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Abstract. An approximate martingale estimating function based on eigenfunctions is proposed
for an estimation problem about an unknown drift parameter for a one-dimensional diffusion
process with small perturbed parameter ε from discrete time observations at n regularly spaced
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1 Introduction

Consider a family of one-dimensional diffusion processes defined by the following stochastic
differential equations

dXt = b(Xt, θ)dt + εσ(Xt)dwt, t ∈ [0, 1], ε ∈ (0, 1], (1)
X0 = x0,

where w is a one-dimensional standard Wiener process, the diffusion coefficient σ : R → R
and ε are known and the drift b : R × Θ̄ → R is known apart from the parameter θ. Here
Θ̄ denotes the closure of Θ and Θ is an open bounded convex subset of Rp. We treat discrete
time observations of X at equidistant time points tk = k/n, that is, Xt0 , Xt1 , . . . , Xtn . The
asymptotics is when ε tends to 0 and n tends to ∞ simultaneously.

A family of diffusion processes defined by (1) is an important class of dynamical systems with
small perturbations. For dynamical systems with small perturbations, see Azencott (1982) and
Freidlin and Wentzell (1984). For applications of dynamical systems with small perturbations
to mathematical finance, see Yoshida (1992b), Kunitomo and Takahashi (2001), Takahashi and
Yoshida (2004), Uchida and Yoshida (2004b) and references therein. Asymptotically statistical
inference for dynamical systems with small perturbations from continuous time observations is
well developed, see Kutoyants (1984, 1994), Yoshida (1992a, 2003) and Uchida and Yoshida
(2004a). Moreover, there are a number of works on asymptotically parametric estimation based
on discrete observations, see Genon-Catalot (1990), Laredo (1990), Sørensen (2000), Sørensen
and Uchida (2003), Uchida (2004a, 2004b) and Matsuzaki and Uchida (2005).

1



As for estimation of a drift parameter for a diffusion process with a small perturbation, the
following three papers treated asymptotically efficient estimators in a general setting. Genon-
Catalot (1990) proposed two kinds of estimators for an unknown drift parameter. One is derived
from a contrast function based on a discretization of the log likelihood function of continuously
observed sample path. The estimator has asymptotic efficiency under (εn)−1 → 0 as ε → 0 and
n → ∞. The other is obtained from the contrast function based on the first order stochastic
expansion of X with respect to ε. The second estimator is asymptotically efficient under ε

√
n =

O(1) as ε → 0 and n →∞. For multi-dimensional diffusion processes with small perturbations,
Laredo (1990) studied asymptotically efficient estimators of drift parameters under (εn2)−1 → 0
as ε → 0 and n → ∞. Uchida (2004a) applied a martingale estimating function presented in
Bibby and Sørensen (1995) to a multi-dimensional diffusion process with a small noise. For
the diffusion process (1), the martingale estimating function Mε,n(θ) = (M(i)

ε,n(θ))i=1,2,...,p is as
follows:

M(i)
ε,n(θ) =

n∑
k=1

(
∂b

∂θi

)
(Xtk−1

, θ)σ−2(Xtk−1
)(Xtk − Eθ[Xtk−1

|Xtk ]) (2)

for i = 1, . . . , p. An estimator obtained from the martingale estimating function Mε,n(θ) has
asymptotic efficiency as ε → 0 and n → ∞. From the viewpoint of the first order asymptotic
theory, all the above four estimators are asymptotically efficient. Therefore, it seems that there
is no difficulty for efficient estimation of a drift parameter. However, there is an example for
which the four estimators do not work.

In order to explain the motivation of this paper, we consider the following diffusion process
with a small noise defined by

dXt = θ1Xt(θ2 −Xt)dt + εXtdwt, t ∈ [0, T ], ε ∈ (0, 1], (3)
X0 = x0,

where θ1 and θ2 are unknown parameters. The diffusion process (3) is often used as a model
for the growth of a population of size Xt in a stochastic, crowded environment. For details of
this model, see (5.3.9) on page 78 in Øksendal (2003). If a monthly data is observable, one has
that tk = k/12 for k = 0, 1, . . . , 12T , that is, n = 12. For simplicity, we set that ε = 0.01 and
T = 1. Under this situation, in order to estimate unknown parameters θ1 and θ2, we first try
to compute the martingale estimating function Mε,n(θ). However, for the diffusion process (3),
the conditional expectation Eθ[Xtk−1

|Xtk ] does not have an explicit form. Next, we consider the
second contrast function presented in Genon-Catalot (1990) since the estimator has asymptotic
efficiency under ε

√
n = O(1). However, we see that the contrast function can not be explicitly

obtained from the diffusion process (3). Moreover, the estimator proposed by Laredo (1990) can
not be used in this situation since (εn2)−1 is not so small. Neither can the estimator derived
from the first contrast function of Genon-Catalot (1990).

To overcome the difficulties, Uchida (2004a) investigated approximate martingale estimating
functions for multi-dimensional diffusion processes with small perturbations. For the diffusion
process (1), the approximate martingale estimating function Gε,n,`(θ) = (G(i)

ε,n,`(θ))i=1,2,...,p is as
follows: for ` ≥ 1 and i = 1, . . . , p,

G(i)
ε,n,`(θ) =

n∑
k=1

(
∂b

∂θi

)
(Xtk−1

, θ)σ−2(Xtk−1
)Pk,`(θ), (4)

where Pk,`(θ) = Xtk −
∑`

j=0
1

j!nj L̃j
θg(Xtk−1

), g(x) = x and L̃θg(x) = b(x, θ) ∂
∂xg(x). He also

showed that an estimator obtained from the approximate martingale estimating function Gε,n,`(θ)

2



is asymptotically efficient under (εn`)−1 → 0 as ε → 0 and n → ∞. Since the situation
we consider is when ε = 0.01 and n = 12, it suffices to set that ` = 3. It is certain that
the estimating function Gε,n,3(θ) is obtained explicitly. Therefore, it seems that we attain our
goal. However, there is a serious problem that an explicit estimator can not be derived since
the estimating function has a complicated expression. For this reason, Matsuzaki and Uchida
(2005) studied a one-step estimator based on the Newton-Raphson method as follows. For an
initial estimator θ̂

(0)
ε,n,`, a one-step estimator θ̂

(1)
ε,n,` is defined by

θ̂
(1)
ε,n,` = θ̂

(0)
ε,n,` −

[
∂Gε,n,`

∂θ
(θ̂(0)

ε,n,`)
]−1

Gε,n,`(θ̂
(0)
ε,n,`). (5)

Under the assumption that an initial estimator θ̂
(0)
ε,n,` satisfies that ε−1(θ̂(0)

ε,n,`−θ0) = Op(1) under

(εn`)−1 → 0 as ε → 0 and n → ∞, the one-step estimator θ̂
(1)
ε,n,` has asymptotic efficiency.

For more details of one-step estimators, see Matsuzaki and Uchida (2005). Therefore, for the
population model (3), in order to derive the one-step estimator with asymptotic efficiency under
(εn3)−1 → 0, it suffices to use an initial estimator with asymptotic normality under (εn3)−1 → 0.

For the reason stated as above, in this paper, we are interested in estimating functions
generating estimators with asymptotic normality under a general condition that ε → 0 and
n →∞. However, we note that our final goal is to obtain an asymptotically efficient estimator by
using the one-step estimator based on the approximate martingale estimating function Gε,n,`(θ).
Consequently, it is needless to discuss optimality of the proposed estimating function. Since
Bibby and Sørensen (1995) presented martingale estimating functions for discretely observed
ergodic diffusion processes, various types of estimating functions have been studied for discretely
observed diffusion processes; see Bibby and Sørensen (1996), Kessler (1997), Sørensen (1997),
Kessler and Sorensen (1999), Bibby et al. (2002), Aı̈t-Sahalia and Mykland (2003, 2004) and
references therein. Kessler and Sørensen (1999) investigated a new type of martingale estimating
function based on an eigenfunction for the infinitesimal generator of a diffusion process. They
also showed asymptotic normality of an estimator obtained from the martingale estimating
function for a discretely observed ergodic diffusion process. Uchida (2004b) applied a martingale
estimating function proposed by Kessler and Sørensen (1999) to a diffusion process with a
small perturbation given by (1). However, there is a disadvantage that it is not generally
easy to find out an eigenfunction φ(x, θ, ε) with an eigenvalue Λ(θ, ε) such that Lθφ(x, θ, ε) =
−Λ(θ, ε)φ(x, θ, ε), where Lθ is the infinitesimal generator of the diffusion (1):

Lθ = b(x, θ)
∂

∂x
+

1
2
ε2σ2(x)

∂2

∂x2
.

In order to conquer the difficulty, in this paper, we consider an estimating function based on
an eigenfunction ϕ(x, θ) with an eigenvalue λ(θ) such that L̃θϕ(x, θ) = −λ(θ)ϕ(x, θ), where L̃θ

is the differential operator:

L̃θ = b(x, θ)
∂

∂x
.

We notice that Lθ is the second order differential operator while L̃θ is the first order differential
operator. Compared with the infinitesimal generator Lθ, it is easy to obtain an eigenfunction
with an eigenvalue for the differential operator L̃θ. An estimating function constructed by
using an eigenfunction with an eigenvalue for L̃θ does not have a martingale property, but
it can be asymptotically equivalent to a martingale estimating function. For this reason, an
estimating function based on an eigenfunction with an eigenvalue for L̃θ is called an approximate
martingale estimating function. The details are given in section 2. Under the condition that
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ε → 0 and n → ∞, consistency and asymptotic normality of an M-estimator obtained from
an approximate martingale estimating function are proved. We also mention that for a special
model, an estimator can be asymptotically efficient as ε → 0 and n = 1. The situation where
n = 1 means that the initial value X0 = x0 and the terminal value X1 = x1 are only observed.

This paper is organized as follows. In section 2, we propose an approximate martingale
estimating function based on an eigenfunction and state asymptotic results on consistency and
asymptotic normality of an M-estimator obtained from the estimating function. Section 3 gives
two examples of non-linear diffusion models and simulation studies on the estimators for each
model. A discussion on the relation between our estimator and other estimators and a conclusion
of this paper are given in section 4. In section 5, the asymptotic results presented in section 2
are proved.

2 Approximate martingale estimating functions

Let θ0 be the true value of θ and θ0 ∈ Θ. Suppose that the equation (1) has a unique strong
solution on [0, 1]. Let X0

t be the solution of the differential equation corresponding to ε = 0,
i.e., dX0

t = b(X0
t , θ0)dt, X0

0 = x0. A∗ denotes the transpose of a matrix A. Let Pθ be the law
of the solution of (1). For the first order differential operator L̃θ = b(x, θ)(∂/∂x), we define
the domain D(L̃θ) of L̃θ as a family of functions ϕ ∈ L2(Pθ) for which L̃θϕ is well defined.
For example, D(L̃θ) = {ϕ ∈ L2(Pθ) | ϕ is absolutely continuous and b(·, θ)∂·ϕ ∈ L2(Pθ)}. For
ϕ(x, θ) ∈ D(L̃θ), we call ϕ(x, θ) an eigenfunction for L̃θ associated with eigenvalue λ(θ) if
L̃θϕ(x, θ) = −λ(θ)ϕ(x, θ) for all x in the state space of X under Pθ. Moreover, we introduce
several notation as follows.

1. C∞,k
↑ (R × Θ;R) is the space of all functions f satisfying the following two conditions:
(i) f(x, θ) is an R-valued function on R × Θ that is infinitely differentiable with respect
to x and continuously differentiable with respect to θ up to order k, (ii) for n ≥ 0 and
0 ≤ |ν| ≤ k, there exists C > 0 such that supθ∈Θ |δν∂n

xf | ≤ C(1 + |x|)C for all x. Here
∂x = ∂/∂x and ν = (ν1, · · · , νp) is a multi-index, |ν| = ν1 + · · · + νp, δν = δν1

1 · · · δνp
p ,

δj = ∂/∂θj , j = 1, · · · , p.

2. C∞
↑ (R;R) is the set of all functions f of class C∞(R;R) such that f and all of its derivatives
have polynomial growth.

3. Ck
b (Θ;R) is the space of all functions f satisfying the following two conditions: (i) f(θ) is
an R-valued function on Θ that is continuously differentiable with respect to θ up to order
k, (ii) for 0 ≤ |ν| ≤ k, there exists C > 0 such that |δνf | ≤ C for all θ.

4. R is a function Θ̄ × (0, 1] × R → R for which there exists a constant C > 0 such that
|R(θ, a, x)| ≤ aC(1 + |x|)C for all θ, a, x.

We make the assumptions as follows.

A1. For all m > 0, supt E[|Xt|m] < ∞.

A2. b(x, θ) ∈ C∞,3
↑ (R× Θ̄;R), σ(x) ∈ C∞

↑ (R;Rr).

A3. There exists an eigenfunction ϕ(x, θ) ∈ C∞,2
↑ (R× Θ̄;R) with eigenvalue λ(θ) ∈ C2

b (Θ̄;R)
such that L̃θϕ(x, θ) = −λ(θ)ϕ(x, θ) for all x in the state space of X under Pθ.

A4. infx σ2(x) > 0, σ−2(x) ∈ C∞
↑ (R;R).
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In the same way as in Bibby and Sørensen (1995), we obtain a martingale estimating function
Mε,n(θ) = (M (i)

ε,n(θ))1≤i≤p, where for i = 1, 2, . . . , p,

M (i)
ε,n(θ) =

n∑
k=1

(δib)(Xtk−1
, θ)σ−2(Xtk−1

)(ϕ(Xtk , θ)− Eθ[ϕ(Xtk , θ)|Xtk−1
]). (6)

However, the conditional expectation Eθ[ϕ(Xtk , θ)|Xtk−1
] does not generally have an explicit

form except for several special cases. For special cases, see Kessler and Sørensen (1999) and
Uchida (2004b). We therefore consider an approximation of the conditional expectation. It
follows from Ito’s formula that

eλ(θ)tkϕ(Xtk , θ)− eλ(θ)tk−1ϕ(Xtk−1
, θ)

=
∫ tk

tk−1

eλ(θ)s(λ(θ)ϕ(Xs, θ) + L̃θϕ(Xs, θ))ds + ε

∫ tk

tk−1

eλ(θ)s(∂xϕ)(Xs, θ)σ(Xs)dws

+
1
2
ε2
∫ tk

tk−1

eλ(θ)s(∂2
xϕ)(Xs, θ)σ2(Xs)ds

= ε

∫ tk

tk−1

eλ(θ)s(∂xϕ)(Xs, θ)σ(Xs)dws +
1
2
ε2
∫ tk

tk−1

eλ(θ)s(∂2
xϕ)(Xs, θ)σ2(Xs)ds.

By lemma 6 in Kessler (1997), we can show that

Eθ[ϕ(Xtk , θ)|Xtk−1
] = e−λ(θ)/nϕ(Xtk−1

, θ)

+
1
2
ε2
∫ 1/n

0
Eθ[e−λ(θ)(1/n−u)(∂2

xϕ)(Xtk−1+u, θ)σ2(Xtk−1+u)|Xtk−1
]du

= e−λ(θ)/nϕ(Xtk−1
, θ) + R

(
θ,

ε2

n
,Xtk−1

)
. (7)

It follows from (7) that Eθ[ϕ(Xtk , θ)|Xtk−1
] can be approximated to e−λ(θ)/nϕ(Xtk−1

, θ) when ε

is small. Thus, we consider an estimating function Gε,n(θ) = (G(i)
ε,n(θ))1≤i≤p: for i = 1, 2, . . . , p,

G(i)
ε,n(θ) =

n∑
k=1

(δib)(Xtk−1
, θ)σ−2(Xtk−1

)
[
ϕ(Xtk , θ)− e−λ(θ)/nϕ(Xtk−1

, θ)
]
. (8)

Note that the estimating function Gε,n(θ) defined by (8) is asymptotically equivalent to the
martingale estimating function Mε,n(θ) defined by (6), see the proof of lemma 2 put later on.
In this sense, the estimating function Gε,n(θ) is called an approximate martingale estimating
function in this paper.

Let Kε,n(θ) = (K(ij)
ε,n (θ))1≤i,j≤p and K

(ij)
ε,n (θ) = δjG

(i)
ε,n(θ). In order to prove that an M-

estimator, which is a solution of the estimating equation Gε,n(θ) = 0, has consistency and
asymptotic normality, it is essential to show both the convergence of Kε,n(θ) in probability
uniformly in θ and the convergence of Gε,n(θ0) in distribution, see lemmas 1 and 2 put later

on. Let
p−→ and d−→ denote the convergence in probability and the convergence in distribution,

respectively. In lemma 1, we define that K(θ) = (K(ij)(θ))1≤i,j≤p and

K(ij)(θ)

=
∫ 1

0
(δjδib)(X0

s , θ)σ−2(X0
s ){b(X0

s , θ0)∂xϕ(X0
s , θ) + λ(θ)ϕ(X0

s , θ)}ds

+
∫ 1

0
(δib)(X0

s , θ)σ−2(X0
s ){b(X0

s , θ0)∂xδjϕ(X0
s , θ) + λ(θ)δjϕ(X0

s , θ) + (δjλ)(θ)ϕ(X0
s , θ)}ds.
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In lemma 2, we set that A(θ0) = (A(ij)(θ0))1≤i,j≤p, where

A(ij)(θ0) =
∫ 1

0
(δib)(X0

s , θ0)σ−2(X0
s )(∂xϕ)2(X0

s , θ0)(δjb)(X0
s , θ0)ds.

Lemma 1 Assume A1–A4. Then, as ε → 0 and n →∞,

sup
θ∈Θ̄

|Kε,n(θ)−K(θ)| p−→ 0.

Lemma 2 Assume A1–A4. Then, as ε → 0 and n →∞,

ε−1Gε,n(θ0)
d−→ N (0, A(θ0)) .

Let θ̂ε,n be an M-estimator defined as a solution of the estimating equation that Gε,n(θ) = 0.
We then have the following asymptotic result of the M-estimator θ̂ε,n.

Theorem 1 Let γ ∈ (0, 1). Suppose that A1–A4 hold true. Moreover, suppose that there exists
an open set Θ̃ including θ0 such that

inf
θ1,θ2∈Θ̃,|x|=1

∣∣∣∣∣
(∫ 1

0
K(θ1 + s(θ2 − θ1))ds

)∗
x

∣∣∣∣∣ > 0.

Then, as ε → 0 and n →∞,

Pθ0 [(∃1θ̂ε,n ∈ Θ̃ such that Gε,n(θ̂ε,n) = 0) and (|θ̂ε,n − θ0| ≤ εγ)] → 1

and
ε−1(θ̂ε,n − θ0)

d−→ N
(
0,K(θ0)−1A(θ0)(K∗(θ0))−1

)
.

Note that K(θ) used in the additional assumption of theorem 1 is the same as in lemma 1.
Moreover, it follows from A3 that K(θ0) appearing in the asymptotic variance of ε−1(θ̂ε,n − θ0)
has the following simple form.

K(ij)(θ0) =
∫ 1

0

(δib)(X0
s , θ0)

σ2(X0
s )

{b(X0
s , θ0)∂xδjϕ(X0

s , θ0)+λ(θ0)δjϕ(X0
s , θ0)+(δjλ)(θ0)ϕ(X0

s , θ0)}ds.

In order to obtain theorem 1, we can relax the assumptions A2–A4. By using a well-known
localization argument, A2–A4 can be replaced with milder regularity conditions about b, σ and
ϕ in the neighborhood of the path of X0

t .
The asymptotic variance of ε−1(θ̂ε,n − θ0) depends on the eigenfunction ϕ(x, θ) and the

eigenvalue λ(θ). For this reason, it seems that it is very much important to propose an optimal
estimating function and to choose a nice eigenfunction ϕ(x, θ) with an eigenvalue λ(θ) for
which the asymptotic variance of ε−1(θ̂ε,n − θ0) becomes as small as possible. However, we
do not have to care the above optimality. As stated in section 1, we have already taken the
efficient estimating function Gε,n,`(θ) in (4) and the efficient one-step estimator in (5). Therefore,
using the M-estimator presented in theorem 1 as an initial estimator, we can necessarily get an
asymptotically efficient estimator.

Although the estimating function we treat is released from a discussion on optimality, one
still has the question why only the estimating function Gε,n(θ) defined by (8) is considered.
We never say that the estimating function is best. Since we are going to use the estimator
obtained from the estimating function as an initial estimator, we must get a unique root of the
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estimating equation and it is better to obtain the root explicitly. For this reason, we proposed
the estimating function with a simple expression. Thus, we completely understand that the
important thing in this paper is to obtain an estimating function which derives an unique
estimator with an explicit form, but not to consider an optimal estimating function. One of
the answers is our estimating function Gε,n(θ) in (8).

The next question is how to choose an eigenfunction ϕ(x, θ) with an eigenvalue λ(θ). It
suffices to find out a non-trivial eigenfunction ϕ(x, θ) associated with an eigenvalue λ(θ) for
which A3 holds. It follows from A3 that

ϕ(x, θ)
ϕ(x0, θ)

= exp
{
−λ(θ)

∫ x

x0

1
b(y, θ)

dy

}
.

In the case that b(x, θ) = θg(x) for a function g, in order to get a simple estimating function, it
is natural to set that λ(θ) = −θ. We then have that

ϕ(x)
ϕ(x0)

= exp
{∫ x

x0

1
g(y)

dy

}
.

For example, if g(x) = cos x, one has that

ϕ(x) =
cos(x/2) + sin(x/2)
cos(x/2)− sin(x/2)

.

As another illustration with one parameter, we will consider the hyperbolic diffusion process in
section 3.1 put later on. An example of a model with two unknown parameters is the case that
b(x, θ) = θ1/x− θ2x. Since

ϕ(x, θ)
ϕ(x0, θ)

= exp
{
−λ(θ)

∫ x

x0

y

θ1 − θ2y2
dy

}
,

one has that λ(θ) = 2θ2 and ϕ(x, θ) = θ1 − θ2x
2. As another example with two parameters, the

population growth model is treated in section 3.2 put later on.
Theorem 1 ensures the asymptotic normality of the M-estimator θ̂ε,n as ε → 0 and n →∞,

while as for somewhat special cases, it is possible to obtain an asymptotically efficient estimator
as ε → 0. It means that we can obtain an asymptotically efficient estimator when ε is small but
n is not large. We will spend the rest of this section on a contribution of this direction.

Consider the model (1) where θ ∈ Θ ⊂ R and b(x, θ) = θg(x). In this case, set that

λ(θ) = −θ, ϕ(x) = exp
{∫ x

x0

1
g(y)

dy

}
.

If n = 1, that is, we get only the initial value X0 = x0 and the terminal value X1 = x1, it follows
from (8) that the estimator is

θ̂ε,1 = log ϕ(X1)− log ϕ(X0).

Let I(θ0) =
∫ 1
0 g2(X0

s )/σ2(X0
s )ds and J(θ0) =

∫ 1
0 σ2(X0

s )/g2(X0
s )ds, where I(θ0) is the asymp-

totic Fisher information of the diffusion process from the continuous time observations. Suppose
that I(θ0) 6= 0 and that J(θ0) < ∞. Note that J(θ0) ≥ I(θ0)−1.

7



Under the assumption that
∫ 1
0 (∂xg)(X0

s )σ2(X0
s )/g2(X0

s )ds < ∞, Ito’s formula yields that

log ϕ(X1)− log ϕ(X0) =
∫ 1

0

L̃θ0ϕ(Xs)
ϕ(Xs)

ds + ε

∫ 1

0
(∂x log ϕ)(Xs)σ(Xs)dws

+
1
2
ε2
∫ 1

0
(∂2

x log ϕ)(Xs)σ2(Xs)ds

= θ0 + ε

∫ 1

0
(∂x log ϕ)(Xs)σ(Xs)dws + Op(ε2).

It is easy to show that in distribution under Pθ0 , as ε → 0,

ε−1(θ̂ε,1 − θ0) → N (0, J(θ0)) .

Moreover, if g2(x) = tσ2(x) for some t > 0, then

ε−1(θ̂ε,1 − θ0) → N
(
0, I(θ0)−1

)
in distribution under Pθ0 as ε → 0.

For example, if we treat a small random perturbation of the geometric Brownian motion,
which is the case that b(x, θ) = θx and σ(x) = x, we can derive the asymptotically efficient
estimator by only two observations, X0 = x0 and X1 = x1. Even though it is certain that this
result can be applied to the restricted models, it seems attractive to be able to construct an
asymptotically efficient estimator even if n = 1. For the estimator proposed in Laredo (1990),
we can observe a similar phenomenon.

3 Examples and simulation studies

Through simulations, we examine the asymptotic behaviour of both the estimator θ̂ε,n stated in
section 2 and the one-step estimator θ̂

(1)
ε,n,` with ` = 3, which is constructed by using the estimator

θ̂ε,n as an initial estimator. For details, see (5). For two non-linear models, the simulations are
done for each ε = 0.1, 0.05, 0.01 and n = 5, 10, 50. For a true parameter value θ0 and an initial
value x0, 10000 independent sample paths are generated by the Euler-Maruyama scheme. For
the Euler-Maruyama scheme, see Kloeden and Platen (1992). In order to evaluate the two
estimators θ̂ε,n and θ̂

(1)
ε,n,3, we also examine the estimator in corollary 1 of Genon-Catalot (1990)

and the estimator in Laredo (1990), which are called the simple estimator θ̂
(S)
ε,n and Laredo’s

estimator θ̂
(L)
ε,n , respectively. We note that the second contrast function of Genon-Catalot (1990)

and the martingale estimating function of Uchida (2004a) are not obtained explicitly for two
non-linear models we treat. For each of the four estimators, that is, θ̂

(S)
ε,n , θ̂

(L)
ε,n , θ̂ε,n and θ̂

(1)
ε,n,3,

its mean and its standard deviation are computed.

3.1 The hyperbolic diffusion model

Consider a one-dimensional diffusion process defined by the stochastic differential equation

dXt = θ
Xt√

1 + X2
t

dt + εdwt, t ∈ [0, 1], ε ∈ (0, 1], X0 = x0,

where x0 and ε are known constants and θ is an unknown parameter. This model is called the
hyperbolic diffusion process. For details, see Bibby and Sørensen (1995).
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Solving the differential equation L̃θϕ(x, θ) = −λ(θ)ϕ(x, θ), where L̃θ = θ x√
1+x2

∂x, one has

ϕ(x, θ) = exp
{
−λ(θ)

θ

(√
1 + x2 + log

x

1 +
√

1 + x2

)}
.

Therefore, by setting that λ(θ) = −θ, a non-trivial eigenfunction is

ϕ(x) =
x

1 +
√

1 + x2
exp{

√
1 + x2}.

Note that we can obtain the eigenfunction ϕ(x) independent of a parameter θ by putting that
λ(θ) = −θ. The approximate martingale estimating function is given by

Gε,n(θ) =
n∑

k=1

Xtk−1√
1 + X2

tk−1

[
ϕ(Xtk)− eθ/nϕ(Xtk−1

)
]
.

By the estimating equation Gε,n(θ) = 0, one has the estimator

θ̂ε,n = n

log

 n∑
k=1

Xtk−1√
1 + X2

tk−1

ϕ(Xtk)

− log

 n∑
k=1

Xtk−1√
1 + X2

tk−1

ϕ(Xtk−1
)

 .

It follows from Theorem 1 that the asymptotic variance of ε−1(θ̂ε,n − θ0) is

A(θ0)
K(θ0)2

=
∫ 1
0 (ϕ(X0

s ))2ds(∫ 1
0 (X0

s /
√

1 + (X0
s )2)ϕ(X0

s )ds
)2 ,

where X0
t is a solution of the differential equation dX0

t = θ0X
0
t /
√

1 + (X0
t )2dt, X0

0 = x0.
Table 1 shows means and standard deviations of the four estimators for θ0 = 10 and x0 = 0.1.

For the case that n ≤ 10, θ̂
(S)
ε,n has a considerable bias and θ̂

(L)
ε,n has a small bias. Even if n is

small, both θ̂ε,n and θ̂
(1)
ε,n,3 are unbiased and θ̂

(1)
ε,n,3 works well with a small variance.

Table 1: (The hyperbolic diffusion model) The mean and standard deviation (s.d.) of the four
estimators for 10000 independent simulated sample paths with θ0 = 10 and x0 = 0.1.

θ̂
(S)
ε,n θ̂

(L)
ε,n θ̂ε,n θ̂

(1)
ε,n,3

ε n mean s.d. mean s.d. mean s.d. mean s.d.
0.10 5 10.61274 0.13204 9.82586 0.11806 10.00009 0.19902 9.96889 0.12561
0.10 10 10.31695 0.12320 9.95102 0.11901 10.00290 0.22007 9.99505 0.11989
0.10 50 10.06267 0.11989 9.99447 0.11929 10.00237 0.22974 9.99461 0.11932
0.05 5 10.61570 0.06611 9.82735 0.05875 9.99996 0.09947 9.96288 0.06379
0.05 10 10.31708 0.06145 9.95090 0.05937 10.00136 0.10995 9.99622 0.05981
0.05 50 10.06357 0.05980 9.99433 0.05950 10.00109 0.11475 9.99574 0.05952
0.01 5 10.61671 0.01323 9.82809 0.01173 9.99983 0.01989 9.96164 0.01285
0.01 10 10.31735 0.01228 9.95119 0.01186 10.00012 0.02198 9.99689 0.01195
0.01 50 10.06417 0.01195 9.99462 0.01189 10.00007 0.02293 9.99643 0.01189
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3.2 The population growth model

We consider another non-linear model defined by the stochastic differential equation

dXt = αXt(β −Xt)dt + εXtdwt, t ∈ [0, 1], ε ∈ (0, 1], X0 = x0,

where x0 and ε are known constants and α and β are unknown parameters. Here we assume that
the state space is the positive real line. The diffusion process is one of population models, and
often used as a population growth model in a stochastic, crowded environment. The parameter
β > 0 is called the carrying capacity of the environment. The parameter α ∈ R is a measure of
the quality of the environment. For more details, see (5.3.9) on page 78 in Øksendal (2003).

Let θ = (α, β). In this case, Lθ = αx(β − x)∂x. By solving the differential equation
Lθϕ(x, θ) = −λ(θ)ϕ(x, θ), an eigenfunction is given by

ϕ(x, θ) =
(

β − x

x

)λ(θ)
αβ

.

Therefore, it is natural to set that λ(θ) = αβ because a non-trivial eigenfunction is given by

ϕ(x, β) = (β − x)/x

and the eigenfunction is independent of α. The approximate martingale estimating functions
with respect to α and β are

G(1)
ε,n(θ) =

n∑
k=1

X−1
tk−1

(β −Xtk−1
)(ϕ(Xtk , β)− e−αβ/nϕ(Xtk−1

, β)),

G(2)
ε,n(θ) =

n∑
k=1

αX−1
tk−1

(ϕ(Xtk , β)− e−αβ/nϕ(Xtk−1
, β)),

respectively. It then follows that

α̂ε,n = − n

β̂ε,n

log
∑n

k=1 ϕ(Xtk , β̂ε,n)∑n
k=1 ϕ(Xtk−1

, β̂ε,n)
,

β̂ε,n =

∑n
k=1

1
Xtk−1

(∑n
k=1

1
Xtk−1

−
∑n

k=1
1

Xtk

)
+ n

(∑n
k=1

1
Xtk−1

Xtk
−
∑n

k=1
1

X2
tk−1

)
∑n

k=1
1

Xtk−1
Xtk

∑n
k=1

1
Xtk−1

−
∑n

k=1
1

Xtk

∑n
k=1

1
X2

tk−1

.

An easy computation implies that K(θ0) and A(θ0), which are concerned with the asymptotic
variance of ε−1(θ̂ε,n − θ0), are given by

K(11)(θ0) = β0

∫ 1

0

(
β0

X0
s

− 1
)2

ds, K(22)(θ0) = α2
0β0

∫ 1

0

(
1

X0
s

)2

ds,

K(12)(θ0) = K(21)(θ0) = α0β0

∫ 1

0

(
β0

X0
s

− 1
)

1
X0

s

ds,

A(11)(θ0) = β2
0

∫ 1

0

(
β0

X0
s

− 1
)2 ( 1

X0
s

)2

ds, A(22)(θ0) = α2
0β

2
0

∫ 1

0

(
1

X0
s

)4

ds,

A(12)(θ0) = K(21)(θ0) = α0β
2
0

∫ 1

0

(
β0

X0
s

− 1
)(

1
X0

s

)3

ds,
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where X0
t is a solution of the differential equation: dX0

t = α0X
0
t (β0 −X0

t )dt, X0
0 = x0, that is,

X0
t =

exp{α0β0t}
1/x0 + (exp{α0β0t} − 1)/β0

.

Under the situation where α0 = 0.5, β0 = 20 and x0 = 1, simulation results of the four
estimators for α and β are given in tables 2 and 3, respectively. Even if n = 5, both α̂ε,n and
α̂

(1)
ε,n,3 are unbiased, while α̂

(S)
ε,n has a considerable bias and α̂

(L)
ε,n has a small bias. Although α̂ε,n

has a greater standard deviation than α̂
(L)
ε,n , we see that α̂

(1)
ε,n,3 recovers a reasonable standard

deviation in all cases. We can say that β̂
(1)
ε,n,3 performs quite well in all cases. For estimation of

β, both β̂ε,n and β̂
(1)
ε,n,3 are unbiased in all cases. In particular, β̂

(1)
ε,n,3 works well for the case that

n ≥ 10. Furthermore, it is mentioning that β̂
(1)
ε,n,3 is a good estimator even if ε = 0.1 or n = 5.

Table 2: (The population growth model) The mean and standard deviation (s.d.) of the four
estimators for 10000 independent simulated sample paths with α0 = 0.5, β0 = 20 and x0 = 1.

α̂
(S)
ε,n α̂

(L)
ε,n α̂ε,n α̂

(1)
ε,n,3

ε n mean s.d. mean s.d. mean s.d. mean s.d.
0.10 5 1.06660 0.04736 0.53440 0.01782 0.49784 0.01846 0.49702 0.01682
0.10 10 0.72208 0.02541 0.50706 0.01543 0.49770 0.02613 0.49716 0.01500
0.10 50 0.53587 0.01617 0.49796 0.01463 0.49816 0.03321 0.50139 0.01540
0.05 5 1.06625 0.02359 0.53455 0.00889 0.49768 0.00923 0.49717 0.00841
0.05 10 0.72170 0.01267 0.50736 0.00771 0.49736 0.01306 0.49676 0.00749
0.05 50 0.53536 0.00807 0.49845 0.00731 0.49739 0.01657 0.49895 0.00743
0.01 5 1.06616 0.00471 0.53461 0.00178 0.49766 0.00185 0.49723 0.00168
0.01 10 0.72156 0.00253 0.50744 0.00154 0.49723 0.00261 0.49663 0.00149
0.01 50 0.53518 0.00161 0.49860 0.00146 0.49709 0.00331 0.49820 0.00146

Table 3: (The population growth model) The mean and standard deviation (s.d.) of the four
estimators for 10000 independent simulated sample paths with α0 = 0.5, β0 = 20 and x0 = 1.

β̂
(S)
ε,n β̂

(L)
ε,n β̂ε,n β̂

(1)
ε,n,3

ε n mean s.d. mean s.d. mean s.d. mean s.d.
0.10 5 18.23044 0.28863 19.57295 0.29307 20.01498 0.33629 19.93971 0.31131
0.10 10 19.04767 0.26286 19.89671 0.27549 20.03362 0.50570 20.00064 0.27844
0.10 50 19.80643 0.26379 20.01152 0.26848 20.04057 0.69266 19.92236 0.30189
0.05 5 18.23015 0.14397 19.57255 0.14619 20.01901 0.16806 19.93278 0.15524
0.05 10 19.04734 0.13112 19.89487 0.13739 20.03012 0.25282 20.01452 0.13891
0.05 50 19.80733 0.13161 20.00758 0.13384 20.03408 0.34647 19.99032 0.13718
0.01 5 18.22932 0.02874 19.57185 0.02919 20.01929 0.03364 19.92993 0.03098
0.01 10 19.04663 0.02618 19.89377 0.02743 20.02902 0.05071 20.01837 0.02773
0.01 50 19.80708 0.02628 20.00580 0.02671 20.03249 0.06956 20.01018 0.02678
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4 Discussion

In order to estimate an unknown parameter θ in the model (1), several kinds of estimators can
be considered. It is natural to ask the following question. ”Which of the estimators is best in
the sense of the first order asymptotics?” As far as the author knows, the answer is as follows.

(I) If the conditional expectation Eθ[Xtk−1
|Xtk ] can be obtained explicitly, we should use

the martingale estimating function Mε,n(θ) in (2). The estimator derived from Mε,n(θ) has
asymptotic efficiency as ε → 0 and n → ∞. For example, when b(x, θ) = θ1 + θ2x for θ2 6= 0,
one has that Eθ[Xtk |Xtk−1

] = exp{θ2/n}Xtk−1
+ (exp{θ2/n} − 1)θ1/θ2. However, there is a

disadvantage that Eθ[Xtk−1
|Xtk ] does not generally have an explicit form for diffusion processes.

(II) If we can not obtain the estimator of (I), the second best is the estimator obtained from
the second contrast function presented in Genon-Catalot (1990). The estimator is asymptotically
efficient under ε

√
n = O(1) as ε → 0 and n → ∞. Note that in order to obtain the contrast

function explicitly, we need to compute the solution X0
t satisfying that dX0

t = b(X0
t , θ)dt,

X0
0 = x0. Moreover, we have to get Ht = exp

∫ t
0

∂b
∂x(X0

s , θ)ds and Kt =
∫ tk
tk−1

H−2
s σ2(Xs)ds.

(III) If the estimator of (II) can not be obtained explicitly, we try to get the estimator
proposed by Laredo (1990), which has asymptotic efficiency when (εn2)−1 → 0 as ε → 0 and
n → ∞. The contrast function is constructed by using the function V (x, θ) satisfying that
∂V (x, θ)/∂x = σ−2(x)b(x, θ), V (x0, θ) = 0. However, it is not certain that V (x, θ) can be
obtained explicitly.

The above three estimating functions do not generally have explicit expressions, while the
following two estimating functions can be necessarily obtained.

(IV) If the estimating functions in (I), (II), (III) can not be obtained explicitly and if the
asymptotics we treat is when (εn)−1 → 0 as ε → 0 and n → ∞, it is enough to get the
asymptotically efficient estimator obtained from the first contrast function presented in Genon-
Catalot (1990). However, as seen in two examples of section 3, the estimator has a considerable
bias when ε is not so small and n is not so large.

(V) If we face to the situation for which (I)-(IV) do not work, we consider the approximate
martingale estimating function Gε,n,`(θ) in (4). In order to obtain an asymptotically efficient
estimator derived from Gε,n,`(θ), we use a one-step estimator with an initial estimator obtained
from the approximate martingale estimating function Gε,n(θ) in (8). For this reason, we should
turn our attention to simplicity of Gε,n(θ) rather than optimality of Gε,n(θ).

In conclusion, we can say that in order to obtain an asymptotically efficient estimator, we
should seek a suitable estimator among (I)-(V) based on the asymptotics we treat. However,
we must note that even if the estimating functions of (I)-(IV) are explicitly obtained, it is not
always to get an explicit estimator from the estimating equation. For such ill cases, we need to
consider a one-step estimator and it is important to use the estimator proposed in this paper as
an initial estimator. If these procedures are niggling, we will recommend to use the estimator in
(V). As seen in this paper, Gε,n,`(θ) in (4) is always obtained explicitly for diffusion processes,
and in most cases an initial estimator can be derived from Gε,n(θ) in (8).

Finally, we discuss an extension of this paper to a multivariate diffusion process with a small
perturbation. Both Gε,n,`(θ) in (4) and the one-step estimator in (5) work for a multivariate
diffusion process with small noise. Therefore, it is important to get an initial estimator for the
multivariate diffusion process. From the theoretical point of view, it is possible to extend the
result of this paper to a d-dimensional diffusion process. However, in practice, we need to find
an explicit eigenfunction for L̃θ =

∑d
j=1 bj(x, θ) ∂

∂xj
. Compared with a one-dimensional diffusion

process, this is an arduous undertaking. Therefore, we need to consider the more convenient
procedure as a future work.
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5 Proofs

For proofs of the results, we introduce notation and functions. Let U(x, θ) = ϕ(x, θ)−ϕ(Xtk−1
, θ)

and Gn
k = σ(ws; s ≤ tk). Define that C1,1

↑ (R×Θ;R) is the space of all functions f : R×Θ → R
such that (i) f is continuously differentiable with respect to x and θ, (ii) f and its derivatives
are of polynomial growth in x uniformly in θ.

In order to show lemmas 1 and 2, we need the following lemma.

Lemma 3 Let f ∈ C1,1
↑ (R× Θ̄;R). Assume A1–A3. Then, as ε → 0 and n →∞,

(i)

sup
θ∈Θ̄

∣∣∣∣∣ 1n
n∑

k=1

f(Xtk−1
, θ)−

∫ 1

0
f(X0

s , θ)ds

∣∣∣∣∣ p−→ 0,

(ii)

sup
θ∈Θ̄

∣∣∣∣∣
n∑

k=1

f(Xtk−1
, θ)U(Xtk , θ)−

∫ 1

0
f(X0

s , θ)b(X0
s , θ0)∂xϕ(X0

s , θ)ds

∣∣∣∣∣ p−→ 0,

(iii) for i = 1, . . . , p,

sup
θ∈Θ̄

∣∣∣∣∣
n∑

k=1

f(Xtk−1
, θ)(δiU)(Xtk , θ)−

∫ 1

0
f(X0

s , θ)b(X0
s , θ0)∂xδiϕ(X0

s , θ)ds

∣∣∣∣∣ p−→ 0.

Proof of Lemma 3. (i) We can prove (i) along the same lines as the proof of lemma 8 in
Kessler (1997). See also lemma 4-(i) in Uchida (2004b).

(ii) By noting that

Lθ0U(x, θ) = b(x, θ0)∂xϕ(x, θ) +
1
2
ε2σ2(x)∂2

xϕ(x, θ),

Lemma 1 in Florens-Zmirou (1989) implies that

Eθ0 [U(Xtk , θ)|Gn
k−1] = U(Xtk−1

, θ) +
1
n

Lθ0U(Xtk−1
, θ)

+
∫ 1

n

0

∫ u1

0
Eθ0 [L

2
θ0

U(Xtk−1+u2 , θ)|Gn
k−1]du2du1

=
1
n

b(Xtk−1
, θ0)∂xϕ(Xtk−1

, θ) (9)

+R

(
θ,

ε2

n
,Xtk−1

)
+ R

(
θ,

1
n2

, Xtk−1

)
.

Similarly, we see that

Eθ0 [(U(Xtk , θ))2|Gn
k−1]

= (U(Xtk−1
, θ))2 +

1
n

Lθ0(U(Xtk−1
, θ))2 +

∫ 1
n

0

∫ u1

0
Eθ0 [L

2
θ0

(U(Xtk−1+u2 , θ))
2|Gn

k−1]du2du1

=
ε2

n
σ2(Xtk−1

)(∂xϕ(Xtk−1
, θ))2 + R

(
θ,

1
n2

, Xtk−1

)
. (10)
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Let ξk(θ) = f(Xtk−1
, θ){U(Xtk , θ) − b(Xtk−1

, θ0)∂xϕ(Xtk−1
, θ)/n}. By (9), (10) and lemma

3–(i), we see that as ε → 0 and n →∞,

n∑
k=1

E[ξk(θ)|Gn
k−1] =

n∑
k=1

{
R

(
θ,

ε2

n
,Xtk−1

)
+ R

(
θ,

1
n2

, Xtk−1

)}
p−→ 0,

n∑
k=1

E[(ξk(θ))2|Gn
k−1] =

n∑
k=1

{
R

(
θ,

ε2

n
,Xtk−1

)
+ R

(
θ,

1
n2

, Xtk−1

)}
p−→ 0.

Lemma 9 in Genon-Catalot and Jacod (1993) yields that
∑n

k=1 ξk(θ)
p−→ 0 as ε → 0 and n →∞.

For the tightness of
∑n

k=1 ξk(·), it suffices to show the following two inequalities, see for instance
theorem 20 in appendix I in Ibragimov and Has’minskii (1981):

Eθ0

( n∑
k=1

ξk(θ)

)2m
 ≤ C, (11)

Eθ0

( n∑
k=1

ξk(θ2)−
n∑

k=1

ξk(θ1)

)2m
 ≤ C|θ2 − θ1|2m, (12)

for θ, θ1, θ2 ∈ Θ̄, where m > p/2.
Ito’s formula implies that ξk(θ) = Ak,1(θ) + Ak,2(θ)−Ak,3(θ), where

Ak,1(θ) = f(Xtk−1
, θ)

∫ tk

tk−1

Lθ0ϕ(Xtk , θ)ds,

Ak,2(θ) = εf(Xtk−1
, θ)

∫ tk

tk−1

(∂xϕ)(Xs, θ)σ(Xs)dws,

Ak,3(θ) =
1
n

f(Xtk−1
, θ)b(Xtk−1

, θ0)∂xϕ(Xtk−1
, θ).

It follows from the Burkholder-Davis-Gundy inequality that

Eθ0

∣∣∣∣∣
n∑

k=1

Ak,2(θ)

∣∣∣∣∣
2m
 ≤ C2mε2mEθ0

[(
n∑

k=1

∫ tk

tk−1

f(Xtk−1
, θ)2(∂xϕ)(Xs, θ)σ2(Xs)ds

)m]
≤ C2mε2mC.

By lemma 6 in Kessler (1997), we have

Eθ0

∣∣∣∣∣
n∑

k=1

Ak,1(θ)

∣∣∣∣∣
2m
 ≤ n2m−1

n∑
k=1

Eθ0

(∫ tk

tk−1

|f(Xtk−1
, θ)Lθ0ϕ(Xtk , θ)|ds

)2m


≤
n∑

k=1

∫ tk

tk−1

Eθ0

[
|f(Xtk−1

, θ)|2mEθ0 [|Lθ0ϕ(Xtk , θ)|2m|Gn
k−1]

]
ds

≤ n · 1
n
· C,

and

Eθ0

∣∣∣∣∣
n∑

k=1

Ak,3(θ)

∣∣∣∣∣
2m
 ≤ 1

n

n∑
k=1

Eθ0

[∣∣f(Xtk−1
, θ)b(Xtk−1

, θ0)∂xϕ(Xtk−1
, θ)
∣∣2m
]

≤ C.
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From these inequalities, we obtain the inequality (11) and similarly it is possible to prove the
inequality (12). This completes the proof of (ii). By a similar way, (iii) can be shown.

Proof of Lemma 1. By an easy computation, one has

K(ij)
ε,n (θ) =

n∑
k=1

(δjδib)(Xtk−1
, θ)σ−2(Xtk−1

)
[
ϕ(Xtk , θ)− ϕ(Xtk−1

, θ)
]

+
n∑

k=1

(δjδib)(Xtk−1
, θ)σ−2(Xtk−1

)(1− e−λ(θ)/n)ϕ(Xtk−1
, θ)

+
n∑

k=1

(δib)(Xtk−1
, θ)σ−2(Xtk−1

)
[
δjϕ(Xtk , θ)− δjϕ(Xtk−1

, θ)
]

+
n∑

k=1

(δib)(Xtk−1
, θ)σ−2(Xtk−1

)(1− e−λ(θ)/n)δjϕ(Xtk−1
, θ)

+
n∑

k=1

(δib)(Xtk−1
, θ)σ−2(Xtk−1

)
(δjλ)(θ)

n
e−λ(θ)/nϕ(Xtk−1

, θ).

It follows from lemma 3 that we complete the proof.

Proof of Lemma 2. By lemma 6 in Kessler (1997),

Eθ0 [ϕ(Xtk , θ0)|Xtk−1
]− e−λ(θ0)/nϕ(Xtk−1

, θ0) = R

(
θ0,

ε2

n
,Xtk−1

)
. (13)

Lemma 3–(i) implies that as ε → 0 and n →∞,

ε−1M (i)
ε,n(θ0)− ε−1G(i)

ε,n(θ0) =
n∑

k=1

R

(
θ0,

ε

n
,Xtk−1

)
p−→ 0.

As ε−1Gε,n(θ0) is asymptotic equivalent to ε−1Mε,n(θ0) in the sense as above, it suffices to show
asymptotic normality of ε−1Mε,n(θ0). The predictable quadratic variation of the martingale
ε−1Mε,n(θ0) is as follows.

ε−2 < M (i)(θ0),M (j)(θ0) >n = ε−2
n∑

k=1

(δib)(Xtk−1
, θ0)σ−4(Xtk−1

)v(Xtk−1
, θ0)(δjb)(Xtk−1

, θ0),

where v(Xtk−1
, θ0) = Eθ0 [(ϕ(Xtk , θ0)− Eθ0 [ϕ(Xtk , θ0)|Xtk−1

])2|Xtk−1
].

In order to estimate v(Xtk−1
, θ0), we will use the results based on the infinitesimal generator

Lθ0 as follows.

Lθ0(U(x, θ0))2 = 2(−λ(θ0))ϕ(x, θ0)U(x, θ0) + ε2σ2(x)((∂2
xϕ)(x, θ0)U(x, θ0) + (∂xϕ)2(x, θ0)),

Lθ0(ϕ(x, θ0))2 = 2(−λ(θ0))(ϕ(x, θ0))2 + ε2σ2(x)((∂2
xϕ)(x, θ0)ϕ(x, θ0) + (∂xϕ)2(x, θ0)),

and that for l ≥ 2,

Ll
θ0

(U(x, θ0))2 = 2(−λ(θ0))lϕ(x, θ0)U(x, θ0) + (2l − 2)(−λ(θ0))l(ϕ(x, θ0))2 + R(θ0, ε
2, x).

Note that

v(Xtk−1
, θ0) = Eθ0 [(ϕ(Xtk , θ0)− ϕ(Xtk−1

, θ0))2|Xtk−1
]− (ϕ(Xtk−1

, θ0)− Eθ0 [ϕ(Xtk , θ0)|Xtk−1
])2

15



= Eθ0 [(U(Xtk , θ0))2|Xtk−1
]−

(
(1− e−λ(θ0)/n)ϕ(Xtk−1

, θ0) + R

(
θ0,

ε2

n
,Xtk−1

))2

= Eθ0 [(U(Xtk , θ0))2|Xtk−1
]− ((1− e−λ(θ0)/n)ϕ(Xtk−1

, θ0))2 + R

(
θ0,

ε2

n2
, Xtk−1

)
.

Using lemma 1 in Florens-Zmirou (1989), lemma 6 in Kessler (1997) and the results on Lθ0 as
above, we see that for any m ≥ 1,

v(Xtk−1
, θ0) =

2m∑
l=1

1
l!nl

Ll
θ0

(U(Xtk−1
, θ0))2 − (1− 2e−λ(θ0)/n + e−2λ(θ0)/n)(ϕ(Xtk−1

, θ0))2

+R

(
θ0,

ε2

n2
, Xtk−1

)
+ R

(
θ0,

1
n2m+1

, Xtk−1

)

=
ε2

n
σ2(Xtk−1

)(∂xϕ)2(Xtk−1
, θ0)

+
2m∑
l=2

1
l!nl

Ll
θ0

(U(Xtk−1
, θ0))2 −

2m∑
l=2

(2l − 2)(−λ(θ0))l

l!nl
(ϕ(Xtk−1

, θ0))2

+R

(
θ0,

ε2

n2
, Xtk−1

)
+ R

(
θ0,

1
n2m+1

, Xtk−1

)

=
ε2

n
σ2(Xtk−1

)(∂xϕ)2(Xtk−1
, θ0) + R

(
θ0,

ε2

n2
, Xtk−1

)
+ R

(
θ0,

1
n2m+1

, Xtk−1

)
.

It then follows that ε−2 < M (i),M (j) >n
p−→ A(ij)(θ0) as ε → 0 and n → ∞. The central limit

theorem for martingales implies that ε−1Gε,n(θ0)
d−→ N(0, A(θ0)) as ε → 0 and n → ∞. This

completes the proof.

Proof of Theorem 1. In the same way as the proof of theorem 6.1 in Sakamoto and Yoshida
(2004), we prove the existence, the uniqueness and the consistency of θ̂ε,n. By A5, there exist a
constant C > 0 and an open set Θ̃ including θ0 such that

inf
θ1,θ2∈Θ̃,|x|=1

∣∣∣∣∣
(∫ 1

0
K(θ1 + s(θ2 − θ1))ds

)∗
x

∣∣∣∣∣ > 2C.

For such a C > 0, let Xε,n,0 denote the subset of the sample space Xε,n defined by

Xε,n,0 =

{
X ∈ Xε,n

∣∣∣∣∣ sup
θ∈Θ̃

|Kε,n(θ)−K(θ)| < C

2
, |ε−γGε,n(θ0)| < C,

inf
θ1,θ2∈Θ̃,|x|=1

∣∣∣∣∣−
(∫ 1

0
Kε,n(θ1 + s(θ2 − θ1))ds

)∗
x

∣∣∣∣∣ > C

}
.

By lemma 2, we see that as ε → 0 and n →∞,

Pθ0

[
|ε−γGε,n(θ0)| ≥ C

]
→ 0. (14)

An easy estimates implies that

Pθ0

[
inf

θ1,θ2∈Θ̃,|x|=1

∣∣∣∣∣−
(∫ 1

0
Kε,n(θ1 + s(θ2 − θ1))ds

)∗
x

∣∣∣∣∣ ≤ C

]
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≤ Pθ0

[
inf

θ1,θ2∈Θ̃,|x|=1

{
−
∣∣∣∣∣
(∫ 1

0
(Kε,n(θ1 + s(θ2 − θ1))−K(θ1 + s(θ2 − θ1))ds

)∗
x

∣∣∣∣∣
+

∣∣∣∣∣
(∫ 1

0
K(θ1 + s(θ2 − θ1))ds

)∗
x

∣∣∣∣∣
}
≤ C

]

≤ Pθ0

[
sup
θ∈Θ̄

|Kε,n(θ)−K(θ)| ≥ C

]
.

Lemma 1 yields that as ε → 0 and n →∞,

Pθ0

[
inf

θ1,θ2∈Θ̃,|x|=1

∣∣∣∣∣−
(∫ 1

0
Kε,n(θ1 + s(θ2 − θ1))ds

)∗
x

∣∣∣∣∣ ≤ C

]
→ 0. (15)

For C > 0, there exists N0(C) ∈ (0, 1] such that for any ε ∈ (0, N0(C)) and |δ| ≤ 1, {θ :
|θ − θ0| ≤ εγ} ⊂ Θ̃ and |K(θ0 + δεγ) −K(θ0)| < C/2. For X ∈ Xε,n,0, let Î(u) be a function
Î : {u ∈ Rp : |u| ≤ 1} → Rp ⊗Rp defined by

Î(u) = −
∫ 1

0
Kε,n(θ0 + εγuξ)dξ.

It then follows that for x ∈ Rp satisfying |x| = 1,

|(Î(u) + K(θ0))∗x| ≤
∫ 1

0
|Kε,n(θ0 + εγuξ)−K(θ0 + εγuξ)|dξ +

∫ 1

0
|K(θ0 + εγuξ)−K(θ0)|dξ

≤ sup
θ∈Θ̃

|Kε,n(θ)−K(θ)|+ C

2
< C.

As we see that

inf
|x|=1

|(Î(u))∗x| ≥ inf
|x|=1

(
| − (K(θ0))∗x| − |(Î(u))∗x + (K(θ0))∗x|

)
> C,

Î(u) is invertible on Xε,n,0. For X ∈ Xε,n,0, let H be a function on {u ∈ Rp : |u| ≤ 1} defined by

H(u) = ε−γ Ǐ(u)Gε,n(θ0),

where Ǐ(u) = Î−1(u). Let ρ̃(A) and ρ(A) are the minimum and the maximum eigenvalues of a
matrix A, respectively. It then follows that for X ∈ Xε,n,0,

|H(u)| ≤ C sup
|x|≤1

|(Ǐ(u))∗x| = C
√

ρ(Ǐ∗(u)Ǐ(u)) =
C√

ρ̃(Î(u)Î∗(u))
=

C

inf |x|=1 |(Î(u))∗x|
≤ 1.

Thus, Brouwer’s fixed point theorem implies that for X ∈ Xε,n,0, there exists a û ∈ {u : |u| ≤ 1}
such that H(û) = û. Moreover, setting θ̂ε,n = θ0 + εγ û and using Taylor’s theorem, one has

Gε,n(θ̂ε,n) = Gε,n(θ0) +
∫ 1

0
Kε,n(θ0 + εγ ûξ)dξεγ û = εγ Î(û)(H(û)− û) = 0.

As we see that
∫ 1
0 Kε,n(θ1 + s(θ2 − θ1))ds is non-singular uniformly in θ1, θ2 ∈ Θ̃ on Xε,n,0, for

X ∈ Xε,n,0, there exists a unique θ̂ε,n ∈ Θ̃ such that Gε,n(θ̂ε,n) = 0 and θ̂ε,n lies in the εγ-
neighborhood of θ0. Moreover, lemma 1, (14) and (15) yields that Pθ0 [X c

ε,n,0] → 0 as ε → 0 and
n →∞. Therefore, we have that as ε → 0 and n →∞,

Pθ0 [(∃1θ̂ε,n ∈ Θ̃ such that Gε,n(θ̂ε,n) = 0) and (|θ̂ε,n − θ0| ≤ εγ)] ≥ Pθ0 [Xε,n,0] → 1.
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This completes the proof of the existence, the uniqueness and the consistency.
Next, we prove the asymptotic normality of θ̂ε,n. As θ0 is in Θ, B(θ0; ρ) ⊂ Θ for sufficiently

small ρ > 0, where B(θ0; ρ) = {θ : |θ − θ0| ≤ ρ}. Taylor’s formula yields that if θ̂ε,n ∈ B(θ0; ρ),

Dε,nSε,n = ε−1Gε,n(θ̂ε,n)− ε−1Gε,n(θ0),

where Dε,n =
∫ 1
0 Kε,n

(
θ0 + u(θ̂ε,n − θ0)

)
du and Sε,n = ε−1(θ̂ε,n − θ0). By A5, there exists a

constant C > 0 such that inf |x|=1 |(K(θ0))∗x| > 2C. For such a C > 0, there exist N1(C) > 0
and N2(C) > 0 such that for any (ε, n) ∈ (0, N1(C))×(N2(C),∞) and δ ∈ [0, 1], B(θ0; ηε,n) ⊂ Θ
and |K(θ0 + δηε,n) − K(θ0)| < C/2, where ηε,n → 0 as ε → 0 and n → ∞. We set N (C) =
(0, N1(C))× (N2(C),∞). For C > 0, let Cε,n denote the subset of the sample space Xε,n defined
by

Cε,n =

{
X ∈ Xε,n

∣∣∣∣∣ θ̂ε,n ∈ B(θ0; ηε,n), sup
θ∈Θ̄

|Kε,n(θ)−K(θ)| < C

2

}
.

By the consistency of θ̂ε,n, there exists a sequence {B(θ0; ηε,n)} such that ηε,n → 0 and Pθ0 [θ̂ε,n ∈
B(θ0; ηε,n)] → 1 as ε → 0 and n →∞. It then follows that Pθ0 [Cε,n] → 1 as ε → 0 and n →∞.
For any (ε, n) ∈ N (C) and |u| < 1, we see that on Cε,n,

sup
|x|=1

|(−Dε,n + K(θ0))∗x|

≤ sup
|x|=1

{
|(−Dε,n +

∫ 1

0
K(θ0 + u(θ̂ε,n − θ0))du)∗x|+ |(K(θ0)−

∫ 1

0
K(θ0 + u(θ̂ε,n − θ0))du)∗x|

}
≤ sup

|θ−θ0|<ηε,n

|ε2Kε,n(θ)−K(θ)|+ C

2
< C.

It then follows that for any (ε, n) ∈ N (C), on Cε,n,

inf
|x|=1

|(Dε,n)∗x| ≥ inf
|x|=1

|(K(θ0))∗x| − sup
|x|=1

|(−Dε,n + K(θ0))∗x| > C.

By the above estimate, we see that for any (ε, n) ∈ N (C), Pθ0 [Dε,n] ≥ Pθ0 [Cε,n], where Dε,n =
{Dε,n is invertible}. We obtain that Pθ0 [Dε,n] → 1 as ε → 0 and n → ∞. We define Eε,n as
follows: Eε,n = Dε,n on Eε,n and Eε,n = Jp on Ec

ε,n, where Eε,n = {θ̂ε,n ∈ Θ} ∩ Dε,n and Jp is
the p × p identity matrix. As it follows that Pθ0 [Eε,n] → 1 as ε → 0 and n → ∞, we see that
|Eε,n−K(θ0)|1Eε,n ≤ |Dε,n−K(θ0)| and 1Eε,n

p−→ 1 as ε → 0 and n →∞. By using the estimate
that Pθ0 [θ̂ε,n ∈ Θc∪B(θ0; ηε,n)c] ≤ Pθ0 [θ̂ε,n ∈ Θc]+Pθ0 [θ̂ε,n ∈ B(θ0; ηε,n)c] → 0 as ε → 0 and n →
∞, it follows that 1{θ̂ε,n∈Θc∪B(θ0;ηε,n)c}

p−→ 0 as ε → 0 and n →∞. Define Rε,n = Dε,n−Kε,n(θ0).

Lemma 1 yields that |Rε,n| · 1{θ̂ε,n∈Θ∩B(θ0;ηε,n)} ≤ supθ∈B(θ0;ηε,n) |Kε,n(θ) − Kε,n(θ0)|
p−→ 0 as

ε → 0 and n →∞. Thus, Rε,n
p−→ 0 as ε → 0 and n →∞. By using lemma 1, Dε,n

p−→ −K(θ0)
as ε → 0 and n →∞. Therefore, Eε,n

p−→ K(θ0) as ε → 0 and n →∞. It is easy to obtain that
Sε,n1Eε,n = E−1

ε,nDε,nSε,n1Eε,n = E−1
ε,n(ε−1Gε,n(θ̂ε,n) − ε−1Gε,n(θ0))1Eε,n . Lemma 2 implies that

Sε,n1Eε,n

d−→ N(0,K(θ0)−1A(θ0)(K∗)−1(θ0)) as ε → 0 and n →∞. This completes the proof.
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