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Abstract
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1 Introduction

Figure 1 shows the Whitehead link L = L0∪L∞ in S3 = R3∪{¤}. The Whitehead-

F1

F3

F2

L0 L∞

Figure 1: Whitehead link with its symmetry axes

link-complement S3 − L is known to admit a hyperbolic structure: there is a group
W acting properly discontinuously on the 3-dimensional hyperbolic space H3, and
there is a homeomorphism

h : H3/W
∼=−→ S3 − L.

No one has ever tried to make the homeomorphism h explicit.
In this paper we construct automorphic functions for W (analytic functions de-

fined in H3 which are invariant under W ), and express the homeomorphism h in
terms of these automorphic functions. Since our embedding of H3/W requires many
automorphic functions (codimension of the embedding is high), we find several ex-
tensions of W , and give their embeddings, which have lower embedding dimensions.
In particular, for the extension W ′ such that W ′/W (∼= (Z/2Z)2) represents the
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group of symmetries (orientation-preserving ambient homotopies) of L ⊂ S3, we
find five automorphic functions, say, h1, . . . , h5, so that the map

H3 3 x 7−→ (h1(x), . . . , h5(x)) ∈ R5

gives an embedding of H3/W ′. Its image is explicitly presented as part of an affine
algebraic variety.

Our automorphic functions are made from theta functions over the ring Z[i].
Our proofs heavily depends on properties of these theta functions, and on quadratic
relations among them established in [M1], [M2] and [MY].

2 A hyperbolic structure on the complement of

the Whitehead link

Let H3 be the upper half space model

H3 = {(z, t) ∈ C× R | t > 0}

of the 3-dimensional real hyperbolic space. The group GL2(C) and an involution T
act on H3 as

g · (z, t) =

(
g11ḡ21t

2+(g11z+g12)(g21z+g22)

|g21|2t2+(g21z+g22)(g21z+g22)
,

| det(g)|t
|g21|2t2+(g21z+g22)(g21z+g22)

)
,

T · (z, t) = (z̄, t),

where g = (gjk) ∈ GL2(C). Let GLT
2 (C) be the group generated by GL2(C) and an

involution T with relations T · g = ḡ · T for g ∈ GL2(C).
The Whitehead-link-complement S3−L admits a hyperbolic structure (cf. [T][W]):

Let W be the discrete subgroup W of GL2(C) generated by the two elements

g1 =

(
1 i
0 1

)
and g2 =

(
1 0

1+i 1

)
.

We have the homeomorphism

H3/W
∼=−→ S3 − L.

We call W the Whitehead-link-complement group. A fundamental domain, which
will be denoted by FD, for W in H3 is given in Figure 2 (cf. [W]); two pyramids are
shown. Each face of the pyramids is a mirror of a reflection belonging to GL2(Z[i])·T .
The faces (together with the corresponding reflections) of the two pyramids and their
patching rules are as follows:
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−1 + i i

0−1
1

1− i

Re(z)

Im(z)

−i

#1

#5

#9

#7 #3

#4 #8 #10

#6

#2

Figure 2: Fundamental domain FD of W in H3

The faces of the two pyramids

No. face reflection No. face reflection

#1 Im(z) = 0,
−1 ≤ Re(z) ≤ 0,

T , #2 Im(z) = 0,
0 ≤ Re(z) ≤ 1,

T ,

#3 Re(z) = 0,
0 ≤ Im(z) ≤ 1,

(−1
1

)
T , #4 Re(z) = 0,

−1 ≤ Im(z) ≤ 0,

(−1
1

)
T ,

#5 Im(z) = 1,
−1 ≤ Re(z) ≤ 1,

(
1 2i
0 1

)
T , #6 Im(z) = −1,

0 ≤ Re(z) ≤ 1,

(
1 −2i
0 1

)
T ,

#7 Re(z) = −1,
0 ≤ Im(z) ≤ 1,

(−1 −2
0 1

)
T , #8 Re(z) = 1,

−1 ≤ Im(z) ≤ 0,

(−1 2
0 1

)
T ,

#9 |z − −1+i
2 |2+t2 = 1

2 ,
(

i 0
1−i 1

)
T , #10 |z − 1−i

2 |2+t2 = 1
2 ,

(
i 0

−1+i 1

)
T .

Patching rule

face element of W its image face element of W its image

#1
(

1 i
0 1

)
#5 #2

(
1 −i
0 1

)
#6

#3
(

1 −i
0 1

)
#4 #7

(
1 2− i
0 1

)
#8

#9
(

1 0
1+i 1

)
#10

The group W has two cusps. They are represented by the vertices of the pyramids:

(z, t) = (∗, +∞), (0, 0) ∼ (±i, 0) ∼ (±1, 0) ∼ (∓1± i, 0).

Remark 1 The translation t2 :=

(
1 2
0 1

)
is an element of W . Indeed one finds

the relation g−1
2 t2g

−1
1 g−1

2 g−1
1 g2g1g2g

−1
1 = 1 in [W]. We can decide whether a given

2× 2 matrix is an element of W by Theorem 5 in §7.3.

4



3 Discrete subgroups of GL2(C), especially Λ

We define some discrete subgroups of GL2(C) :

Γ = GL2(Z[i]),

Γ0(1+i) = {g = (gjk) ∈ Γ | g21 ∈ (1+i)Z[i]},
SΓ0(1+i) = {g ∈ Γ0(1+i) | det(g) = ±1},

Γ(1+i) = {g ∈ Γ | g11 − 1, g12, g21, g22 − 1 ∈ (1+i)Z[i]},
Γ(2) = {g ∈ Γ | g11 − 1, g12, g21, g22 − 1 ∈ 2Z[i]},

W = TWT = {ḡ | g ∈ W},
Ŵ = W ∩W,

W̆ = 〈W, W 〉.

Convention: Since we are interested only in the action of these groups on H3,
we regard these groups as subgroups of the projectified group PGL2(C); in other
words, every element of the groups represented by a scalar matrix is regarded as the
identity. For any subgroup G in Γ, we denote GT the group generated by G and T
in GLT

2 (C).

It is known ([MY]) that the group ΓT (2) is a Coxeter group generated by the
eight reflections

T,

(−1 0
0 1

)
T,

(−1 −2
0 1

)
T,

(
1 2i
0 1

)
T,

(
1 0
−2i 1

)
T,

(−1 + 2i −2
2 1 + 2i

)
T,

(
1 + 2i 2i
−2i 1− 2i

)
T,

(−1 0
2 1

)
T.

The mirrors of the reflections are four walls Im(z) = 0, Re(z) = 0, Re(z) = −1,
Im(z) = 1, and four northern hemispheres with radius 1

2
and centers i

2
, −1

2
+ i,

−1 + i
2
, −1

2
, respectively, see Figure 3. Note that the Weyl chamber bounded by

these eight mirrors is an (ideal) octahedron in the hyperbolic space H3.
The group ΓT (2) is well-studied in [MY]. To relate ΓT (2) with the Whitehead-

link-complement group W , we consider the smallest group which contains both ΓT (2)
and W :

Λ = 〈ΓT (2),W 〉.
Lemma 1 1. ΓT (2) is a normal subgroup of Λ, and Λ/ΓT (2) is isomorphic to

the dihedral group of order eight.

2. [Λ,W ] = 8, W is not a normal subgroup of Λ: TWT = W .

Proof. 1. We extend the reflection group ΓT (2) by adding the reflection g1T with
mirror Imz = 1/2, and the 2-fold rotation with axis the geodesic arc joining the
points (z, t) = (0, 0) and (−1 + i, 0), which is given by

R =

(
i 0

1− i −i

)
.
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−1 + i i

0−1

Im(z)

Re(z)

Figure 3: Weyl chamber of ΓT (2)
.

These reflection and rotation preserve the Weyl chamber above, and generate a
group isomorphic to the dihedral group of order eight. Since we have

(−1 0
2 1

)
,

(
1 0
2 −1

)
∈ ΓT (2)

and (
1 0
2 −1

)(
i 0

1− i −i

)( −1 0
2 1

)
= −i

(
1 0

−1− i 1

)
= g−1

2

this extended group coincides with Λ.
2. By comparing the Weyl chamber of ΓT (2) with the fundamental domain FD of
W , we see that W has the same co-volume with ΓT (2). Thus [Λ,W ] = 8. q.e.d.

From the proof of this Lemma, we have

Corollary 1 The domain bounded by the four walls

a : Im(z) = 0, b : Re(z) = 0, c : Im(z) =
1

2
, d : Re(z) = −1

2

and the big hemisphere #9 in §2 is a fundamental domain of Λ, see Figure 4. The
hemisphere part is folded by the rotation R above.

We use this fundamental domain in §5.3.

Lemma 2 We have Λ = SΓT
0 (1+i) and [SΓ0(1+i),W ] = 4.

Proof. It is clear that Λ ⊂ SΓT
0 (1+i). Since

[ΓT
0 (1+i), ΓT (2)] = 16 and [ΓT

0 (1+i), SΓT
0 (1+i)] = 2,

we have Λ = SΓT
0 (1+i). q.e.d.
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Re(z)

Im(z)
i
2

−1
2

0

−1+i
2

Figure 4: Fundamental domain of Λ
.

So far we defined many subgroups of ΓT = GLT
2 (Z[i]); their inclusion relation

can be depicted as follows:

ΓT
0 (1+i)

� |
ΓT (1+i) Λ = SΓT

0 (1+i)
| � |

SΓT (1+i) SΓ0(1+i)
| |
∗ W̆ = 〈W, W 〉
| � �

ΓT (2) W W
| � �

Γ(2) Ŵ = W ∩W

When two groups are connected by a segment, the one below is a subgroup of the
one above of index 2. More explanation about these groups will be given in §7.2.

4 Symmetry of the Whitehead link

In this section, we study the symmetries of the Whitehead link, and express each
symmetry as an extension of the group W .

4.1 Symmetries of L

Orientation preserving homeomorphisms of S3 keeping L fixed form a group iso-
morphic to (Z/2Z)2; the group consists of π-rotations with axes F1, F2 and F3, and
the identity. Here the axes are defined in Figure 1; F1 (resp. F2) meet L∞ (resp.
L0) at two points, and F3 meets L∞ at two points and L0 at two points. There is
also a reflection (an orientation reversing homeomorphism) of S3 keeping a mirror
(containing L) pointwise fixed.
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Recall that there is a homeomorphism S3−L ∼= H3/W where the strings L0 and
L∞ correspond to the cusps of W represented by

0 := (0, 0), and ∞ := (∗, +∞) ∈ ∂H3,

respectively. Under this identification, we show

Proposition 1 The three π-rotations with axes F1, F2 and F3, and the reflection
can be represented by the transformations

z 7→ −z + 1, z 7→ z + 1, z 7→ −z, and z 7→ z̄,

respectively, of H3 modulo W .

This assertion will be clear as soon as we study the fixed points of these transfor-
mations in the next subsection. Note that the three rotations modulo W (and the
identity) form a group isomorphic to (Z/2Z)2, since [z 7→ z + 2] ∈ W (see Remark
1).

We make some convention. The symbols ¤ and © stand for the points in the
W -orbits of

¤ =

(−1 + i

2
,

1√
2

)
, and © =

(
i

2
,
1

2

)
∈ H3,

respectively. Let π be the projection

π : H3 3 (z, t) 7−→ z ∈ C : z-plane.

In the figures on the z-plane, a thick segment stands for a geodesic curve (in the
upper half space H3) on the hemispheres with center (±1−i

2
, 0) and radius 1√

2
(the

big hemispheres #9 and #10 in §2 ); its image under π is the given segment.

The eight geodesics in the fundamental domain FD shown in Figure 2, given as
the intersections of walls

#1∩#9, #3∩#9, #5∩#9, #7∩#9, #2∩#10, #4∩#10, #6∩#10, #8∩#10,

are identified modulo W as is seen in Figure 5. This identification will be used freely
later.

−1

−1 + i i

0
1

1− i−i

Figure 5: Identification of eight geodesics in FD
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4.2 Fixed loci

We study the fixed points of the transformations in Proposition 1 in H3/W . Recall
that the translations [z 7→ z + i] and [z 7→ z + 2] belong to W .

1. The transformation of H3/W represented by [z 7→ −z + 1] fixes pointwise the
following geodesics in FD:

z = −1

2
, z =

1

2
, z =

1− i

2
, z =

−1 + i

2
.

In fact, for example, we have

−1
2
−→ − (−1

2

)
+ 1 = −1

2
+ 2 ≡ −1

2
mod 2,

1−i
2

−→ −1−i
2

+ 1 = 1−i
2

+ i ≡ 1−i
2

mod i.

Thus the set of fixed points consists of two geodesics both starting and ending
at ∞ ∈ ∂H3, and passing through ¤ and ©, respectively. These can be easily
understood by the diagram:

∞——–¤——–∞, ∞——–©——–∞.

This implies that this transformation represents the rotation with axis F1.

2. The transformation [z 7→ z + 1] fixes pointwise the following geodesics in FD:

geodesic joining 0 and (i, 0) through ©,

geodesic joining (i, 0) and (−1, 0) through ¤.

In fact, the former can be seen by the translation of the z-plane by i, and the
identification of the eight geodesics shown in Figure 5; and the latter by the
same translation and the transformation patching the big hemispheres #9 and
#10 appeared in §2. Thus the set of fixed points consists of two geodesics both
starting and ending at 0 ∈ ∂H3, and passing through ¤ and ©, respectively.
These can be easily understood by the diagram:

0——–¤——–0, 0——–©——–0.

This implies that this transformation represents the rotation with axis F2.

3. The transformation [z 7→ −z] fixes pointwise the following geodesics in FD:

geodesic joining 0 and (−1 + i, 0) through ¤,

z = 0, z = −1, z = −1 +
i

2
, z =

i

2
.

One can check these in the same way as the above two cases. These can be
visualized as

0——–¤——–0, 0——–∞, ∞——–©——–∞, ∞——–0.

This implies that this transformation represents the rotation with axis F3.
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4. The transformation [z 7→ z̄] fixes pointwise the walls Im(z) = 0,±1/2. This
represents a reflection with a mirror containing L. We will explain more in
§5.3.

The fixed loci in FD, as well as in H3/W , of the rotations [z 7→ −z + 1], [z 7→ z + 1]
and [z 7→ −z] are also called the axes F1, F2 and F3; they are depicted in FD as in
Figure 6. A bullet • stands for a vertical line: the inverse image of the point under
π.

Figure 6: The fixed loci of [z 7→ −z + 1], [z 7→ z + 1], [z 7→ −z]

5 Orbit spaces under W̆ , SΓ0(1 + i) and Λ

Note that W ⊂ W̆ ⊂ SΓ0(1 + i) ⊂ Λ,

|W̆/W | = |SΓ0(1 + i)/W̆ | = |Λ/SΓ0(1 + i)| = 2, SΓ0(1 + i)/W ∼= (Z/2Z)2,

and that

[z 7→ −z + 1] ∈ W̆ −W, [z 7→ −z] ∈ SΓ0(1 + i)− W̆ , [z 7→ z̄] ∈ Λ− SΓ0(1 + i).

By quotienting out the symmetry of the Whitehead link, we will see an essence of
the Whitehead link. In fact, though the Whitehead link has at least five crossings,
we will see that the quotient space has only one crossing; of course the ambient
space necessarily has orbifold singularities.

5.1 The orbifold H3/W̆

Figure 7(left) shows a fundamental domain for W̆ in FD; every wall has a coun-
terpart to be identified with (under the order-2-rotations around the geodesics
z = ±1−i

2
, together with the patching rules of the walls tabulated in §2).

In the figure, a very thick segment stands for a vertical plane: the inverse image of
the segment under π.

The quotient of S3, where L lives, by the π-rotation around the axis F1 is again a
3-sphere but with orbifold-singularities of index 2 along a curve; in Figure 7(right),
this curve is labeled by F1 and the numeral 2 is attached.
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2

L∞
L0

F3F2

F1

Figure 7: A fundamental domain for W̆ and the orbifold H3/W̆

5.2 The orbifold H3/SΓ0(1 + i)

Figure 8(left) shows a fundamental domain for SΓ0(1+i) in FD bounded by the four
walls and the rectangle (part of the hemisphere #9 cut out by the four walls). Every
wall has a counterpart to be identified with (under the order-2-rotations around the
geodesics z = i

2
, −1+i

2
, together with the displacement [z 7→ z + i]). The rectangle

is divided into two squares; the upper square is folded (identified) by the rotation
centered along the geodesic joining ¤ and (i, 0), and the lower one is folded by the
rotation centered along the geodesics joining ¤ and 0 = (0, 0).

The quotient of S3, where L lives, by the π-rotations around the axes F1, F2 and F3

– this is equivalent to the quotient of the orbifold H3/W̆ obtained in the previous
subsection by the π-rotation around the horizontal axis shown in Figure 7(right)
– is again a 3-sphere but with orbifold-singularities of index 2 along three curves;
in Figure 8(right), these curves are labeled by F1, F2 and F3, and the numeral 2 is
attached to each of these.

2

2
2

L∞ L0

F3

F1

F2

Figure 8: A fundamental domain for SΓ0(1 + i) and the orbifold H3/SΓ0(1 + i)

5.3 The orbifold H3/Λ

Figure 10(left) shows a fundamental domain for Λ in FD bounded by the four walls
a, b, c and d defined in Corollary 1, and the square (part of the hemisphere #9 cut
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∞

0

F1

F2

F3

a

b

c
d

Figure 9: A better picture of the fundamental domain for SΓ0(1 + i)

out by the four walls). Every wall has no counterpart to be identified with. The
square is folded (identified) by the rotation centered with the geodesic joining ¤
and 0 = (0, 0). Thus the orbifold H3/Λ must be a 3-ball bounded by the 2-sphere
divided by four (triangular) walls, which are shown in Figure 10(right).

∞

0

a

c

d b a
b

c
d

Figure 10: A fundamental domain for Λ and the boundary of H3/Λ

On the other hand the orbifold H3/Λ should be equivalent to the quotient of the
orbifold H3/SΓ0(1 + i) obtained in the previous subsection by the reflection repre-
sented by T : z 7→ z̄. The mirror of the reflection in the orbifold H3/SΓ0(1 + i) is
shown in 11 as the union of four triangles, they are labeled by a, b, c and d for the
obvious reason.

6 Theta functions

In §6.1,6.2, 6.3, we introduce some results for theta functions defined on the Hermi-
tian symmetric domain D, and restrict them on H3 embedded in D; refer to [F],[M1],
[M2] and [MY]. In §6.4, the final subsection, we give an embedding of H3/Λ.
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L∞ L0

F3

F1

F2

wall a

L0

F3F2 (L∞)

wall b

F3

wall c

F1

L∞ F1

(L∞)

wall d

Figure 11: The mirror of the reflection in the orbifold H3/SΓ0(1+ i) is shown as the
union of four parts

6.1 Theta functions on D
The symmetric domain D of type I2,2 is defined as

D =

{
τ ∈ M2,2(C) | τ − τ ∗

2i
is positive definite

}
.

The group

U2,2(C) =

{
g ∈ GL4(C) | gJg∗ = J =

(
O −I2

I2 O

)}

and an involution T act on D as

g · τ = (g11τ + g12)(g21τ + g22)
−1, T · τ = tτ,

where g = (gjk) ∈ U2,2(C), and gjk are 2× 2 matrices.
Theta functions Θ

(
a
b

)
(τ) on D are defined as

Θ

(
a

b

)
(τ) =

∑

n∈Z[i]2

e[(n + a)τ(n + a)∗ + 2Re(nb∗)],

where τ ∈ D, a, b ∈ Q[i]2 and e[x] = exp[πix]. By definition, we have the following
theta-transformation-formulas.

Fact 1 1. If b ∈ 1
1+i
Z[i]2, then Θ

(
a
ib

)
(τ) = Θ

(
a
b

)
(τ).

If b ∈ 1
2
Z[i]2, then Θ

(
a
−b

)
(τ) = Θ

(
a
b

)
(τ).

13



2. For k ∈ Z and m, n ∈ Z[i]2, we have

Θ

(
ika

ikb

)
(τ) = Θ

(
a

b

)
(τ),

Θ

(
a + m

b + n

)
(τ) = e[−2Re(mb∗)]Θ

(
a

b

)
(τ).

3. We have

Θ

(
a

b

)
(gτg∗) = Θ

(
ag

b(g∗)−1

)
(τ) for g ∈ Γ,

Θ

(
a

b

)
(T · τ) = Θ

(
ā

b̄

)
(τ).

It is shown in [M2] that theta functions Θ
(

a
b

)
(τ) satisfy the following quadratic

relations.

Proposition 2 We have

4Θ

(
a + c

b + d

)
(τ)Θ

(
a− c

b− d

)
(τ)

=
∑

e,f∈ 1+i
2
Z[i]2/Z[i]2

e[2Re((1+i)(b+d)e∗)]Θ
(

e+(1+i)a

f+(1+i)b

)
(τ)Θ

(
e+(1+i)c

f+(1+i)d

)
(τ).

Especially,

4Θ

(
a

b

)
(τ)2 =

∑

e,f∈ 1+i
2
Z[i]2/Z[i]2

e[2Re((1+i)be∗)]Θ
(

e + (1+i)a

f + (1+i)b

)
(τ)Θ

(
e

f

)
(τ).

6.2 Embedding of H3 into D and the pull-back of the theta
functions

We embed H3 into D by

 : H3 3 (z, t) 7→ i

t

(
t2 + |z|2 z

z̄ 1

)
∈ D;

accordingly, we define the homomorphism

 : GL2(C) 3 g 7→
(

g/| det(g)| O
O (g∗/| det(g)|)−1

)
∈ U2,2(C),

which we denote by the same symbol , sorry. They satisfy

(g · (z, t)) = (g) · (z, t) for any g ∈ GL2(C),

(T · (z, t)) = T · (z, t).
We denote the pull back of Θ

(
a
b

)
(τ) under the embedding  : H3 → D by

Θ
(

a
b

)
(z, t). The following is shown in [M1] and [MY].
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Fact 2 1. For a, b ∈ 1
2
Z[i]2, each Θ

(
a
b

)
(z, t) is real valued. If Re(ab∗)+Im(ab∗) /∈

1
2
Z[i] then Θ

(
a
b

)
(z, t) is identically zero.

2. If b = (0, 0) then Θ
(

a
b

)
(z, t) is non-negative.

3. For a, b ∈ 1
1+i
Z[i]2, each Θ

(
a
b

)
(z, t) is invariant under the action of ΓT (2).

4. The function Θ = Θ
(
00
00

)
(z, t) is positive and invariant under the action of ΓT .

6.3 Automorphic functions for ΓT (2) and an embedding of
H3/ΓT (2)

Set

Θ
2
64
p
q

3
75 = Θ

2
64
p
q

3
75(z, t) = Θ

(p
2
q
2

)
(z, t), p, q ∈ Z[i]2

and

x0 = Θ, x1 = Θ
2
64
1+i, 1+i
1+i, 1+i

3
75, x2 = Θ

2
64
1+i, 0
0, 1+i

3
75, x3 = Θ

2
64
0, 1+i
1+i, 0

3
75.

One of the main results in [MY] is

Theorem 1 The map

H3 3 (z, t) 7→ 1

x0

(x1, x2, x3) ∈ R3

induces an isomorphism between H3/ΓT (2) and the octahedron

Oct = {(t1, t2, t3) ∈ R3 | |t1|+ |t2|+ |t3| ≤ 1}

minus the six vertices (±1, 0, 0), (0,±1, 0), (0, 0,±1).

There are essentially ten non-zero Θ
(

a
b

)
(τ) for a, b ∈ 1

2
Z[i]2. Their restrictions

on H3 are expressed in terms of x0, . . . , x3 in [MY]; we cite these expression as

Fact 3

Θ
2
64
1+i, 1+i

0, 0

3
75
2

= Θ
2
64

0, 0
1+i, 1+i

3
75
2

=
1

2
(x2

0 + x2
1 − x2

2 − x2
3),

Θ
2
64
1+i, 0
0, 0

3
75
2

= Θ
2
64

0, 0
0, 1+i

3
75
2

=
1

2
(x2

0 − x2
1 + x2

2 − x2
3),

Θ
2
64
0, 1+i
0, 0

3
75
2

= Θ
2
64

0, 0
1+i, 0

3
75
2

=
1

2
(x2

0 − x2
1 − x2

2 + x2
3).
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6.4 Automorphic functions for Λ and an embedding of H3/Λ

Once an embedding of H3/ΓT (2) is obtained, in terms of xj, for a supergroup Λ of
ΓT (2), an embedding of H3/Λ can be obtained by polynomials of the xj’s invariant
under the finite group Λ/ΓT (2); this is a routine process. Since we have Λ =
〈ΓT (2), g1, g2〉, we study the actions of the generators g1 and g2 of the Whitehead-

link-complement group W on the theta functions Θ
2
64
a
b

3
75 for a, b ∈ (1+i)Z[i]. The

theta-transformation-formulas (Fact 1) leads to the following.

Proposition 3 The generators g1 and g2 induce linear transformations of x1, x2

and x3:




x1

x2

x3


 · g1 =




−1
−1

1







x1

x2

x3


 ,




x1

x2

x3


 · g2 =



−1

1
−1







x1

x2

x3


 .

Theorem 2 The functions x2
1 + x2

2, x
2
1x

2
2, x

2
3 and x1x2x3 are invariant under the

action of Λ. The map

λ : H3 3 (z, t) 7−→ (λ1, λ2, λ3, λ4) = (ξ2
1 + ξ2

2 , ξ2
1ξ

2
2 , ξ2

3 , ξ1ξ2ξ3) ∈ R4,

where ξj = xj/x0, induces an embedding of H3/Λ into the subdomain of the variety
λ2λ3 = λ2

4 (homeomorphic to a 3-ball with two holes) bounded by the four triangular
faces, which are the images (under H3/ΓT (2) 3 x 7→ λ ∈ H3/Λ) of

a : x1 − x2 + x3 = x0, b : x1 + x2 + x3 = x0, c : x1 − x2 = 0, d : x1 + x2 = 0.

Proof. Since Λ = 〈ΓT (2), g1, g2〉, we have the first half of this theorem. The definition
of the group Λ in §3, the fundamental domain of Λ in §5.3, and Theorem 1 lead to
the latter half.

Remark 2 (1) The two matrices appeared in Proposition 3 generate a subgroup of
GL3(Z) isomorphic to the dihedral group of order eight.
(2) By Proposition 3, we have

(
x2−x1

x2+x1

)
· g1 =

(
1

−1

)(
x2−x1

x2+x1

)
,

(
x2−x1

x2+x1

)
· g2 =

(
1

1

)(
x2−x1

x2+x1

)
.

The group generated by these matrices is isomorphic to the dihedral group of order
eight.

Proposition 4 The functions

Θ
2
64
0, 1+i
0, 0

3
75, Θ

2
64
1+i, 1+i

0, 0

3
75 + Θ

2
64
1+i, 0
0, 0

3
75, and Θ

2
64
1+i, 1+i

0, 0

3
75Θ

2
64
1+i, 0
0, 0

3
75

are invariant under the action of Λ.
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Proof. Since Θ
2
64
1+i, 1+i

0, 0

3
75 Θ

2
64
1+i, 0
0, 0

3
75 and Θ

2
64
0, 1+i
0, 0

3
75 are non-negative by Fact 2,

Fact 3 implies the identities of real valued functions:

Θ
2
64
0, 1+i
0, 0

3
75 =

1√
2

√
x2

0 − x2
1 − x2

2 + x2
3,

Θ
2
64
1+i, 1+i

0, 0

3
75 + Θ

2
64
1+i, 0
0, 0

3
75 =

1√
2

(√
x2

0 + x2
1 − x2

2 − x2
3 +

√
x2

0 − x2
1 + x2

2 − x2
3

)
,

Θ
2
64
1+i, 1+i

0, 0

3
75Θ

2
64
1+i, 0
0, 0

3
75 =

1

2

√
(x2

0 + x2
1 − x2

2 − x2
3)(x

2
0 − x2

1 + x2
2 − x2

3).

They are invariant under the action of Λ by Proposition 3. q.e.d.

7 Automorphic functions for W

We would like to give an explicit embedding of H3/W . Though we already found
an embedding of H3/Λ, since W is a subgroup of Λ, we must find new functions
invariant under the action of W , which are not invariant under Λ. In this section,
we construct such automorphic functions Φ1, Φ2 and Φ3 for W by utilizing theta
functions with characteristics in 1

2
Z[i]. We define these functions and show their

fundamental properties in §7.1. We show in §7.2 that the groups SΓ0(1+i), W̆ =
〈W,W 〉 and W can be regarded as isotropy subgroups of some of these functions. An
arithmetical characterization of the Whitehead-link-complement group W is given
in §7.3.

7.1 Fundamental properties of Φ1, Φ2 and Φ3

Set

y1 = Θ
2
64

0, 1
1+i, 0

3
75, y2 = Θ

2
64
1+i, 1
1+i, 0

3
75, z1 = Θ

2
64
0, 1
1, 0

3
75, z2 = Θ

2
64
1+i, 1
1, 1+i

3
75.

We define functions Φ1, Φ2 and Φ3 as

Φ1 = x3z1z2, Φ2 = (x2 − x1)y1 + (x2 + x1)y2, Φ3 = (x2
1 − x2

2)y1y2.

Theorem 3 The functions Φ1, Φ2 and Φ3 are invariant under the action of W .

Only the signs of them change by the action of g = I2 + 2

(
p q
r s

)
∈ Γ(2) as

follows:

Φ1 · g = e[Re((1+i)p + (1−i)s)]Φ1, Φ2 · g = e[Re(r(1− i))]Φ2, Φ3 · g = Φ3.

Under the action of T , the function Φ1 is invariant, and Φ3 becomes −Φ3.

Remark 3 The function Φ2 is transformed into (x2 − x1)y1 − (x2 + x1)y2 by the
action of T . This function is not invariant under the action of W but invariant
under the action of W = {ḡ | g ∈ W} = TWT .
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By Fact 1, we can easily get the following proposition, which is a key to prove
Theorem 3.

Proposition 5 We have

(
y1

y2

)
· g1 =

(
1 0
0 −1

)(
y1

y2

)
,

(
z1

z2

)
· g1 =

(
1 0
0 1

)(
z1

z2

)
,

(
y1

y2

)
· g2 =

(
0 1
1 0

)(
y1

y2

)
,

(
z1

z2

)
· g2 =

(
0 1
−1 0

)(
z1

z2

)
.

By the action of g = I2 + 2

(
p q
r s

)
∈ Γ(2), the functions y1, y2, z1 and z2 change

as
y1 · g = e[Re(r(1−i))]y1, z1 · g = e[Re(r)]z1,
y2 · g = e[Re(r(1−i))]y2, z2 · g = e[Re((1+i)p + r + (1−i)s)]z2.

By the action of elements T , γ1 =

(
1 0
2 1

)
, γ2 =

(−1 0
2 1

)
and γ3 =

(−1 0
0 1

)

in ΓT (2), the signs of y1, y2, z1, z2 change as follows:

T γ1 γ2 γ3

y1 + − − +
y2 − − − +
z1 + − − +
z2 + − + −

Proof of Theorem 3. Proposition 5 implies that the product z1z2 is invariant under
the action of g1 and that its sign changes by the action of g2. Proposition 3 implies
the same for x3. Thus Φ1 = x3z1z2 is invariant under the action of W .
Remark 2(2) and Proposition 5 show that (x2 − x1)y1 and (x2 + x1)y2 are invariant
under the action of g1 and that they are interchanged by the action of g2. Thus
their fundamental symmetric polynomials Φ2 and Φ3 are invariant under the action
of W .
Proposition 5 leads to transformation formulas for Φ1, Φ2 and Φ3 with respect to
ΓT (2), since x1, x2, x3 are invariant under the action of ΓT (2). q.e.d.

Remark 4 Representatives of SΓ0(1+i)/W can be given by {I2, γ1, γ2, γ3}. The
elements [z 7→ −z + 1], [z 7→ z + 1] and [z 7→ −z] appeared in §4.1 are equivalent to
γ1, γ2 and γ3 modulo W , respectively. These can be verified by using Theorem 5.

7.2 Isotropy subgroups

Let Isoj be the subgroup of Λ = SΓT
0 (1 + i) consisting of elements which leave Φj

invariant.

Theorem 4 We have

SΓ0(1 + i) = Iso3, W̆ = Iso1 ∩ Iso3, W = Iso1 ∩ Iso2 ∩ Iso3,

18



[W̆ : W ] = [W̆ : W ] = [W : Ŵ ] = [W : Ŵ ] = 2,

where W̆ = 〈W,W 〉 and Ŵ = W ∩W . The Whitehead-link-complement group W is
a normal subgroup of SΓ0(1+i); the quotient group SΓ0(1+i)/W is isomorphic to
Z2 × Z2.

Remark 5 (1) The square of any element of SΓ0(1+i) belongs to W .
(2) The Whitehead-link-complement group W is not a normal subgroup of Λ, since
TWT = W 6= W.

Proof. We first show that SΓ0(1+i) = Iso3. Note that the group SΓ0(1+i) is
generated by W and Γ(2). Theorem 3 shows that Φ3 is invariant under the action
of W and Γ(2). Thus we have SΓ0(1+i) ⊂ Iso3. Theorem 3 also shows that Φ3 ·T =
−Φ3, which means that T /∈ Iso3. Since [Λ : SΓ0(1+i)] = 2, we have SΓ0(1+i) =
Iso3.

We next show that W = Iso1∩Iso2∩Iso3. It is clear that W ⊂ Iso1∩Iso2∩Iso3. By
Theorem 3, only the signs of Φ1 and Φ2 change by the action of SΓ0(1+i) = Iso3, we

have [Iso3 : Iso1 ∩ Iso3] = 2 and [Iso3 : Iso1 ∩ Iso3] = 2. Since the element

(
1

−1

)

belongs to Iso2 but not to Iso1, we have

[Iso3 : Iso1 ∩ Iso2 ∩ Iso3] = 4.

The fact [SΓ0(1+i) : W ] = 4 shows that W is equal to Iso1 ∩ Iso2 ∩ Iso3.
Since W is a subgroup of SΓ0(1+i) consisting of elements keeping Φ1 and Φ2

invariant (only the signs of Φ1 and Φ2 change by the action of SΓ0(1+i)), W is a
normal subgroup of SΓ0(1+i) with SΓ0(1+i)/W ' Z2

2.
We finally show that W = Iso1 ∩ Iso3. Since W = TWT and Φ1 is invariant

under the actions of W and T by Theorem 3, we have W ⊂ Iso1. And we have
W ⊂ SΓ0(1+i) = Iso3. Thus W̆ ⊂ Iso1 ∩ Iso3. Since

W 3 g2 =

(
1 0

1−i 1

)
= g−1

2

(
1 0
2 1

)
,

we have Φ2 · g2 = −Φ2, which implies g2 /∈ W and W̆ ! W . Thus we have

SΓ0(1+i) = Iso3 ! Iso1 ∩ Iso3 ⊃ W̆ ! W.

The fact [SΓ0(1+i) : W ] = 4 shows that

Iso1 ∩ Iso3 = W̆ , [W̆ : W ] = 2.

Now it is clear that [W̆ : W ] = [W : Ŵ ] = [W : Ŵ ] = 2. q.e.d.

Proposition 6 The functions (x2 − x1)y1 and (x2 + x1)y2 are invariant under the
action of Ŵ = W ∩W . The group Ŵ is a normal subgroup of Λ of index 16.

Proof. The function Φ2 is the sum of these two functions, which are invariant under
the action of W . The function Φ2 · T is the difference of these functions, which are
invariant under the action of W . Thus Φ2 + Φ2 · T and Φ2 − Φ2 · T are invariant
under the action of Ŵ .

For g ∈ SΓ0(1+i), we have seen that gWg−1 = W , which implies gWg−1. Thus
we have gŴg−1 = Ŵ . On the other hand, we have T W T = W and T W T = W ;
these imply TŴT = Ŵ . q.e.d.
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Remark 6 The functions in Proposition 6 give a representation of SΓ0(1+i). The
representation matrices are

(±1 0
0 ±1

)
,

(
0 ±1
±1 0

)
;

this shows that the quotient group SΓ0(1+i)/Ŵ is isomorphic to the dihedral group
of order eight.

7.3 An arithmetical characterization of the Whitehead-link-
complement Group

The Whitehead-link-complement group W is defined as the group generated by two
elements g1 and g2. It is hard to decide whether a given 2 × 2-matrix is in W . In
this subsection, we give a criterion for elements of SL2(Z[i]) to belong to W . The
functions Φj play a key role. The main theorem of this subsection is the following.

Theorem 5 An element g =

(
p q
r s

)
∈ SΓ0(1+i) satisfying Re(s) ≡ 1 mod 2

belongs to W̆ = 〈W, W̄ 〉 if and only if

Re(p + s)− Im(p− s) + ((−1)Re(r) + 1)Re(q)

2
≡ 1 mod 2, when q ∈ (1+i)Z[i]

Re(p + r + s) + Im(p + r + s) + ((−1)Re(r) + 1)Im(q)

2
≡ 0 mod 2 otherwise.

The element g ∈ W̆ belongs to W if and only if

Re(p + q) +
Re(r)− (−1)Re(q)+Im(q)Im(r)

2
≡ 1 mod 2.

The element g ∈ W belongs to Ŵ = W ∩ W̄ if and only if r ∈ 2Z[i].

Note that, by multiplying iI2, we can always normalize g so that

Re(s) ≡ 1 mod 2. (1)

The rest of this subsection is devoted to a proof of this theorem. We study the action
of g ∈ SΓ0(1+i) on Φ1 and Φ2. For any element g ∈ SΓ0(1+i), since r ∈ (1+i)Z[i]
and det(g) = ±1, we have p, s /∈ (1+i)Z[i], i.e.,

Re(p) 6≡ Im(p) mod 2, Re(s) 6≡ Im(s) mod 2.

By Fact 1 (1) and (3) (in §6.1) we may regard

(g∗)−1 as

(
s̄ −r̄
−q̄ p̄

)
, (2)

when we compute the action of g ∈ SΓ0(1+i) on Θ
(

a
b

)
’s with characteristic b ∈

1
2
Z[i]2.

In order to prove the first statement of theorem, we give some lemmas which can
be proved by Fact 1 and straightforward calculations.

20



Lemma 3 We have

x3 · g = e[Re(r)]x3, g =

(
p q
r s

)
∈ SΓ0(1+i).

Lemma 4 For g ∈ SΓ0(1+i) satisfying Re(s) ≡ 1 mod 2, the function z1 · g is
given by

e[
Re(r)

2
]z1(z, t) if r ∈ 2Z[i],

−e[
Re(r + s) + Im(s)

2
]z2(z, t) if r /∈ 2Z[i].

Lemma 5 For g ∈ SΓ0(1+i) satisfying Re(s) ≡ 1 mod 2, the function z2 · g is
given by

−e[
Re(p + r + s)− Im(p− s)

2
+ Re(q)]z2 if r ∈ 2Z[i], q ∈ (1+i)Z[i],

−e[
Re(p− s) + Im(p + r + s)

2
+ Im(q)]z2 if r ∈ 2Z[i], q /∈ (1+i)Z[i],

e[
Re(p + r)− Im(p)

2
]z1 if r /∈ 2Z[i], q ∈ (1+i)Z[i],

ex[
Re(p) + Im(p + r)

2
]z1 if r /∈ 2Z[i], q /∈ (1+i)Z[i].

Lemmas 3,4,5 yield the following Proposition.

Proposition 7 An element g ∈ SΓ0(1+i) satisfying Re(s) ≡ 1 mod 2 belongs to
〈W,W 〉 = Iso1 ∩ Iso3 if and only if

Re(p + s)− Im(p− s)

2
+ Re(q) ≡ 1 mod 2 if q ∈ (1+i)Z[i], r ∈ 2Z[i],

Re(p + s)− Im(p− s)

2
≡ 1 mod 2 if q ∈ (1+i)Z[i], r /∈ 2Z[i],

Re(p + r + s) + Im(p + r + s)

2
+ Im(q) ≡ 0 mod 2 if q /∈ (1+i)Z[i], r ∈ 2Z[i],

Re(p + r + s) + Im(p + r + s)

2
≡ 0 mod 2 if q /∈ (1+i)Z[i], r /∈ 2Z[i].

This proposition yields the first statement of Theorem 5.
We next give a necessary and sufficient condition for g ∈ SΓ0(1+i) to belong to

Iso2 ∩ Iso3. Fact 1 and straightforward calculations imply the following.
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Lemma 6 For an element g ∈ SΓ0(1+i), if q ∈ (1+i)Z[i] then

x2 · g = e[Re(q)]x2, x1 · g = e[Re(p + q + r + s)]x1,

if q /∈ (1+i)Z[i] then

x2 · g = e[Re(p + q)]x1, x1 · g = e[Re(q + s)]x2.

Lemma 6 yields the following.

Lemma 7
(

x2 − x1

x2 + x1

)
· g = A

(
x2 − x1

x2 + x1

)
, g =

(
p q
r s

)
∈ SΓ0(1+i),

where 2× 2 matrix A is given by

(
1

1

)
if q ∈ (1+i)Z[i], Re(q) ∈ 2Z, Re(p + q + r + s) ∈ 2Z,

−
(

1
1

)
if q ∈ (1+i)Z[i], Re(q) /∈ 2Z, Re(p + q + r + s) /∈ 2Z,

(
1

1

)
if q ∈ (1+i)Z[i], Re(q) ∈ 2Z, Re(p + q + r + s) /∈ 2Z,

−
(

1
1

)
if q ∈ (1+i)Z[i], Re(q) /∈ 2Z, Re(p + q + r + s) ∈ 2Z,

(
1

−1

)
if q /∈ (1+i)Z[i], Re(p + q) /∈ 2Z, Re(q + s) /∈ 2Z,

−
(

1
−1

)
if q /∈ (1+i)Z[i], Re(p + q) ∈ 2Z, Re(q + s) ∈ 2Z,

( −1
1

)
if q /∈ (1+i)Z[i], Re(p + q) /∈ 2Z, Re(q + s) ∈ 2Z,

−
( −1

1

)
if q /∈ (1+i)Z[i], Re(p + q) ∈ 2Z, Re(q + s) /∈ 2Z.

Fact 1 and straightforward calculations imply the following.

Lemma 8 By the action of an element g ∈ SΓ0(1+i) satisfying Re(s) ≡ 1 mod 2,
y1 is transformed into

e[
Re(r) + Im(r)

2
]y1 if r ∈ 2Z[i], −e[

Re(r) + Im(r)

2
]y2 if r /∈ 2Z[i],

and y2 is transformed into

−e[Re(p)+ Re(r)+Im(r)
2

]y2 if r ∈ 2Z[i], q ∈ (1+i)Z[i],

−e[Im(p)+−Re(r)+Im(r)
2

]y2 if r ∈ 2Z[i], q /∈ (1+i)Z[i],

e[Re(p)+ Re(r)+Im(r)
2

]y1 if r /∈ 2Z[i], q ∈ (1+i)Z[i],

e[Im(p)+−Re(r)+Im(r)
2

]y1 if r /∈ 2Z[i], q /∈ (1+i)Z[i].
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Lemma 8 implies the following Lemma.

Lemma 9
(

y1

y2

)
· g = A

(
y1

y2

)
, g =

(
p q
r s

)
∈ SΓ0(1+i), Re(s) ≡ 1 mod 2,

where 2× 2 matrix A is given by
(

1
1

)
if r ∈ 2(1+i)Z[i], P /∈ 2Z,

−
(

1
1

)
if r /∈ 2(1+i)Z[i], r ∈ 2Z[i], P /∈ 2Z,

(
1

1

)
if r /∈ 2Z[i], Re(r)+Im(r)

2
/∈ 2Z, P + εRe(r)+Im(r)

2
∈ 2Z,

−
(

1
1

)
if r /∈ 2Z[i], Re(r)+Im(r)

2
∈ 2Z, P + εRe(r)+Im(r)

2
/∈ 2Z,

(
1

−1

)
if r ∈ 2(1+i)Z[i], P ∈ 2Z,

−
(

1
−1

)
if r /∈ 2(1+i)Z[i], r ∈ 2Z[i], P ∈ 2Z,

( −1
1

)
if r /∈ 2Z[i], Re(r)+Im(r)

2
∈ 2Z, P + εRe(r)+Im(r)

2
∈ 2Z,

−
( −1

1

)
if r /∈ 2Z[i], Re(r)+Im(r)

2
/∈ 2Z, P + εRe(r)+Im(r)

2
/∈ 2Z,

where ε = (−1)Re(q)+Im(q) and P = Re(p + q) + Im(q).

Proposition 8 An element g ∈ SΓ0(1+i) satisfying Re(s) ≡ 1 mod 2 belongs to
Iso2 if and only if

Re(p + q) +
Re(r)− (−1)Re(q)+Im(q)Im(r)

2
≡ 1 mod 2.

Proof. Since only the sign of Φ2 changes by the action of g ∈ SΓ0(1+i), if

(
x2−x1

x2+x1

)

is transformed into A

(
x2−x1

x2+x1

)
by the action of g then

(
y1

y2

)
is transformed into

±A

(
y1

y2

)
by the action of g, where A =

(±1
±1

)
,

( ±1
±1

)
in Lemmas 7

and 9. Thus g ∈ SΓ0(1+i) belongs to Iso2 if and only if the sign of the transformation

matrix A for the action of g on

(
x2−x1

x2+x1

)
coincides with that on

(
y1

y2

)
.

(1) the case A = ±
(

1
1

)
.

By Lemma 7, g ∈ SΓ0(1+i) satisfies

q ∈ (1+i)Z[i], Re(q) + Re(p + q + r + s) ∈ 2Z,

i.e.,
Re(q) + Im(q) ≡ 0 mod 2, Re(p + r) ≡ 1 mod 2.
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By Lemma 9, we have

r ∈ 2Z[i], P = Re(p + q) + Im(q) /∈ 2Z.

The coincident condition for the signs is

Re(q) ≡ Re(r) + Im(r)

2
≡ Re(r) + Im(r)

2
− Re(p + r) + 1 mod 2.

Thus we have

Re(p + q) +
Re(r)− Im(r)

2
≡ 1 mod 2.

(2) the case A = ±
(

1
1

)
.

By Lemma 7, g ∈ SΓ0(1+i) satisfies

q ∈ (1+i)Z[i], Re(q) + Re(p + q + r + s) /∈ 2Z,

i.e.,
Re(q) + Im(q) ≡ 0 mod 2, Re(p + r) ≡ 0 mod 2.

By Lemma 9, we have r /∈ 2Z[i] and

Re(r) + Im(r)

2
+ P +

εRe(r) + Im(r)

2

= Re(p + q) + Im(q + r) +
(1 + (−1)Re(q)+Im(q))Re(r)

2
≡ Re(p + r) + Im(r) ≡ Re(p) ≡ 1 mod 2.

The coincident condition for the signs is

Re(q) ≡ Re(r) + Im(r)

2
+ 1 ≡ Re(r) + Im(r)

2
− Re(p + r) + 1 mod 2.

Thus we have

Re(p + q) +
Re(r)− Im(r)

2
≡ 1 mod 2.

(3) the case A = ±
(

1
−1

)
.

By Lemma 7, g ∈ SΓ0(1+i) satisfies

q /∈ (1+i)Z[i], Re(p + q) + Re(q + s) ∈ 2Z,

i.e.,
Re(q) + Im(q) ≡ 1 mod 2, Re(p) ≡ 1 mod 2.

By Lemma 9, we have

r ∈ 2Z[i], P = Re(p + q) + Im(q) ∈ 2Z.

The coincident condition for the signs is

Re(p + q) + 1 ≡ Re(r) + Im(r)

2
mod 2.
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(4) the case A = ±
( −1

1

)
.

By Lemma 7, g ∈ SΓ0(1+i) satisfies

q /∈ (1+i)Z[i], Re(p + q) + Re(q + s) /∈ 2Z,

i.e.,
Re(q) + Im(q) ≡ 1 mod 2, Re(p) ≡ 0 mod 2.

By Lemma 9, we have r /∈ 2Z[i] and

Re(r) + Im(r)

2
+ P +

εRe(r) + Im(r)

2
≡ Re(p + q) + Im(q + r) ≡ Re(p) ≡ 0 mod 2.

The coincident condition for the signs is

Re(p + q) + 1 ≡ Re(r) + Im(r)

2
mod 2. q.e.d.

This proposition yields the second statement of Theorem 5. We show the last
statement of Theorem 5. The element g ∈ W satisfying Re(s) ≡ 1 mod 2 belongs

to Ŵ if and only if the transformation matrix A for the action of g on

(
x2−x1

x2+x1

)
is

±
(

1
1

)
or ±

(
1

−1

)
.

Thus we have the condition r ∈ 2Z[i], which is kept under the multiplication iI2 to
g.

8 Embeddings of the quotient spaces

In the previous section, we constructed automorphic functions Φ1, Φ2 and Φ3 for
W . The map

H3 3 (z, t) 7→ (λ1, . . . , λ4,
Φ1

x3
0

,
Φ2

x2
0

,
Φ3

x4
0

)

induces a map H3/W → R7, which is generically injective but not quite. In §8.1,
we construct, for each j = 1, 2, 3, automorphic functions fj1, fj2, . . . for W such
that their common zero is Fk ∪ Fl, where {j, k, l} = {1, 2, 3}. Here the curves
F1, F2, F3 ⊂ H3 are defined as the W -orbits of the fixed loci of the transformations
γ1, γ2, γ3, respectively (§4.2, Remark 4 in §7.1). These functions give, in §§8.2,
8.3 and 8.4, embeddings of the quotient spaces H3/SΓ0(1+i), H3/W̆ and H3/W ,
respectively.
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8.1 Automorphic functions for W vanishing along Fj

We use W -invariant functions as follows:

f00 = (x2
2 − x2

1)y1y2 = Φ3,

f01 = (x2
2 − x2

1)z1z2z3z4,

f11 = x3z1z2 = Φ1,

f12 = x1x2z1z2,

f13 = x3(x
2
2 − x2

1)z3z4,

f14 = x1x2(x
2
2 − x2

1)z3z4,

f20 = (x2 − x1)z2z3 + (x2 + x1)z1z4,

f21 = z1z2{(x2 − x1)z1z3 + (x2 + x1)z2z4},
f22 = (x2

2 − x2
1){(x2 − x1)z1z4 + (x2 + x1)z2z3},

f30 = (x2 − x1)y1 + (x2 + x1)y2 = Φ2,

f31 = (x2 − x1)z1z3 − (x2 + x1)z2z4,

f32 = z3z4{−(x2 − x1)z1z4 + (x2 + x1)z2z3},

where

z3 = Θ
2
64
0, i
1, 0

3
75, z4 = Θ

2
64
1+i, i
1, 1+i

3
75.

Set
fij = fij/x

deg(fij)
0 ,

where deg(f) denotes the total degree of the polynomial f with respect to xi, yj, zk.

Proposition 9 The functions fjp are invariant under the action of W . These func-
tions change the signs by the actions of γ1, γ2 and γ3 as in the table

γ1 γ2 γ3

f0j + + +
f1j + − −
f2j − + −
f3j − − +

This Proposition can be obtained by Proposition 5 and the following lemma.

Lemma 10 We have
(

z3

z4

)
· g1 =

(
1 0
0 −1

)(
z3

z4

)
,

(
z3

z4

)
· g2 =

(
0 −1
1 0

)(
z3

z4

)
.

By the action of T, γ1, γ2, γ3 ∈ ΓT (2), the signs of z3, z4 change as

T γ1 γ2 γ3

z3 + + + +
z4 − + − −

Proposition 2 and Fact 3 yield the following proposition, which is a key to study
the zero locus of fjp.
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Proposition 10 We have

4z2
1 = 4Θ

2
64
0, 1
1, 0

3
75
2

= 2Θ
2
64
0, 0
0, 0

3
75Θ

2
64
0, 1+i
1+i, 0

3
75 + 2Θ

2
64
0, 1+i
0, 0

3
75Θ

2
64

0, 0
1+i, 0

3
75− 2Θ

2
64
1+i, 1+i
1+i, 1+i

3
75Θ

2
64
1+i, 0
0, 1+i

3
75

= (x0 + x1 + x2 + x3)(x0 − x1 − x2 + x3),

4z2
2 = 4Θ

2
64
1+i, 1
1, 1+i

3
75
2

= −2Θ
2
64
0, 0
0, 0

3
75Θ

2
64
0, 1+i
1+i, 0

3
75 + 2Θ

2
64
0, 1+i
0, 0

3
75Θ

2
64

0, 0
1+i, 0

3
75 + 2Θ

2
64
1+i, 1+i
1+i, 1+i

3
75Θ

2
64
1+i, 0
0, 1+i

3
75

= (x0 + x1 − x2 − x3)(x0 − x1 + x2 − x3)

4z2
3 = 4Θ

2
64
0, i
1, 0

3
75
2

= 2Θ
2
64
0, 0
0, 0

3
75Θ

2
64
0, 1+i
1+i, 0

3
75 + 2Θ

2
64
0, 1+i
0, 0

3
75Θ

2
64

0, 0
1+i, 0

3
75 + 2Θ

2
64
1+i, 1+i
1+i, 1+i

3
75Θ

2
64
1+i, 0
0, 1+i

3
75

= (x0 + x1 − x2 + x3)(x0 − x1 + x2 + x3),

4z2
4 = 4Θ

2
64
1+i, i
1, 1+i

3
75
2

= −2Θ
2
64
0, 0
0, 0

3
75Θ

2
64
0, 1+i
1+i, 0

3
75 + 2Θ

2
64
0, 1+i
0, 0

3
75Θ

2
64

0, 0
1+i, 0

3
75− 2Θ

2
64
1+i, 1+i
1+i, 1+i

3
75Θ

2
64
1+i, 0
0, 1+i

3
75

= (x0 + x1 + x2 − x3)(x0 − x1 − x2 − x3).

Remark 7 The functions z2
1 + z2

2, z2
1z

2
2, z2

3 + z2
4, z2

1z
2
2, z2

1z
2
3 + z2

2z
2
4 and z2

1z
2
4 + z2

2z
2
3

are invariant under the action of Λ. They can be expressed in terms of λ1, . . . , λ4

and x0:

z2
1 + z2

2 = z2
3 + z2

4 =
1

2
(x2

0 − λ1 + λ3),

z2
1z

2
2 =

1

16
(λ2

3 − 2(x2
0 + λ1)λ3 + 8λ4x0 + x4

0 − 2x2
0λ1 + λ2

1 − 4λ2),

z2
3z

2
4 =

1

16
(λ2

3 − 2(x2
0 + λ1)λ3 − 8λ4x0 + x4

0 − 2x2
0λ1 + λ2

1 − 4λ2),

z2
1z

2
3 + z2

2z
2
4 =

1

8
(λ2

3 + 2(3x2
0 − λ1)λ3 + x4

0 − 2x2
0λ1 + λ2

1 − 4λ2),

z2
1z

2
4 + z2

2z
2
3 =

1

8
(λ2

3 − 2(x2
0 + λ1)λ3 + x4

0 − 2x2
0λ1 + λ2

1 + 4λ2).

Remark 8 Proposition 10 implies

z2
1 − z2

2 = x0x3 − x1x2,

z2
3 − z2

4 = x0x3 + x1x2,

z2
3 − z2

1 = z2
2 − z2

4 = x1x2,

z2
1 − z2

4 = z2
3 − z2

2 = x0x3,
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z2
1z

2
3 − z2

2z
2
4 =

1

2
x0x3(x

2
0 − x2

1 − x2
2 + x2

3),

−z2
1z

2
4 + z2

2z
2
3 =

1

2
x1x2(x

2
0 − x2

1 − x2
2 + x2

3).

These functions are invariant under the action of g1 and their signs change by the
action g2. The product of x3 (resp. x1x2) and each of these is invariant under the
action Λ and can be expressed in terms of λ1, . . . , λ4 and x0.

Theorem 6 The analytic sets V1, V2 and V3 of the ideals

I1 = 〈f11, f12, f13, f14〉, I2 = 〈f21, f22〉, I3 = 〈f31, f32〉
are (set-theoretically) equal to F2 ∪ F3, F1 ∪ F3 and F1 ∪ F2, respectively.

Corollary 2 The analytic set Vjk of the ideals 〈Ij, Ik〉 is set-theoretically equal to
Fl for {j, k, l} = {1, 2, 3}.

Proof of Theorem 6. Since the sets Fj are the fixed loci of γj modulo W and fkl are
invariant under the action of W , it is clear that Vj ⊃ Fk ∪Fl for {j, k, l} = {1, 2, 3}.
We first show V1 ⊂ F2 ∪ F3. Since we have

f 2
11 = x2

3

ε1ε2ε3=1∏
ε1,ε2,ε3=±1

(x0 + ε1x1 + ε2x2 + ε3x3),

f 2
12 = x2

1x
2
2

ε1ε2ε3=1∏
ε1,ε2,ε3=±1

(x0 + ε1x1 + ε2x2 + ε3x3),

f 2
13 = x2

3(x
2
2 − x2

1)
2

ε1ε2ε3=−1∏
ε1,ε2,ε3=±1

(x0 + ε1x1 + ε2x2 + ε3x3),

f 2
14 = x2

1x
2
2(x

2
2 − x2

1)
2

ε1ε2ε3=−1∏
ε1,ε2,ε3=±1

(x0 + ε1x1 + ε2x2 + ε3x3),

they are invariant also under the action of ΓT (2). So we express the common zeros
of them in terms of xj. The twelve edges of the octahedron

Oct = {x = [x0, x1, x2, x3] ∈ P3(R) | |x1|+ |x2|+ |x3| ≤ x0},
(recall that H3/ΓT (2) is realized as Oct minus the vertices, in Theorem 1) and the
segments

{x ∈ Oct | x1 = x3 = 0}, {x ∈ Oct | x2 = x3 = 0},
{x ∈ Oct | x0 + x1 + x2 + x3 = x1 − x2 = 0},
{x ∈ Oct | x0 − x1 − x2 + x3 = x1 − x2 = 0},
{x ∈ Oct | x0 + x1 − x2 − x3 = x1 + x2 = 0},
{x ∈ Oct | x0 − x1 + x2 − x3 = x1 + x2 = 0}

come into the game. Fact 2 shows that V1 is the union of the inverse images of ϑ,
which coincides with F2 ∪ F3.
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We next show V3 ⊂ F1 ∪ F2. Since we have

f31 · T = (x2 − x1)z1z3 + (x2 + x1)z2z4,

f32 · T = z3z4{(x2 − x1)z1z4 + (x2 + x1)z2z3},

the products

f̃31 = (f31)(f31 · T ) = (x2 − x1)
2z2

1z
2
3 − (x2 + x1)

2z2
2z

2
4 ,

f̃32 = (f32)(f32 · T ) = z2
3z

2
4{(x2 − x1)

2z2
1z

2
4 − (x2 + x1)

2z2
2z

2
3},

are invariant under the action of ΓT (2). We express the common zero of f̃31 and f̃32

in terms of xj. By Proposition 10, we have

f̃31 = −1

4

[
x1x2x

4
3 + 2x1x2(3x

2
0 − x2

1 − x2
2)x

2
3 − 2x0(x

2
2 + x2

1)(x
2
0 − x2

1 − x2
2 + x2

3)x3

+x1x2(x1 + x0 − x2)(x0 + x1 + x2)(x2 − x1 + x0)(x0 − x1 − x2)
]
,

f̃32 = − 1

64
x1x2(x

2
0 + x2

1 − x2
2 − x2

3)(x
2
0 − x2

1 + x2
2 − x2

3)

×
∏

ε1ε2ε3=−1

(x0 + ε1x1 + ε2x2 + ε3x3).

Thus V3 is a subset of the union of the common zeroes of f̃31 and the factors of f̃32.
We study the restriction of f̃31 on the algebraic set of each factor of f̃32. In the
octahedron Oct, the factors x2

0 + x2
1 − x2

2 − x2
3 and x2

0 − x2
1 + x2

2 − x2
3 vanish only on

[x0, x1, x2, x3] = [1, 0, 0,±1], [1, 0,±1, 0] and [1, 0, 0,±1], [1,±1, 0, 0], respectively.
The functions f̃31 vanishes on these points. On xj = 0, f̃31 reduces to

1

2
x0x

2
kx3(x

2
0 − x2

k + x2
3),

where {j, k} = {1, 2}. On x0 + ε1x1 + ε2x2 + ε3x3 = 0 (ε1ε2ε3 = −1), f̃31 reduces to

ε3x0(x1 − ε3x2)
2(x0 + ε1x1)(x0 + ε2x2)(x0 + ε1x1 + ε2x2).

Thus the common zero of f̃31 and f̃32 in the fundamental domain FD of H3/W in
Figure 2 is the union of F1 ∪ F2 and the geodesic joining (z, t) = (0, 0), (−1 + i, 0)
through ¤ = (−1+i√

2
, 1

2
) which is the inverse image of ϑ of {[x0, x1, x2, x3] ∈ Oct | x1 =

x3 = 0}. We have only to show that f31 does not vanish on ϑ−1{[x0, x1, x2, x3] ∈
Oct | x1 = x3 = 0}.

Since
(z1z2z3z4)

2 =
∏

ε1,ε2,ε3=±1

(x0 + ε1x1 + ε2x2 + ε3x3),

the function z1z2z3z4 never vanish on the interior of FD. Thus we have z1z2z3z4 > 0
or z1z2z3z4 < 0 on the interior of FD. Since f31 reduces to −x1(z1z3 + z2z4) on the
set {[x0, x1, x2, x3] ∈ Oct | x2 = x3 = 0} and f31 vanishes on this set, the sign of
z1z3 is different from that of z2z4, which implies z1z2z3z4 < 0 the interior of FD.
On the other hand, f31 reduces to x2(z1z3 − z2z4) on the set {[x0, x1, x2, x3] ∈ Oct |
x1 = x3 = 0}. Since the sign of z1z3 is different from that of z2z4 on the interior of
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FD, z1z3 − z2z4 never vanish on the interior of FD. Hence f31 never vanishes on
the interior of {[x0, x1, x2, x3] ∈ Oct | x1 = x3 = 0, x2 6= 0}.

We finally show V2 ⊂ F1 ∪ F3. Since we have

f21 · T = z1z2{(x2 − x1)z1z3 − (x2 + x1)z2z4},
f22 · T = (x2

2 − x2
1){−(x2 − x1)z1z4 + (x2 + x1)z2z3},

the products

f̃21 = (f21)(f21 · T ) = z2
1z

2
2{(x2 − x1)

2z2
1z

2
3 − (x2 + x1)

2z2
2z

2
4},

f̃22 = (f22)(f22 · T ) = (x2
2 − x2

1)
2{−(x2 − x1)

2z2
1z

2
4 + (x2 + x1)

2z2
2z

2
3},

are invariant under the action of ΓT (2). We express the common zero of them in
terms of xj. By proposition 10, we have

f̃21 =
1

16
f̃31

ε1ε2ε3=1∏
ε1,ε2,ε3=±1

(x0 + ε1x1 + ε2x2 + ε3x3)

f̃22 =
1

4
(x2

2 − x2
1)

2x1x2(x
2
0 + x2

1 − x2
2 − x2

3)(x
2
0 − x2

1 + x2
2 − x2

3).

Thus V2 is a subset of the union of the common zeroes of f̃21 and the factors of
f̃22. We study the restriction of f̃21 on the algebraic set of each factor of f̃22. Since
we have studied the restriction of f̃31 on the algebraic set of each factor of f̃32, we
have only to consider the restriction of

z2
1z

2
2 =

1

16

ε1ε2ε3=1∏
ε1,ε2,ε3=±1

(x0 + ε1x1 + ε2x2 + ε3x3)

on the algebraic set of each factor of f̃22 and that of f̃21 on the sets x1 ± x2 = 0.
We can see that the common zero of f̃21 and f̃22 in FD is the union of F1 ∪ F3

and the geodesic joining (z, t) = (−1, 0), (i, 0) through ¤ = (−1+i√
2

, 1
2
) which is the

inverse image of ϑ of {[x0, x1, x2, x3] ∈ Oct | x2 = x3 = 0}. In order to show that
f21 does not vanish on ϑ−1{[x0, x1, x2, x3] ∈ Oct | x2 = x3 = 0}, follow the proof of
the non-vanishing of f31 on ϑ−1{[x0, x1, x2, x3] ∈ Oct | x1 = x3 = 0}. q.e.d.

8.2 An Embedding of H3/SΓ0(1+i)

Theorem 7 The map

ϕ0 : H3/SΓ0(1+i) 3 (z, t) 7→ (λ1, . . . , λ4, f01) ∈ R5

is injective, where f01 = f01/x
6
0. Its image Image(ϕ0) is determined by the image

Image(λ) under λ : H3 3 (z, t) 7→ (λ1, . . . , λ4) and the relation

256f 2
01 = (x2

2 − x2
1)

2
∏

ε1,ε2,ε3=±1

(x0 + ε1x1 + ε2x2 + ε3x3)

= (λ2
1 − 4λ2)

∏
ε3=±1

(λ2
3 − 2(x2

0 + λ1)λ3 + ε38x0λ4 + x4
0 − 2x2

0λ1 + λ2
1 − 4λ2),

as a double cover of Image(λ) branching along its boundary.
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If we replace f01 by f00, the map is injective as well, but the expression of the image
becomes a bit more complicated for f00.

Proof. Proposition 10 and Remark 7 give the expression f 2
01 in terms of λ1, . . . , λ4

and x0.
Since the function f01 is invariant under the action of SΓ0(1+i) and changes its sign
by the action of T , the map ϕ0 induces a double cover

Image(ϕ) 3 (λ1, . . . , λ4, f01) 7−→ (λ1, . . . , λ4) ∈ Image(λ),

which ramifies along the zero locus of f01:

H3/SΓ0(1 + i)
ϕ0−→ Image(ϕ0)

↓ ↓
H3/Λ

λ−→ Image(λ)

The natural map (studied in §5.2 and §5.3) H3/SΓ0(1+i) → H3/Λ is a double cover
of a 3-ball (minus two points) by a 3-sphere (minus two points) branching along the
boundary of the 3-ball. Thus we have only to show that the function f01 vanishes
only along the boundary a ∪ b ∪ c ∪ d of the 3-ball H3/Λ (see Theorem 2).

By remark 2 (2), we have (x2 + x1) · (g1T ) = −(x2 + x1). Thus x2 + x1 vanishes on
the mirror {(z, t) ∈ H3 | Im(z) = 1

2
} of the reflection g1T . By Theorem 1, x2 + x1

vanishes only on d in the fundamental domain in Figure 10(left). Similarly, x2 − x1

vanishes only on the mirror c in the fundamental domain in Figure 10(left).

By Theorem 1 and Proposition 10, z1z2z3z4 vanishes only on a∪b in the fundamental
domain in Figure 10(left). q.e.d.

We briefly observe the image Image(ϕ0). The two cusps ∞ and 0, and the points
© and ¤ (defined in §4.1) are mapped to

∞̄ := (0, 0, 1, 0, 0), 0̄ := (1, 0, 0, 0, 0), ©̄ := (0, 0, 0, 0, 0), ¤̄ := (
1

2
,

1

16
, 0, 0, 0).

The images F̄1, F̄2 and F̄3 of the axes F1, F2 and F3 (see §4.2) are union of curves
joining these points:

F̄1 : ¤̄——–∞̄——–©̄, F̄2 : ¤̄——–0̄——–©̄,

F̄3 : ¤̄——–0̄——–∞̄——–©̄.

Four of these curves come to each cusp. We parameterize these curves (0 ≤ t ≤ 1)
and present them as follows:

F̄1

{ ¤̄ −→ ∞̄ (0, 0, (1− t)2, 0, 0) as t → 0,

©̄ −→ ∞̄ ( t2

2
, t4

16
, (1− t)2,− t2(1−t)

4
, 0) as t → 0,

F̄3

{
0̄ −→ ∞̄ (t2, 0, (1− t)2, 0, 0) as t → 0,

©̄ −→ ∞̄ ( t2

2
, t4

16
, (1− t)2, t2(1−t)

4
, 0) as t → 0,

and

F̄2

{
¤̄ −→ 0̄ ((1− t)2, 0, 0, 0, (1− t)2t2(2− t)2) as t → 0,

©̄ −→ 0̄ ( t2

4
, +(1− t

2
)2, t2

4
(1− t

2
)2, 0, 0, 0) as t → 0,

F̄3

{
¤̄ −→ 0̄ ((1− t)2, 0, 0, 0,−(1− t)2t2(2− t)2) as t → 0,
∞̄ −→ 0̄ ((1− t)2, 0, t2, 0, 0) as t → 0.
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These curves can be illustrated as in Figure 12. Each of the two cusps ∞̄ and 0̄ is
shown as a hole. These holes can be deformed into sausages as in Figure 13. Note
that this is just the orbifold H3/SΓ0(1 + i) shown in Figure 8(right), if we replace
the curves L∞ andL0 by their tubular neighborhoods.

Recall that four of the orbifold-singular-loci stick into each cusp-hole, of which
boundary is a 2-sphere, and that the double cover of a 2-sphere branching at four
points is a torus.

F1

F1

F3
F3

F3

F2

F2

∞̄

0̄

Figure 12: Orbifold singularities in Image(ϕ0) and the cusps ∞̄ and 0̄

L∞
L0

F3

F1

F2

Figure 13: The cusp-holes are deformed into two sausages

8.3 An Embedding of H3/W̆

Theorem 8 The map

ϕ1 : H3/W̆ 3 (z, t) 7→ (ϕ0, f11, . . . , f14) ∈ R9

is injective, where fij = fij/x
deg(fij)
0 . The products f1pf1q (1 ≤ p ≤ q ≤ 4) can be

expressed as polynomials of x0, λ1, . . . , λ4 and f01. The image Image(ϕ0) together
with these relations determines the image Image(ϕ1) under the map ϕ1.
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Proof. Each f1p is invariant under the action of W̆ and its sign changes under the

action of SΓ0(1+i)/W̆ . By Proposition 10 and Remark 7, f 2
11, . . . , f

2
14 and f11f12,

f13f14 can be expressed in terms of λj and x0; they are invariant under the action of
Λ. The product f1pf1q (p = 1, 2 q = 3, 4) is invariant under the action of SΓ0(1+i)
by Proposition 9 and they can be expressed in terms of x0, λj, and f01. Thus if
one of the values of f11, . . . , f14 is not zero at a point (z, t) ∈ H3, then this non-zero
value together with the image ϕ0(z, t) determines the vector (f11(z, t), . . . , f14(z, t)).
Thus we have the commutative diagram

H3/W̆
ϕ1−→ Image(ϕ1)

↓ ↓
H3/SΓ0(1 + i)

ϕ0−→ Image(ϕ0)

of ϕ0, ϕ1 and the two (vertical) double covers. Since ϕ0 is an isomorphism and the
left vertical map ramifies exactly along F2 ∪ F3 (§5.1, §5.2), the map ϕ1 is injective
thanks to Theorem 6. q.e.d.

Though the embedding dimension is too high to see the shape of the image di-
rectly unfortunately, the theorem above and the argument in §5 asserts the following:
The boundary of a small neighborhood of the cusp ϕ1(0) is a torus, which is the
double cover of that of the cusp ϕ0(0); note that two F2-curves and two F3-curves
stick into ϕ0(0). The boundary of a small neighborhood of the cusp ϕ1(∞) remains
to be a 2-sphere; note that two F1-curves and two F3-curves stick into ϕ0(∞), and
that four F1-curves stick into ϕ1(∞).

Topologically, the sausage L0 in Figure 13 (and Figure 8(right)) is covered by a
doughnut, a tubular neighborhood of the curve L0 in Figure 7(right).

8.4 An Embedding of H3/W

Theorem 9 The map

ϕ : H3/W 3 (z, t) 7→ (ϕ1, f21, f22, f31, f32) ∈ R13

is injective, where fij = fij/x
deg(fij)
0 . The products f2qf2r f3qf3r and f1pf2qf3r (p =

1, . . . , 4, q, r = 1, 2) can be expressed as polynomials of x0, λ1, . . . , λ4 and f01. The
image Image(ϕ1) together with these relations determines the image Image(ϕ) under
the map ϕ.

Proof. By Proposition 10, the products f2qf2r, f3qf3r and f1pf2qf3r (p = 1, . . . , 4, q, r =
1, 2) are invariant under the action of SΓ0(1+i) by Proposition 9. They can be ex-
pressed in terms of x0, λ1, . . . , λ4 and f01. For example,

f 2
22 = (λ2

1 − 4λ2){(x2
1 + x2

2)(z
2
1z

2
4 + z2

2z
2
3)− 2x1x2(z

2
1z

2
4 − z2

2z
2
3) + 2f01},

f 2
31 = (x2

1 + x2
2)(z

2
1z

2
3 + z2

2z
2
4)− 2x1x2(z

2
1z

2
3 − z2

2z
2
4)− 2f01,

f31f32 = z2
3z

2
4{2x1x2(z

2
1 − z2

2)− (x2
1 + x2

2)(z
2
1 + z2

2)}+ (z2
3 + z2

4)f01,

f21f31 = z1z2f̃31,

f22f31 = (x2
1 + x2

2)(x0f13 − f14)− 2f14(z
2
1 + z2

2) + (x2
2 − x2

1)
2(x0f11 + f12),

f22f32 = − 1

64
(x2

0 + x2
1 − x2

2 − x2
3)(x

2
0 − x2

1 + x2
2 − x2

3)f14;
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(Remarks 7 and 8 help us to find these expressions.) So the values of f 2
21, f 2

22, f 2
31 and

f 2
32 at any point in H3 are determined by those of x0, λ1, . . . , λ4 and f01. Moreover,

if one of the values of f21, f22, f31 and f32 is not zero at a point (z, t) ∈ H3, then
this non-zero value together with the image ϕ1(z, t) determines the vector

(f21(z, t), f22(z, t), f31(z, t), f32(z, t)).

Thus we have the commutative diagram

H3/W
ϕ−→ Image(ϕ)

↓ ↓
H3/W̆

ϕ1−→ Image(ϕ1)

of ϕ, ϕ1 and the two (vertical) double covers. Since ϕ1 is an isomorphism and the
left vertical map ramifies exactly along F1 (§5.1), the map ϕ is injective thanks to
Corollary 2. q.e.d.

Though the embedding dimension is too high to see the shape of the image
directly unfortunately, the theorem above and the argument in §5 asserts the fol-
lowing: The boundary of a small neighborhood of the cusp ϕ(∞) is a torus, which
is the double cover of that of the cusp ϕ1(∞); recall that four F1-curves stick into
ϕ1(∞). The boundary of a small neighborhood of the cusp ϕ(0) is a torus, which is
the unbranched double cover of that of the cusp ϕ1(0), a torus.

Eventually, the two sausages in Figure 13 (and Figure 8(right)) are covered by two
linked doughnuts, tubular neighborhoods of the curves L0 and L∞ in Figure 1. Note
that, in the (high dimensional) ambient space, the two tori look as if they are not
linked, however they are linked in the Image(ϕ).
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