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Abstract 

 

   The moving particle semi-implicit (MPS) method, which is a fully 

Lagrangian particle method, was applied to simulate the three-dimensional 

Rayleigh-Benard convection. The present MPS simulation reproduced typical 

flow patterns observed in the Rayleigh-Benard convection successfully. The 

results are in good agreement with those obtained by the method in the frame of 

the Euler system. The present results demonstrate the applicability of the MPS 

method to three-dimensional convective heat transfer problems. 

 

Keywords: Moving particle semi-implicit (MPS) method, Rayleigh-Benard 
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1. Introduction 

 

   The Rayleigh-Benard system is one of the representative non-equilibrium hydrodynamic 

systems 
1)

. An adverse temperature gradient is maintained in a horizontal layer of fluid by heating 

the underside. On account of the thermal expansion, the fluid near the bottom will be lighter than 

that near the top. A stable conduction exists for this system when the temperature difference 

between the bottom and top boundaries is small enough. Otherwise, the static conduction becomes 

unstable against any small disturbance, and the system then becomes unstable. 

   Convection in the Rayleigh-Benard system has been extensively studied both experimentally 

and numerically. The earliest experiments to definitively demonstrate the Rayleigh-Benard 

convection were done by Benard in 1900. Rayleigh laid the theoretical foundations for this 

phenomenon. There have been some reviews on experiments and numerical calculations in this 

particular field 
2)

. Recently, new technologies have been applied to investigate this phenomenon in 

detail, for example the molecular dynamics 
3)

, the direct simulation Monte Carlo 
4)

 and the lattice 

Boltzmann method 
5)

. Most of these simulations were done in the Euler framework. The smoothed 

particle hydrodynamics (SPH) method 
6)

, which is a grid-free Lagrangian particle method, was used 
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to simulate the Rayleigh-Benard convection to emphasize and discuss the connection between 

molecular dynamics and continuum mechanics 
7)

. The SPH method was invented to treat with 

compressible flow problems. In contrast with the SPH method, a moving-particle semi-implicit 

(MPS) method 
8)

, which is a deterministic Lagrangian particle method, has been developed for 

simulating incompressible fluids. In this method, governing equations are discretized based on 

particle interaction models representing gradient, Laplacian and free surface. Computational grids 

are unnecessary. Based on the MPS method, a combined gird and particle method, MPS-MAFL 
9)

, 

has been formulated. The MPS-MAFL method has successfully simulated the natural convection in 

a square cavity 
10)

. The MPS method with a new Laplacian model and a new method for treating the 

boundary conditions has been used to simulate two-dimensional Rayleigh-Benard convection with a 

range of Rayleigh numbers 
11)

. 

   Till now, most of numerical studies of the Rayleigh-Benard convection were performed for 

two-dimensional systems. These studies showed that the simulated critical Rayleigh number and 

heat flux agreed well with both theoretical results and experimental observations. However, it is 

also necessary to study the convection patterns by three-dimensional simulations. Watanabe 

obtained roll, square and hexagonal convection patterns using the direct simulation Monte Carlo 

method 
12)

 and the lattice Boltzmann method 
13)

. In this contribution, the MPS method will be 

applied to simulate three-dimensional Rayleigh-Benard convection with fixed Rayleigh number and 

Prandtl number. Different aspect ratios will be chosen to obtain different flow patterns. 

 

2. Numerical Models and Methods for MPS 

 

2.1 Governing equations in MPS method 

   Governing equations for incompressible flows are mass, momentum and energy conservation 

equations as follows: 
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2.1.1 Kernel function 

   In MPS, the kernel function ),(
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where 
e

r  is the cut-off radius. In the present MPS method, it is chosen to be l∆1.2 , where l∆  is 

the initial distance between two particles. With this kernel function, particle clusters can be avoided 

since the value of kernel function is infinity at 0=−
ij

rr
vv

. 

 

2.1.2 Gradient model 
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   Assuming two particles i and j, which possess scalar quantities 
i
Φ  and 

j
Φ , respectively, the 

gradient in the MPS method is defined as 
8)

: 
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where d  is the number of the space dimension. 

   Equation (6) can be rearranged as follows: 
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where )min('
ji

ΦΦ = . Equation (7) is tested to be able to improve numerical stability 
8)

. 

 

2.1.3 Laplacian model 

   As we know, the Laplacian model can be derived from the divergence of gradient as 

i
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where the divergence model in the MPS method is 
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   Combining the gradient model and the divergence model, we can obtain the Laplacian model 
11)

: 
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2.1.4 Incompressible model 

   In the MPS method, each particle possesses the same mass. Therefore, every particle number 

density *
n  should be constant and equal to 0

n . Otherwise, we define 

0* ' nnn =+  (11) 

where 'n  is the correction to the particle number density. The following can be derived: 
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where 'u
v

 is the velocity correction value and 1+n  means the next time step number. As a result, 

we get the following pressure Poisson equation 
8)

: 
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   To improve calculation stability, especially for flows in an enclosure, the equation is modified 

as 
11)

: 
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with 

1
21

=+ αα  (16) 

where the parameters 
1
α  and 

2
α  are chosen as 0.8 and 0.2, respectively, in the present 

calculations. *
u
v

 is the temporal velocity. 

   Equation (15) can be solved by the incomplete Cholesky conjugate gradient (ICCG) method, 

which is robust and fast for calculations with a large number of particles. 

 

2.2 Time integration 

   The MPS method separates calculations into two stages, explicit and implicit stages, in each 

time step. In the explicit stage, particles move with the viscosity and external forces that are 

explicitly calculated by 
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   In the implicit stage, velocity is corrected with Eq. (13) to keep the conservation of the 

momentum equation. Time step is controlled in the computation to satisfy the following Courant 

condition 
8)

: 

max

2.0
u

l∆
t∆ ≤  (19) 

where l∆  is the initial distance between two particles, and 
max

u  is the maximal velocity among 

all particles. 

 

2.3 Boundary conditions 

   The original method of treating boundary conditions in MPS simulates the wall by one-layer of 

fixed particles with zero velocities. Other two-layer dummy particles are used for calculating the 

number density of the wall particles to distinguish particles on the free surface from wall particles in 

pressure Poisson equation. However, since the cut-off radius for both gradient and Laplacian models 

for the pressure Poisson equation is larger than l∆ , the cut-off radius is not in agreement with the 

geometric boundaries. In the original MPS method, the pressure and velocity of a dummy particle is 

fixed as zero to solve this problem. Further, the velocities of wall and dummy particles are defined 

as zero to retain the non-slip boundary condition when calculating the viscosity force. However, 

zero velocity should be physically kept on the wall. The same difficulty will be encountered in the 

case of the heat transfer calculations near the wall. 

   To overcome such difficulties in treating boundary conditions, we define one-layer wall 

particles and fictitious particles that are reflected from the fluid particles by the wall, as shown in 

Fig. 1. Fluid particles interact with other fluid, wall and fictitious particles in the calculations of 

viscosity force and heat transfer. The fictitious particles have the same magnitude of velocities as 

the corresponding fluid particles, but in the opposite direction. The thermal boundary condition can 

be easily satisfied with this treatment. For the Dirichlet boundary condition, the average temperature 

of a fluid particle and the corresponding fictitious particle is kept the same as the temperature value 

on the wall. For the Neumann boundary condition, the temperature of the fictitious particle is the 

same as that of the corresponding fluid particle. 

   For the pressure Poisson equation, only fluid and one-layer wall particles are calculated using 

the ICCG method. Pressure homogeneous Neumann boundary condition is applied between 
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one-layer wall particles and two-layer dummy particles. Figure 2 shows the treatment of the 

pressure boundary condition for the fluid particle i, where j is the wall particle that lies in the cut-off 

circle of particle i, and the particle j’ lies at a distance of l∆  in the normal direction to the wall 

boundary from wall particle j. According to the pressure Neumann boundary condition, the 

pressures of particles j and j’ should be the same. Particle i will interact with particle j’ in both the 

pressure gradient model and the pressure Poisson equation. 

 

 
 

Fig. 1 Numerical treatment of thermal and velocity 

boundary conditions. 

 

Fig. 2 Numerical treatment of pressure boundary 

conditions. 

 
 

3. Numerical Simulations of Rayleigh-Benard Convection 

 

3.1 Analytical model 

   Rayleigh-Benard convection was simulated with the Boussinesq approximation using present 

MPS method. The external volume force in Eq. (2) is expressed by the buoyancy force 
10)
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where F
v

 is the acceleration due to gravity, 
r

T  is the reference temperature that is equal to the 

average value of the top and bottom temperature, and β  is the thermal expansion coefficient. 

   Figure 3 shows the geometry parameters of the Rayleigh-Benard system, where L, W and H are 

length, width and height, respectively. Periodic boundary conditions were applied in both x and y 

directions. The thermal and non-slip boundary conditions of upper and bottom walls were kept with 

fictitious particles obtained by the reflection of the fluid particles according to the walls. The value 

of the fictitious particle’s velocity was equal to the reflected fluid particles while the direction was 

opposite. The temperature of the fictitious particle was chosen to keep the wall temperature 

constant. Fluid particles interacted with other fluid, wall and fictitious particles. 

 
Fig. 3 Geometry parameters of the Rayleigh-Benard system. 

 

   Calculations were started from a static state except for the vertical velocity field, which was 
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perturbed as 
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3.2 Calculation results and analysis 

   The MPS method has been validated to be able to estimate the critical Rayleigh number in the 

two-dimensional Rayleigh-Bernard simulations with the aspect ratio of 2:1 (L:H) 
11)

. According to 

the two-dimensional and three-dimensional simulations with the aspect ratio of 2:1 (L:H) and 2:2:1 

(L:W:H), respectively, the simulated heat transfer flux agreed with a two-dimensional empirical 

formula with the aspect ratio of 2:1 (L:H). The roll convection pattern with the Rayleigh number 

and Prandtl number fixed as 6000 and 0.71, respectively, obtained by the three-dimensional 

simulation are shown in Figs. 4(a) and 5(a). 

   As we know, convection patterns in the Rayleigh-Benard system are affected by several factors, 

such as the Rayleigh number, the Prandtl number, aspect ratio, initial disturbance and so on. A large 

amount of computation is necessary for studying all of these affects in detail. As a result, previous 

studies in this field were all concentrated on some special affect. Oscillated roll patterns were 

observed by increasing the Rayleigh number step by step from 6000 to 50000 with the aspect ratio 

of 4:4:1 (L:W:H) using the lattice Boltzmann method 
14)

. The transition between the roll to 

hexagonal patterns was simulated by changing the Rayleigh number near the critical value with the 

aspect ratio of 8:8:1 (L:W:H) using the direct simulation Monte Carlo method 
12)

. The coexistence 

of the roll and square patterns was numerically verified with different aspect ratios and initial 

disturbances using the lattice Boltzmann method 
15)

.  

   All of those results were obtained in the frame of the Euler system. In the present study, the 

MPS method, which is a fully Lagrangian particle method, was applied to validate its capability to 

investigate the complicated three-dimensional Rayleigh-Bernard convection. Only the effect of the 

aspect ratio was considered here. Busse and Clever theoretically pointed out that it is possible to 

obtain stable asymmetric square convection pattern using the Galerkin method 
16)

. On the other 

hand, in Watanabe’s simulations using the lattice Boltzmann method 
13)

, the roll and square 

convection patterns were observed with different aspect ratios, where the Rayleigh number and 

Prandtl number were fixed as 5805 and 0.71, respectively. In the present simulations, the MPS 

method was applied to obtain the roll and square convection patterns with different aspect ratios. 

The number of particles in the vertical direction was chosen as 21, with which a reasonable 

convection pattern was obtained as shown in Figs. 4(a) and 5(a) 
11)

. Meanwhile, the Rayleigh 

number and Prandtl number were fixed as 6000 and 0.71, respectively. Aspect ratio was chosen as 

2:2:1, 3:3:1 and 4:4:1 (L:W:H). 

   Simulation results with different aspect ratios are compared in Figs. 4 and 5. Figures 4 and 5 

show the temperature contour at the middle level of the simulation region and the velocity contour 

in the vertical direction, respectively. In Fig. 4, temperature decrease is indicated by the color 

change from red to blue. As can be seen in Fig. 5, higher temperature causes lighter density, and 

hence causes fluid to go up. Adversely, low temperature causes fluid to go down. Figures 4(d) and 

5(d) indicate the roll pattern obtained with the aspect ratio of 5:5:1 as simulated with that of 2:2:1, 

of which results shown in Figs. 4(a) and 5(a). The simulated wave numbers for the roll patterns 

obtained with the aspect ratios of 5:5:1 and 2:2:1 are 1 and 2, respectively. In addition, it is worth to 

note that the direction of these two rolls is different. The square pattern was reproduced when the 

aspect ratio was chosen as 4:4:1, as shown in Figs. 4(c) and 5(c). In this case, the simulated wave 

number is 1. It seems that the square pattern occurs when two orthogonal rolls affect each other. 

The oscillating roll pattern with the wave number of 1.5 was observed when the aspect ratio was 

3:3:1, as shown in Figs. 4(b) and 5(b). 

   The roll and square patterns simulated with the present MPS method show a good agreement 

with the results obtained by the lattice Boltzmann method 
13)

. These results suggest that the aspect 

ratio affect the convection patterns since the same conditions were used for all of these four 

calculations except the aspect ratio. On the other hand as shown in Eq. (21), different aspect ratios 
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also cause different wave number in initial disturbances. Farther studies are necessary to investigate 

the mechanism how the aspect ratio and initial disturbance affect the convection patterns. 

 

     

(a) 2:2:1 (particle array: 214040 ×× ) (b) 3:3:1 (particle array: 216060 ×× ) 

  

(c) 4:4:1 (particle array: 218080 ×× ) (d) 5:5:1 (particle array: 21100100 ×× ) 

Fig. 4 Temperature field at the middle elevation of the simulation region with different aspect ratios (L:W:H). 

 

 

 

  
(a) 2:2:1 (particle array: 214040 ×× ) (b) 3:3:1 (particle array: 216060 ×× ) 

  
(c) 4:4:1 (particle array: 218080 ×× ) (d) 5:5:1 (particle array: 21100100 ×× ) 

Fig. 5 Three-dimensional velocity distribution and velocity contour in the vertical direction with different 

aspect ratios (L:W:H). 
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4. Conclusion 

 

   In this study, the MPS method was applied to the numerical simulation of flow patterns 

observed in Rayleigh-Benard convection systems. The results show the roll and square convection 

patterns, which are typical characteristics of the Rayleigh-Benard convection and are also obtained 

by the Euler method. The present results suggest that the MPS method is applicable to the numerical 

simulation of complicated three-dimensional convective heat transfer problems. 
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Nomenclature 

 

cp specific heat at constant pressure (J kg
-1

 K
-1

) 

d spatial dimensions 

F external volume force or driven force (m s
-2

) 

H height (m) 

k thermal conductivity (W m
-1

 k
-1

) 

l, L length (m) 

n
0
 initial number density 

n
*
           temporary number density 

p pressure (Pa) 

q energy transfer rate per unit volume (W m
-3

) 

r position vector (m) 

Ra Rayleigh Number 

re cut-off radius of the kernel function 

T temperature (K) 

t time (s) 

u velocity (m s
-1

) 

v volume (m
3
) 

w kernel function 

W width (m) 

Greek letters 

1
α ,

2
α  tuning parameters in the Poission equation 

β  thermal expansion 

λ  tuning parameter in the Laplacian model 
φ  arbitrary vector variable 

Φ  arbitrary scalar quantity 
ρ  density (kg m

-3
) 

υ  kinematic viscosity (m
2
 s

-1
) 

l∆  initial distance between two particles 

t∆  time step size (s) 

Subscripts 

i,j particle number 
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