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ON ZETA FUNCTIONS OF MODULAR REPRESENTATIONS OF
A DISCRETE GROUP

SHINYA HARADA AND HYUNSUK MOON

A. It is proved that the generating function defined by the num-
bers of isomorphism classes of absolutely irreducible representations of
a finitely generated groupG into GLd(Fqn) for variousn ≥ 1 is a ratio-
nal function. It is also proved that the generating function defined by
weighted sums over isomorphism classes of representations ofG into
GLd(Fqn) for variousn ≥ 1 is meromorphic over both the complex num-
bers and thep-adic complex numbers.

0. I

Let G be a finitely generated group,Fq the finite field ofq elements of
characteristicp, andFqn the finite extension field ofFq of degreen. In this
paper we study thezeta functions

Z(G,T) = exp


∞∑

n=1

Nn

n
Tn

 ,

where the rational numberNn is the “mass” of the set of a certain class of
representationsρ : G→ GLd(Fqn). By definition,Z(G,T) is a formal power
series with coefficients inQ. We are interested in their rationality and mero-
morphy. If Nn is the number of all representationsρ : G → GLd(Fqn) (for
fixedG, d andq), then it is easy to prove the rationality ofZ(G,T) by reduc-
ing to the Weil conjecture (Theorem 1.1). The next and most natural case
to consider will be the case whereNn is the number of isomorphism classes
of all representations ofG into GLd(Fqn), but this seems rather difficult. In-
stead, we first look at the absolutely irreducible representations. Here, we
say that a representationρ : G → GLd(Fqn) is absolutely irreducibleif the

composite homomorphismG
ρ−→ GLd(Fqn)→ GLd(Fq) is irreducible, where

Fq is an algebraic closure ofFq. Our first main result is the following:

2000Mathematics Subject Classification.Primary 20C20; Secondary 14G10, 14N10,
11M41.
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2 SHINYA HARADA AND HYUNSUK MOON

Theorem 1(Theorem 2.1). LetNai
n be the number of isomorphism classes of

absolutely irreducible representationsρ : G → GLd(Fqn). Then the power
series

Zai(G,T) = exp


∞∑

n=1

Nai
n

n
Tn


is a rational function inT.

This is proved in Section 2 by employing the theory of Procesi ([P]) con-
cerning absolutely irreducible representations of a (non-commutative) ring
into Azumaya algebras.

Another main result is on the zeta functions defined by the weighted sums
of isomorphism classes of representations (Section 3). In this case we can-
not expect in general that they are rational (for example, see Section 5).
However, by considering them as functions inT on the complex plane or
the p-adic complex plane, we prove the following result.

Theorem 2(Theorem 3.1, Corollary 3.4). Put

Nwt
n :=

∑

ρ∈Hom (G,GLd(Fqn))/∼

1
|Aut (ρ)| ,

where
Aut (ρ) = {M ∈ GLd(Fqn) | MρM−1 = ρ}.

Then the power series

Zwt(G,T) = exp


∞∑

n=1

Nwt
n

n
Tn



is p-adically meromorphic on thep-adic complex planeCp in the sense of
Subsection3.1. Also, as a complex valued function, it converges in some
neighborhood ofT = 0, and is continued meromorphically to the whole
complex planeC.

In the p-adic case, this is proved by showing that ourZwt(G,T) is in
fact an infinite product of rational functions which are essentially the zeta
function in Theorem 1.1. In the complex case, we employ Behrend’s trace
formula ([Be]) for algebraic stacks to show the meromorphy.

Dwork proved the rationality of the congruence zeta functions ([D, The-
orem 2]) by using a criterion for a formal power series to be a rational func-
tion when it is known to be meromorphic both overC andCp. It would be
interesting to find a sufficient condition forG which implies the rationality
of Zwt(G,T).

In Section 4, we prove the rationality of another type of zeta function
ZIg(G,T) (Proposition 4.1), which is the generating function defined by the
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numbersNIg
n of representations ofG into the general linear group with co-

efficients inZ/pnZ in place of the finite fieldFqn.
Although we do not treat the case, there is one more type of zeta function

of representations ofG. That is, in place of varying the degreen of the finite
field Fqn, we vary the degreed of the general linear group GLd(Fq). In this
direction, Chigira, Takegahara and Yoshida studied in [CTY] the generating
function 1+

(∑∞
d=1 |Hom (G,GLd(Fq))|Td/|GLd(Fq)|

)
of a finite groupG and

obtained interesting results on it.
Now we explain the motivation of this paper. In [M1], [MT1] and [MT2],

the finiteness was investigated for the number of isomorphism classes of
semisimple representations of the absolute Galois groupGK of an algebraic
number fieldK into GLd(Fp). Also, in [H], the first author studied the
finiteness of modp Galois representations of a local field. In [M2], an
effective upper bound was given for the number of isomorphism classes of
monomial modp Galois representations with given Artin conductor. Thus
we hope next to know more precise behavior of such numbers. However, it
seems difficult to do that in general for profinite groups such as the absolute
Galois groupGK. In this paper we attempt, as a first approximation, to do
the same for a discrete group instead of a profinite group.

Our zeta functions may be used to define some invariants of certain geo-
metric objects such as topological manifolds, knots (or links) and proper
algebraic varieties over an algebraically closed field of characteristic zero
as follows. For these objectsX, their fundamental groupsπ1 = π1(X) (or
π1(S3r X) if X is a knot or a link in the 3-sphereS3) are defined, which are
either finitely generated discrete groups or their profinite completions. Thus
we may define a zeta function ofX to beZ(π1,T) (or Z(G,T) if π1 is the
profinite completion of a discrete groupG). In the case of knots, Sink ([S])
has studied such zeta functions but of representations into SLd(Fqn) instead
of GLd(Fqn).

N

Throughout this paper,G is an arbitrary finitely generated group. Denote
by Fq the finite field ofq elements, whereq is a power of a prime number
p. For a finite setS, its order is denoted by|S| or ]S.

1. R  Zhom(G,T)

Here we review the case whereNn = Nhom
n is the number of representa-

tionsρ : G→ GLd(Fqn). SinceG is finitely generated, there exists an affine
schemeXd(G) of finite type overZ such that Hom (G,GLd(R)) ' Xd(G)(R)
for any commutative ringR (cf. [P, §1]). Then we can interpretNhom

n as
the number ofFqn-rational points ofXd(G), and hence our zeta function
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Zhom(G,T) = exp
(∑∞

n=1 Nhom
n Tn/n

)
is nothing but the congruence zeta func-

tion Z(Xd(G),T) = exp
(∑∞

n=1 ]Xd(G)(Fqn)Tn/n
)

of Xd(G). By the work [D]
of Dwork, this is known to be a rational function inT. Thus we have the
following.

Theorem 1.1. Let Nhom
n be the cardinality ofHom (G,GLd(Fqn)). Then the

power series

Zhom(G,T) = exp


∞∑

n=1

Nhom
n

n
Tn


is a rational function inT.

2. R  Zai(G,T)

In this section we prove Theorem 2.1. Before that, we recall some notions
in algebra. LetA be a commutative ring. We say that anA-algebraS is an
Azumaya algebra of degreed if the following conditions are satisfied:

(1) S is a finitely generated projectiveA-module of rankd2,
(2) the natural homomorphismS⊗A S◦ → EndA(S) given bys⊗ s′ 7−→

(t 7→ sts′−1), is an isomorphism,

whereS◦ is the opposite ring ofS. For example, the total matrix algebra
Md(A) is an Azumaya algebra of degreed overA. If A is a field, an Azumaya
algebra overA is just a central simple algebra overA.

Let R be a (non-commutative) ring. LetS be an Azumaya algebra of
degreed over A. A ring homomorphismρ : R → S is calledabsolutely
irreducibleof degreed overA, if S is generated by Im(ρ) as anA-module.
Two absolutely irreducible representationsρ1 : R→ S1 andρ2 : R→ S2

overA areequivalentif there exists anA-algebra isomorphismf : S1→ S2

such thatρ2 = f ◦ ρ1.

Theorem 2.1. Let Nai
n be the number of isomorphism classes of absolutely

irreducible representationsρ : G→ GLd(Fqn). Then the power series

Zai(G,T) = exp


∞∑

n=1

Nai
n

n
Tn



is a rational function inT.

Proof. PutR = Fq[G]. Let

AIr d(G) : (Com. Rings) −→ (Sets)
B 7−→ AIr d(G)(B)

be the covariant functor from the category of commutative rings into the cat-
egory of sets, which maps a commutative ringB to the set of isomorphism
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classes of absolutely irreducible representations ofR into Azumaya alge-
bras of degreed overB. By the theory of Procesi ([P]), there exists a scheme
Ud(G) of finite type overZ which represents AIrd(G). Thus, for any com-
mutative ringB, we have AIrd(G)(B) = Ud(G)(B), whereUd(G)(B) is the
B-rational points ofUd(G). Now we takeFqn asB. Since the Brauer group
Br(Fqn) = 0 (cf. [W, Chapter 1, Theorem 1]), every Azumaya algebra of de-
greed overFqn is isomorphic to Md(Fqn) asFqn-algebras. A representation
ρ : G → GLd(Fqn) of G induces a representationFq[ρ] : Fq[G] → Md(Fqn)
of the group ringFq[G]. It is known thatρ is absolutely irreducible in the
sense of Section 0 if and only ifFq[ρ] is absolutely irreducible in the above
sense (cf. [Bo,§13, Proposition 5]). By the theorem of Skolem-Noether
(cf. [Bo, §10, Corollaire]), everyFqn-algebra automorphism on Md(Fqn) is
an inner automorphism. Thus there is a canonical bijection between the
set of equivalence classes of absolutely irreducible representations ofFq[G]
into Md(Fqn) and the set of equivalence classes of absolutely irreducible
representations ofG into GLd(Fqn). Hence we have

AIr d(G)(Fqn) =

{
isomorphism classes of absolutely

irreducible representationsρ : G→ GLd(Fqn)

}
.

Thus the zeta functionZai(G,T) is equal to the congruence zeta function
Z(Ud(G),T) of Ud(G). HenceZai(G,T) is a rational function inT. �

3. M  Zwt(G,T)

Let Rep (G,GLd(Fqn)) be the set of isomorphism classes of representa-
tionsρ : G→ GLd(Fqn). We define

Nwt
n :=

∑

ρ∈Rep (G,GLd(Fqn))

1
|Aut (ρ)| ,

where
Aut (ρ) = {M ∈ GLd(Fqn) | MρM−1 = ρ}.

We defineZwt(G,T) by the power series

Zwt(G,T) = exp


∞∑

n=1

Nwt
n

n
Tn

 .

3.1. Meromorphy of Zwt(G,T) overCp.
Let Cp be the completion of an algebraic closure of thep-adic number

field Qp andν the valuation ofCp normalized byν(p) = 1. We say that a
power seriesf (T) in Cp[[T]] is entire if f (T) converges onCp. Note that
f (T) =

∑∞
n=0 anTn is entire if and only ifν(an)/n −→ ∞ asn −→ ∞. We

say that a power seriesf (T) in Cp[[T]] is p-adically meromorphic onCp
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if f (T) is written inCp[[T]] as a quotientg(T)/h(T) of entire power series
g(T), h(T). Now we prove the following result.

Theorem 3.1. The power seriesZwt(G,T) is p-adically meromorphic on
Cp.

Proof. LetO(ρ) be the orbit ofρ by the conjugate action of GLd(Fqn). Since
|GLd(Fqn)| = |O(ρ)| × |Aut (ρ)|, we have

Nwt
n =

∑

ρ∈Rep (G,GLd(Fqn))

|O(ρ)|
|GLd(Fqn)|

=
1

|GLd(Fqn)|
∑

ρ∈Hom (G,GLd(Fqn))

1

=
1

|GLd(Fqn)|N
hom
n ,

whereNhom
n = ]Hom (G,GLd(Fqn)). Since

|GLd(Fqn)| = (−1)dq
d(d−1)

2 n(1− qn)(1− q2n) · · · (1− qdn),

we have

|GLd(Fqn)|−1 = (−1)dq−
d(d−1)

2 n
∑

i1≥0

· · ·
∑

id≥0

qn(i1+···+did)

in Cp. HenceZwt(G,T) is written as follows inCp[[T]]:

Zwt(G,T) = exp


∞∑

n=1

Nwt
n

n
Tn



=
∏

i1≥0

· · ·
∏

id≥0

exp


∞∑

n=1

(−1)dNhom
n

n

(
q
−d(d−1)

2 +
∑d

j=1 ji j T
)n
.

It follows from Lemma 3.2 below thatZwt(G,T) is p-adically meromorphic,
by taking f (T) = exp

(∑∞
n=1(−1)dNhom

n Tn/n
)

= Zhom(G,T)(−1)d which is a
rational function inT by Theorem 1.1. �

Lemma 3.2. Let f (T) = 1 + a1T + · · · be a power series inCp[[T]] . Let
(qi)i≥0 be a sequence inCp such thatqi −→ 0. Denote byF f (T) the formal
power series

F f (T) =

∞∏

i=0

f (qiT).

If f (T) is entire (resp.p-adically meromorphic onCp), thenF f (T) is also
entire (resp.p-adically meromorphic onCp).
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Proof. It is sufficient to consider the case wheref (T) is entire. We may
assume thatν(an) ≥ 0 for all n ≥ 1 sinceF fa(T) = F f (aT) for anya ∈ Cp,
where fa(T) = f (aT). We may also assume thatν(qi) ≥ 0 for all i ≥ 0 since
qi −→ 0. Write

F f (T) = 1 + A1T + A2T
2 + · · · ,

where
An =

∑

j1+···+ jr=n, j1,··· , jr≥1, 0≤i1<···<ir

aj1 · · · ajr q
j1
i1
· · · qjr

ir
.

Since f (T) is entire andqi −→ 0, for any M > 0 there exists a positive
integerN such thatν(ai) > iM andν(qi) > M for eachi ≥ N.

Now we proveν(An)/n −→ ∞ asn −→ ∞. For that, we calculate lower
bounds for the valuations of all termsaj1 · · · ajr q

j1
i1
· · · qjr

ir
in the above ex-

pression ofAn for n > N2 by distinguishing the following two cases with
respect to the lengthr.

(1) 1≤ r ≤ N case.
Let S be the set of indices 1≤ k ≤ r such thatjk > N. Since

j1 + · · · + jr = n > N2, the setS is non-empty and we have∑

k∈S
jk = n−

∑

k<S

jk ≥ n− N2.

By the assumption thatν(ai) > iM if i ≥ N, we have

ν
(
aj1 · · · ajr q

j1
i1
· · · qjr

ir

)
≥ ν


∑

k∈S
a jk

 >

∑

k∈S
jk

 M ≥ (n− N2)M.

(2) N < r ≤ n case.
Since 0≤ i1 < · · · < ir , for anyk > N we haveik ≥ N and hence

ν(qik) > M. So we have

ν(qj1
i1
· · · qjr

ir
) > (n− ( j1 + · · · + jN))M.

Let T be the set of indices 1≤ k ≤ N such thatjk ≤ N. If jk > N,
then we haveν(ajk) > jkM. Hence

ν
(
aj1 · · · ajr q

j1
i1
· · · qjr

ir

)
> ν

(
aj1 · · · ajN

)
+ (n− ( j1 + · · · + jN)) M

> ν


∑

k∈T
ajk

 +

n−
∑

k∈T
jk

 M

≥
n−

∑

k∈T
jk

 M ≥ (n− N2)M.

Thus we have
ν(An) ≥ (n− N2)M
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for anyn > N2. Hence we haveν(An)/n −→ ∞ whenn −→ ∞. We have
finished the proof of the lemma. �

3.2. Meromorphy of Zwt(G,T) overC.
Next we consider the power seriesZwt(G,T) as a complex valued func-

tion. To prove the meromorphy ofZwt(G,T) overCwe consider the quotient
stack [X/GLd] and use Behrend’s theorem on the Lefschetz trace formula
for algebraic stacks. For references on algebraic stacks, see for instance [G],
the Appendix of [V] and [LMB]. Note that we view a stack as a category,
rather than a 2-functor.

For the moment letF be an arbitrary field andG an affine smooth group
scheme overF. Let X be a scheme of finite type overF with a group action
X ×F G → X overF. We denote by (Sch/F) the category of schemes over
F and choose théetale topology on (Sch/F). We write the same symbolS
for the algebraic stack overF corresponding to anF-schemeS → SpecF.
Let p[X/G] : [X/G] → (Sch/F) be the quotient stack defined by this group
action (cf. [G, Example 2.18]). Thus, [X/G] is a category whose objects
are pairs (π, f ) of a principalG-bundleπ : E → S, whereS is a scheme
over F, and aG-equivariant morphismf : E → X. A morphism from
(π′ : E′ → S′, f ′ : E′ → X) to (π : E → S, f : E → X) is a pair
(ϕ : E′ → E, ψ : S′ → S) of morphisms such that the diagram

E′
ϕ−−−−−→ E

π′
y

yπ
S′ −−−−−→

ψ
S

is cartesian andf ′ = f ◦ ϕ. The structure functorp[X/G] maps (π : E →
S, f : E → X) to S. SinceG is smooth overF, the quotient stack [X/G] is
algebraic in the sense of [LMB] (cf. [G, Example 2.29]), that is,

(1) the diagonal morphism [X/G] → [X/G] ×F [X/G] is representable,
separated and quasi-compact.

(2) There exist a schemeU overF and a smooth surjective morphism
U → [X/G].

A morphismU → [X/G] as in (2) is called anatlasof [X/G]. (A morphism
f : X → Y of F-stacks is a functor such thatpX = pY ◦ f , wherepX (resp.
pY) is the structure functor ofX (resp.Y). For the definitions of properties
(such as representability, separatedness, etc.) of morphisms of stacks, see
[G, Section 2.2].)

Let X → [X/G] be the morphism ofF-stacks corresponding to the pair
(X ×F G → X, X ×F G → X) by the Yoneda lemma (cf. [G, Example
2.29]), where the first is the trivialG-bundle overX and the second is the
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morphism of the group action. It is known that this is an atlas of [X/G]
(cf. [LMB, Exemples (4.6)]).

Let P be a property of morphisms of schemes which is local on source
and target (cf. [K, Chapter 1§1, Chapter 2§3]) for the étale topology (for
instance,P = flat, locally of finite type, smooth, etc.). We say that a mor-
phism f : X→ Y of algebraicF-stackshas propertyP if there exist an atlas
Y′ → Y of Y and an atlasX′ → Y′ ×Y X of Y′ ×Y X such that the composi-
tion of morphisms of stacksX′ → Y′ ×Y X → Y′ in the diagram below has
propertyP (as a morphism of schemes). (For more details, see [G, Section
2.5].)

X′ −−−−−→ Y′ ×Y X −−−−−→ Xy
y

Y′ −−−−−→ Y

By definition, if the schemeX overF has the propertyP, then the quotient
stack [X/G] overF has the propertyP.

In what follows, we take a finite fieldFq asF, and assumeG is a con-
nected linear algebraic group overFq. Let X → (Sch/Fq) be an algebraic
stack of finite type overFq and letX(Fqn) be the subcategory ofX whose ob-
jects and arrows are above SpecFqn. In particularX(Fqn) is agroupoid, i.e.,
all morphisms inX(Fqn) are isomorphisms. For the groupoidX(Fqn) define
its mass]X(Fqn) as follows ([Be, Definition 3.2.1]):

]X(Fqn) :=
∑

ξ∈X(Fqn)/∼

1
|Aut ξ| ,

where Autξ is the automorphism group ofξ in the groupoidX(Fqn) and
X(Fqn)/ ∼ is the set of isomorphism classes of objects ofX(Fqn). Note that
Aut ξ andX(Fqn)/∼ are finite sets (hence]X(Fqn) is finite) sinceX is of finite
type overFq (cf. [Be, lemma 3.2.2]). If X = [X/G], then we have

]X(Fqn) =
∑

x∈X(Fqn)/∼

1
|Stab (x)| ,

where Stab (x) is the stabilizer ofx by the group actionX(Fqn) × G(Fqn) →
X(Fqn). This follows from the categorical equivalence betweenX(Fqn) and
the category in which the objects are the elements ofX(Fqn) and the mor-
phisms fromx to y are the elements ofG(Fqn) which sendx to y by the group
action. This is a consequence (of the proof) of [Be, Lemma 2.5.1] for n = 1
(this is stated only whenX is smooth overFq, but the same proof applies to
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arbitrary schemes of finite type overFq) and of the natural categorical equiv-
alenceX(Fqn) ' [X⊗FqFqn/G⊗FqFqn](Fqn) in which (E→ SpecFqn, E→ X)
corresponds to (E→ SpecFqn, E→ X ⊗Fq Fqn).

We define the zeta functionZ(X,T) of X = [X/G] by

Z(X,T) = exp


∞∑

n=1

]X(Fqn)

n
Tn

 .

We know by [Be, Theorem 3.2.4] that if X = [X/G] is smooth overFq,
then the zeta functionZ(X,T) converges absolutely in some neighborhood
of T = 0 and is continued meromorphically to the whole complex planeC.

Now we prove the following result.

Theorem 3.3. Let G be a connected linear algebraic group overFq. Let X
be a scheme of finite type overFq with a group actionX×Fq G→ X overFq.
Let X be the quotient stack[X/G] overFq. Then the power seriesZ(X,T)
converges absolutely in a neighborhood ofT = 0, and it is continued mero-
morphically to the whole complex planeC.

Proof. First note that we may assumeX is reduced, since we consider only
Fqn-rational points. LetXsm be the smooth locus ofX (which is open and
dense by [Gro, Corollaire 6.8.7, Proposition 17.15.12]) andXnsm the closed
subsetX r Xsm endowed with the reduced induced subscheme structure.
SinceG acts onXsm andXnsm respectively, we haveX(Fqn) = Xsm(Fqn) t
Xnsm(Fqn) with G(Fqn)-action onXsm(Fqn) and Xnsm(Fqn). Hence we have
]X(Fqn) = ][Xsm/G](Fqn) + ][Xnsm/G](Fqn).

Put X0 := X andX1 := Xnsm. We have dimX1 < dimX sinceXsm is a
dense open subset ofX. We can repeat this argument to obtain a sequence

X0 ⊃ X1 ⊃ · · · ⊃ Xr

of closed subschemes ofX with dimX0 > dimX1 > · · · > dimXr = 0. Note
in particular thatXr is étale overFq. Thus

]X(Fqn) = ]X0(Fqn) + ]X1(Fqn) + · · · + ]Xr(Fqn),

whereXi is the quotient stack [Xi,sm/G]. Then we have

Z(X,T) = Z(X0,T) · · ·Z(Xr ,T).

Since each factorZ(Xi ,T) is meromorphic overC, this proves Theorem 3.3.
�

Now we go back to our situation; thusG = GLd and X is the affine
schemeXd(G) ⊗Z Fq (cf. Section 1). In this case the mass]X(Fqn) for the
corresponding algebraic stackX = [X/GLd] is equal toNwt

n defined at the
beginning of this section. HenceZ(X,T) is equal toZwt(G,T). As a corol-
lary of Theorem 3.3, we have the following.
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Corollary 3.4. The power seriesZwt(G,T) converges absolutely in a neigh-
borhood ofT = 0, and it is continued meromorphically to the whole com-
plex planeC.

4. R  ZIg(G,T)

Here we consider representations ofG into GLd(Z/pnZ). Put NIg
n :=

]Hom (G,GLd(Z/pnZ)). Define the power seriesZIg(G,T) by

ZIg(G,T) :=
∞∑

n=0

NIg
n Tn.

For this type of zeta function we have the following result.

Proposition 4.1. The power seriesZIg(G,T) is a rational function.

Proof. Let Xd(G) = Spec (Ad(G)) be the affine scheme associated withG as
in the proof of Theorem 1.1; thus the commutative ringAd(G) has the prop-
erty that Hom (G,GLd(Z/pnZ)) ' Hom (Ad(G),Z/pnZ) for all n ≥ 1. Since
Ad(G) is finitely generated, it is presented asAd(G) ' Z[x1, · · · , xm]/( f1, · · · , fr),
where f1, · · · , fr ∈ Z[x1, · · · , xm] are non-constant polynomials. Then we
haveNIg

n = ]{a ∈ (Z/pnZ)m | fi(a) ≡ 0 modpn}. Thus our zeta function
ZIg(G,T) is nothing but the Igusa zeta function associated with (f1, · · · , fr),
and is known to be rational by Igusa ([I]) in ther = 1 case and Meuser
([Me]) in the general case. �

The generating function defined by the numbers of isomorphism classes
of representations ofG into GLd(Z/pnZ) may also have good properties
such as rationality, though we have no results at present.

5. 

Here we calculate the zeta functions explicitly for free groups.

Example 5.1. Let G = Fr be the free group of rankr. Then we have
Nhom

n = |GLd(Fqn)|r . Since|GLd(Fqn)| = qnd(d−1)/2(qn − 1) · · · (qdn − 1) and
exp

(∑∞
n=1(q

kT)n/n
)

= 1/(1− qkT), we have

Zhom(Fr ,T) =
∏

0≤ j1,··· , jd≤r

(1− qrd2−( j1+···+d jd)T)
(−1) j1+···+ jd+1


r
j1

···

r
jd


,

where

(
r
j

)
is the binomial coefficient.
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SinceNwt
n = |GLd(Fqn)|−1Nhom

n (see Subsection 3.1), we also have

Zwt(Fr ,T)

= exp


∞∑

n=1

|GLd(Fqn)|r
n|GLd(Fqn)|T

n



=



∏

j1,··· , jd≥0

(
1− 1

qd2qj1+···+d jd
T

)−1

, if r = 0.

∏

0≤ j1,··· , jd≤r−1

(1− q(r−1)d2−( j1+···+d jd)T)
(−1) j1+···+ jd+1


r − 1

j1

···


r − 1

jd


, if r ≥ 1.

This shows thatZwt(Fr ,T) is a rational function whenr ≥ 1, whereas
Zwt(1,T) is not a rational function.

A

The authors are grateful to Professor Yuichiro Taguchi for many sugges-
tions and on valuable advice for the composition of this paper.
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