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Abstract

This paper studies terminating and ill-defined Gauss hypergeometric functions.

For their hypergeometric equations, the set of 24 Kummer’s solutions degenerates.

We describe those solutions and relations between them.

1 Introduction

Throughout the paper, let Z≤0 and Z≥0 denote the sets of non-positive and non-negative
integers, respectively. The Gauss hypergeometric function is defined by the series

2F1

(
a, b

c

∣∣∣∣ z) = 1 +
a b

c· 1!
z +

a (a+1) b (b+1)
c (c+1) · 2!

z2 + . . . . (1)

The hypergeometric series terminate when a ∈ Z≤0 or b ∈ Z≤0; the function is usually
undefined when c ∈ Z≤0. If n,N are non-negative integers and n ≤ N , then we inter-
pret (1) as a terminating hypergeometric series. Gauss hypergeometric function can be
analytically continued onto C\(0,∞). It satisfies the hypergeometric differential equation

z (1− z)
d2y(z)
dz2

+
(
c− (a+b+1) z

) dy(z)
dz

− a b y(z) = 0. (2)

Throughout the paper, we denote this equation by E(a, b, c). Since Kummer we know
that in general there are 24 hypergeometric series which express solutions of E(a, b, c).

The subject of this paper is Gauss hypergeometric functions when some or all of the
numbers a, b, c, c − a, c − b, a − b, c − a − b are integers. We refer to these functions
and to corresponding hypergeometric equations as degenerate. (Note that in [Erd53] and
[AS64], a hypergeometric equation is called degenerate only when a, b, c− a or c− b are
integers.) In a degenerate case, some of the 24 Kummer’s hypergeometric solutions are
terminating or undefined, relations between them degenerate. The monodromy group of
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E(a, b, c) deserves a separate description in most of these cases. In particular, there are
terminating hypergeometric solutions if and only if the monodromy group is reducible.

Bases of solutions for degenerate hypergeometric equations are presented in [Erd53,
Sections 2.2-2.3]. Some of those solutions are reproduced in [AS64, Section 15.5]. Loga-
rithmic solutions are derived in several texts, for example in [AAR99, pg. 82-84]. Gener-
ators for the monodromy group in all degenerate cases are given in [IKSY91, Section 4.3].
Transformations of terminating Gauss hypergeometric series are widely used (see [KS94,
Section 0.6] for example), but they are seldom fully exhibited. Here we present hyper-
geometric solutions of degenerate hypergeometric equations and relations between them
more explicitly and systematically. Our Theorem 2.2 and Corollary 2.3 give convenient
characterization of various degenerate cases.

2 General observations

Hypergeometric equation E(a, b, c) is a Fuchsian equation with three regular singular
points z = 0, z = 1 and z = ∞. The local exponents are:

0, 1− c at z = 0; 0, c− a− b at z = 1; and a, b at z = ∞.

Permutations of the three singular points and of their local exponents are realized by
transformations y(z) 7→ z−α(1− z)−β y(ϕ(z)) of E(a, b, c) to other hypergeometric equa-
tions, where

ϕ(z) ∈
{
z,

z

z − 1
, 1− z, 1− 1

z
,

1
z
,

1
1− z

}
(3)

and α, β are suitably chosen from the set {0, a, b, 1 − c, c − a − b}. We refer to these
transformations of hypergeometric equations as the fractional-linear transformations.

In general, E(a, b, c) can be transformed to 23 other hypergeometric equations by
the fractional-linear transformations. Consequently, there are 24 hypergeometric series
representing solutions of E(a, b, c); they are commonly referred to as the 24 Kummer’s
solutions. These solutions and general relations between them are fully presented in
[Erd53, Section 2.9]. In general, the 24 hypergeometric series represent 6 different Gauss
hypergeometric functions, since Euler’s and Pfaff’s formulas [AAR99, Theorem 2.2.5]
identify four Kummer’s series with each other. We refer to those identities as the Euler-
Pfaff transformations.

If we consider permutation of the upper parameters a, b as a non-trivial transforma-
tion, we have a group of 48 elements acting on hypergeometric equations. This group
acts on the parameters of E(a, b, c) as follows.

Lemma 2.1 1. Fractional-linear transformations can permute the three numbers 1− c,
c− a− b, b− a and change their signs in any way.

2. Fractional-linear transformations can permute the four numbers

− 1
2 + a, 1

2 − b, − 1
2 + c− a, 1

2 + b− c,

in any way, and can change their signs simultaneously.
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Proof. We define e0 = 1−c, e1 = c−a−b, e∞ = b−a. Note that e0, e1, e∞ are the local
exponent differences of E(a, b, c) at the singular points. The first statement is clear once
one accepts characterization of fractional-linear transformations as the transformations
of hypergeometric equations which permute the three singular points and their local
exponents. (Notice that interchanging local exponents at a singular point changes the
sign of the local exponent difference.)

For the second statement, notice that the four listed numbers are equal to

−e0 − e1 − e∞
2

,
e0 + e1 − e∞

2
,

−e0 + e1 + e∞
2

,
e0 − e1 + e∞

2
.

By the first statement, we can permute ei’s and change their signs. If we change the signs
of even number of ei’s, the four numbers get permuted; otherwise they get multiplied by
−1 and permuted.

Alternatively, one can show both statements by checking the list of 24 related hyper-
geometric equations:

E(A,B, c), with A ∈ {a, c− a}, B ∈ {b, c− b},
E(A,B, 2− c), with A ∈ {1− a, 1 + a− c}, B ∈ {1− b, 1 + b− c},
E(A,B, 1+a+b−c), with A ∈ {a, 1 + b− c}, B ∈ {b, 1 + a− c},
E(A,B, 1+c−a−b), with A ∈ {1− a, c− b}, B ∈ {1− b, c− a},
E(A,B, 1 + a− b), with A ∈ {a, 1− b}, B ∈ {1 + a− c, c− b},
E(A,B, 1 + b− a), with A ∈ {1− a, b}, B ∈ {c− a, 1 + b− c}. 2

The purpose of this paper is to present solutions (and relations between them) of
degenerate hypergeometric equations. These equations usually have terminating or un-
defined hypergeometric solutions. In particular, if the local exponent difference at a
singular point is an integer, then that point is either logarithmic or there is a terminat-
ing local solution at that point. At a logarithmic point there is only one local solution of
the form xλ

(
1 + α1x+ α2x

2 + . . .
)
, where x is a local parameter there. To get a basis of

local solutions at a logarithmic point, one has to use the function log x.
Terminating solutions occur if a, b, c − a or c − b is an integer. Then the hypergeo-

metric equation has reducible monodromy group. Conversely, if the monodromy group
is reducible, the hypergeometric equation has a solution which changes by a constant
multiple under any monodromy action. The logarithmic derivative of such a solution
is a rational function of z, which eventually means that the solution has a terminating
series expression. This is clear from the Kovacic algorithm in differential Galois theory
[Kov86], [vdPS03, Section 4.3.4].

We recall briefly the role of the monodromy group. This group characterizes ana-
lytic continuation of solutions of the hypergeometric equation along paths in C \ {0, 1};
see [Beu02, Section 3.9]. Once a basis of local solutions at a non-singular point is cho-
sen, we get a two-dimensional representation of the monodromy group. In general, the
monodromy group is generated by two elements, say, those corresponding to paths cir-
cling z = 0 or z = 1 once. Fractional-linear transformations of E(a, b, c) do not change
the monodromy group. We are especially interested in the cases when a monodromy
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representation is a subgroup (up to conjugation) of the following subgroups of GL(2,C):

Gm =

{(
1 0
0 u

)∣∣∣∣∣u ∈ C∗
}
, Ga =

{(
1 u

0 1

)∣∣∣∣∣u ∈ C

}
.

The groups Gm and Ga are isomorphic to the multiplicative group C∗ and the additive
group C, respectively. For Fuchsian equations, the monodromy group is closely related to
the differential Galois group [vdPS03, Theorem 5.3]. The groups Gm, Ga are examples
of possible differential Galois groups for hypergeometric equations.

Here is a convenient characterization of hypergeometric equations with various types
of monodromy groups.

Theorem 2.2 Consider a hypergeometric equation E(a, b, c).

1. The monodromy group is irreducible if and only if none of the numbers a, b, c− a,
c− b is an integer.

2. If the monodromy group is abelian, then the sequence a, b, c− a, c− b contains at
least two integers.

3. Suppose that the sequence a, 1−b, c−a, 1+b−c contains precisely two integers. If
those two integers are either both positive or both non-positive, then a monodromy
representation is a non-trivial subgroup of Gm. Otherwise the monodromy group is
not abelian.

4. Suppose that the numbers a, b, c are integers. If the sequence a, b, c − a, c− b

contains odd number of positive integers, then the monodromy group is trivial. Oth-
erwise a monodromy representation is a non-trivial subgroup of Ga.

Proof. The first statement is a direct consequence of [IKSY91, Theorem 4.3.2]. Alter-
natively, this is [Beu02, Corollary 3.11].

The second statement is [Beu02, Lemma 3.13]. Alternatively, one can go through
cases (B.2), (B.2)′, (B.2)′′, (C) of [IKSY91, Theorem 4.3.3].

For the third statement, we may assume due to fractional-linear transformations that
a, c−a are integers, and that c ≥ 1. Then we are in part (B) of [IKSY91, Theorem 4.3.3],
with ρ1−ρ2 = c−1 there. We have to check whether 0 < ρ1 +σi + τj ≤ ρ1−ρ2 for those
i, j ∈ {1, 2} with ρ1 +σi + τj ∈ Z. We have ρ1 +σi + τj ∈ {a, c−a, b, c− b}, therefore we
are in case (B.2) if the two integers are both positive, and we are in case (B.1) if a ≤ 0
and c− a > 0. The monodromy generators of case (B.1) do not commute, and they are
(up to conjugation) inside Gm in case (B.2). Fractional-linear transformations preserve
the property that the two integers in the sequence a, 1− b, c− a, 1+ b− c are either both
positive, or both non-positive.

For the last statement, we use part (C) of [IKSY91, Theorem 4.3.3]. It is enough
to show that if the sequence a, b, c − a, c − b contains odd number of positive integers
then we are in case (C.2). Up to fractional-linear transformations, we may assume that
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a ≤ 0 and that the other three integers are positive. Then a ≤ 0 < b < c. We have
ρ1 − ρ2 = c− 1, σ1 − σ2 = c− a− b, and for i, j ∈ {1, 2} we have

ρ1 + σi + τj ∈ {a, c− a, b, c− b}, ρi + σ1 + τj ∈ {1− a, c− b, c− a, 1− b}.

We check that 0 < ρ1 +σi + τj ≤ ρ1−ρ2 for any i, j ∈ {1, 2} in the context of part (B) in
[IKSY91], and 0 < ρi + σ1 + τj ≤ σ1− σ2 for any i, j ∈ {1, 2} in the context of part (B)′.
This means that we are indeed in case (C.2). Fractional-linear transformations preserve
the property that the sequence a, b, c−a, c−b contains odd number of positive integers. 2

Corollary 2.3 1. A monodromy representation of hypergeometric equation E(a, b, c)
is (up to conjugation) a non-trivial subgroup of Gm if and only if the sequence
a, 1− b, c− a, 1 + b− c contains precisely two integers, and those two integers are
either both positive or both non-positive.

2. The monodromy group of E(a, b, c) is trivial if and only if a, b, c ∈ Z and the
sequence a, b, c− a, c− b contains odd number of positive integers.

3. The monodromy representation of E(a, b, c) is (up to conjugation) a non-trivial
subgroup of Ga if and only if a, b, c ∈ Z and the sequence a, b, c− a, c− b contains
even number of positive integers.

Proof. Parts 2, 3, 4 of Theorem 2.2 describe mutually exclusive cases for possible abelian
monodromy groups of E(a, b, c). 2

In Sections 4 through 9 below we study various degenerate cases of Gauss hyper-
geometric functions. We concentrate on relations between their hypergeometric and
logarithmic solutions. Here we present general forms of hypergeometric equations for
each degeneration type.

Theorem 2.4 1. Suppose that a hypergeometric equation has terminating hypergeo-
metric solutions, non-abelian monodromy, and does not have logarithmic points.
Up to fractional-linear transformations, the hypergeometric equation has the form
E(−n, a, c), where n ∈ Z≥0 and a, c, c− a 6∈ Z.

2. Suppose that a hypergeometric equation has logarithmic points, but does not have
terminating hypergeometric solutions. Up to fractional-linear transformations, the
hypergeometric equation has the form E(a, b,m+ 1), with m ∈ Z≥0 and a, b 6∈ Z.

3. Suppose that a hypergeometric equation has terminating solutions and logarith-
mic points, and that the monodromy group is not abelian. Up to fractional-linear
transformations, the hypergeometric equation has the form E(a,−n,m + 1), with
n,m ∈ Z≥0 and a 6∈ Z.

4. Suppose that a monodromy representation of a hypergeometric equation is a non-
trivial subgroup of Gm. Up to fractional-linear transformations, the hypergeometric
equation has the form E(−n, a−m,−n−m), with n,m ∈ Z≥0 and a 6∈ Z.
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5. Up to fractional-linear transformations, a hypergeometric equation with the trivial
monodromy group has the form E(−n, `+ 1,−n−m), with n,m, ` ∈ Z≥0.

6. Suppose that a monodromy representation of a hypergeometric equation is a non-
trivial subgroup of Ga. Up to fractional-linear transformations, the hypergeometric
equation has the form E(−`,−n− `,−n−m− 2`), with n,m, ` ∈ Z≥0.

Proof. Consider a hypergeometric equation E(a, b, c) with no restrictions on the pa-
rameters a, b, c. In the first case, we may assume b = −n ∈ Z≤0. Since the monodromy
group is not abelian and there are no logarithmic points, the local exponent differences
1− c, a+ n, c− a+ n are not integers.

In the second case, we may choose z = 0 as a logarithmic point. Then c is an integer,
and we can choose it to be positive. Since there are no terminating solutions, a and b

are not integers by part 1 of Theorem 2.2.
In the third case, we choose z = 0 as a logarithmic point as well, so c is a positive

integer. Terminating solutions occur if a or b is an integer. Assume that b is an integer.
Then a 6∈ Z by part 4 of Theorem 2.2, and either b ≤ 0 or c− b ≤ 0 by part 3 of the same
theorem. While keeping c positive, we can permute b and c− b by part 2 of Lemma 2.1,
so we may assume that b ≤ 0.

In the fourth case, we may assume a = −n and use part 1 of Corollary 2.3, so one of
the numbers 1− b, c− a, 1 + b− c is a non-positive integer −m. Due to fractional-linear
transformations we may assume that c− a = −m. We are allowed to rename b to a−m,
for the purpose of symmetric presentation in Section 7.

In the fifth case, the numbers a, b, c are integers by part 2 of Corollary 2.3. One of
the numbers in the sequence a, b, c− a, c− b has different positivity than the others. Up
to fractional-linear transformations, we may assume that b = `+ 1 is a positive integer,
and a = −n, c− a = −m are non-positive integers.

In the last case, the numbers a, b, c are integers by part 3 of Corollary 2.3. The four
numbers in part 2 of Lemma 2.1 cannot be all negative, since their sum is zero. We may
assume that a, b, c− a, c− b are all non-negative, and that c− a ≤ b ≤ a ≤ 0. Therefore
we may set a = −`, b− a = −n and c− a− b = −m. 2

Table 1 describes concisely the set of Kummer’s solutions in each degenerate case.
The case numbers refer to Theorem 2.4. The second column gives the total number of
distinct well-defined Kummer’s series. In the third column, each terminating solution
is represented by an additive expression, where the first integer gives the number of
terminating hypergeometric expressions for the solution, and the second integer gives the
number of non-terminating expressions for the same solution. The last column specifies
solutions which have only non-terminating hypergeometric expressions; usually these
solutions have 4 hypergeometric expressions due to Euler-Pfaff transformations. Multiple
subcases are commented promptly below in the following Section. We consider only
relations between the 24 Kummer’s solutions, so we do not take into account quadratic
or higher degree transformations, nor we consider artificial identities with terminating
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Kummer’s Terminating Non-terminating
Case series solutions solutions

1 24 6+6 4, 4, 4
2 12, 16 or 20 — 4, 4, 4 (and possibly 4, 4)

10, 13 or 16 — 3, 3, 4 (and possibly 3, 3)
6, 8 or 10 — 2, 2, 2; or 2, 3, 3; or 2, 2, 3, 3

3 16 or 20 6+4 or 8+4 3, 3 or 4, 4
4 24 6+4, 6+4 4
5 24 6+2, 6+2, 6+2 —
6 10, 13 or 16 6+2; or 8+2; or 10+2 2; or 3; or 4

Table 1: Kummer’s solutions in degenerate cases

series like

2F1

(
a,−1
b

∣∣∣∣ z) = 2F1

(
c,−1
d

∣∣∣∣ adbc z
)
.

In particular, we consider two constant terminating 2F1 series (that is, series with a
zero upper parameter) as distinct if other parameters or the argument are not equal.
Correctness of Table 1 is evident from detailed considerations in Sections 4 through 9.

3 Some explicit facts

Here we present some formulas which are useful in the following Sections. In particular,
we discuss degenerations of Euler-Pfaff transformations, and introduce an alternative
normalization of Gauss hypergeometric function.

Recall that Euler-Pfaff transformations [AAR99, Theorem 2.2.5] identify the following
hypergeometric series:

2F1

(
a, b

c

∣∣∣∣ z) = (1− z)c−a−b
2F1

(
c− a, c− b

c

∣∣∣∣ z) (4)

= (1− z)−a
2F1

(
a, c− b

c

∣∣∣∣ z

z − 1

)
(5)

= (1− z)−b
2F1

(
c− a, b

c

∣∣∣∣ z

z − 1

)
. (6)

These transformations hold when c 6∈ Z≤0. If the local exponent differences c − a − b

and a− b are non-zero, then these four series are distinct. Note that the four series are
local series at z = 0. Recall that Kummer’s series for E(a, b, c) with the argument 1− z

or 1− 1/z are local series at z = 1; Kummer’s series with the argument 1/z or 1/(1− z)
are local series at z = ∞.

It turns out that if none of four series (4)–(6) is terminating, which means a, b,
c− a, c− b 6∈ Z≤0, then no Kummer’s series at z = 1, z = ∞ are equal to the left-hand
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of (4). To see this, one may consider a solution basis and connection formulas in the
general case [Erd53, Section 2.9] and in case 2 of Table 1 (see Section 5 here).

We formulate a general conclusion as follows. Let F denote a Gauss hypergeometric
function with the argument ϕ(z) as in (3), so that ϕ(z) is a local parameter at a point
P ∈ {0, 1,∞}. Let n(F ) ∈ {0, 1, 2} denote the number of points in the set {0, 1,∞}\{P}
where the local exponent difference for the corresponding hypergeometric equation is
equal to zero. Then we have exactly 4− n(F ) distinct hypergeometric series expressions
for F , unless F can be expressed as a terminating series.

Now multiple cases of Table 1 can be better clarified. Recall that points with the zero
local exponent difference are always logarithmic. In case 2 we can have at most three
logarithmic points, so we may have no singular points with the zero local exponent dif-
ference (the first line there), one such a point (the second line), or 2 or 3 such points (the
third line). In case 3 we have one logarithmic point where the local exponent difference
can be zero. In case 6 we have two logarithmic points.

On a few occasions we use the following normalization of Gauss hypergeometric series:

F
(
a, b

c

∣∣∣∣ z) :=
∞∑

k=0

Γ(a+ k) Γ(b+ k)
Γ(c+ k) Γ(1 + k)

. (7)

This series is well defined when a, b, c 6∈ Z≤0; in this case

F
(
a, b

c

∣∣∣∣ z) =
Γ(a) Γ(b)

Γ(c) 2F1

(
a, b

c

∣∣∣∣ z) .
If c = −N ∈ Z≤0 and a, b 6∈ Z≤0, then we should take limits of the summands with
singular gamma values:

F
(
a, b

−N

∣∣∣∣ z) =
Γ(a+N+1) Γ(b+N+1)

(N + 1)! 2F1

(
a+N+1, b+N+1

N + 2

∣∣∣∣ z) .
If one of the parameters a, b is a non-positive integer, but c is a smaller or equal integer,
then the function in (7) is also well-defined if we agree to evaluate quotients of singular
gamma values by taking residues there. Then we have the following formulas.

Lemma 3.1 Suppose that n,N ∈ Z≥0, and that n ≤ N . Then

F
(
−n, a
−N

∣∣∣∣ z) = (−1)N−n Γ(a)N !
n! 2F1

(
−n, a
−N

∣∣∣∣ z)
+

Γ(a+N+1) (N−n)!
(N + 1)!

zN+1
2F1

(
N − n+ 1, a+N + 1

N + 2

∣∣∣∣ z) . (8)

Correct versions of Euler-Pfaff transformations are:

2F1

(
−n, a
−N

∣∣∣∣ z) = (1− z)−a+n−N (−1)n (N − n)!
N ! Γ(−a−N)

F
(
n−N,−a−N

−N

∣∣∣∣ z) (9)
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= (1− z)−a (−1)n (N − n)!
N ! Γ(a)

F
(
n−N, a

−N

∣∣∣∣ z

z − 1

)
(10)

= (1− z)n
2F1

(
−n,−a−N

−N

∣∣∣∣ z

z − 1

)
. (11)

Proof. Formula (8) is straightforward. For formula (9), we put b = −n, c = −ν − n in
general Euler’s formula (4) and take the limit ν → N − n. For the other two formulas,
we take the same specialization and the same limit in Pfaff’s formulas (5)-(6). 2

For further convenience, we set forth the following two functions:

H1 = F
(
a, b

c

∣∣∣∣ z) , H2 = z1−c F
(

1 + a− c, 1 + b− c

2− c

∣∣∣∣ z) . (12)

In general, they form a basis of solutions for E(a, b, c). Connection formulas for other
hypergeometric solutions of E(a, b, c) can be written as:

F
(

a, b

1 + a+ b− c

∣∣∣∣ 1−z) =
H1 −H2

K
, (13)

(1−z)c−a−b F
(
c−a, c−b
1+c−a−b

∣∣∣∣ 1−z) =
1
K

(
H1

sinπa sinπb
sinπ(c− a) sinπ(c− b)

−H2

)
, (14)

(−z)−a F
(
a, 1 + a− c

1 + a− b

∣∣∣∣ 1
z

)
=

1
sinπc

(
H1 sinπb+H2 eiπc sinπ(c− b)

)
, (15)

(−z)−b F
(

1 + b− c, b

1 + b− a

∣∣∣∣ 1
z

)
=

1
sinπc

(
H1 sinπa+H2 eiπc sinπ(c− a)

)
, (16)

where
K =

sinπc
π

Γ(1 + a− c) Γ(1 + b− c).

These formulas hold for analytic continuations of the F-functions onto the upper half-
plane, like in [Erd53, Section 2.9].

We shall use the following consequences of the reflection formula [AAR99, Theorem
1.2.1] for the gamma function:

ψ(x)− ψ(1− x) = − π

tanπx
, (17)

Γ′(x)
Γ(x)2

=
Γ′(1− x)

Γ(x) Γ(1− x)
− cosπx Γ(1− x). (18)

Recall that ψ(x) = Γ′(x)/Γ(x).

Lemma 3.2 Suppose that b 6∈ Z and c 6∈ Z≤0. Then for |z| < 1 (and eventually, after
analytic continuation) we have

∞∑
k=0

(a)k(b)k

(c)k k!
ψ(b+ k) zk =

∞∑
k=0

(a)k(b)k

(c)k k!
ψ(1−b−k) zk − π

tanπb 2F1

(
a, b

c

∣∣∣∣ z) .
Proof. The formula follows by applying (17) termwise. 2
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4 Terminating hypergeometric series

Here we consider hypergeometric equations which have terminating hypergeometric so-
lutions and non-abelian monodromy group, but do not have logarithmic points. We are
in case 1 of Theorem 2.4. A general equation is E(−n, a, c), where n is a non-negative
integer, and a, c, c− a are not integers. All 24 Kummer’s solutions are well defined. The
monodromy group of this equation is reducible, because a terminating hypergeometric
solution spans an invariant subspace.

It turns out that there are terminating hypergeometric solutions at each singular point
of E(−n, a, c). All terminating solutions lie in the one-dimensional invariant subspace.
Here is their identification:

2F1

(
−n, a
c

∣∣∣∣ z) = (1− z)n
2F1

(
−n, c− a

c

∣∣∣∣ z

z − 1

)
(19)

=
(a)n

(c)n
(−z)n

2F1

(
−n, 1− n− c

1− n− a

∣∣∣∣ 1
z

)
(20)

=
(a)n

(c)n
(1− z)n

2F1

(
−n, c− a

1− n− a

∣∣∣∣ 1
1− z

)
(21)

=
(c− a)n

(c)n
zn

2F1

(
−n, 1− n− c

1− n+ a− c

∣∣∣∣ 1− 1
z

)
(22)

=
(c− a)n

(c)n
2F1

(
−n, a

1− n+ a− c

∣∣∣∣ 1− z

)
. (23)

These formulas can be proved using the following two transformations a few times: rewrit-
ing a terminating hypergeometric sum in the opposite direction, and Pfaff’s formula (5).
Application of Euler’s formula (4) to the above series gives non-terminating hypergeo-
metric expressions for the same function. We have 6 terminating and 6 non-terminating
hypergeometric expressions for this solution.

The six expressions (19)–(23) are valid for any terminating Gauss hypergeometric
series, if only the numbers a, c, c − a are not integers in the interval [1 − n, 0]. Any
terminating series can be interpreted as an isolated Jacobi, Meixner or Meixner-Pollaczek
polynomial [KS94, Sections 1.7,1.8,1.9]:

2F1

(
−n, a
c

∣∣∣∣ z) =
n!

(c)n
P (c−1,a−c−n)

n (1− 2z) (24)

= Mn

(
−a; c, 1

1− z

)
(25)

=
n!

(c)n(1−z)n/2
P (c/2)

n

(
ic

2
− ia;

i

2
log(1− z)

)
(26)

We get back to the specified equation E(−n, a, c). Its non-terminating solutions are

z1−c (1−z)c−a+n
2F1

(
1 + n, 1− a

2− c

∣∣∣∣ z) , z1−c (1−z)c−a+n
2F1

(
1 + n, 1− a

1 + n+ c− a

∣∣∣∣ 1−z) ,
(−z)−c−n (1− z)c−a+n

2F1

(
1 + n, c+ n

1 + n+ a

∣∣∣∣ 1
z

)
.
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For each of these functions, there are 4 non-terminating hypergeometric expressions by
Euler-Pfaff transformations. This exhausts the 24 Kummer’s solutions. Connection
relations are evident from the following formulas:

2F1

(
1 + n, 1− a

1 + n+ c− a

∣∣∣∣ 1− z

)
=

(c− a)n+1

(c− 1)n+1
2F1

(
1 + n, 1− a

2− c

∣∣∣∣ z)
+

Γ(1 + n+ c− a) Γ(1− c)
Γ(1− a) n!

zc−1 (1− z)a−c−n
2F1

(
−n, a
c

∣∣∣∣ z) ,
2F1

(
1 + n, c+ n

1 + n+ a

∣∣∣∣ 1
z

)
=

(a)n+1

(c− 1)n+1
(−z)n+1

2F1

(
1 + n, 1− a

2− c

∣∣∣∣ z)
+

Γ(1 + n+ a) Γ(1− c)
Γ(1 + a− c) n!

(−z)c+n (1− z)a−c+n
2F1

(
−n, a
c

∣∣∣∣ z) .
5 General logarithmic solutions

Here we consider hypergeometric equations which have logarithmic points, but do not
have terminating hypergeometric solutions. We are in case 2 of Theorem 2.4. A general
hypergeometric equation of this kind is E(a, b,m+1), where m is a non-negative integer,
and a, b are not integers.

The functions H1, H2 in (12) coincide in this case. The corresponding 2F1 series
either coincide (if m = 0), or only one of them is well-defined (if m ≥ 1). Formulas for a
second independent local solution at z = 0 are not pretty, but it must be important to
have them. We choose to identify logarithmic solutions with

U1 = (−1)m+1m!
Γ(a−m) Γ(b−m)

Γ(a+ b−m) 2F1

(
a, b

a+ b−m

∣∣∣∣ 1−z) . (27)

Theorem 5.1 The function U1 has the following expressions:

U1 = (−1)m+1m!
Γ(1− a) Γ(1− b)
Γ(m+ 2− a− b)

(1−z)m+1−a−b
2F1

(
m+1−a, m+1−b
m+ 2− a− b

∣∣∣∣ 1−z)
−π sinπ(a+ b)

sinπa sinπb 2F1

(
a, b

m+ 1

∣∣∣∣ z) , (28)

= (−1)m+1m!
Γ(a−m) Γ(1− b)

Γ(1 + a− b)
(−z)−a

2F1

(
a, a−m

1 + a− b

∣∣∣∣ 1
z

)
−π e−iπb

sinπb 2F1

(
a, b

m+ 1

∣∣∣∣ z) (29)

= 2F1

(
a, b

m+ 1

∣∣∣∣ z) log z +
(−1)m+1m! (m−1)!
(1− a)m (1− b)m

z−m
m−1∑
k=0

(a−m)k(b−m)k

(1−m)k k!
zk

+
∞∑

k=0

(a)k(b)k

(m+ 1)k k!
(
ψ(a+k) + ψ(b+k)− ψ(m+k+1)− ψ(k+1)

)
zk (30)

= 2F1

(
a, b

m+ 1

∣∣∣∣ z) log z − π sinπ(a+ b)
sinπa sinπb 2F1

(
a, b

m+ 1

∣∣∣∣ z)

11



+
(−1)m+1m! (m− 1)!
(1− a)m (1− b)m

z−m (1−z)m+1−a−b
m−1∑
k=0

(1− a)k(1− b)k

(1−m)k k!
zk

+(1−z)m+1−a−b
∞∑

k=0

(m+1−a)k(m+1−b)k

(m+ 1)k k!
×(

ψ(m+k+1−a) + ψ(m+k+1−b)− ψ(m+k+1)− ψ(k+1)
)
zk (31)

= 2F1

(
a, b

m+ 1

∣∣∣∣ z) log
z

1− z
− π

tanπb 2F1

(
a, b

m+ 1

∣∣∣∣ z)
+

(−1)m+1m!(m− 1)!
(1− a)m(1− b)m

z−m(1−z)m−a
m−1∑
k=0

(a−m)k(1−b)k

(1−m)k k!
zk

(z−1)k

+(1−z)−a
∞∑

k=0

(a)k(m+1−b)k

(m+ 1)k k!
×

(
ψ(a+k) + ψ(m+k+1−b)− ψ(m+k+1)− ψ(k+1)

) zk

(z−1)k
. (32)

Proof. Formulas (28) and (29) are special cases of connection formulas 2.9.(33) and
2.9.(25) in [Erd53], respectively.

To prove formula (30), we apply formula (13) to the equation E(a, b,m+ 1) and use
expression (27). We take the limit c → m + 1 on the right-hand of (13) by l’Hospital’s
rule and arrive at

U1 = − m!
Γ(a) Γ(b)

∞∑
k=0

Γ(a+ k) Γ(b+ k) Γ′(m+ k + 1)
k! Γ(m+ k + 1)2

zk

+
m! z−m log z

Γ(a) Γ(b)

∞∑
k=0

Γ(a−m+ k) Γ(b−m+ k)
k! Γ(1−m+ k)

zk

+
m! z−m

Γ(a)Γ(b)

∞∑
k=0

Γ′(a−m+k) Γ(b−m+k) + Γ(a−m+k) Γ′(b−m+k)
k! Γ(1−m+ k)

zk

− m! z−m

Γ(a) Γ(b)
lim

c→m+1

∞∑
k=0

Γ(1+a−c+k) Γ(1+b−c+k) Γ′(2−c+k)
k! Γ(2− c+ k)2

zk. (33)

The first m terms of the second and of the third series are zero. The second series
becomes the first term of (30). To compute the first m terms of the fourth series, we set
x = 2− c+ k in formula (18) and get

lim
c→m+1

Γ′(2− c+ k)
Γ(2− c+ k)2

= (−1)m−k Γ(m− k) = (−1)m (m− 1)!
(1−m)k

.

The first m terms of the fourth series in (33) form the second term of formula (30). The
last term in (30) is obtained by combining the remaining terms of the third and fourth
series in (33), and all terms of the first series in (33). This proof of (30) follows closely
the derivation in [AAR99, pg. 82-84]; there are a few misprints in formulas there.
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To prove (31), we express the first term in (28) as a logarithmic function using (30).
Then we simplify the term with log z by Euler’s formula.

To prove (32), we apply Pfaff’s transformation to the first term of (29) and substitu-
tion z 7→ z/(z − 1) in (27) and (30). Then we simplify the logarithmic term by Pfaff’s
formula, observing that (for z ∈ C in the upper half-plane)

log
z

z − 1
= log

z

1− z
− iπ,

π e−iπb

sinπb
=

π

tanπb
− iπ. 2

More expressions for U1 can be obtained by interchanging a, b in (29) and (32), by ap-
plying Euler-Pfaff transformations to individual hypergeometric functions in (27)–(32),
and by applying Lemma 3.2 to sums with the ψ-function. In this way logarithmic solu-
tions at z = 0 can be related to any other well-defined hypergeometric series at z = 1
or z = ∞. One may check that well-defined hypergeometric series at different points are
independent.

The points z = 1 and z = ∞ are not logarithmic if and only if a + b, a − b 6∈ Z.
We have either 4 undefined Kummer’s series at z = 0 (if m > 0) or 4 pairs of coinciding
hypergeometric series there (if m = 0). In the latter case, Euler’s transformation (4)
acts trivially on some hypergeometric series at z = 1 and z = ∞, for example on (27).
Then we have 3 (rather than usual 4) distinct hypergeometric expressions for each Gauss
hypergeometric function representable by well-defined series at z = 1 and z = ∞. In any
case (when z = 1, z = ∞ are not logarithmic), we have 5 different Gauss hypergeometric
solutions represented by 16 or 20 distinct Kummer’s series.

If either a + b or a − b is an integer, then the equation E(a, b,m + 1) has one other
logarithmic point. For example, if ` ∈ Z≥0 and a = b + ` then the point z = ∞ is
logarithmic. A power series solution there is

z−a F
(
a, a−m

`+ 1

∣∣∣∣ 1
z

)
= z−b F

(
b, b−m

1− `

∣∣∣∣ 1
z

)
Just as we obtained solution (30) from coinciding solutionsH1 = H2 in (7) with c = m+1,
we have the following local solution at z = ∞:

z−a
2F1

(
a, a−m

`+ 1

∣∣∣∣ 1
z

)
log

1
z

+
(−1)`+1`! (`−1)!

(1− a)` (m+1−a)`
z−b

`−1∑
k=0

(b)k(b−m)k

(1− `)k k!
z−k

+z−a
∞∑

k=0

(a)k(a−m)k

(`+ 1)k k!
(
ψ(a+k) + ψ(a−m+k)− ψ(`+k+1)− ψ(k+1)

)
z−k. (34)

This function has to be identified with the following constant multiple of U1:

(−1)`+1 `!
Γ(b) Γ(b−m)
Γ(a+ b−m) 2F1

(
a, b

a+ b−m

∣∣∣∣ 1−z) .
To see this, use connection formula [Erd53, 2.9.(36) with a misprint: Γ(c) must be re-
placed by Γ(b)] before taking the limit b → a− ` in the analogue of (13). If m 6= 0 and
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` 6= 0, then 8 Kummer’s series are undefined; other 16 Kummer’s series are distinct and
represent 4 different Gauss hypergeometric functions. If m 6= 0, ` = 0, then 4 Kummer’s
series at z = 0 are undefined, and there are 4 coinciding pairs of them at z = ∞. Other
4 Kummer’s series at z = ∞ are distinct expressions of one Gauss hypergeometric func-
tion. There are 3 more Gauss hypergeometric solutions, each represented by 3 distinct
Kummer’s series at z = 0 or z = 1. If m = 0, ` 6= 0, we have a similar situation. If
m = ` = 0, then there are 3 distinct Kummer’s series at z = 0 and at z = ∞, and
4 distinct series at z = 1. The series at z = 0 or at z = ∞ represent a single Gauss
hypergeometric function; the series at z = 1 represent two different functions.

All three singular points of E(a, b,m + 1) are logarithmic if and only if a and b are
rational numbers with the denominator 2. Then we have 3 distinct Gauss hypergeometric
functions, one for each singular point. The number of their hypergeometric expressions
depends on the presence of singular points with the zero local exponent difference; recall
discussion of Table 1. If all three local exponent differences are 0, then each Gauss hy-
pergeometric solution is represented by just two distinct Kummer’s series. In this case
the equation is E(1/2, 1/2, 1); its hypergeometric solutions are related to the well-known
complete elliptic integral K(k); see [AAR99, (3.2.3)]. Other renowned complete elliptic
integral is E(k) [AAR99, (3.2.14)], which is expressible via solutions of E(−1/2, 1/2, 1).
This equation has one local exponent difference equal to 0, so the number of distinct
Kummer’s series is 10. An example of hypergeometric equation with 13 distinct Kum-
mer’s series is E(−1/2,−1/2, 1); it has two local exponent differences equal to 0.

6 Logarithmic and terminating solutions

Here we consider hypergeometric equations which have logarithmic points and terminat-
ing hypergeometric solutions, but the monodromy group is non-abelian. By part 3 of
Theorem 2.4, a general hypergeometric equation of this kind is E(a,−n,m + 1), where
n,m ∈ Z≥0 and a 6∈ Z. We are in the non-abelian case of part 3 of Theorem 2.2. The
point z = 0 is logarithmic; the points z = 1, z = ∞ are not logarithmic.

The terminating solution 2F1

(
−n, a
m+1

∣∣∣ z) has 6 terminating expressions (19)–(23) with
n+1 terms, but there are 2 extra terminating expressions with m+n+1 terms if m 6= 0:

2F1

(
−n, a
m+ 1

∣∣∣∣ z) = (1− z)n
2F1

(
−n, m+ 1− a

m+ 1

∣∣∣∣ z

z − 1

)
=

m! (a)n

(m+ n)!
(−z)n

2F1

(
−n, −m− n

1− n− a

∣∣∣∣ 1
z

)
=

m! (a)n

(m+ n)!
(1− z)n

2F1

(
−n, m+ 1− a

1− n− a

∣∣∣∣ 1
1− z

)
=

m! (m+1−a)n

(m+ n)!
zn

2F1

(
−n, −m− n

a−m− n

∣∣∣∣ 1− 1
z

)
=

m! (m+1−a)n

(m+ n)! 2F1

(
−n, a

a−m− n

∣∣∣∣ 1− z

)
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=
m! (a)n

(m+ n)!
(−z)−m(1− z)m+n

2F1

(
−m− n, 1− a

1− n− a

∣∣∣∣ 1
1− z

)
=

m! (m+1−a)n

(m+ n)!
z−m

2F1

(
−m− n, a−m

a−m− n

∣∣∣∣ 1− z

)
.

This solution has 4 non-terminating hypergeometric expressions with the argument z,
z/(z − 1), 1/z or 1− 1/z, due to Euler’s formula (4). There are 2 other Gauss hyperge-
ometric solutions, represented by 6 (if m > 0) or 8 (if m = 0) distinct non-terminating
Kummer’s series at z = 1 and z = ∞. Like in Section 5, we miss 4 Kummer’s series at
z = 0, which are either undefined or coincide with listed terminating series.

The logarithmic solution U1 of Section 5 is not defined in this case, since some values
of the ψ-function become infinite in formulas (27)–(32). We should either apply those
formulas to the equation E(m+1−a,m+n+1,m+1), or consider the following solution
of E(a,−n,m+ 1), well defined for b = −n by expression (31):

U2 := U1 +
π sinπ(a+ b)
sinπa sinπb 2F1

(
a, b

m+ 1

∣∣∣∣ z) (35)

The following Theorem presents various expressions for this function.

Theorem 6.1 The function U2 with b = −n has the following expressions:

U2 =
(−1)m+1m!n!
(1− a)m+n+1

(1−z)m+n+1−a
2F1

(
m+1−a, m+n+1
m+ n+ 2− a

∣∣∣∣ 1−z) (36)

=
(−1)m+1m!n!
(a−m)m+n+1

(−z)−a
2F1

(
a, a−m

a+ n+ 1

∣∣∣∣ 1
z

)
+
π eiπa

sinπa 2F1

(
−n, a
m+ 1

∣∣∣∣ z) (37)

= 2F1

(
−n, a
m+ 1

∣∣∣∣ z) log z +
π

tanπa 2F1

(
−n, a
m+ 1

∣∣∣∣ z)
+

(−1)m+1m!n!
(1− a)m

z−m
m−1∑
k=0

(a−m)k (m− k − 1)!
(m+ n− k)! k!

zk

+
n∑

k=0

m!n! (a)k

(m+k)!(n−k)! k!
(ψ(a+k) + ψ(n−k+1)− ψ(m+k+1)− ψ(k+1)) (−z)k

+(−1)n n!m!
∞∑

k=n+1

(a)k(k − n− 1)!
(m+ k)! k!

zk (38)

= 2F1

(
−n, a
m+ 1

∣∣∣∣ z) log z

+
(−1)m+1m!

(1− a)m(m+n)!
z−m(1−z)m+n+1−a

m−1∑
k=0

(1− a)k(m−k−1)!(n+k)!
k!

(−z)k

+
m!

(m+ n)!
(1− z)m+n+1−a

∞∑
k=0

(m+1−a)k(m+ n+k)!
(m+ k)! k!

×(
ψ(m+k+1−a) + ψ(m+n+k+1)− ψ(m+k+1)− ψ(k+1)

)
zk (39)
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= 2F1

(
−n, a
m+ 1

∣∣∣∣ z) log
z

1− z
+

π

tanπa 2F1

(
−n, a
m+ 1

∣∣∣∣ z)
+

(−1)m+1m!
(1− a)m(m+n)!

z−m(1−z)m−a
m−1∑
k=0

(a−m)k(m−k−1)!(n+k)!
k!

zk

(1− z)k

+
m!

(m+ n)!
(1− z)−a

∞∑
k=0

(a)k(m+ n+k)!
(m+ k)! k!

×

(
ψ(a+k) + ψ(m+n+k+1)− ψ(m+k+1)− ψ(k+1)

) zk

(z − 1)k
(40)

= 2F1

(
−n, a
m+ 1

∣∣∣∣ z) log
z

1− z

+
(−1)m+1m!n!

(1− a)m
z−m (1− z)n+m

m−1∑
k=0

(1− a)k (m− k − 1)!
(m+ n− k)! k!

zk

(z − 1)k

+m!n! (1− z)n
n∑

k=0

(m+1−a)k

(m+k)!(n−k)! k!
×

(ψ(m+k+1−a) + ψ(n−k+1)− ψ(m+k+1)− ψ(k+1))
zk

(1− z)k

+m!n! (z − 1)n
∞∑

k=n+1

(m+1−a)k(k − n− 1)!
(m+ k)! k!

zk

(z − 1)k
. (41)

Proof. To show the first two formulas we apply, respectively, (28) or (29) to expression
(35). Then we collect the two terms with 2F1

(
a,b

m+1

∣∣∣ z) and take the limit b→ −n.
To prove (38), we apply Lemma 3.2 to expression (30) and arrive at

U2 = 2F1

(
a, b

m+ 1

∣∣∣∣ z) log z +
(
π sinπ(a+ b)
sinπa sinπb

− π

tanπb

)
2F1

(
a, b

m+ 1

∣∣∣∣ z)
+

(−1)m+1m! (m−1)!
(1− a)m (1− b)m

z−m
m−1∑
k=0

(a−m)k(b−m)k

(1−m)k k!
zk

+
∞∑

k=0

(a)k(b)k

(m+ 1)k k!
(
ψ(a+k) + ψ(1−b−k)− ψ(m+k+1)− ψ(k+1)

)
zk.

Now we take the limit b → −n of each term. In particular, for k ≥ n + 1 we apply
formula (17) with x = b+ k, and then formula (18) to get

lim
b→−n

(b)k ψ(1−b−k) = lim
b→−n

Γ(b+ k)
Γ(b)

(
ψ′(b+ k) +

π cosπb
sinπb

)
= lim

b→−n

(
Γ′(b+ k)

Γ(b)
+ cosπb Γ(1− b) Γ(b+ k)

)
= (−1)n n! (k − n− 1)!.

Note that the last sum in (38) can be easily missed out; see [AAR99, pg. 84].
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Formulas (39), (40) are direct consequences of and (31), (32) applied to (35). To get
formula (41), consider (32) with interchanged roles of the parameters a and b, so that a
approaches the integer −n (and b can be renamed to a at some point). Then we apply
Lemma 3.2 similarly as in the proof of (38). 2

7 Completely reducible monodromy group

Here we consider hypergeometric equations with completely reducible but non-trivial
monodromy group. Up to conjugation, the monodromy representation is a subgroup
of Gm. By part 4 of Theorem 2.4, a general hypergeometric equation of this type is
E(−n, a−m,−n−m), where n,m are non-negative integers, and a 6∈ Z.

Since the monodromy group is completely reducible, there is a basis of terminating
solutions of E(−n, a−m,−n−m). Such a basis is

2F1

(
−n, a−m

−n−m

∣∣∣∣ z) , (1− z)−a
2F1

(
−m,−a− n

−n−m

∣∣∣∣ z) . (42)

Although these two hypergeometric series seem to be equal by standard Euler’s formula
(4), the correct Euler’s transformation in this situation is formula (9) of Lemma 3.1.
Alternative terminating expressions of the basis solutions (42) are obtained by using
formulas (19)–(23). For example,

2F1

(
−n, a−m

−n−m

∣∣∣∣ z) = (1− z)n
2F1

(
−n,−a− n

−n−m

∣∣∣∣ z

z − 1

)
=

m! (a−m)n

(n+m)!
zn

2F1

(
−n, m+ 1

1− a+m− n

∣∣∣∣ 1
z

)
=

m! (a−m)n

(n+m)!
(z − 1)n

2F1

(
−n, −a− n

1− a+m− n

∣∣∣∣ 1
1− z

)
=

m! (a+ 1)n

(n+m)!
zn

2F1

(
−n, m+ 1
a+ 1

∣∣∣∣ 1− 1
z

)
=

m! (a+ 1)n

(n+m)! 2F1

(
−n, a−m

a+ 1

∣∣∣∣ 1− z

)
.

For the last four expressions, standard Euler’s formula (4) can be applied; this gives us 4
non-terminating hypergeometric expressions. In total we have 6 terminating and 4 non-
terminating hypergeometric expressions for each basis solution in (42). The remaining
4 Kummer’s solutions are related by Euler-Pfaff transformations; they represent one
Gauss hypergeometric function. The relation between this non-terminating and the two
terminating solutions is a consequence of formula (8) in Lemma 3.1:

(1− z)−a
2F1

(
−m,−a− n

−n−m

∣∣∣∣ z) = 2F1

(
−n, a−m

−n−m

∣∣∣∣ z)+

(−1)m n!m! (a−m)n+m+1

(n+m)! (n+m+ 1)!
zn+m+1

2F1

(
m+ 1, a+ n+ 1

n+m+ 2

∣∣∣∣ z) . (43)
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8 The trivial monodromy group

Here we consider hypergeometric equations with the trivial monodromy group. That
means that solutions can be meromorphically continued to the entire projective line
P1, so they are rational functions. By part 5 of Theorem 2.4, general hypergeometric
equation with trivial monodromy group is E(−n, `+ 1,−m− n). We have the following
three terminating solutions:

2F1

(
−n, `+ 1
−n−m

∣∣∣∣ z) , (1− z)−`−1
2F1

(
−m, `+ 1
−n−m

∣∣∣∣ z

z − 1

)
,

zn+m+1 (1− z)−m−`−1
2F1

(
−`, n+ 1
−m− `

∣∣∣∣ 1− z

)
. (44)

Each of them can be transformed by formulas (19)–(23). For example,

2F1

(
−n, `+ 1
−n−m

∣∣∣∣ z) = (1− z)n
2F1

(
−n,−n−m− `− 1

−n−m

∣∣∣∣ z

z − 1

)
=

m! (n+ `)!
`! (n+m)!

zn
2F1

(
−n, m+ 1
−n− `

∣∣∣∣ 1
z

)
=

m! (n+ `)!
`! (n+m)!

(z − 1)n
2F1

(
−n,−n−m− `− 1

−n− `

∣∣∣∣ 1
1− z

)
=

m! (n+m+ `+ 1)!
(n+m)! (m+ `+ 1)!

zn
2F1

(
−n, m+ 1
2 +m+ `

∣∣∣∣ 1− 1
z

)
=

m! (n+m+ `+ 1)!
(n+m)! (m+ `+ 1)! 2F1

(
−n, `+ 1
2 +m+ `

∣∣∣∣ 1− z

)
.

Note how permutation of the numbers m,n, ` permutes the three sets of hypergeometric
representations for solutions in (44), if we ignore the front factors and change of the ar-
gument. The last two identities can be transformed to non-terminating series by Euler’s
formula, so in total we have 6 terminating and 2 non-terminating hypergeometric expres-
sions for each of the three solutions. This exhausts the 24 Kummer’s series. Relation
between the three solutions is a consequence of (43):

(1− z)−`−1
2F1

(
−m, `+ 1
−n−m

∣∣∣∣ z

z − 1

)
= 2F1

(
−n, `+ 1
−n−m

∣∣∣∣ z)+

(−1)m n! (m+ `)!
`! (n+m)!

zn+m+1 (1− z)−m−`−1
2F1

(
−`, n+ 1
−m− `

∣∣∣∣ 1− z

)
.

9 Additive monodromy group

Here we consider hypergeometric equations whose monodromy group is (up to conjuga-
tion) a non-trivial subgroup of Ga. By part 6 of Theorem 2.4, general hypergeometric
equation of this type is E(−`,−n− `,−m−n−2`). The point z = 0 is not a logarithmic
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point for this equation, there is a basis of power series solutions there:

2F1

(
−`,−n− `

−m− n− 2`

∣∣∣∣ z) , zm+n+2`+1
2F1

(
m+ `+ 1,m+ n+ `+ 1

m+ n+ 2`+ 2

∣∣∣∣ z) . (45)

The first solution has the following terminating expressions:

2F1

(
−`,−n− `

−n−m− 2`

∣∣∣∣ z) = (1− z)`
2F1

(
−`,−m− `

−n−m− 2`

∣∣∣∣ z

z − 1

)
= C1 (−z)`

2F1

(
−`, n+m+ `+ 1

n+ 1

∣∣∣∣ 1
z

)
= C1 (1− z)`

2F1

(
−`,−m− `

n+ 1

∣∣∣∣ 1
1− z

)
= C2 z

`
2F1

(
−`, n+m+ `+ 1

m+ 1

∣∣∣∣ 1− 1
z

)
= C2 2F1

(
−`, −n− `

m+ 1

∣∣∣∣ 1− z

)
= (1− z)−m

2F1

(
−m− `,−n−m− `

−n−m− 2`

∣∣∣∣ z)
= (1− z)n+`

2F1

(
−n− `,−n−m− `

−n−m− 2`

∣∣∣∣ z

z − 1

)
= C1 (−z)m+`(1− z)−m

2F1

(
−m− `, n+ `+ 1

n+ 1

∣∣∣∣ 1
z

)
= C2 z

n+`
2F1

(
−n− `, m+ `+ 1

m+ 1

∣∣∣∣ 1− 1
z

)
,

where

C1 =
(n+ `)! (n+m+ `)!
n! (n+m+ 2`)!

, C2 =
(m+ `)! (n+m+ `)!
m! (n+m+ 2`)!

.

This solution has also non-terminating hypergeometric expressions, with the argument
1 − z or 1/(1 − z) by Euler’s formula. In total we have 10 terminating and 2 non-
terminating hypergeometric expressions for this solution. The number of distinct termi-
nating expressions may drop to 8 (if m = 0 or n = 0) or to 6 (if m = n = 0). The second
solution in (45) has 2, 3 or 4 distinct hypergeometric expressions due to Euler-Pfaff
transformations.

Other Kummer’s series at z = 1 and z = ∞ are undefined (or coincide with termi-
nating expressions, if m = 0 or n = 0). Consequently, there is no basis of power series
solutions at these points z = 1, z = ∞; they are logarithmic. In the following Theorem,
we present logarithmic expressions for the function

U3 =
(−1)m+1

(m+ n+ 2`+ 1)!
zm+n+2`+1

2F1

(
m+`+1, m+n+`+1
m+ n+ 2`+ 2

∣∣∣∣ z) . (46)

Notice that all terms with the ψ-function can be written as terminating sums of rational
numbers, and that all sums in expression (47) are terminating.
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Theorem 9.1 Set C3 = 1
/
`! (m+ `)! (n+ `)! (m+n+ `)!. The following formulas hold:

U3 = C3 (m+ n+ 2`)! 2F1

(
−`, −n− `

−m− n− 2`

∣∣∣∣ z) log(1− z)

+
∑̀
k=0

ψ(n+`−k+1) + ψ(`−k+1)− ψ(m+k+1)− ψ(k+1)
(m+ k)! (n+ `− k)! (`− k)! k!

(1− z)k

−(z − 1)−m
m−1∑
k=0

(m− k − 1)!
(m+ n+ `− k)! (m+ `− k)!k!

(z − 1)k

+(−1)`(z − 1)n+`
n−1∑
k=0

(n− k − 1)!
(m+ n+ `− k)! (n+ `− k)! k!

1
(z − 1)k

(47)

= C3 (m+ n+ 2`)! 2F1

(
−`, −n− `

−m− n− 2`

∣∣∣∣ z) log(1− z)

−C3 z
m+n+2`+1 (z − 1)−m

m−1∑
k=0

(n+`+k)! (`+k)! (m−k−1)!
k!

(z − 1)k

+C3 z
m+n+2`+1

∞∑
k=0

(m+ `+ k)! (m+ n+ `+ k)!
(m+ k)! k!

(1− z)k ×(
ψ(m+n+`+k+1) + ψ(m+`+k+1)− ψ(m+k+1)− ψ(k+1)

)
(48)

= C3 (m+ n+ 2`)! 2F1

(
−`, −n− `

−m− n− 2`

∣∣∣∣ z) log
1− z

z

− zm+` (z − 1)−m

(n+ `)!(m+ n+ `)!

m−1∑
k=0

(n+ `+ k)! (m− k − 1)!
(m+ `− k)! k!

(z − 1)k

zk

+
z`

(n+ `)!(m+ n+ `)!

∑̀
k=0

(m+ n+ `+ k)!
(m+ k)!(`− k)! k!

×

(ψ(m+n+`+k+1) + ψ(`−k+1)− ψ(m+k+1)− ψ(k+1))
(z − 1)k

zk

+
(−z)`

(n+ `)!(m+ n+ `)!

∞∑
k=`+1

(m+n+`+k)!(k − `− 1)!
(m+ k)! k!

(z − 1)k

zk
(49)

= C3 (m+ n+ 2`)! 2F1

(
−`, −n− `

−m− n− 2`

∣∣∣∣ z) log
1− z

z

−z
m+n+` (z − 1)−m

`! (m+ `)!

m−1∑
k=0

(`+ k)! (m− k − 1)!
(m+ n+ `− k)! k!

(z − 1)k

zk

+
zn+`

`! (m+ `)!

n+∑̀
k=0

(m+ `+ k)!
(m+ k)!(n+ `− k)! k!

×

(ψ(m+`+k+1) + ψ(n+`−k+1)− ψ(m+k+1)− ψ(k+1))
(1− z)k

zk
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+
(−z)n+`

`! (m+ `)!

∞∑
k=n+`+1

(m+`+k)!(k − n− `− 1)!
(m+ k)! k!

(z − 1)k

zk
. (50)

Besides, in each expression one can interchange m and n, provided that z is replaced by
z/(z − 1) and the whole expression is multiplied by (−1)(1− z)`.

Proof. To derive the formulas, we consider the equation E(−`,−n− `,−m− n− 2`) in
the context of Theorem 6.1. Then we have U3 = U2

/
m!(n + `)! `!. In formula (38), we

get rid of the singular ψ-values and the tangent term by using Lemma 3.2. The result is:

U3 =
1

m! (n+ `)! `! 2F1

(
−`, −n− `

m+ 1

∣∣∣∣ 1− z

)
log(1− z)

+(−1)m+1 (1− z)−m
m−1∑
k=0

(m− k − 1)!
(m+ n+ `− k)! (m+ `− k)!k!

(z − 1)k

+
∑̀
k=0

ψ(n+`−k+1) + ψ(`−k+1)− ψ(m+k+1)− ψ(k+1)
(m+ k)! (n+ `− k)! (`− k)! k!

(z−1)k

+(−1)`
`+n∑

k=`+1

(k − `− 1)!
(n+ `− k)!(m+ k)! k!

(z − 1)k.

We apply Euler’s transformation (4) to the first hypergeometric sum, rewrite the last
sum in the opposite direction, and get (47). Formulas (48) and (49) are just rewritten
expressions (39) and (41), respectively. Formula (50) can be obtained from (41) after
interchanging the first two parameters of E(−`,−n− `,−m− n− 2`); the same formula
can be obtained by carefully applying Lemma 3.2 to expression (40).

To see the last statement, one can check the described transformation on formula
(46) and compare it with Pfaff’s transformation. (Formula (47) is invariant under this
transformation as well, up to Euler’s transformation of the first term and summing the
second term in the opposite direction. Interchanging the singular points z = 1, z = ∞
produces the same transformation.) 2
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