2-ADIC PROPERTIES OF CERTAIN MODULAR FORMS

Ono, Ken
Department of Mathematics, University of Wisconsin

Taguchi, Yuichiro
Graduate School of Mathematics, Kyushu University

http://hdl.handle.net/2324/3340
2-ADIC PROPERTIES OF CERTAIN MODULAR FORMS

KEN ONO AND YUICHIRO TAGUCHI

1. INTRODUCTION AND STATEMENT OF RESULTS

Let M_k (resp. S_k) be the space of holomorphic modular (resp. cusp) forms of integer weight k on $\text{SL}_2(\mathbb{Z})$, and let T_n denote the usual nth Hecke operator (see [12] or [23] for background on modular forms). For modular forms

$$f(z) = \sum_{n=0}^{\infty} a(n)q^n \in M_k \cap \mathbb{Z}[[q]]$$

(note. $q = e^{2\pi iz}$ throughout), Serre observed (for example, see p. 115 of [18], or p. 251 of [19]) that there is a non-negative integer c with the property that

$$f(z) \mid T_{p_1} \mid T_{p_2} \cdots \mid T_{p_c} \equiv 0 \pmod{2}$$

for every set of odd primes p_1, p_2, \ldots, p_c. This nilpotency phenomenon follows from a theorem of Tate\(^1\) [26] which asserts that there are no non-trivial semisimple mod 2 Galois representations which are ramified only at the prime 2.

In this context, we examine the action of the Hecke algebra on modular forms of level $2^n N$, where $N \leq 17$ is odd. In particular, we find that (1.2) continues to hold when $N = 1, 3, 5, 15, \text{ or } 17$. Although we do not have a proof, we speculate that this phenomenon holds for only finitely many odd N.

This study has a number of interesting number theoretic consequences. Using these new results, here we derive number theoretic results on the coefficients of the $j(z)$ function, the representation of integers as sums of squares, partitions, and the 2-divisibility of the algebraic parts of central values of families of modular L-functions.

We begin by fixing notation. If L is a number field, then let \mathcal{O}_L denote its subring of algebraic integers. If λ is a prime of L, then throughout we let $\mathcal{O}_{L,\lambda}$ be the localization of \mathcal{O}_L at λ. For a congruence subgroup Γ of $\text{SL}_2(\mathbb{Z})$ and a subring \mathcal{O} of \mathbb{C}, we denote by $S_k(\Gamma; \mathcal{O})$ the \mathcal{O}-module of cusp forms of integer weight k with respect to Γ whose Fourier coefficients lie in \mathcal{O}. If $\Gamma = \Gamma_0(N)$ and $\chi : (\mathbb{Z}/N\mathbb{Z})^\times \rightarrow \mathbb{C}^\times$ is a Dirichlet character, we denote by $S_k(\Gamma_0(N), \chi; \mathcal{O})$ the \mathcal{O}-module of cusp forms of weight k and Nebentypus character χ with respect to $\Gamma_0(N)$ whose Fourier coefficients lie in \mathcal{O}. Similarly, we denote by $M_k(\Gamma_0(N), \chi; \mathcal{O})$ etc. the spaces of modular forms which are not necessarily

\(^1\)This was first proved in a letter from Tate to Serre in 1973.

\(^2\)2000 Mathematics Subject Classification. 11F11, 11R32, 11S15.

The first author is grateful for the support of the National Science Foundation, and from the John S. Guggenheim, David and Lucile Packard, and H. I. Romnes Fellowships. The second author thanks YoungJu Choie and Pohang University of Science and Technology for their hospitality during his stay at POSTECH (Sep. 2003 - Feb. 2004) where part of this work was done.
cusp forms. We write simply $S_k(\Gamma), S_k(\Gamma_0(N), \chi), M_k(\Gamma)$ and $M_k(\Gamma_0(N); \chi)$ for $S_k(\Gamma; \mathbb{C}), S_k(\Gamma_0(N), \chi; \mathbb{C}), M_k(\Gamma, \mathbb{C})$ and $M_k(\Gamma_0(N), \chi; \mathbb{C})$ respectively. For notational convenience, we shall drop the dependence of k and χ (in the case of forms with Nebentypus), and we let T_n denote the appropriate nth Hecke operator which will be clear from context.

Generalizing the phenomenon in (1.2) for cusp forms on $\text{SL}_2(\mathbb{Z})$, we obtain the following for cusp forms on $\Gamma_0(2^aN)$, where $N = 1, 3, 5, 15$ or 17.

Theorem 1.1. Let $N = 1, 3, 5, 15$ or 17, and let $a \geq 0$ be a non-negative integer. Suppose that $\chi : (\mathbb{Z}/2^aN)^* \to \mathbb{C}^*$ is a Dirichlet character with conductor $f(\chi)$, and suppose that L is a number field containing the coefficients of all the integer weight k newforms in the spaces $S_k(\Gamma_0(M), \chi)$, for every M with $M | 2^aN$ and $f(\chi) | M$. If λ is a prime of L lying above 2, then there is an integer $c \geq 0$ such that for every $f(z) \in S_k(\Gamma(2^aN), \chi; \mathcal{O}_{L, \lambda})$ and every $t \geq 1$ we have

$$(1.3) \quad f(z) \mid T_{p_1} \mid T_{p_2} \mid \cdots \mid T_{p_{c+t}} \equiv 0 \pmod{\lambda^t},$$

whenever $p_1, p_2, \ldots, p_{c+t}$ are odd primes not dividing N.

Although (1.3) does not hold in general for other N, a careful analysis often leads to similar results. Here we consider the remaining odd $1 \leq N \leq 17$ (i.e. $N = 7, 9, 11$, and 13). For each of these N, there are cusp forms on groups of the form $\Gamma_0(2^aN)$ which do not satisfy (1.3). A classification of these cases leads to the following theorem.

Theorem 1.2. Assume the notation in Theorem 1.1.

1. If $N = 7$, then there is an integer $c \geq 0$ such that (1.3) holds for every $f(z) \in S_k(\Gamma_0(2^a \cdot 7), \chi; \mathcal{O}_{L, \lambda})$ and every $t \geq 1$ provided that

$$p_1, \ldots, p_{c+t} \equiv \pm 1 \pmod{7}.$$

Furthermore, if χ has 2-power order, then (1.3) holds for every set of primes p_1, \ldots, p_{c+t} coprime to 14.

2. If $N = 9$, then there is an integer $c \geq 0$ such that (1.3) holds for every $f(z) \in S_k(\Gamma_0(2^a \cdot 9), \chi; \mathcal{O}_{L, \lambda})$ and every $t \geq 1$ provided that

$$p_1, \ldots, p_{c+t} \equiv 37, 53, 55, 71 \pmod{72}.$$

Furthermore, if χ has 2-power order, then (1.3) holds for every set of primes p_1, \ldots, p_{c+t} coprime to 6.

3. If $N = 11$ and the residue degree of λ is not a multiple of 4, then there is an integer $c \geq 0$ and a set of primes S_{11} (see Section 4), with density 2/3, such that (1.3) holds for every $f(z) \in S_k(\Gamma_0(2^a \cdot 11), \chi; \mathcal{O}_{L, \lambda})$ and every $t \geq 1$ provided that

$$p_1, \ldots, p_{c+t} \in S_{11}.$$

4. Assuming the Generalized Riemann Hypothesis2 (GRH), if $N = 11$, then there is an integer $c \geq 0$ such that (1.3) holds for every $f(z) \in S_k(\Gamma_0(2^a \cdot 11), \chi; \mathcal{O}_{L, \lambda})$ and every $t \geq 1$ provided that

$$p_1, \ldots, p_{c+t} \equiv 65, 87 \pmod{88}.$$

2This is the Generalized Riemann Hypothesis (GRH) for Dedekind zeta-functions.
Furthermore, if \(\chi \) has 2-power order, then (1.3) holds for every set of primes \(p_1, \ldots, p_{c+t} \in S_{11} \).

(5) If \(N = 13 \) and the residue degree of \(\lambda \) is odd, then there is an integer \(c \geq 0 \) and a set of primes \(S_{13} \) (see Section 4), with density \(2/3 \), such that (1.3) holds for every \(f(z) \in S_k(\Gamma_0(2^a \cdot 13), \chi; \mathcal{O}_{L, \lambda}) \) and every \(t \geq 1 \) provided that
\[
p_1, \ldots, p_{c+t} \equiv 79,103 \quad (\text{mod } 104).
\]

Furthermore, if \(\chi \) has 2-power order, then (1.3) holds for every set of primes \(p_1, \ldots, p_{c+t} \in S_{13} \).

Remark. In Theorems 1.1 and 1.2, the character \(\chi \) may be trivial. The integer \(c \) depends on \(k, N, \chi \) and \(L \). Furthermore, we note that the primes \(p_1, p_2, \ldots, p_{c+t} \) are not required to be distinct.

Remark. Theorems 1.1 and 1.2 can be generalized to the spaces \(M_k(\Gamma_0(2^a N), \chi; \mathcal{O}_{L, \lambda}) \).
To see this, one merely needs to verify that the conclusion holds for the subspace of Eisenstein series. This is easily done using well known formulas for the Fourier expansions of Eisenstein series which are given in terms of generalized divisor functions (for example, see Chapter 7 of [12] or Chapter VII of [16]). The proofs of Corollary 1.3 (1) and (2) require this observation for modular forms on \(\Gamma_0(1) \) and \(\Gamma_0(4) \).

Here we describe some number theoretic applications of Theorems 1.1 and 1.2. As usual, let \(j(z) = \sum_{n=-1}^{\infty} C(n) q^n \) be the elliptic modular function
\[
j(z) = \sum_{n=-1}^{\infty} C(n) q^n = q^{-1} + 744 + 196884q + \cdots.
\]

Although little is known\(^3\) about the parity of the coefficients in the progression \(C(8n + 7) \), it is known (see \S 5 of [19]), for every \(s \in \{0, 1, 2, 3, 4, 5, 6\} \) and every \(t \geq 1 \), that there is an \(\alpha_t > 0 \) for which
\[
\# \{0 \leq n \leq X : C(8n + s) \equiv 0 \quad (\text{mod } 2^t) \} = O \left(\frac{X}{\log^\alpha_t X} \right).
\]

Remark. Numerical evidence suggests that the residue classes \(C(8n + 7) \mod 2^t \) tend to a “random” distribution as \(n \to +\infty \). In view of (1.4), we speculate that
\[
\lim_{X \to +\infty} \frac{\# \{-1 \leq n < X : C(n) \equiv 0 \quad (\text{mod } 2^t) \}}{X} = \frac{7}{8} + \frac{1}{2^{t+3}}.
\]

If \(\delta_t(X) \) denotes the proportion of \(n \leq X \) for which
\[
C(n) \equiv 0 \quad (\text{mod } 2^t),
\]

\(^3\)For example, see Remarque (c) of [19].
then we expect that
\[
\delta_1(X) \to \frac{15}{16} = 0.9375 \quad \text{and} \quad \delta_2(X) \to \frac{29}{32} = 0.90625.
\]

Here is some data supporting this speculation for \(t = 1 \) and 2.

\[
\begin{array}{|c|c|c|}
\hline
X & \delta_1(X) & \delta_2(X) \\
\hline
500,000 & 0.9370 & 0.8776 \\
1,000,000 & 0.9372 & 0.8797 \\
1,500,000 & 0.9373 & 0.8806 \\
2,000,000 & 0.9373 & 0.8812 \\
2,500,000 & 0.9373 & 0.8816 \\
3,000,000 & 0.9374 & 0.8820 \\
\hline
\end{array}
\]

Using Theorem 1.1, we also consider the arithmetic functions \(r_s(n) \) which count the number of representations of an integer \(n \) as a sum of \(s \) squares. For every \(t \geq 1 \), it is known, for every \(t \geq 1 \), that there is a \(\beta_{s,t} > 0 \) for which

\[
(1.5) \quad \#\{0 \leq n \leq X : r_s(n) \not\equiv 0 \pmod{2^t}\} = O \left(\frac{X}{\log^{\beta_{s,t}} X} \right).
\]

As a final example, we consider the partition function \(Q(n) \) which counts the number of partitions of an integer \(n \) into distinct summands. The generating function for \(Q(n) \) is given by

\[
\sum_{n=0}^{\infty} Q(n)q^n = \prod_{n=1}^{\infty} (1 + q^n) = 1 + q + q^2 + 2q^3 + \cdots.
\]

For every \(t \geq 1 \), Gordon and the first author [6] proved that there is a \(\gamma_t > 0 \) for which

\[
(1.6) \quad \#\{0 \leq n \leq X : Q(n) \not\equiv 0 \pmod{2^t}\} = O \left(\frac{X}{\log^{\gamma_t} X} \right).
\]

This result confirmed a speculation of Alladi (see (4.6) of [1]).

All of these results follow from a suitable application of a famous theorem of Serre [18, 19] on the coefficients of holomorphic integer weight modular forms. Notice that (1.4), (1.5) and (1.6) imply that \(C(8n + s) \), where \(s \in \{0, 1, 2, 3, 4, 5, 6\} \), \(r_s(n) \), and \(Q(n) \) are almost always a multiple of any fixed power of 2. Using Theorems 1.1 and 1.2, we make these estimates much more precise.

Corollary 1.3. Assume the notation above.

1. If \(t \geq 1 \), then there is a positive integer \(c \) such that for every set of distinct odd primes \(p_1, p_2, \ldots, p_c \) we have

 \[
 C(p_1p_2\cdots p_cm) \equiv 0 \pmod{2^t},
 \]

 whenever \(m \geq 1 \) is coprime to \(p_1p_2\cdots p_c \) and \(p_1p_2\cdots p_cm \not\equiv 7 \pmod{8} \).
(2) If $s \geq 2$ is even, then there is a non-negative integer c such that for every positive integer t and every set of distinct odd primes $p_1, p_2, \ldots, p_{c+t}$ we have
\[r_s(p_1 p_2 \cdots p_{c+t} m) \equiv 0 \pmod{2^t}, \]
whenever $m \geq 1$ is coprime to $p_1 p_2 \cdots p_{c+t}$.

(3) If $t \geq 1$, then there is a positive integer c such that for every set of distinct odd primes p_1, p_2, \ldots, p_c we have
\[Q \left(\frac{p_1 p_2 \cdots p_{c} m - 1}{24} \right) \equiv 0 \pmod{2^t}, \]
whenever $m \geq 1$ is coprime to $p_1 p_2 \cdots p_c$.

Remark. In Corollary 1.3 (1) and (3), observe that the integer c depends on the choice of t. For Corollary 1.3 (3), note that $Q(\alpha) = 0$ if α is not an integer.

Theorems 1.1 and 1.2 also provide information on the 2-divisibility of central values of quadratic twists of certain modular L-functions. By works of Kohnen and Zagier, and Waldspurger (see [8, 9, 10, 27]), these values are essentially the squares of coefficients of half-integral weight Hecke eigenforms. We briefly summarize some of the results of Kohnen and Zagier.

Suppose that N is odd and square-free, and suppose that $F(z) \in S_{2k}^\text{new}(\Gamma_0(N))$ is an even weight newform. There is a Kohnen newform
\[g_F(z) = \sum_{n=1}^{\infty} b(n) q^n \in S_{k+1/2}^\text{new}(\Gamma_0(4N)), \]
which is unique up to scalar multiple, whose image under the Shimura correspondence is $F(z)$. We assume that $g_F(z)$ is suitably normalized so that
\[g_F(z) \in S_{k+1/2}^\text{new}(\Gamma_0(4N); \mathcal{O}_L), \]
for some number field L, and has the additional property that
\[g_F(z) \not\equiv 0 \pmod{\lambda} \]
(i.e. there is an n for which $b(n) \not\equiv 0 \pmod{\lambda}$), where λ is a prime above 2 in \mathcal{O}_L.

Let $\nu(N)$ denote the number of prime factors of N, and let $\langle F, F \rangle$ (resp. $\langle g_F, g_F \rangle$) denote the Petersson inner product on $S_{2k}(\Gamma_0(N))$ (resp. $S_{k+1/2}(\Gamma_0(4N))$). If $\ell \mid N$ is prime, then let $w_\ell \in \{\pm 1\}$ be the eigenvalue of the Atkin-Lehner involution
\[F(z) \mid_{2k} W(\ell) = w_\ell F(z). \]
If D is a fundamental discriminant for which $(-1)^k D > 0$, and has the additional property that $(\frac{D}{\ell}) = w_\ell$ for each prime $\ell \mid N$, then (see Cor. 1 of [9])
\[L(F_D, k) = \frac{\langle F, F \rangle \cdot \pi^k}{2^{\nu(N)}(k - 1)! |D|^{k - \frac{1}{2}} \langle g_F, g_F \rangle} \cdot |b(|D|)|^2, \]
where π is the tail of the vector $g_F(z)$.
Here $F_D(z)$ is the newform corresponding to the D-quadratic twist of $F(z)$. For other fundamental discriminants D with $(-1)^k D > 0$, we have $b(|D|) = 0$. For those D for which (1.7) holds, we define $L_K^{\text{alg}}(F_D, k)$, the Kohnen algebraic part of $L(F_D, k)$, by

$$L_K^{\text{alg}}(F_D, k) = |b(|D|)|^2 .$$

These values are predicted, by the Bloch-Kato Conjecture (see [2]), to be quotients of arithmetic invariants associated to Tate-twists of motives for modular forms. It is often expected that the Tamagawa factor of this prediction is highly divisible by λ for those D with many prime factors. Here we show that the simplest case of this phenomenon holds for all newforms of level $N = 1, 3, 5, 7, 15$ or 17.

Corollary 1.4. Suppose that $F(z) \in S_{2k}^{\text{new}}(1) \cong 1$ is an even weight newform where $N = 1, 3, 5, 7, 15$ or 17. In the notation above, there is a positive integer c with the property that

$$L_K^{\text{alg}}(F_D, k) \equiv 0 \pmod{4}$$

for every D, with at least c odd prime factors, that satisfies (1.7).

Example. The conclusion of Corollary 1.4 often holds for a higher power of 2 which is easily computed in any given case. To illustrate this phenomenon, consider the case where $F(z) = \Delta(z) \in S_{12}(1)$ and

$$g_\Delta(z) = \sum_{n=1}^{\infty} b(n)q^n = \frac{60}{2\pi i} \cdot (2G_4(4z)\Theta'(z) - G_4'(4z)\Theta(z))$$

$$= q - 56q^4 + 120q^5 - 240q^8 + 9q^9 + 1440q^{12} - 1320q^{13} - \cdots .$$

In this case, Kohnen and Zagier (see p. 179 of [10]) observed, for positive fundamental discriminants $D > 1$, that

$$L_K^{\text{alg}}(\Delta_D, 6) \equiv \begin{cases} 64 \pmod{256} & \text{if } D \equiv 5 \pmod{8} \text{ is prime,} \\ 0 \pmod{256} & \text{otherwise.} \end{cases}$$

In Sections 2 and 3, we extend non-existence theorems of Tate and Moon for irreducible mod 2 Galois representations to larger Artin conductors. This allows us to obtain the complete list of semisimple mod 2 representations whose Artin conductor outside 2 is $1, 3, 5, 7, 9, 15$ or 17. Assuming GRH, we also handle the cases of conductor 11 and 13, thereby providing a conditional classification of those representations whose Artin conductor outside 2 is ≤ 17. In the Appendix, we give simple examples of newforms associated with some of these representations. In Section 4, we study the traces of these mod 2 representations, and in Section 5, Theorems 1.1 and 1.2 are proved. Section 6 contains the proofs of Corollaries 1.3 and 1.4.

Acknowledgements

The authors thank A. Odlyzko for his comments during the preparation of this paper. The authors are also indebted to H. Moon for making substantial contributions in Sections 2 and 3.
2. Mod 2 Galois representations with small Artin conductor

In this section, we prove a non-existence theorem for certain mod 2 Galois representations, which generalizes the work of Tate and Moon [13, 26]. We begin by fixing notation for the remainder of this paper. For a field K, let \overline{K} denote a fixed algebraic closure of K, and $G_K = \text{Gal}(\overline{K}/K)$ the absolute Galois group of K. When we say that an extension of \mathbb{Q} is unramified outside a set of primes, we allow it to be ramified at ∞. Regarding Galois representations, we assume throughout that all representations are continuous with respect to the obvious topology (so in this paper, their images are always finite). In this section\(^4\), q will always be a prime number.

Tate [26] proved that there are no irreducible representations

$$\rho : G_\mathbb{Q} \to \text{GL}_2(\overline{\mathbb{F}}_2)$$

unramified outside 2. Extending this, Moon [13] proved that there are no irreducible representations $\rho : G_\mathbb{Q} \to \text{GL}_2(\overline{\mathbb{F}}_2)$ whose Artin conductor outside 2, say $N(\rho)$, divides 3. Here, for an \mathbb{F}-linear representation ρ of $G_\mathbb{Q}$ on a vector space V over a field \mathbb{F} of characteristic ℓ, its Artin conductor outside ℓ is defined by

$$N(\rho) = \prod_{q \neq \ell} q^{n_q(\rho)},$$

with

$$n_q(\rho) = \sum_{i=0}^{\infty} \frac{1}{(G_q^0 : G_q^i)} \cdot \dim_\mathbb{F}(V/V^{G_q^i}).$$

Here G_q^i denotes the ith ramification subgroup of a decomposition subgroup at q of the Galois group $G = \text{Im}(\rho)$. (For background information on ramification groups and conductors, see Chapters IV and V of [21]; see also Section 1.2 of [22].) We note, among other things, the following two facts about $N(\rho)$:

1. In this paper, we mainly consider the case where $N(\rho)$ is square-free (i.e., $n_q(\rho) = 1$ for all ramified primes $q \neq \ell$). This means in particular that ρ is (i.e. the field extension cut out by ρ is) tamely ramified at q.

2. If $\rho : G_\mathbb{Q} \to \text{GL}_2(\overline{\mathbb{F}}_\ell)$ comes from a mod ℓ Hecke eigenform $f(z)$ of level N, then we have that $N(\rho) | N$ (see [3] and [11]).

We shall also use the notation $n_q(\rho)$ in the local context (i.e. to denote the exponent of the Artin conductor of a representation of a decomposition group D_q of a prime q, or the Galois group $G_{\mathbb{Q}_q}$ of the local field \mathbb{Q}_q). It is also given by (2.2).

We require some further notation to state our results. We shall use the “wild” notation such as $^{(1)} \ast$, $^{(*)} \ast$, and $^{(* \ast)}$ to denote respectively the subgroups

$$\{(^{(1)} a) : a \in \overline{\mathbb{F}}_2^\times\},$$

$$\{(^{(*)} a) : a, d \in \overline{\mathbb{F}}_2^\times\},$$

$$\{(^{(* \ast)} a, b) : a, d \in \overline{\mathbb{F}}_2^\times, b \in \overline{\mathbb{F}}_2\}$$

\(^4\)When referring to Fourier expansions, we shall always let $q := e^{2\pi i z}$.

of $\text{GL}_2(\overline{\mathbb{F}}_2)$. Let W be the semidirect product of the diagonal matrices $(^*^*)$ and $\langle(1\ 1)\rangle$, which is, as a set, equal to $(^*^*) \cup (^*^*)$. It is the wreath product of $\overline{\mathbb{F}}_2^\times$ by $\mathbb{Z}/2\mathbb{Z}$ (so that $\mathbb{Z}/2\mathbb{Z}$ acts on $\overline{\mathbb{F}}_2^\times \times \overline{\mathbb{F}}_2^\times$ by switching the two components), and sits in a short exact sequence

$$1 \rightarrow \overline{\mathbb{F}}_2^\times \times \overline{\mathbb{F}}_2^\times \rightarrow W \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow 1.$$

For each odd integer $n \geq 1$, let W_n denote the subgroup of W of order $2n^2$, which is the extension of $\mathbb{Z}/2\mathbb{Z}$ by $\mu_n \times \mu_n$, where μ_n is the group of nth roots of unity in $\overline{\mathbb{F}}_2^\times$. As a special case of Theorem 1 of Section 22 of [25], we have the following fact.

Lemma 2.1. Assume the notation above.

1. Every maximal solvable irreducible subgroup of $\text{GL}_2(\overline{\mathbb{F}}_2)$ is conjugate to W.
2. If $\rho : G \rightarrow \text{GL}_2(\overline{\mathbb{F}}_2)$ is an irreducible representation with solvable image, then (after possibly replacing ρ by a conjugate) $\text{Im}(\rho)$ is contained in W_n for some $n \geq 3$. Moreover, we have an exact sequence of the form

$$1 \rightarrow H \rightarrow \text{Im}(\rho) \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow 1,$$

where H is a finite subgroup of $(^*^*)$ which is stable under the action of $\mathbb{Z}/2\mathbb{Z}$. The subgroup H is the unique maximal normal subgroup of $\text{Im}(\rho)$.

Let V_n denote the dihedral group\(^5\) of order $2n$. Note that the projective image (= the image in $\text{PGL}_2(\overline{\mathbb{F}}_2)$) of W_n is isomorphic to V_n, and that every irreducible subgroup G of W_n has projective image isomorphic to V_m for some $m \leq n$. For example, if $G \simeq V_n$, then it contains no non-trivial scalar matrix, and its projective image is also isomorphic to V_n.

We require one further group theoretic lemma.

Lemma 2.2. Assume the notation above.

1. If $n \geq 3$ is an odd integer, then there are $\varphi(n)/2$ isomorphism classes of faithful representations

$$\rho : W_n \rightarrow \text{GL}_2(\overline{\mathbb{F}}_2),$$

where $\varphi(n) := \#(\mathbb{Z}/n\mathbb{Z})^\times$. They are defined over \mathbb{F}_{2m}, where m is the least integer for which $n \mid (2^m - 1)$.

2. Let I be a non-trivial subgroup of the subgroup $\mu_n \times \{1\}$ of W_n. There are $\varphi(n)$ isomorphism classes of faithful representations

$$\rho : W_n \rightarrow \text{GL}_2(\overline{\mathbb{F}}_2^\times)$$

for which $\dim V^{\rho(I)} = 1$, where $V = \overline{\mathbb{F}}_2 \oplus \overline{\mathbb{F}}_2$ is the representation space of ρ. They are $\text{Gal}(\mathbb{F}_{2^m}/\mathbb{F}_2)$-conjugate to each other.

Proof. By Lemma 2.1, after conjugation, we may assume that $\text{Im}(\rho)$ is contained in the subgroup W of $\text{GL}_2(\overline{\mathbb{F}}_2)$. If ρ is faithful, then $\text{Im}(\rho)$ coincides with the subgroup W_n of W. In particular, such ρ is automatically irreducible. Fix a generator ζ of μ_n. For the moment, let us denote the diagonal matrix (ξ^η) by (ξ, η). Suppose that ρ maps the elements $(\zeta, 1), (1, \zeta) \in \mu_n \times \mu_n \subset W_n$ to $(\zeta^a, \zeta^b), (\zeta^c, \zeta^d)$, respectively, where $a, b, c, d \in \mathbb{Z}/n\mathbb{Z}$.

\(^5\)We use this notation to distinguish dihedral groups from decomposition groups.
Since \(\rho \) is compatible with the involution \(\tau : (\zeta^x, \zeta^y) \mapsto (\zeta^y, \zeta^x) \), we must have \(a = d \) and \(b = c \). Indeed, we have \(\rho(\zeta^x, \zeta^y) = (\zeta^{ax+cy}, \zeta^{bx+dy}) \) and \(\rho(\zeta^y, \zeta^x) = (\zeta^{ay+cx}, \zeta^{by+dx}) \). But we have also
\[
\rho(\zeta^y, \zeta^x) = \rho((\zeta^x, \zeta^y)^\tau) = (\rho(\zeta^x, \zeta^y))^\tau = (\zeta^{bx+dy}, \zeta^{ax+cy}).
\]
Therefore, we have that \((\zeta^{ay+cx}, \zeta^{by+dx}) = (\zeta^{bx+dy}, \zeta^{ax+cy}) \) for all \(x, y \in \mathbb{Z}/n\mathbb{Z} \), and hence that \(a = d \) and \(b = c \).

Conversely, for each \((a, b) \in (\mathbb{Z}/n\mathbb{Z})^2 \), we have a representation
\[
\rho_{a,b} : W_n \to \text{GL}_2(\mathbb{F}_2)
\]
which maps \((\zeta, 1) \) to \((\zeta^a, \zeta^b) \). It is defined over \(\mathbb{F}_{2^m} \) if \(\mu_n \subset \mathbb{F}_{2^m} \) (i.e. if \(n \mid (2^m - 1) \)). It induces on the subgroup \(\mu_n \times \mu_n \) of \(W_n \) a \((\mathbb{Z}/n\mathbb{Z}) \)-module endomorphism which is represented by the matrix \(\begin{pmatrix} a & b \\ b & a \end{pmatrix} \). Hence \(\rho_{a,b} \) is faithful if and only if \(a^2 - b^2 \in (\mathbb{Z}/n\mathbb{Z})^\times \).

Such pairs \((a, b) \in (\mathbb{Z}/n\mathbb{Z})^2 \) are parametrized by \((u, v) \in (\mathbb{Z}/n\mathbb{Z})^\times \times (\mathbb{Z}/n\mathbb{Z})^\times \) as \(a + b = u, \ a - b = v, \) so that there are \(\varphi(n)^2 \) such pairs \((a, b) \). Also, we have \(\rho_{a',b'} \simeq \rho_{a,b} \) if and only if \((a', b') = (a, b) \) or \((b, a) \). Thus there are just \(\varphi(n)^2/2 \) isomorphism classes of such representations \(\rho_{a,b} \). This proves (1).

Now we prove (2). The condition \(\dim V_{\mu_n, \nu(f)} = 1 \) means that \(a \) or \(b \) is 0. There are just \(\varphi(n) \) isomorphism classes of such representations. Since \(\text{Gal}(\mathbb{F}_{2^m}/\mathbb{F}_2) \) acts transitively on the set \(\{ \zeta^a : a \in (\mathbb{Z}/n\mathbb{Z})^\times \} \) of primitive \(n \)th roots of unity, the representations \(\rho_{a,0} \) are mapped to each other by elements of \(\text{Gal}(\mathbb{F}_{2^m}/\mathbb{F}_2) \).

Using these preliminary facts, we shall prove the main result of this section.

Theorem 2.3. Assume the notation above.

1. There are no irreducible representations
\[
\rho : G_Q \to \text{GL}_2(\mathbb{F}_2)
\]
for which \(N(\rho) = 1, 3, 5, 7, 15, 17 \).

2. If \(m \) is a positive integer with \(4 \nmid m \), then there is (up to isomorphism) a unique irreducible representation
\[
\rho : G_Q \to \text{GL}_2(\mathbb{F}_{2^m})
\]
with \(N(\rho) = 11 \). Let \(\rho_{11} \) denote a representative of this isomorphism class. It has image isomorphic to \(\text{SL}_2(\mathbb{F}_2) \cong V_3 \). The field cut out by \(\rho_{11} \) contains the quadratic field \(\mathbb{Q}(\sqrt{-11}) \), and \(\det \rho_{11} = 1 \).

3. Assuming GRH, in addition to the representation in (2), there are four isomorphism classes of irreducible representations
\[
\rho : G_Q \to \text{GL}_2(\mathbb{F}_2)
\]
with \(N(\rho) = 11 \). They have images isomorphic to \(W_5 \), and can be defined over \(\mathbb{F}_4 \). These representations into \(\text{GL}_2(\mathbb{F}_4) \) are conjugate to each other under the action of \(\text{Gal}(\mathbb{F}_4'/\mathbb{F}_2) \). Let \(\rho_{11}' \) denote a representative of any one of these isomorphism classes. The field cut out by \(\rho_{11}' \) contains the quadratic field \(\mathbb{Q}(\sqrt{-2}) \), and \(\det \rho_{11}' \) is a character of conductor 11 and order 5.
(4) If \(m \) is a positive odd integer, then there is (up to isomorphism) a unique irreducible representation

\[\rho : G_\mathbb{Q} \to \text{GL}_2(\mathbb{F}_2^m) \]

with \(N(\rho) = 13 \). Let \(\rho_{13} \) denote a representative of this isomorphism class. It has image isomorphic to \(\text{SL}_2(\mathbb{F}_2) \cong V_3 \). The field cut out by \(\rho_{13} \) contains the quadratic field \(\mathbb{Q}(\sqrt{-26}) \), and \(\det \rho_{13} = 1 \).

(5) Assuming GRH, in addition to the representation in (4), there are two isomorphism classes of irreducible representations

\[\rho : G_\mathbb{Q} \to \text{GL}_2(\mathbb{F}_2) \]

with \(N(\rho) = 13 \). They have images isomorphic to \(W_3 \), and can be defined over \(\mathbb{F}_{2^2} \). These representations into \(\text{GL}_2(\mathbb{F}_2) \) are conjugate to each other by the action of \(\text{Gal}(\mathbb{F}_{2^2}/\mathbb{F}_2) \). Let \(\rho_{13}' \) denote a representative of any one of these isomorphism classes. The field cut out by \(\rho_{13}' \) contains the quadratic field \(\mathbb{Q}(\sqrt{-1}) \), and \(\det \rho_{13}' = 1 \).

Remark. Note that all the representations in Theorem 2.3 have solvable images.

The proof of this theorem depends on the analysis of the ramification of the representations \(\rho \) at each prime \(q \mid 2N(\rho) \). For each prime \(q \), let \(D_q (\subseteq G_\mathbb{Q}) \) be the decomposition subgroup for a choice of an extension \(q \) of the prime ideal \((q) \) to \(\mathbb{Q} \), and \(I_q \) its inertia subgroup. By the embedding \(\mathbb{Q} \hookrightarrow \mathbb{Q}_q \), we identify \(D_q \) with the absolute Galois group \(G_{\mathbb{Q}_q} \) of the \(q \)-adic field \(\mathbb{Q}_q \). For a representation

\[\rho : D_q \to \text{GL}_2(\mathbb{F}) \]

over any discrete field \(\mathbb{F} \), let \(e_q = e_q(\rho) \) denote its ramification index (i.e. the ramification index of the extension \(K/\mathbb{Q}_q \) cut out by \(\rho \), or equivalently the order of \(\rho(I_q) \)).

We first consider the case where \(q = 2 \). The following proposition improves Tate’s discriminant bound at 2 (Formula (*) on p. 154 of [26]); it reduces the valuation by 1/2 in the “general” case.

Proposition 2.4. Let \(\rho : D_2 \to \text{GL}_2(\mathbb{F}_2) \) be a 2-dimensional representation of \(D_2 \) over \(\mathbb{F}_2 \).

(1) The ramification index \(e_2 \) of \(\rho \) is either a power of 2, or is an odd integer.

(2) Suppose that \(\rho \) is wildly ramified, and has ramification index \(2^m \) with \(m \geq 1 \). Let \(K/\mathbb{Q}_2 \) be the extension cut out by \(\rho \), and let \(D_{K/\mathbb{Q}_2} \) be its different. Then we have

\[
v_2(D_{K/\mathbb{Q}_2}) = \begin{cases}
1 \text{ or } 3/2 & \text{if } \rho \text{ is abelian and } m = 1, \\
2 & \text{if } \rho \text{ is abelian and } m = 2, \\
2 - 1/2^{m-1} & \text{if } \rho \text{ is non-abelian},
\end{cases}
\]

where \(v_2 \) is the valuation of \(K \) normalized by \(v_2(2) = 1 \).

Remark. In the proposition above, we say that \(\rho \) is abelian if \(\text{Im}(\rho) \) is an abelian group. If \(\rho \) is wildly ramified and abelian, then note that the only possible values of \(m \) are 1 and 2. If \(\rho \) is wildly ramified and non-abelian, then we have \(m \geq 2 \).
Proof. Suppose ρ is wildly ramified (i.e. e_2 is even). The wild inertia subgroup G_1 of
G = ρ(D_2) is then a non-trivial 2-group. After conjugation, we may assume that G_1 is
contained in \((1 \ 1)\). Since G_1 is normal in G and the normalizer of \((1 \ 1)\) in GL_2(\F_2) is \((1 \ 1)\),
it follows that ρ is reducible. Suppose that

\[ρ = \begin{pmatrix} ψ_1 & * \\ ψ_2 & \end{pmatrix}, \]

where ψ_i : D_2 → \F_2^× are characters of D_2. By local class field theory, the inertia subgroup
of D_2^{ab} = Gal(\Q_2^{ab} / \Q_2) is identified with \Z_2^×, which is a pro-2 group. Hence the ψ_i must
be unramified, and ρ has a 2-power ramification index. This proves (1).

To calculate the different of K/\Q_2, let K_0 be the maximal unramified subextension of
K/\Q_2. We shall calculate the different \(D_{K/K_0} \) of K/K_0, which is equal to \(D_{K/\Q_2} \). Suppose
first that ψ_1 = ψ_2. This is equivalent to saying that ρ is abelian (cf. Lemma 3.2 below). Then K
is the compositum of K_0 and a totally ramified abelian extension K_1 over \Q_2
with Galois group isomorphic to \Z/2^m\Z. Such a K_1 is contained in \Q_2(\zeta_8), where \zeta_8 is a
primitive 8th root of unity. Then we have m = 1 or 2, and

\[v_2(D_{K/K_0}) = v_2(D_{K_1/\Q_2}) = \begin{cases} 1 & \text{if } K_1 = \Q_2(\sqrt{-1}), \\
3/2 & \text{if } K_1 = \Q_2(\sqrt{±2}), \\
2 & \text{if } K_1 = \Q_2(\zeta_8). \end{cases} \]

To analyze the case where ψ_1 ≠ ψ_2, let X = Hom(Gal(K/K_0), \C^×) be the character
group of Gal(K/K_0). By assumption, we have X ≅ (\Z/2\Z)^5. If A denotes the valuation
ing \O_{K_0} of K_0, then by local class field theory, X can be identified with a subgroup of
Hom(A^×/(A^×)^2, \C^×), and then the subgroup X_1 of X consisting of the characters with
conductor dividing 2^1 is identified with a subgroup of Hom(A^×/(1 + 2^1A)^×(A^×)^2, \C^×).
It is easy to see that

\[X = X_3 ⊆ X_2 ⊆ X_1 = X_0 = \{1\}. \]

Moreover, Tate showed ([26], p. 155; see also the proof of Theorem 3 of [14]) that \((X_3 : X_2) = 1 \text{ or } 2).

Let σ ∈ D_2 be a lifting of the Frobenius element of D_2/I_2 (≃ Gal(\F_2 / \F_2)). It acts on A^×
and Gal(K/K_0) in a way compatible with the reciprocity map. Also we let σ act on X by
\(\chi \mapsto \chi \circ σ \). Since the action of σ on A is a ring automorphism of A, it preserves the filtration
\((1 + 2^iA)_{i≥1}, \) and hence the action of σ on X preserves the filtration \(X_3 ⊆ X_2 ⊆ X_1 = X_0 \).
In terms of the image of ρ, the action of σ on Gal(K/K_0) = ρ(I_2) can be visualized as follows (cf. [14], Sect. 1). Write ρ(σ) = \(\begin{pmatrix} a_1 & b \\ a_2 & \end{pmatrix} \), and note that it acts on the subgroup
ρ(I_2) ⊆ \((1 \ 1)\) by conjugation:

\[\begin{pmatrix} a_1 & b \\ a_2 & \end{pmatrix} \begin{pmatrix} 1 & x \\ 1 & \end{pmatrix} \begin{pmatrix} a_1 & b \\ a_2 & \end{pmatrix}^{-1} = \begin{pmatrix} 1 & a_1a_2^{-1}x \\ 1 & \end{pmatrix}. \]

Set \(α = a_1a_2^{-1} ∈ \F_2^× \). The above formula shows that, if α has order f as an element of
\F_2^×, then each non-trivial element of X is in a unique \(⟨α⟩ \)-orbit which has cardinality f.
Suppose ψ_1 ≠ ψ_2 (i.e. a_1 ≠ a_2), so that α has order f ≥ 3. If \((X_3 : X_2) = 2\), then X_3 \setminus X_2
has just \(2^{m-1} \) elements, and is at the same time a disjoint union of \(⟨α⟩ \)-orbits of odd
cardinality \(f \geq 3 \); this is a contradiction. Thus we have that \(X = X_2 \) (i.e. all non-trivial \(\chi \in X \) have conductor 4). By the Führerdiskriminantenproduktformel, we have

\[
\nu_2(D_{K/K_0}) = \frac{1}{2m} \nu_2 \left(\prod_{\chi \in X} f(\chi) \right) = \frac{(2^m - 1) \times 2}{2^m} = 2 - \frac{1}{2^{m-1}},
\]

where \(f(\chi) \) is the conductor of \(\chi \). This completes the proof of Proposition 2.4. \(\square \)

Remark. The proof of Proposition 2.4 depends on the fact that \(X_3 \setminus X_2 \) has 2-power order if it is non-empty. This phenomenon does not hold in general for representations \(\rho : D_\ell \to \GL_2(\mathbb{F}_\ell) \) when \(\ell \) is an odd prime. To see this, note that the set of characters of maximal conductor has cardinality \(\ell^{m-1}(\ell - 1) \), which is not a power of \(\ell \) for odd primes \(\ell \) (for example, see the proof of Theorem 3 in [14]).

Next we consider ramification at primes \(q \neq 2 \). The following general lemma, which improves on Lemma 2 of [14], suffices for our purposes.

Lemma 2.5. Let \(\ell \) and \(q \) be distinct primes, and let \(m \) be a positive integer. If \(\rho : D_q \to \GL_2(\mathbb{F}_m) \) has \(n_q(\rho) = 1 \), then \(\rho \) is reducible, and its ramification index \(e_q \) either equals \(\ell \) or divides \(\gcd(q - 1, \ell^m - 1) \). If \(e_q \neq \ell \), then the representation \(\rho \) is completely reducible (i.e. diagonalizable).

Proof. Since \(n_q(\rho) = 1 \), the inertia subgroup \(\rho(I_q) \) fixes a subspace of dimension one. Since \(\rho(I_q) \) is normal in \(\rho(D_q) \), this subspace is stable under \(\rho(D_q) \) (i.e. \(\rho \) is reducible). Then we may assume that \(\rho \) is of the form

\[
\rho = \begin{pmatrix} \psi_1 & * \\ \psi_2 \end{pmatrix}, \quad \psi_i : D_q \to \mathbb{F}_\ell^\times,
\]

and where \(\psi_1 \) is unramified. The restriction of \(\psi_2 \) to \(I_q \) factors through the inertia subgroup of \(D_q^{ab} = \Gal(\mathbb{Q}_q^{ab}/\mathbb{Q}_q) \), which is identified by local class field theory with \(\mathbb{Z}_q^\times \). Since \(\psi_2 \) is at most tamely ramified, it factors through \((\mathbb{Z}_q/q\mathbb{Z}_q)^\times \). Thus \(\psi_2(I_q) \) has order dividing \(\gcd(q - 1, \ell^m - 1) \). Also, the \(\ell \)-primary part of the abelian group \(\rho(I_q) \) has order at most \(\ell \), because the tame inertia group is cyclic (in fact, the maximal pro-\(\ell \) quotient of \(I_q \) is isomorphic to \(\mathbb{Z}_\ell \) (cf. [20], Sect. 1)), while the group \((1, \sigma)\) is \(\ell \)-torsion. Thus \(\rho(I_q) \) has order dividing \(\ell \cdot \gcd(q - 1, \ell^m - 1) \). But since \(\rho(I_q) \) is abelian, it cannot have order strictly divisible by \(\ell \), whence the conclusion. Indeed, suppose there are elements \(\sigma, \tau \in \rho(I_q) \) of orders \(s, \ell \), respectively, where \(s > 1 \) and is prime to \(\ell \). They must be of the form

\[
\sigma = \begin{pmatrix} 1 & b \\ d \end{pmatrix} \quad \text{with } d \neq 1, \quad \text{and} \quad \tau = \begin{pmatrix} 1 & t \\ 1 \end{pmatrix} \quad \text{with } t \neq 0.
\]

These do not commute.

Suppose \(e_q \neq \ell \). If \(\rho \) is not completely reducible, then there is an element \(\tau \in \rho(D_q) \setminus \rho(I_q) \) of order \(\ell \) (cf. (1) of Lemma 3.2). Then \(\langle \tau \rangle \) is the unique \(\ell \)-Sylow subgroup of \(\rho(D_q) \). Since \(\rho(I_q) \) is also non-trivial and normal in \(\rho(D_q) \), these two subgroups commute. But this is a contradiction, as can be seen in a similar way to the above arguments. Hence \(\rho \) is completely reducible. \(\square \)
Example. Here we provide some values of \(q, m,\) and \(e_q,\) when \(\ell = 2.\) Apart from the case where \(q = 257,\) we shall require these values later.

1. If \(q = 3, 5, 17, 257,\) then \(\gcd(q - 1, 2^m - 1) = 1.\) Consequently, Lemma 2.5 implies that \(e_q = 2\) for all \(m \geq 1.\)

2. If \(q = 7\) or \(13,\) then \(\gcd(q - 1, 2^m - 1) = \gcd(3, 2^m - 1) = 1 \text{ or } 3,\) depending on whether \(m\) is odd or even. Hence, Lemma 2.5 implies that

\[
e_q = \begin{cases} 2 & \text{if } m \text{ is odd,} \\ 2 \text{ or } 3 & \text{if } m \text{ is even.} \end{cases}
\]

3. If \(q = 11,\) then a similar argument easily implies that

\[
e_q = \begin{cases} 2 & \text{if } 4 \nmid m, \\ 2 \text{ or } 5 & \text{if } 4 \mid m. \end{cases}
\]

Proof of Theorem 2.3. All of (1), (2), (3), (4) and (5) are proved almost simultaneously. Suppose there is an irreducible representation \(\rho: G_{\mathbb{Q}} \to \text{GL}_2(\mathbb{F}_2)\) with \(N(\rho) = N,\) where \(N = 1, 3, 5, 7, 11, 13, 15\) or 17. Since the cases where \(N(\rho) = 1, 3\) are handled respectively in [26] and [13], we only consider the remaining cases. As in [26], we distinguish the two cases where \(G = \text{Im}(\rho)\) is solvable and non-solvable. Let \(K/\mathbb{Q}\) be the extension cut out by \(\rho,\) so that we have \(G = \text{Gal}(K/\mathbb{Q}).\)

First we deal with the solvable cases. If \(G\) is solvable, then after conjugation, it is contained in \(W_n\) for some odd \(n \geq 3,\) and it sits in the exact sequence from Lemma 2.1 (2):

\[
1 \to H \to G \to \mathbb{Z}/2\mathbb{Z} \to 1, \quad H \subset (\mathbb{F}_2^\times)^2.
\]

Hence, \(K\) is an abelian extension of odd degree over the quadratic field \(F\) corresponding to \(H.\) Since \(K\) is unramified outside \(2N,\) so is \(F,\) and it is a quadratic subfield of \(\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{N})\) if \(N \neq 15\) (resp. \(\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{13})\) if \(N = 15).\) By Lemma 2.5, the ramification index \(e_q\) of \(\rho\) at \(q \mid N\) is either 2 or an odd factor of \(q - 1.\) Hence if \(N = 5, 15\) or 17, we have \(e_q = 2\) for all \(q \mid N.\)

We first assume that \(e_q = 2\) also for the other \(N.\) Suppose \(N = 5, 7, 11\) or 17. Since each quadratic subfield \(F\) of \(\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{N})\) has class number dividing 4, the ideal class group of \(F\) does not contribute to the abelian extension \(K/F\) of odd degree. Since \(K/F\) is unramified at \(q = N,\) by Lemma 2.5 together with the assumption that \(e_q = 2,\) the Galois group \(\text{Gal}(K/F)\) is, by class field theory, a quotient of the unit group \(\mathcal{O}_F^\times\) of the 2-adic completion \(\mathcal{O}_{F,2} = \mathcal{O}_F \otimes \mathbb{Z}_2\) of \(\mathcal{O}_F.\) Its prime-to-2 quotient has order at most 3, which is possible only when 2 is inert in \(F/\mathbb{Q}.\) Since \(G = \text{Im}(\rho)\) has to be embedded irreducibly into \(\text{GL}_2(\mathbb{F}_2),\) it must be isomorphic to \(\text{SL}_2(\mathbb{F}_2) \simeq V_3 \simeq S_3.\) According to [7], if \(N = 5, 7\) or 17, there are no \(S_3-\text{extensions } K/\mathbb{Q}\) which are unramified outside \(2N\) and have \(e_2 = 3\) and \(e_N = 2;\) and if \(N = 11,\) there exists only one such extension, which is the splitting field of the polynomial \(x^3 - x^2 + x + 1.\) It contains the quadratic field \(F = \mathbb{Q}(\sqrt{-11}).\)

Suppose \(N = 13.\) Three of the quadratic subfields \(F\) of \(\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{13})\) which ramify at 13 have class number 1 or 2, and the rest, \(\mathbb{Q}(\sqrt{-26})\), has class number 6. If \(F/\mathbb{Q}
is unramified at 2, then $F = \mathbb{Q}(\sqrt{13})$, and 2 is inert there. Then $\mathcal{O}_{F,2}^\times$ has prime-to-2 quotient of order 3, but according to [7], there are no S_3-extension K/\mathbb{Q} which are unramified outside $\{2, 13\}$ and have ramification index $e_2 = \text{odd}$ and $e_{13} = 2$. If F/\mathbb{Q} is ramified at 2, then by Proposition 2.4 (1), K/F must be unramified everywhere, and K must be a cyclic extension of degree 3 of $F = \mathbb{Q}(\sqrt{-26})$. According to [7], there is just one S_3-extension of \mathbb{Q} which is unramified outside $\{2, 13\}$ and has ramification index $e_2 = e_{13} = 2$, which is the splitting field of the polynomial $x^3 - x - 2$ and is an unramified extension of $F = \mathbb{Q}(\sqrt{-26})$.

Suppose $N = 15$. If F/\mathbb{Q} is unramified at 2, then $F = \mathbb{Q}(\sqrt{-15})$. It has class number 2, and the prime 2 splits in F/\mathbb{Q}. Thus K/F must be trivial. If $e_2 = 2$, then $F = \mathbb{Q}(\sqrt{15})$ or $\mathbb{Q}(\sqrt{\pm 30})$, which has class number 2 or 4. By Lemma 2.5, K/F must be unramified everywhere, and hence the extension must be trivial.

Suppose next that $q = N = 7, 11$ or 13 and e_q is odd. Then since F/\mathbb{Q} is ramified only at 2, the quadratic field F is either $\mathbb{Q}(\sqrt{-7})$, $\mathbb{Q}(\sqrt{2})$, or $\mathbb{Q}(\sqrt{-2})$. Since $\rho(D_q)$ is of odd order by Lemma 2.5, the prime q splits in F/\mathbb{Q}, and hence we have

$$F = \begin{cases}
\mathbb{Q}(\sqrt{2}) & \text{if } q = 7, \\
\mathbb{Q}(\sqrt{-2}) & \text{if } q = 11, \\
\mathbb{Q}(\sqrt{-7}) & \text{if } q = 13.
\end{cases}$$

If $(q) = q_1 q_2$ in \mathcal{O}_F, then one of the two inertia subgroups of q_1 and q_2 is mapped into $(1, 1)$ and the other into $(*, 1)$. They are exchanged by the action of $\text{Gal}(F/\mathbb{Q}) \cong \langle (1, 1) \rangle$. These subgroups are described explicitly as follows: By Proposition 2.4 (1), K/F is a quotient of $O_{F,q}^\times/O_F^\times(1 + q O_{F,q})^\times \cong (\mathbb{F}_q^\times \times \mathbb{F}_q^\times)/(\text{Image of } O_F^\times)$, where $O_{F,q} = O_F \otimes_{\mathbb{Z}} \mathbb{Z}_q$. Note that $\text{Gal}(K/F)$ is of odd order. The odd part of $\mathbb{F}_q^\times \times \mathbb{F}_q^\times$ is isomorphic to

$$\begin{cases}
(\mathbb{Z}/3\mathbb{Z})^2 & \text{if } N = 7, 13, \\
(\mathbb{Z}/5\mathbb{Z})^2 & \text{if } N = 11.
\end{cases}$$

Hence $\text{Im}(\rho)$ is isomorphic to W_3 (resp. W_5) and $\rho(I_q)$ is identified with its subgroup $\mu_3 \times \{1\}$ (resp. $\mu_5 \times \{1\}$) if $N = 7, 13$ (resp. 11). But if $N = 7$, there does not exit such a ρ. Indeed, if there were a Galois extension K/\mathbb{Q} with Galois group W_n, then it has a subextension with Galois group isomorphic to $V_n \cong W_n/\{(\xi, 1)| \xi \in \mu_n\}$. According to [7], there are no V_3-extensions of \mathbb{Q} unramified outside $\{2, 7\}$.

If $N = 11$ (resp. 13), there do exist representations $\rho : G_{\mathbb{Q}} \to \text{GL}_2(\mathbb{F}_2)$ with $N(\rho) = N$ and $\text{Im}(\rho) \cong W_5$ (resp. W_3). These are what we call ρ_{11} and ρ_{13}.

The part of the theorem concerning the number of isomorphism classes, and the Galois conjugacy of ρ with image isomorphic to W_n follows from Lemma 2.2 on representations of the finite group W_n.

The determinants of the representations ρ are known as follows: For $\rho = \rho_{11}$ and ρ_{13}, it is trivial to see that $\det \rho = 1$. If $\rho = \rho_{11}^{*}$ (resp. ρ_{13}^{*}), the character $\det \rho : G_{\mathbb{Q}} \to \mathbb{F}_2^\times$ factors through the maximal quotient of $(\mathbb{Z}/11\mathbb{Z})^\times$ (resp. $(\mathbb{Z}/13\mathbb{Z})^\times$) of odd order, which is of order 5 (resp. 3) (cf. [22], §1.3; see also the remark at the beginning of §4 below).
On the other hand, as we saw above, $\det \rho(I_g)$ has order 5 (reps. 3). Hence $\det \rho$ is a character of conductor 11 (resp. 13) and of order 5 (resp. 3).

Next we prove the non-solvable case. This is done, as in [26], [13], [14], by the comparison of the Tate and Odlyzko bounds for discriminants. Suppose there exists a non-solvable representation $\rho : G_Q \to \text{GL}_2(\mathbb{F}_2)$ with $N(\rho) = N$, where $= 5, 7, 11, 13, 15$ or 17. Let K/Q be the extension cut out by ρ. We denote by $d_{K/Q}$ the discriminant of K/Q, and $d_K^{1/n} = [d_{K/Q}]^{1/n}$ the root discriminant of K, where $n = [K : Q]$. We compare the Tate and Odlyzko bounds for $d_K^{1/n}$ and deduce contradiction.

Let $d_{K,q}$ be the q-primary part of $[d_{K/Q}]$, and write $d_K^{1/n} = \prod_{q} d_{K,q}$. We have $(d_{K,q}) = \prod_{v \mid q} N_{K_v/Q_q}(D_{K_v/Q_q})$, where K_v is the v-adic completion of K at a prime v of K lying above q, D_{K_v/Q_q} the different of K_v/Q_q, and N_{K_v/Q_q} the norm map of K_v/Q_q. For each q, we shall calculate $d_{K,q}^{1/n}$ as $q^{v_q(D_{K_v/Q_q})}$, for any $v \mid q$. For $q = 2$, this is done by Proposition 2.4 (2). For $q \not| N$, since K_v/Q_q is tamely ramified, we have $v_q(D_{K_v/Q_q}) = (e_q - 1)/e_q$ if e_q denotes the ramification index of K_v/Q_q, and the value of e_q is given by Lemma 2.5.

To apply Lemma 2.5, we shall twist ρ by a character so that it lands on as small a subgroup of $\text{GL}_2(\mathbb{F}_2)$ as possible. We have canonical isomorphisms

$$\text{SL}_2(\mathbb{F}_2) = \text{PSL}_2(\mathbb{F}_2) = \text{PGL}_2(\mathbb{F}_2),$$

and an isomorphism

$$\text{GL}_2(\mathbb{F}_2) \xrightarrow{\sim} \text{SL}_2(\mathbb{F}_2) \times \mathbb{F}_2^\times \quad \quad \quad g \mapsto (g \delta(g)^{-1}, \delta(g)),$$

where we set $\delta(g) = \det(g)^{1/2}$. This maps $\text{GL}_2(\mathbb{F}_{2^m})$ to $\text{SL}_2(\mathbb{F}_{2^m}) \times \mathbb{F}_{2^m}^\times$, for each $m \geq 1$. The character $\delta : G_Q \to \mathbb{F}_2^\times$ is tamely ramified at $q \mid N$, and factors through the maximal quotient of $(\mathbb{Z}/N\mathbb{Z})^\times$ of odd order. By Sections 251–253 of [5], the projective image of ρ (i.e. the image of $\text{Im}(\rho)$ in $\text{PGL}_2(\mathbb{F}_2)$) is conjugate in $\text{PGL}_2(\mathbb{F}_2)$ with $\text{PGL}_2(\mathbb{F}_{2^\mu}) = \text{PSL}_2(\mathbb{F}_{2^\mu})$, where 2^μ is the order of the 2-Sylow subgroup of $\text{Im}(\rho)$. Since we assume $\text{Im}(\rho)$ is non-solvable, we have $\mu \geq 2$. After replacing ρ by a conjugate, we may assume that

$$\rho_0 := \rho \otimes \delta^{-1} : G_Q \to \text{GL}_2(\mathbb{F}_2)$$

has values in $\text{GL}_2(\mathbb{F}_{2^\mu})$, and its image is the simple group $\text{SL}_2(\mathbb{F}_{2^\mu})$. Then ρ has values in $\text{GL}_2(\mathbb{F}_{2^m})$, where $\mathbb{F}_{2^m} := \mathbb{F}_{2^\mu}(\text{Im}(\det(\rho)))$. Note that μ divides m.

Suppose there is a ρ with $\mu = 2$. Then there should be an A_5-extension K_0/Q cut out by $\rho_0 : G_Q \to \text{SL}_2(\mathbb{F}_4) \cong A_5$ which is unramified outside $2N$. According to [7], there are no such extensions if $N = 7, 11$ or 13. If $N = 15$ (resp. 17), then there are 51 (resp. one) such extensions, but none of them have ramification index $e_q = 2$ at $q \mid N$, as required by Lemma 2.5. Thus we have $\mu \geq 3$.

Suppose there is a ρ with $\mu \geq 3$. By Proposition 2.4, Lemma 2.5 and the examples following it, we have:

$$d_K^{1/n} \leq \begin{cases}
4 \cdot 5^{1/2} = 8.9442... & \text{if } N = 5, \\
4 \cdot 7^{2/3} = 14.6372... & \text{if } N = 7, \\
4 \cdot 11^{1/2} = 13.2664... & \text{if } N = 11 \text{ and } 4 \nmid m, \\
4 \cdot 11^{4/5} = 27.2379... & \text{if } N = 11 \text{ and } 4 \mid m, \\
4 \cdot 13^{1/2} = 14.4222... & \text{if } N = 13 \text{ and } 2 \nmid m, \\
4 \cdot 13^{2/3} = 22.1150... & \text{if } N = 13 \text{ and } 2 \mid m, \\
4 \cdot 15^{1/2} = 15.4919... & \text{if } N = 15, \\
4 \cdot 17^{1/2} = 16.4924... & \text{if } N = 17.
\end{cases}$$

(2.3)

If $n = [K : \mathbb{Q}]$ is equal to or larger than $|\text{SL}_2(\mathbb{F}_{2^3})| = 504$, then the Odlyzko bound [15] gives unconditionally

$$d_K^{1/n} > 20.023,$$

(2.4)

and under the GRH gives

$$d_K^{1/n} > 26.485.$$

(2.5)

These inequalities provide a contradiction unconditionally if either $N = 5, 7, 11, 15, 17$, or $N = 13$ and m is odd (resp. under the GRH if $N = 13$ and m is even).

The $N = 11$ case is a bit more involved. Recall that $\mathbb{F}_2^m = \mathbb{F}_{2^m}(\text{Im} \det \rho)$. Suppose first that $\det \rho$ is trivial. Then we have $m = \mu$. If $4 \nmid m$, then (2.3) contradicts (2.4). If $4 \mid m$, then the Odlyzko bound gives under the GRH that, for $n \geq |\text{SL}_2(\mathbb{F}_{2^4})| = 4080$,

$$d_K^{1/n} > 31.645,$$

(2.6)

which contradicts (2.3).

If $\det \rho$ is non-trivial, then since it factors through a quotient of $\mathbb{Z}/11\mathbb{Z}$ of odd order, its image has order 5 (so we have $4 \nmid m$). This implies the ramification index $e_{11}(\rho)$ of ρ at 11 is divisible by 5. By Lemma 2.5, we have that $e_{11}(\rho) = 5$. Then $e_{11}(\rho_0)$ divides $e_{11}(\rho) = 5$. By [26], ρ_0 cannot be unramified at 11. Hence $e_{11}(\rho_0) = 5$. In particular, $\text{Im}(\rho_0) = \text{SL}_2(\mathbb{F}_{2^4})$ has order divisible by 5. Hence μ must be even. Since we assumed $\mu \geq 3$, we have $\mu \geq 4$. Then under the GRH, (2.3) and (2.6) contradict each other. Now the proof is complete.

\hfill \Box

3. Mod 2 representations of conductor 9

In this section, we deal with the case where $N(\rho) = 9$. The main result of this section is the following theorem.

Theorem 3.1. There are two isomorphism classes of irreducible representations

$$\rho : G_{\mathbb{Q}} \to \text{GL}_2(\mathbb{F}_2)$$

with $N(\rho) = 9$. Their images are isomorphic to W_3, and they are defined over \mathbb{F}_4. These two representations into $\text{GL}_2(\mathbb{F}_4)$ are $\text{Gal}(\mathbb{F}_4/\mathbb{F}_2)$-conjugate to each other. Let ρ_0 denote a representative of either of these isomorphism classes. Then the extension K/\mathbb{Q} cut out
by \(\rho_9^* \) contains the quadratic field \(\mathbb{Q}(\sqrt{-2}) \), and \(\det \rho_9 \) is a character of conductor 9 and order 3.

To prove Theorem 3.1, we require two preliminary lemmas.

Lemma 3.2. Let \(G \) be a finite subgroup of \(\text{GL}_2(\mathbb{F}) \), where \(\mathbb{F} \) is a field of characteristic \(\ell > 0 \).

1. If the representation \(G \hookrightarrow \text{GL}_2(\mathbb{F}) \) is reducible and the order of \(G \) is not divisible by \(\ell \), then \(G \) is diagonalizable (i.e. it is conjugate to a subgroup of \(\left(\ast, \ast \right) \)).
2. If \(G \) is abelian and its order is divisible by \(\ell \), then \(G \) is the direct product of a subgroup \(H \) of scalar matrices and a subgroup \(U \) of unipotent matrices (i.e. it is conjugate to a subgroup of \(\left\{ \left(\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix} \right) \mid a \in \mathbb{F}^\times, b \in \mathbb{F} \right\} \)).

Proof. Conclusion (1) is a basic fact in the theory of linear representations of finite groups. Namely, every finite-dimensional representation of \(G \) over a field of characteristic \(\ell \not| |G| \) is completely reducible (for example, see [17]).

To prove (2), we may assume that the \(\ell \)-Sylow subgroup of \(G \) is contained in \(\left(^1_1 \right) \), and then that \(G \subset \left(^1_1 \right) \). Since \(\left(^1_1 \right) \) is the unique maximal \(\ell \)-torsion subgroup of \(\left(^1_1 \right) \), the subgroup \(G \) of \(\left(^1_1 \right) \) has a unique \(\ell \)-Sylow subgroup \(U := G \cap \left(^1_1 \right) \). Let \(\tau = \left(^1_1 \right) \in U \) be a non-trivial element. Then the commutant in \(\text{GL}_2(\mathbb{F}) \) of \(\langle \tau \rangle \) is \(\left\{ \left(\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix} \right) \mid a \in \mathbb{F}^\times, b \in \mathbb{F} \right\} = \left\{ \left(\begin{smallmatrix} a & 0 \\ 0 & 1 \end{smallmatrix} \right) \mid a \in \mathbb{F}^\times \right\} \times \left(^1_1 \right) \), of which the first factor has no \(\ell \)-torsion and the second factor is of \(\ell \)-torsion. As a subgroup, \(G \) has a similar structure. \(\square \)

Lemma 3.3. If \(\rho : D_3 \to \text{GL}_2(\overline{\mathbb{F}}_2) \) has \(n_3(\rho) = 2 \), then the following are both true.

1. We have that \(\rho \) is wildly ramified, and possibly after conjugation, we have \(\rho(D_3) \subset \left(^1_1 \right) \) and \(\rho(I_3) \subset \left(^1_1 \right) \). If \(G_i \) denotes the \(i \)th ramification subgroup of \(\rho(D_3) \), then \(G_0 = G_1 \simeq \mathbb{Z}/3\mathbb{Z} \) and \(G_2 = \{1\} \).
2. Let \(K/\mathbb{Q}_3 \) be the extension cut out by \(\rho \), and let \(\mathcal{D}_{K/\mathbb{Q}_3} \) be its different. Then we have

\[
 v_3(\mathcal{D}_{K/\mathbb{Q}_3}) = \frac{4}{3},
\]

where \(v_3 \) is the valuation of \(K \) normalized by \(v_3(3) = 1 \).

Proof. If \(\rho \) is irreducible, then by Lemma 2.1, after conjugation, its image \(G = \rho(D_3) \) sits in the exact sequence in Lemma 2.1 (2):

\[
1 \to H \to G \to \mathbb{Z}/2\mathbb{Z} \to 1,
\]

where \(H \) is a subgroup of \(\left(^1_1 \right) \), and \(G \) is a semidirect product of \(H \) and the subgroup generated by \(\tau = \left(^1_1 \right) \). Put \(G_0 = \rho(I_3) \) and \(H_0 = H \cap G_0 \). If \(H_0 = \{1\} \), then \(G_0 \) maps isomorphically onto \(\mathbb{Z}/2\mathbb{Z} \) in the above sequence. Since \(G_0 \) is normal in \(G \), we have \(G = H \times G_0 \) and it is abelian. By Lemma 3.2 (2), \(G \) is reducible, contrary to our assumption. Hence \(H_0 \neq \{1\} \). Then the fixed subspace of \(V = \overline{\mathbb{F}}_2 \oplus \overline{\mathbb{F}}_2 \) by \(H_0 \) is \(\{0\} \), since \(\langle \tau \rangle \) normalizes \(H_0 \). It then follows, from the assumption \(n_3(\rho) = 2 \), that \(\rho \) is tamely ramified. If \(H \) has an element \(\tau' \) of order 2, then \(\langle \tau' \rangle \), being the unique 2-Sylow subgroup of the tame inertia, must be normal in \(G \), and hence \(G \) is the direct product of \(H \) and \(\langle \tau' \rangle \).
In particular, G is abelian. Then by Lemma 3.2 (2), ρ is reducible, which contradicts the assumption that ρ is irreducible. Hence ρ is reducible, and we may assume that

$$\rho = \begin{pmatrix} \psi_1 & * \\ \psi_2 & \end{pmatrix},$$

where $\psi_i : D_3 \to \mathbb{F}_2^\times$ are characters. Since $\psi_i(I_3)$ is of odd order, by local class field theory, the restriction of ψ_i to I_3 factors through $(1 + 3\mathbb{Z}_3)^\times$ (i.e. ψ_i is either unramified or wildly ramified). The condition that

$$n_3(\rho) = \dim(V/V^{G_0}) + \dim(V/V^{G_1})/(G_0 : G_1) + \cdots = 2$$

implies that ψ_1 is unramified, and that ψ_2 is wildly ramified with $n_3(\psi_2) = 2$ (if $\rho|_{I_3}$ is completely reducible, the role of ψ_1 and ψ_2 may be switched). By Lemma 3.2 (1), the wild inertia subgroup G_1 of G_0 is, after conjugation, contained in $(^1{^*})$. Since the normalizer in $\text{GL}_2(\mathbb{F}_2)$ of any non-trivial subgroup of $(^1{^*})$ is $(^*{^*})$, and since G_1 is normal in G, we have $G \subset (^*{^*})$. Thus we have

$$\rho = \begin{pmatrix} \psi_1 & \\ \psi_2 & \end{pmatrix},$$

in which ψ_1 is unramified and $n_3(\psi_2) = 2$. It then follows also that $G_0 = G_1 \simeq \mathbb{Z}/3\mathbb{Z}$ and $G_2 = \{1\}$. This proves claim (1).

To prove claim (2), observe that there are two non-trivial \mathbb{C}^\times-valued characters of G_0, both of which have conductor 3^2. By the Führerdiskriminantenproduktformel, we have

$$v_3(D_{K/\mathbb{Q}}) = \frac{1}{3}(2 \times 2) = \frac{4}{3}.$$

Proof of Theorem 3.1. Let $\rho : G_{\mathbb{Q}} \to \text{GL}_2(\mathbb{F}_2)$ be an irreducible representation with $N(\rho) = 9$. Again, we consider the solvable and non-solvable cases separately.

Suppose $\text{Im}(\rho)$ is solvable. Then $\text{Im}(\rho)$ sits in the exact sequence in Lemma 2.1 (2):

$$1 \to H \to \text{Im}(\rho) \to \mathbb{Z}/2\mathbb{Z} \to 1.$$

Let K/\mathbb{Q} be the extension cut out by ρ, so that $\text{Gal}(K/\mathbb{Q}) = \text{Im}(\rho)$, and let F be the quadratic subfield of K corresponding to H. By assumption, K/\mathbb{Q} is unramified outside \{2,3\}. By Lemma 3.3, the prime 3 splits in F/\mathbb{Q}, and hence $F = \mathbb{Q}(\sqrt{-3})$. It has class number 1. By class field theory and the condition $N(\rho) = 3^2$, the Galois group $H = \text{Gal}(K/F)$ is isomorphic to a quotient of

$$\mathcal{O}_{K,F}^\times/(1 + 3^2\mathcal{O}_{F,3})^\times \simeq (\mathbb{Z}/3\mathbb{Z})^2 \times \mathbb{Z}/2\mathbb{Z}.$$

Since H must fit into the above exact sequence, and since $\rho(D_3)$ is as described in Lemma 3.3, we have that

$$H = H_1 \times H_2,$$

where $H_i \simeq \mathbb{Z}/3\mathbb{Z}$, and the two factors H_i are exchanged by the action of $\text{Gal}(F/\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z}$ (note. Each factor H_i of H corresponds to the inertia subgroup of one of the two primes of F lying above 3). Hence $\text{Im}(\rho)$ is isomorphic to W_3. By Lemma 2.2, there are
two isomorphism classes of such \(\rho \) which are defined over \(\mathbb{F}_4 \), and they are \(\text{Gal} (\mathbb{F}_4 / \mathbb{F}_2) \)-conjugate to each other. Arguing as in the previous section, it turns out that \(\det \rho \), for these representations \(\rho \), are characters of conductor 9 and order 3.

Next suppose that there is a representation \(\rho : G_Q \rightarrow \text{GL}_2 (\mathbb{F}_2) \) with non-solvable image. By Proposition 2.4, we have \(\nu_2 (\mathcal{D}_{K/Q}) \leq 2 \). By Lemma 3.3, we have \(\nu_3 (\mathcal{D}_{K/Q}) = 4/3 \). Hence the root discriminant \(d_{K/Q}^{1/n} \) of \(K/Q \) satisfies

\[
d_{K}^{1/n} \leq 2^2 \cdot 3^{4/3} = 17.3069 \ldots.
\]

If \(n \geq 504 = |\text{SL}_2 (\mathbb{F}_{23})| \), then the Odlyzko bound [15] implies unconditionally that

\[
d_{K}^{1/n} > 20.023.
\]

Hence there are no such \(\rho \) with \(\mu \geq 3 \), where \(2^\mu \) is the order of the 2-Sylow subgroup of \(\text{Im} (\rho) \). If \(\mu = 2 \), then there must be a Galois extension \(K/Q \) with Galois group isomorphic to \(\text{SL}_2 (\mathbb{F}_4) \simeq A_5 \) which is unramified outside \(\{2, 3\} \). According to [7], there are no such extensions. If \(\mu = 1 \), then \(\text{Im} (\rho) \) is solvable. \(\square \)

4. Traces of mod 2 representations

In this section, we study the traces of representations \(\rho : G_Q \rightarrow \text{GL}_2 (\mathbb{F}_2) \). First recall the following fact on characters of \(G_Q \) (cf. [22], §1.3): Let

\[
\psi : G_Q \rightarrow \bar{\mathbb{F}}_2^\times
\]

be a character with \(N (\psi) = N \). By class field theory, it factors through the map \(G_Q \rightarrow (\mathbb{Z}/\ell^a N \mathbb{Z})^\times \) for some \(a \geq 0 \) which maps a Frobenius element \(\text{Frob}_p \) to the class of \(p \) (mod \(\ell^a N \)). We have \((\mathbb{Z}/\ell^a N \mathbb{Z})^\times \simeq (\mathbb{Z}/\ell^a \mathbb{Z})^\times \times (\mathbb{Z}/N \mathbb{Z})^\times \), and since \(\bar{\mathbb{F}}_2^\times \) has no non-trivial elements of \(\ell \)-power order, \(\psi \) factors through the maximal prime-to-\(\ell \) quotient of \((\mathbb{Z}/\mathbb{Z})^\times \times (\mathbb{Z}/N \mathbb{Z})^\times \). In particular, if \(\ell = 2 \), then it factors through the maximal quotient of \((\mathbb{Z}/N \mathbb{Z})^\times \) of odd order.

Let \(\rho : G_Q \rightarrow \text{GL}_2 (\mathbb{F}_2) \) be a reducible representation with \(N (\rho) = N \). We may assume that

\[
\rho = \begin{pmatrix}
\psi_1 & *
\psi_2
\end{pmatrix},
\]

where \(\psi_i : G_Q \rightarrow \bar{\mathbb{F}}_2^\times \) are characters. By the definition of the exponent of an Artin conductor (2.2), we have \(n_q (\psi_1) + n_q (\psi_2) \leq n_q (\rho) \) for each \(q \mid N \). As remarked above, they factor through the maximal quotient of \((\mathbb{Z}/N \mathbb{Z})^\times \) of odd order. Furthermore, for each prime \(q \mid N \), if \(n_q (\rho) = 1 \), then one of the \(\psi_i \) is unramified and the other is at most tamely ramified at \(q \). Also, if \(n_q (\rho) = 2 \) and \(\rho \) is wildly ramified at \(q \), then one of the \(\psi_i \) is unramified and the exponent of Artin conductor 2. In general, if \(\rho \) is not completely reducible, the restriction \(\rho|_L_{\rho} \) could be completely reducible, and then the choice of \(i \) for which \(\psi_i \) is unramified may vary for different \(q \). But if \(N \) is a prime power (as is the case below), then one of the \(\psi_i \) is an everywhere unramified character of \(G_Q \), and hence trivial by Minkowski.

Lemma 4.1. Let \(\rho : G_Q \rightarrow \text{GL}_2 (\mathbb{F}_2) \) be a reducible representation with \(N (\rho) = N \), and let \(\rho^{ss} \) denote its semisimplification.
(1) If $N = 3^a b^c 257^d$ with $a, b, c, d = 0$ or 1, then ρ^{ss} is trivial, and
$$\text{Tr}(\rho(\text{Frob}_p)) = 0$$
for every prime $p \nmid 2N$.

(2) If $N = 7, 9, 11, 13$, then either ρ^{ss} is trivial or $\rho^{ss} \simeq 1 \oplus \psi$, where 1 is the trivial character of G_Q and ψ is a character of conductor N and order 3, 3, 5, 3 respectively. If ρ^{ss} is trivial, then $\text{Tr}(\rho(\text{Frob}_p)) = 0$ for every prime $p \nmid 2N$. If $\rho^{ss} \simeq 1 \oplus \psi$, then for every prime $p \nmid 2N$ we have
$$\text{Tr}(\rho(\text{Frob}_p)) = 0 \iff \begin{cases} p \equiv \pm 1 \pmod{N} & \text{if } N = 7, 9, 11, \\ p \equiv \pm 1, \pm 5 \pmod{N} & \text{if } N = 13. \end{cases}$$

Proof. First we prove (1). In these cases, $(\mathbb{Z}/N\mathbb{Z})^\times$ has 2-power order, and so the characters ψ_i are both trivial. Hence $\text{Tr}(\rho(\text{Frob}_p)) = 1 + 1 = 0$ for every prime $p \nmid 2N$.

Now we prove (2). For $N = 7, 11, 13$, by the above discussion, one of the characters, say ψ_1, is trivial and the other has $n_q(\psi_2) \leq 1$. If ψ_2 is unramified, then it is trivial as a character of G_Q, and so ρ^{ss} is trivial. So we may assume $n_q(\psi_2) = 1$. If $N = 9$, then ρ is wildly ramified by Lemma 3.3. By the above discussion, we have ψ_1 trivial and $n_q(\psi_2) = 2$. In all cases, we have $\text{Tr}(\rho(\text{Frob}_p)) = 1 + \psi_2(\text{Frob}_p) = 0$ if and only if $\rho(\text{Frob}_p) = 1$. Since the maximal odd quotient of $(\mathbb{Z}/N\mathbb{Z})^\times$ has order 3 (resp. 5), if $N = 7, 9, 13$ (resp. $N = 11$), we have $\psi_2(\text{Frob}_p) = 1$ if and only if p is a 3rd (resp. 5th) power in $(\mathbb{Z}/N\mathbb{Z})^\times$. \hfill \Box

Next we consider irreducible representations. Recall that the projective image of an irreducible solvable representation is a dihedral group (see the remark after Lemma 2.1).

Lemma 4.2. Let $\rho : G_Q \to \text{GL}_2(\mathbb{F}_2)$ be an irreducible solvable representation. If the projective image of ρ has order $2n$, then the set $S(\rho)$ of primes $p \nmid 2N(\rho)$ for which $\text{Tr}(\rho(\text{Frob}_p)) = 0$ has density $\frac{1}{2} + \frac{1}{2n}$.

Proof. Possibly after conjugation, we may assume that $\text{Im}(\rho) \subset (* *) \cup (* *)$. Then for $g \in \text{Im}(\rho)$, we have $\text{Tr}(g) = 0$ if and only if $g \in (* *)$, or g is a scalar matrix. If c denotes the number of scalar matrices in $\text{Im}(\rho)$, then $\text{Im}(\rho)$ has $2cn$ elements and $\text{Im}(\rho) \cap (* *)$ has cn elements. By the Chebotarev Density Theorem, the density of the set $S(\rho)$ is
$$\frac{cn + c}{2cn} = \frac{1}{2} + \frac{1}{2n}. \hfill \Box$$

Let ρ be one of the representations
\begin{equation}
\rho_{11}, \quad \rho_{11}^\varepsilon, \quad \rho_{13}, \quad \rho_{13}^\varepsilon, \quad \rho_5
\end{equation}
from Theorems 2.3 and 3.1. Respectively, they have images which are isomorphic to
\begin{equation}
V_3, \quad W_5, \quad V_3, \quad W_3, \quad W_3.
\end{equation}
For these ρ, let
\begin{equation}
S_{11}, \quad S_{11}^\varepsilon, \quad S_{13}, \quad S_{13}^\varepsilon, \quad S_5^\varepsilon
\end{equation}
denote the corresponding set of primes $p \nmid 2N(\rho)$ for which $\text{Tr}(\rho(\text{Frob}_p)) = 0$. By Lemma 4.2, these sets of primes have density $2/3$ or $3/5$. They can be calculated explicitly by finding a newform to which the ρ is associated (see Proposition 4.5 and the Appendix for more details).

In each case, these sets contain a natural subset of primes with density $1/2$ which are distinguished by simple congruence conditions. To see this, assume that $\text{Im}(\rho) \subset (\ast_\ast) \cup (\ast_\ast)$. The extension K/Q cut out by ρ contains a unique quadratic subfield F. A prime $p \nmid 2N(\rho)$ is split (resp. inert) in F/Q if and only if $\rho(\text{Frob}_p)$ maps to the trivial (resp. non-trivial) element of $\text{Gal}(F/Q)$ (i.e. if and only if $\rho(\text{Frob}_p)$ is in (\ast_\ast) (resp. (\ast_\ast))).

In particular, we have the following lemma.

Lemma 4.3. Assume the notation and hypotheses in the preceding discussion. If a prime p is inert in F/Q, then $\text{Tr}(\rho(\text{Frob}_p)) = 0$.

For the representations ρ in (4.1), the corresponding quadratic fields F are:

(4.4) $\mathbb{Q}(\sqrt{-11}), \mathbb{Q}(\sqrt{-2}), \mathbb{Q}(\sqrt{-26}), \mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2})$.

This discussion is summarized by the following proposition which classifies the representations ρ of small conductor in terms of the set $\hat{S}(\rho)$. Here and elsewhere, for two representations $\rho, \rho' : G_Q \to \text{GL}_2(\mathbb{F}_2)$, we write $\rho \sim_{\overline{\mathbb{F}_2}} \rho'$ when the two representations are equal up to isomorphism and $\text{Gal}(\overline{\mathbb{F}_2}/\mathbb{F}_2)$-conjugacy.

Proposition 4.4. Let $\rho : G_Q \to \text{GL}_2(\overline{\mathbb{F}_2})$ be a representation with $N(\rho) = N$.

(1) If $N = 1, 3, 5, 15, 17$, then $\hat{S}(\rho)$ consists of all the primes $p \nmid 2N$, and the semisimplification ρ^{ss} of ρ is trivial.

(2) If $N = 7$, then there are two possibilities.

(a) The set $\hat{S}(\rho)$ consists of all primes $p \nmid 14$, and ρ^{ss} is trivial.

(b) The set $\hat{S}(\rho)$ consists of the primes $p \equiv \pm 1 \pmod{7}$. In this case, we have

$$\rho^{ss} \sim_{\overline{\mathbb{F}_2}} 1 \oplus \varepsilon_7^2,$$

where $\varepsilon_7^2 : G_Q \to \overline{\mathbb{F}_2}$ is a character of conductor 7 and order 3.

Furthermore, if $\det \rho = 1$, then the case (b) does not occur.

(3) If $N = 9$, then there are three possibilities.

(a) The set $\hat{S}(\rho)$ consists of all primes $p \nmid 6$, and ρ^{ss} is trivial.

(b) The set $\hat{S}(\rho)$ consists of the primes $p \equiv \pm 1 \pmod{9}$. In this case, we have

$$\rho^{ss} \sim 1 \oplus \varepsilon_9^2,$$

where $\varepsilon_9^2 : G_Q \to \overline{\mathbb{F}_2}$ is a character of conductor 9 and order 3.

(c) The set $\hat{S}(\rho)$ contains the primes $p \equiv 5, 7 \pmod{8}$.

In this case, $\hat{S}(\rho)$ has density $2/3$, and we have $\rho \sim_{\overline{\mathbb{F}_2}} \rho_9^5$.

Furthermore, if $\det \rho = 1$, then the cases (b) and (c) do not occur.

(4) Assuming GRH, if $N = 11$, then there are four possibilities.
(a) The set $S(p)$ consists of all primes $p \nmid 22$, and ρ^{ss} is trivial.
(b) The set $S(p)$ consists of the primes $p \equiv \pm 1 \pmod{11}$. In this case, we have
\[\rho^{ss} \overset{\sigma_{g_2}}{\sim} 1 \oplus \varepsilon_{11}^2, \]
where $\varepsilon_{11}^2 : G_Q \to \overline{\mathbb{F}_2}$ is a character of conductor 11 and order 5.
(c) The set $S(p)$ contains the primes
\[p \equiv 2, 6, 7, 8, 10 \pmod{11}. \]
In this case, $S(p)$ has density $2/3$, and we have $\rho \sim \rho_{11}$.
(d) The set $S(p)$ contains the primes
\[p \equiv 5, 7 \pmod{8}. \]
In this case, $S(p)$ has density $3/5$, and we have $\rho \overset{\sigma_{g_2}}{\sim} \rho_{11}^5$.

Furthermore, if $\det \rho = 1$, then the cases (b) and (d) do not occur. If ρ is defined over \mathbb{F}_2^n, where $4 \nmid m$, then we do not need to assume the GRH, and the cases (b) and (d) do not occur.

(5) Assuming GRH, if $N = 13$, then there are four possibilities.
(a) The set $S(p)$ consists of all primes $p \nmid 26$, and ρ^{ss} is trivial.
(b) The set $S(p)$ consists of the primes $p \equiv \pm 1, \pm 5 \pmod{13}$. In this case, we have
\[\rho^{ss} \overset{\sigma_{g_2}}{\sim} 1 \oplus \varepsilon_{13}^4, \]
where $\varepsilon_{13}^4 : G_Q \to \overline{\mathbb{F}_2}$ is a character of conductor 13 and order 3.
(c) The set contains the primes
\[p \equiv 11, 19, 23, 29, 33, 41, 53, 55, 57, 59, 61, 67, 69, 73, 77, 79, 83, 87, 89, 95, 97, 99, 101, 103 \pmod{104}. \]
In this case, $S(p)$ has density $2/3$, and we have $\rho \sim \rho_{13}$.
(d) The set $S(p)$ contains the primes
\[p \equiv 3 \pmod{4}. \]
In this case, $S(p)$ has density $2/3$, and we have $\rho \overset{\sigma_{g_2}}{\sim} \rho_{13}^3$.

Furthermore, if $\det \rho = 1$, then the cases (b) and (d) do not occur. If ρ is defined over \mathbb{F}_2^n, where $2 \nmid m$, then we do not need to assume the GRH, and the cases (b) and (d) do not occur.

Remark. Note that the condition $\det \rho = 1$ follows if we assume that ρ is defined over \mathbb{F}_2^n, when $2 \nmid m$ and $N = 7, 9, 13$ (resp. $4 \nmid m$ and $N = 11$).

Now we illustrate the implications of Proposition 4.4 for modular forms. To make this precise, we recall important facts regarding modular Galois representations. Let $N \leq 17$ be odd. Suppose that
\[f(z) = \sum_{n=1}^{\infty} a(n)q^n \in S_k(\Gamma_0(2^nN), \chi; \mathcal{O}_L, \lambda) \]
is a newform of some level $M | 2^a N$. By Deligne [4], there is a Galois representation

$$\rho_f : G_{\mathbb{Q}} \to \text{GL}_2(\mathbb{F}_2),$$

associated to $f(z)$, which has the property that

$$\text{Tr}(\rho_f(\text{Frob}_p)) = a(p) \pmod{\lambda},$$

$$\det(\rho_f(\text{Frob}_p)) = p^{k-1} \chi(p) \pmod{\lambda},$$

(4.5)

for every prime $p \nmid 2M$. Note that if the character χ has 2-power order, then $\det \rho_f = 1$. In particular, such a ρ_f cannot be ρ_{11}^c, ρ_{13}^c or ρ_5^c. Note also that χ has 2-power order if the prime λ has residue degree m not divisible by 2 (resp. 4) when $N = 7, 9, 13$ (resp. 11). Since $f(z)$ is a newform, for primes $p \nmid 2M$ we have

$$f(z) \mid T_p = a(p)f(z).$$

Combining this fact with (4.5) and Proposition 4.4, we immediately obtain the following proposition.

Proposition 4.5. Suppose that $a \geq 0$, and that L is a number field and λ a prime of L lying above 2. Let $f(z) \in S_k(\Gamma_0(2^a N), \chi; \mathcal{O}_L, \lambda)$ be a newform of some level $M \mid 2^a N$.

1. If $N = 1, 3, 5, 15$, or 17, then for every prime $p \nmid 2N$ we have

$$f(z) \mid T_p \equiv 0 \pmod{\lambda}.$$

2. If $N = 7$, then one of the following holds.

 (a) For every prime $p \nmid 14$, we have $f(z) \mid T_p \equiv 0 \pmod{\lambda}$.

 (b) For every prime $p \nmid 14$, we have $f(z) \mid T_p \equiv 0 \pmod{\lambda}$ if and only if

$$p \equiv \pm 1 \pmod{7}.$$

Furthermore, if χ has 2-power order, then the case (b) does not occur.

3. If $N = 9$, then one of the following holds.

 (a) For every prime $p \nmid 6$, we have $f(z) \mid T_p \equiv 0 \pmod{\lambda}$.

 (b) For every prime $p \nmid 6$, we have $f(z) \mid T_p \equiv 0 \pmod{\lambda}$ if and only if

$$p \equiv \pm 1 \pmod{9}.$$

 (c) For every prime $p \nmid 6$, we have $f(z) \mid T_p \equiv 0 \pmod{\lambda}$ if and only if $p \in S_6^5$.

Furthermore, if χ has 2-power order, then the cases (b) and (c) do not occur.

4. Assuming GRH, if $N = 11$, then one of the following holds.

 (a) For every prime $p \nmid 22$, we have $f(z) \mid T_p \equiv 0 \pmod{\lambda}$.

 (b) For every prime $p \nmid 22$, we have $f(z) \mid T_p \equiv 0 \pmod{\lambda}$ if and only if

$$p \equiv \pm 1 \pmod{11}.$$

 (c) For every prime $p \nmid 22$, we have $f(z) \mid T_p \equiv 0 \pmod{\lambda}$ if and only if $p \in S_1^5$.

 (d) For every prime $p \nmid 22$, we have $f(z) \mid T_p \equiv 0 \pmod{\lambda}$ if and only if $p \in S_{11}^5$.

Furthermore, if χ has 2-power order, then the cases (b) and (d) do not occur. In addition, if λ has residue degree not divisible by 4, then the classification above is unconditional, and the cases (b) and (d) do not occur.

5. Assuming GRH, if $N = 13$, then one of the following holds.

 (a) For every prime $p \nmid 26$, we have $f(z) \mid T_p \equiv 0 \pmod{\lambda}$.

(b) For every prime \(p \nmid 26 \), we have \(f(z) \mid T_p \equiv 0 \) \((\mod \lambda) \) if and only if
\[p \equiv \pm 1, \pm 5 \pmod{13} \).
(c) For every prime \(p \nmid 26 \), we have \(f(z) \mid T_p \equiv 0 \) \((\mod \lambda) \) if and only if \(p \in S_{13} \).
(d) For every prime \(p \nmid 26 \), we have \(f(z) \mid T_p \equiv 0 \) \((\mod \lambda) \) if and only if \(p \in S_{13}^\prime \). Further, if \(\chi \) has 2-power order, then the cases (b) and (d) do not occur. In addition, if \(\lambda \) has odd residue degree, then the classification above is unconditional, and the cases (b) and (d) do not occur.

5. PROOF OF THEOREMS 1.1 AND 1.2

Here we deduce Theorems 1.1 and 1.2, using Proposition 4.5 from the last section.

Proof of Theorems 1.1 and 1.2. Suppose that \(f_1(z), \ldots, f_r(z) \) are the newforms in the spaces \(S_k^{\text{new}}(\Gamma_0(M), \chi; \mathcal{O}_{L,\lambda}) \), where \(M \mid 2^a N \) and \(f(\chi) \mid M \). For each \(f_i(z) \), let \(M_i \) denote its level, and denote its Fourier expansion by
\[
 f_i(z) = \sum_{n=1}^{\infty} a_i(n) q^n.
\]
By the Atkin-Lehner theory of newforms, every \(f(z) \in S_k(\Gamma_0(2^a N), \chi; \mathcal{O}_{L,\lambda}) \) can be written as
\[
 f(z) = \sum_{i=1}^{r} \sum_{d \mid \frac{2^a N}{M_i}} a_{i,d} f_i(dz),
\]
with \(a_{i,d} \in L \). Since the \(\mathcal{O}_{L,\lambda} \)-module
\[
 \sum_{i=1}^{r} \sum_{d \mid \frac{2^a N}{M_i}} \mathcal{O}_{L,\lambda} \cdot f_i(dz)
\]
is of finite index in \(S_k(\Gamma_0(2^a N), \chi; \mathcal{O}_{L,\lambda}) \), there is an integer \(c \geq 0 \) such that
\[
 \text{ord}_\lambda(a_{i,d}) \geq -c,
\]
for all such \(f(z) \).

By Proposition 4.5, for every relevant prime \(p \nmid 2N \), we have
\[
 f_i(z) \mid T_p = a_i(p) f_i(z) = \lambda b_{i,p} f_i(z) \quad \text{with some} \quad b_{i,p} \in \mathcal{O}_{L,\lambda}.
\]
Note that in some cases the set of relevant primes requires Lemma 4.3 and the fields listed in (4.4). Also, here we abuse the notation to let \(\lambda \) denote also a uniformizer of \(\mathcal{O}_{L,\lambda} \). Thus we have
\[
 f(z) \mid T_p = \sum_{i=1}^{r} \sum_{d \mid \frac{2^a N}{M_i}} a_{i,d} f_i(dz) \mid T_p = \sum_{i=1}^{r} \sum_{d \mid \frac{2^a N}{M_i}} a_{i,d} \lambda b_{i,p} f_i(dz).
\]
Applying \(T_p \)'s repeatedly, we see that
\[
 f(z) \mid T_{p_1} \mid \cdots \mid T_{p_{c+t}} \equiv 0 \pmod{\lambda^t}
\]
for any \(c + t \) such primes \(p_1, \ldots, p_{c+t} \). \(\square \)
6. Proofs of the corollaries

To prove Corollaries 1.3 and 1.4, we require an elementary proposition regarding the combinatorial properties of Hecke operators acting on holomorphic modular forms

\[f(z) = \sum_{n=0}^{\infty} a(n)q^n \in M_k(\Gamma_0(N), \chi). \]

For primes \(p \nmid N \), the Hecke operator \(T_p \) is a linear endomorphism on \(M_k(\Gamma_0(N), \chi) \) (resp. \(S_k(\Gamma_0(N), \chi) \)), and it is defined by

\[f(z) | T_p = \sum_{n=0}^{\infty} \left(a(pn) + \chi(p)p^{k-1}a(n/p) \right) q^n. \]

(6.1) Note that \(a(\alpha) = 0 \) if \(\alpha \not\in \mathbb{Z} \).

Proposition 6.1. Suppose that \(f(z) = \sum_{n=0}^{\infty} a(n)q^n \in M_k(\Gamma_0(N), \chi; \mathcal{O}_L, \lambda) \), where \(L \) is a number field and \(\lambda \) is a prime of \(L \). If \(t \) is a positive integer and \(p_1, p_2, \ldots, p_c \) are distinct primes coprime to \(N \) for which

\[f(z) | T_{p_1} | T_{p_2} | \cdots | T_{p_c} \equiv 0 \pmod{\lambda^t}, \]

then we have \(a(p_1 p_2 \cdots p_c m) \equiv 0 \pmod{\lambda^t} \), for every \(m \geq 1 \) coprime to \(p_1 p_2 \cdots p_c \).

Proof. Define algebraic integers \(b_j(n) \in \mathcal{O}_L \) by

\[
\sum_{n=0}^{\infty} b_1(n)q^n = f(z) | T_{p_1}, \\
\sum_{n=0}^{\infty} b_2(n)q^n = f(z) | T_{p_1} | T_{p_2}, \\
\vdots \\
\sum_{n=0}^{\infty} b_c(n)q^n = f(z) | T_{p_1} | T_{p_2} | \cdots | T_{p_c} \equiv 0 \pmod{\lambda^t}.
\]

By (6.1), if \(m \) is a positive integer coprime to \(p_1 p_2 \cdots p_c \), then

\[
0 \equiv b_c(m) \pmod{\lambda^t} = b_{c-1}(p_c m) = b_1(p_2 p_3 \cdots p_c m) = a(p_1 p_2 \cdots p_c m).
\]

\[\square \]

Proof of Corollary 1.3. Here we prove Corollary 1.3 (1), (2) and (3).
(1) Théorème 5.2 of [19] implies that

\[j^*(z) := \sum_{n \not\equiv 7 \pmod 8} C(n)q^n = 744 + 196884q + \cdots \]

is a weight zero 2-adic modular form. This implies, for every power of 2, say 2^t, that there is a holomorphic modular integer weight k modular form, say

\[F(z) = \sum_{n=0}^{\infty} C_1(n)q^n \in M_k(\text{SL}_2(\mathbb{Z}); \mathbb{Z}), \]

for which

\[F(z) \equiv j^*(z) \pmod{2^t}. \]

Since the Hecke eigenvalues of the Eisenstein series on $\text{SL}_2(\mathbb{Z})$ are even for every T_p where p is an odd prime, conclusion (1) follows from the $N = 1$ case of Theorem 1.1 and Proposition 6.1.

(2) Since $\Theta(z) = \sum_{n=-\infty}^{\infty} q^{n^2}$ is a holomorphic modular form of weight 1/2 on $\Gamma_0(4)$ and since $s \geq 2$ is even, it follows that

\[\sum_{n=0}^{\infty} r_s(n)q^n = \Theta(z)^s \in \mathbb{Z}[[q]] \]

is an integer weight modular form on $\Gamma_0(4)$. It is a classical fact that the phenomenon in (1.2) holds for the integer weight Eisenstein series on $\Gamma_0(4)$. Consequently, the desired conclusion follows from the $N = 1$ case of Theorem 1.1 and Proposition 6.1.

(3) By the proof of Theorem 1 of [6], for every $t \geq 1$ there is an integer weight cusp form $F(z) \in S_k(\Gamma_0(1152); \mathbb{Z})$ with trivial Nebentypus character for which

\[F(z) \equiv \sum_{n=0}^{\infty} Q(n)q^{24n+1} \pmod{2^t}. \]

Since $1152 = 2^7 \cdot 9$, and since the trivial character has 2-power order, conclusion (3) follows from Proposition 6.1 and the $N = 9$ case of Theorem 1.2.

\[\square \]

Proof of Corollary 1.4. As before, let $\Theta(z) = 1 + 2q + 2q^4 + \cdots \equiv 1 \pmod{2}$ be the usual weight 1/2 Jacobi theta function on $\Gamma_0(4)$. Using the notation from the introduction, we find that

\[g_F(z)\Theta(z) \equiv g_F(z) \pmod{2}, \]

and is an integer weight modular form with level 4, 12, 20, 28, 60 or 68. The conclusion now follows from (1.8), Theorems 1.1, 1.2 and Proposition 6.1.

\[\square \]

APPENDIX

Here we identify newforms for some of the mod 2 Galois representations considered in this paper. In particular, we explicitly give newforms

\[f(z) = \sum_{n=1}^{\infty} a(n)q^n \in S_k(\Gamma_0(M), \chi; \mathcal{O}_{L, \lambda}), \]
of some level $M|2^a N$ for which

$$\text{Tr}(\rho_f(F\text{rob}_p)) = a(p) \pmod{\lambda} \quad \text{for all } p \nmid 2M.$$

Since $N(\rho_f) \mid M$, the set $S(f)$ of primes $p \nmid 2M$ for which $a(p) \equiv 0 \pmod{\lambda}$ coincides with $S(\rho_f)$, with the possible exception of those primes dividing $M/N(\rho_f)$. If $N \leq 17$ is odd, then a calculation of the “first few” primes in $S(f)$ together with Proposition 4.5 allows us to identify a semisimple representation ρ which coincides with ρ_f^{ss} up to isomorphism and $\text{Gal}(\mathbb{F}_2/\mathbb{F}_2)$-conjugacy. Using William Stein’s Modular Forms Database [24], it is straightforward to obtain the following examples which cover all the possibilities for $N = 7, 9, 11, 13$ listed in Proposition 4.5.

1. For $N = 7$, let $f(z)$ be the unique newform in $S_6(\Gamma_0(7))$. We have

$$f(z) \equiv q + q^2 + q^3 + q^7 + q^{11} + q^{19} + q^{23} + q^{43} + q^{81} + \cdots \pmod{2},$$

and ρ_f^{ss} is the trivial representation.

2. Let $f(z)$ be either of the two newforms in $S_2(\Gamma_0(28), \chi)$, where χ is a Dirichlet character of conductor 7 and order 3. They have Fourier coefficients in a field L of degree 2 over \mathbb{Q}, and are $\text{Gal}(L/\mathbb{Q})$-conjugate to each other. Their reduction modulo a prime λ above 2 have Fourier coefficients in \mathbb{F}_4. We have $\rho_f^{ss} \cong 1 \oplus \varepsilon_7^2$.

3. Let $f(z)$ be the unique newform in $S_4(\Gamma_0(9))$, which has rational Fourier coefficients and

$$f(z) \equiv q + q^{25} + q^{49} + \cdots \pmod{2}.$$

Then ρ_f^{ss} is the trivial representation.

4. Let $f(z)$ be any one of the four newforms in $S_4(\Gamma_0(9), \chi)$, where χ is a Dirichlet character of conductor 9 and order 3. They have Fourier coefficients in a field L of degree 4 over \mathbb{Q}, and are $\text{Gal}(L/\mathbb{Q})$-conjugate to each other. Their reduction modulo a prime λ above 2 have Fourier coefficients in \mathbb{F}_4. We have $\rho_f^{ss} \cong 1 \oplus \varepsilon_9^2$.

5. Let $f(z)$ be any one of the two newforms in $S_2(\Gamma_0(18), \chi)$, where χ is a Dirichlet character of conductor 9 and order 3. They have Fourier coefficients in a field L of degree 2 over \mathbb{Q}, and are $\text{Gal}(L/\mathbb{Q})$-conjugate to each other. Their reduction modulo a prime λ above 2 have Fourier coefficients in \mathbb{F}_4. We have $\rho_f \cong \rho_6$.

6. Let $f(z)$ be the newform in $S_7(\Gamma_0(11), \chi)$ which has rational coefficients, where χ is the Dirichlet character of conductor 11 and order 2. We have

$$f(z) \equiv q + q^9 + q^{11} + q^{23} + q^{49} + q^{81} + q^{99} + \cdots \pmod{2},$$

and ρ_f^{ss} is the trivial representation.

7. Let $f(z)$ be any one of the 12 newforms in $S_5(\Gamma_0(11), \chi)$, where χ is a Dirichlet character of conductor 11 and order 5. They have Fourier coefficients in a field L of degree 12 over \mathbb{Q}, and are $\text{Gal}(L/\mathbb{Q})$-conjugate to each other. Their reduction modulo a prime λ above 2 have Fourier coefficients in \mathbb{F}_{2^4}. We have $\rho_f^{ss} \cong 1 \oplus \varepsilon_{11}^2$.

8. Let $f(z)$ be the unique newform $S_2(\Gamma_0(11))$;

$$f(z) = q - 2q^2 - q^3 + 2q^4 + q^5 + 2q^6 - 2q^7 - 2q^9 - 2q^{10} + q^{11} - \cdots.$$
We have $\rho_f \simeq \rho_{11}$. It can also be realized as the Galois representation on the 2-torsion points of the elliptic curve

$$E_{11} = X_0(11) : y^2 + y = x^2 - x^2 - 10x - 20.$$

(9) Let $f(z)$ be any one of the four newforms in $S_2(\Gamma_0(22), \chi)$, where χ is a Dirichlet character of conductor 11 and order 5. They have Fourier coefficients in a field L of degree 4 over \mathbb{Q}, and are $\text{Gal}(L/\mathbb{Q})$-conjugate to each other. Their reduction modulo a prime λ above 2 have Fourier coefficients in \mathbb{F}_{2^4}. We have $\rho_f \simeq \rho_{11}^{2^4}.$

(10) There is a newform $f(z)$ in $S_4(\Gamma_0(13))$ with Fourier coefficients in a field L of degree 4 over \mathbb{Q} such that, for a choice of prime λ of L above 2,

$$f(z) \equiv q + q^9 + q^{13} + q^{25} + q^{49} + q^{81} + \cdots \pmod{\lambda}.$$

Then $\rho_f^{2^4}$ is the trivial representation.

(11) Let $f(z)$ be either of the two newforms in $S_2(\Gamma_0(13), \chi)$, where χ is a Dirichlet character of conductor 13 and order 6. They have Fourier coefficients in a field L of degree 2 over \mathbb{Q}, and are $\text{Gal}(L/\mathbb{Q})$-conjugate to each other. Their reduction modulo a prime λ above 2 have Fourier coefficients in \mathbb{F}_{2^2}. We have $\rho_f^{2^2} \simeq 1 \oplus \varepsilon_{13}^{2^2}.$

(12) Let $f(z)$ be the unique newform in $S_4(\Gamma_0(13))$ with rational Fourier coefficients

$$f(z) = q - 5q^2 - 7q^3 + 17q^4 - 7q^5 + 35q^6 - 13q^7 - 45q^8 + \cdots.$$

(The other two newforms in $S_4(\Gamma_0(13))$ have Fourier coefficients in a quadratic field.) We have $\rho_f \simeq \rho_{13}$. It can also be realized as the Galois representation on the 2-torsion points of the elliptic curve

$$E_{26} : y^2 + y + xy = x^3 - 5x - 8$$

of conductor 26.

(13) Let $f(z)$ be either of the two newforms in $S_2(\Gamma_0(26), \chi)$, where χ is a Dirichlet character of conductor 13 and order 3. They have Fourier coefficients in a field L of degree 2 over \mathbb{Q}, and are $\text{Gal}(L/\mathbb{Q})$-conjugate to each other. Their reduction modulo a prime λ above 2 have Fourier coefficients in \mathbb{F}_{2^2}. We have $\rho_f \simeq \rho_{13}^{2^2}.$

References

[7] J. Jones, Tables of Number Fields with Prescribed Ramification,
http://math.la.asu.edu/~jj/numberfields/
[10] W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip,
Theory 31 (1989), 133-141
(2003), 537-544
[14] H. Moon, Y. Taguchi, Refinement of Tate’s discriminant bound and non-existence theorems for mod
p Galois representations, Documenta Math, Extra Volume: Kazuya Kato’s Fiftieth Birthday (2003),
641-654
260
(1972), 259-331
179-230
Japan 11, Iwanami Shoten and Princeton Univ. Press, 1971
[24] W.A. Stein, The Modular Forms Database,
http://modular.fas.harvard.edu:9080/mfd

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706
E-mail address: ono@math.wisc.edu

GRADUATE SCHOOL OF MATHEMATICS, KYUSHU UNIVERSITY 33, FUKUOKA 812-8581, JAPAN
E-mail address: taguchi@math.kyushu-u.ac.jp