
θ0 + u(θ̂(0)

ε,n,` − θ0)
)

du

∣∣∣∣ ∣∣∣θ̂(0)
ε,n,` − θ0

∣∣∣ .
Note that for 0 ≤ u ≤ 1, P (θ0 + u(θ̂(0)

ε,n,` − θ0) ∈ Θ̄) −→ 1. Lemma 1 yields that∣∣∣∣∫ 1

0
ε2δθGε,n,`

(
θ0 + u(θ̂(0)

ε,n,` − θ0)
)

du− I(θ0)
∣∣∣∣

≤
∫ 1

0

∣∣∣ε2δθGε,n,`

(
θ0 + u(θ̂(0)

ε,n,` − θ0)
)
−K

(
θ0 + u(θ̂(0)

ε,n,` − θ0)
)∣∣∣ du

+
∫ 1

0

∣∣∣K (
θ0 + u(θ̂(0)

ε,n,` − θ0)
)
− I(θ0)

∣∣∣ du

P−→ 0.
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By the above estimates,
∣∣∣ε2
[
Gε,n,`(θ̂

(0)
ε,n,`)−Gε,n,`(θ0)

]∣∣∣ P−→ 0. Lemma 2 implies that

ε2Gε,n,`(θ̂
(0)
ε,n,`)

P−→ 0. (5)

By (4) and lemma 1, one has
∣∣∣ε2Kε,n,`(θ̂

(0)
ε,n,`)−K(θ̂(0)

ε,n,`)
∣∣∣ P−→ 0. Further, the continuity of K(θ)

yields that
∣∣∣K(θ̂(0)

ε,n,`)−K(θ0)
∣∣∣ P−→ 0. By using these results,∣∣∣ε2Kε,n,`(θ̂

(0)
ε,n,`)−K(θ0)

∣∣∣ ≤
∣∣∣ε2Kε,n,`(θ̂

(0)
ε,n,`)−K(θ̂(0)

ε,n,`)
∣∣∣+ ∣∣∣K(θ̂(0)

ε,n,`)−K(θ0)
∣∣∣ P−→ 0.

Noting that K(θ0) = −I(θ0), we have ε2Kε,n,`(θ̂
(0)
ε,n,`)

P−→ −I(θ0). Therefore,

P
(
δθGε,n,`(θ̂

(0)
ε,n,`) ∈ A

)
−→ 1. (6)

Since it follows from (5), (6) and the consistency of θ̂
(0)
ε,n,` that

θ̂
(1)
ε,n,` = θ̂

(0)
ε,n,` −

[
ε2δθGε,n,`(θ̂

(0)
ε,n,`)

]−1
ε2Gε,n,`(θ̂

(0)
ε,n,`)

P−→ θ0,

one has

P
(
θ̂
(1)
ε,n,` ∈ Θ̄

)
−→ 1. (7)

Thus, by (4), (6) and (7) that P (A0) −→ 1. From this fact, it suffices to consider the estimates
on the event A0 under the asymptotics we treat.

From the Taylor expansion at θ = θ0, we have

εGε,n,`(θ̂
(0)
ε,n,`) = εGε,n,`(θ0) +

[∫ 1

0
Kε,n,`

(
θ0 + u(θ̂(0)

ε,n,` − θ0)
)

du

]
ε(θ̂(0)

ε,n,` − θ0). (8)

Let 4ε,n = ε
[
δθGε,n,`(θ̂

(0)
ε,n,`)

]
(θ̂(1)

ε,n,` − θ0) + εGε,n,`(θ0). Using (3) and (8), we then have

4ε,n = ε
[
Kε,n,`(θ̂

(0)
ε,n,`)

]{
θ̂
(0)
ε,n,` −

[
Kε,n,`(θ̂

(0)
ε,n,`)

]−1
Gε,n,`(θ̂

(0)
ε,n,`)− θ0

}
+εGε,n,`(θ̂

(0)
ε,n,`)−

[∫ 1

0
Kε,n,`

(
θ0 + u(θ̂(0)

ε,n,` − θ0)
)

du

]
ε(θ̂(0)

ε,n,` − θ0)

= ε2

[
Kε,n,`(θ̂

(0)
ε,n,`)−

∫ 1

0
Kε,n,`

(
θ0 + u(θ̂(0)

ε,n,` − θ0)
)

du

]
ε−1(θ̂(0)

ε,n,` − θ0).

Moreover, ∣∣∣∣ε2

[
Kε,n,`(θ̂

(0)
ε,n,`)−

∫ 1

0
Kε,n,`

(
θ0 + u(θ̂(0)

ε,n,` − θ0)
)

du

]∣∣∣∣
≤

∫ 1

0

∣∣∣ε2Kε,n,`(θ̂
(0)
ε,n,`)−K(θ̂(0)

ε,n,`)
∣∣∣ du

+
∫ 1

0

∣∣∣K(θ̂(0)
ε,n,`)−K

(
θ0 + u(θ̂(0)

ε,n,` − θ0)
)∣∣∣ du

+
∫ 1

0

∣∣∣ε2Kε,n,`

(
θ0 + u(θ̂(0)

ε,n,` − θ0)
)
−K

(
θ0 + u(θ̂(0)

ε,n,` − θ0)
)∣∣∣ du.

9



It follows from lemma 1 that∫ 1

0

∣∣∣ε2Kε,n,`(θ̂
(0)
ε,n,`)−K(θ̂(0)

ε,n,`)
∣∣∣ du

P−→ 0,∫ 1

0

∣∣∣ε2Kε,n,`

(
θ0 + u(θ̂(0)

ε,n,` − θ0)
)
−K

(
θ0 + u(θ̂(0)

ε,n,` − θ0)
)∣∣∣ du

P−→ 0.

Furthermore, by the continuity of K(θ),∫ 1

0

∣∣∣K(θ̂(0)
ε,n,`)−K

(
θ0 + u(θ̂(0)

ε,n,` − θ0)
)∣∣∣ du

P−→ 0.

Therefore,

ε2

[
Kε,n,`(θ̂

(0)
ε,n,`)−

∫ 1

0
Kε,n,`

(
θ0 + u(θ̂(0)

ε,n,` − θ0)
)

du

]
= oP (1),

and 4ε,n = oP (1)×OP (1) = oP (1). Since it follows from an easy computation that[
ε2Kε,n,`(θ̂

(0)
ε,n,`)

]−1
4ε,n = ε−1(θ̂(1)

ε,n,` − θ0) + ε−1
[
Kε,n,`(θ̂

(0)
ε,n,`)

]−1
Gε,n,`(θ0),

one has

ε−1(θ̂(1)
ε,n,` − θ0)− [I(θ0)]

−1 εGε,n,`(θ0)

=
[
ε2Kε,n,`(θ̂(0)

ε,n)
]−1

4ε,n −
{[

ε2Kε,n,`(θ̂(0)
ε,n)
]−1

+ [I(θ0)]
−1

}
εGε,n,`(θ0).

By the results that 4ε,n
P−→ 0, and ε2Kε,n,`(θ̂

(0)
ε,n) P−→ −I(θ0), we obtain that

ε−1(θ̂(1)
ε,n,` − θ0)−

[
I(θ0)

]−1
εGε,n,`(θ0) = oP (1).

This completes the proof of (i).
Finally, it follows from (i) and lemma 2 that

ε−1(θ̂(1)
ε,n,` − θ0) = ε−1(θ̂(1)

ε,n,` − θ0)− [I(θ0)]
−1 εGε,n,`(θ0) + [I(θ0)]

−1 εGε,n,`(θ0)
d−→ N

(
0, [I(θ0)]

−1
)

.

We complete the proof.
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