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Abstract 
 

   Collision avoidance for a visuo-motor system in unstructured and 
cluttered environment is described. The achievement of collision 
avoidance is based on a simplified path planning system and motion 
control performed by self-organizing maps. The self-organizing maps are 
learned to determine joint angles of a redundant manipulator. Since the 
learning algorithm promises to make the manipulator reach targets 
precisely with obstacle-free poses, the path planning system only needs to 
plan a collision-free path for the end effector of the manipulator in the 
image spaces. By means of the cooperation of two self-organizing maps, 
the system solves occlusion problems successfully. Simulation results are 
presented to demonstrate the effectiveness of the proposed approach. 
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1. Introduction 
 

Collision avoidance of redundant manipulators is becoming increasingly important in 
practical applications. It has been studied by many researches. Most of them generally indicate 
to find globally a collision avoidance path in a configuration space, in which the number of 
dimensions corresponds to the number of degree of freedom that the manipulator has, before 
performing tasks1) 2). However, in these global planning approaches, exact, known and static 
environment models are required. In addition, the Computational cost of the planning does 
increase exponentially with n-DOF (i.e. degrees of freedom) of the manipulator. Most motion 
planning problems are proved computationally hard.  

The self-organizing map (SOM), which is proposed by Kohonen3), can solve inverse 
kinematics problem without supervised learning. The SOMs also can be used for 
path-planning or trajectory formation tasks4) 5) . After the mapping has been established, a path 
is generated from any initial position to a given target, e.g., to guide an end effector of a robot 
manipulator in the presence of obstacles within the workspace. Using the TRN model, the 
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paper6) showed that a locally optimized path can be determined by minimizing the Euclidean 
distance from the current position to a given target position. Collision checking is conducted 
while planning the optimized path.  

On the contrary, we propose a scheme that realizes collision avoidance for an n-DOF 
redundant manipulator in image spaces (2 dimensional spaces), and only consider whether the 
path of the end effector is collision-free or not. We integrate the path planning of the end 
effector and self-organizing maps to achieve collision avoidance. The self-organizing maps are 
learned to perform motion control, by which joint angles of the manipulator are determined. 
The learning promises to make the manipulator arrive targets precisely with obstacle-free 
poses. The path planning system plans a collision-free path for the end effector from an initial 
point to a goal point in the image spaces. Therefore, in our system reconstructing of 3D 
geometry is not necessary. The approach proposed in this paper differs from them in: (1) The 
system only needs to plan a collision-free path for the end effector in collision avoidance; the 
computational cost of the path planning does not increase exponentially even for a high 
dimensional redundant manipulator. (2) The obstacle-free poses of the manipulator are 
achieved in the learning of the SOM, so collision checking is not necessary in whole path 
planning process. (3) Besides the number of movable joints of the manipulator, no further 
pre-knowledge about the manipulator and the cameras will be used. 

The potential field method, which was first proposed by Khatib7), is an efficient local path 
planning method and has been widely used in obstacle avoidance. The problem with this 
approach is to become increasingly difficult to determine good potential function with 
increasing dimensionality, which does not cause the planner to get trapped in local minim. In 
1990 Connolly8) proposed the use of local minima free Laplace's equation for path planning. A 
potential field based on Laplace's equation has no local minimal point. Therefore a path 
planning is performed without falling in local minima. In this paper, we use Laplace potential 
method to plan a path for the end effector. 

In the previous researches, we realized collision avoidance for a visuo-motor system in a 3D 
space by using a self-organizing map9). In that research, a stereo camera system was used to 
provide 3D information. However, the occlusion problem was not addressed well; the spaces 
occluded by obstacles in the image spaces were untreatable for the system. In addition, in 
order to solve corresponding problems in a simple way, some constraints also existed between 
the cameras in that research.  

In this paper, we employ a visuo-motor system with two related self-organizing maps and a 
redundant camera system. The self-organizing maps are directly connected to the cameras and 
learned to perform position control. Based on the visibility of targets given in the workspace, a 
more appropriate map is adopted. The map outputs a set of joint angle commands which make 
the manipulator reach the targets and make it with obstacle-free poses. By using two maps 
alternately, we solve the occlusion problems in cluttered environment. The learning method 
ensures that the manipulator moves smoothly and coherently in whole workspace no matter 
which map is used to control the manipulator. Furthermore, we use a data base instead of any 
calibrations of cameras to solve corresponding problems while planning a path. The data base 
is constructed automatically in the self-organizing maps’ learning stage. It does not expend an 
extra computation cost.  

The paper is organized as follows: outline of our visuo-motor system and the learning 
algorithm of self-organizing maps are introduced in Section 2; approach of collision avoidance 
and the path planning are discussed in Section 3; simulation results are shown in Section 4; 
conclusions are given in Section 5. 
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2. Our Visuo-motor System 
 

Our visuo-motor system is illustrated in Fig. 1. The system contains: 
• A 4-DOF redundant manipulator moving in a 3D space 
• Three CCD cameras 
• Two related self-organizing maps  
 

 
Fig. 1 Outline of the visuo-motor system. 

The CCD cameras are used to know the positions of the targets, the locations of the end 
effector and the poses of the manipulator. They also acquire information about obstacles. 
Based on visual information provided by the cameras, the self-organizing maps learn 
projections that convert the image vectors of targets in the image spaces into joint angle 
vectors of the manipulator. The manipulator is commanded by a set of joint angle commands 

outθ that are the output from the self-organizing maps. 
Although a stereo camera system can provide complete 3D information, spaces occluded by 

obstacles cannot be dealt with well in our previous works. In this paper a redundant camera 
system is used to solve the occlusion problem. Two of the cameras are arranged to see the 
workspace from the side, and the third camera observes from the top. The valid workspace is 
increased obviously by adding the third camera. Consequently, two related self-organizing 
maps are employed in our system. As shown in Fig.1, the projections of a target point tu in 
camera1, camera2 and camera3 are ( RR vu , ), ( LL vu , ) and ( TT vu , ). A pair of image 
coordinates of the camera1 ( RR vu , ) and camera3 ( TT vu , ) are combined into a 4 dimensional 
vector tu ( TTRR vuvu ,,, ) which is used as the input of the map1. A pair of the image 
coordinates of camera2 ( LL vu , ) and camera3 ( TT vu , ) are combined into the input of the 
map2. Because the valid workspaces of two maps are different from the visible space of 
camera1 or camera2, two maps are used alternately. 

Besides the number of movable joints, no further information about the manipulator and the 
cameras will be used in our visuo-motor system. 
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2.1 Self-organizing maps 

As shown in Fig. 2, each self-organizing map consists of neurons, which are distributed in 
the image spaces of the cameras. Each neuron jN has 4 parameters. 
• iW : Position of the neuron in the image spaces. 
• iJ : Jacobi matrix from the joint angle space to the image spaces. 
• iθ : Joint angle vector of the manipulator at iW . 
• iξ : Gradient vector of the evaluation function H .  

 
Fig. 2 A self-organizing map. 

When a target tu  is given in the workspace, either map1 or map2 is chosen based on 
which cameras can see the target. In the chosen map the neuron iN , which iW  is the nearest 
to the projection of the target tu , is used. The joint angles outθ , which conduct the manipulator 
end effector to the target, are calculated obeying following linear equation Eq. (1). Although it 
is not a linear projection for a redundant manipulator from the image spaces to the joint angle 
space, we think the domain of each neuron is small enough to use a linear projection as an 
approximation of the non-linear projection.  

( )itii
out WuJ −+= †θθ                           (1) 

Where, †
iJ is a pseudo-inverse matrix of iJ . 

In an actual system, weighted sum of outputs from plural neurons around the target is used 
instead of Eq. (1). 
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Where, g is the weight defined by the following Eq. (3) 

( ) ( )
( )⎩

⎨
⎧

≤−
>−−

=
ελ
ελλ

/exp0
/exp/exp

nfor
nforn

g                   (3) 

Where, n is the orders of the neurons determined based on the distances between the neurons 
and the target. It has a large value for the neuron that is near to the target, and has a small 
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value for the one that is far from the target. The symbolsλ and ε are values to define neuron 
numbers that can affect outθ . 
 
2.2 Evaluation function 

For redundant manipulators, finding the inverse kinematics mapping for a given end 
effector position is hard because this is an ill-posed problem in the sense that many solutions 
are possible. For two adjacent target points an algorithm may select two completely different 
joint angle configurations when there are redundant degrees of freedom. In our system, we 
introduce two evaluation functions to eliminate the under-determination of the manipulator 
control. A joint angle configuration, which optimizes the evaluation functions in addition to 
reaching the target point, is selected. One is the function MH  which is defined as Eq. (4) for 
obtaining high manipulability; the other is the function OH which is defined as Eq. (5) for 
obtaining obstacle-free poses. Evaluation function H is defined as the weighted sum of 
function MH and function OH as Eq. (6).  
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M JJH det=                               (4) 
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Where, d is the shortest distance from each link of the manipulator to the obstacles, and 0D  
is the predefined value that affects the effective area of the potential. 

OM HHH 21 αα +=
                              (6) 

ξ is the gradient vector of the function H . It is defined as the following equation.  

OM ξαξαξ 21 +=                              (7) 

Where, Mξ is the gradient vector of the function MH , and Oξ  is the gradient vector of the 
function OH . 1α and 2α are weights, which are decided depending on the desirability 
between the manipulability and importance of obstacle-free. In the learning procedure, by 
updatingξ the maps become to output desirable outθ that make the manipulator with high 
manipulability and with obstacle-free poses. 
 
2.3 Algorithm of the self-organizing learning 

Two maps are employed in our visuo-motor system. If they are learned separately, the 
outputs of them are different even for the same target in the workspace. This will result in that 
the manipulator moves incoherently when it is driven from one map's valid workspace to 
another map's valid workspace. In the learning algorithm, this problem has to be solved.  
  While a target position tu is presented randomly in the workspace, the cameras see the 
target. Depending upon which camera (camera1 or/and camera2) can see the targets (camera3 
can always see all the workspace), map1 or/and map2 will be learning. While both maps learn 
for a common visible target, the maps do not learn separately. In this case, only one 
self-organizing map determines the joint angles outθ of the manipulator for the target. The 
manipulator is driven by using outθ , and the cameras obtain different end effector 
positions v in map1 and map2 respectively. Then the map1 and map2 correct the parameters by 
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using tu , outθ and v  following the learning algorithm described below. Such a learning 
procedure results in that at the end of learning the neurons of two maps possess the similar 
value of outθ , ξ and differentW , J for common visible targets. Thereby, for those targets 
the outputs from either map1 or map2 will ensure the manipulator has the same pose. This 
means: while a target is given in the common visible space, the output from either map1 or 
map2 does not result in any change of the manipulator pose. In addition, the assignment of 
similar joint angles to adjacent target point is, in fact, one of the main features of the learning 
algorithm of the SOM. By the construction of a map, learning algorithm makes sure that 
adjacent target points always activate adjacent neurons in the network and the learning forces 
adjacent neurons to adapt their output towards similar values. At the end of the learning the 
output values will vary smoothly from a neuron to another neuron. These features bring about 
a continuous and smooth transformation from the input image spaces of targets to the output 
space of joint angles. According to such a learning algorithm, the maps guarantee smooth and 
coherent movements of the manipulator in the whole workspace. 
   For the N-th iteration, the maps amend the parameters as following learning procedure. 
1) A target position tu  is given arbitrarily in the workspace. The target positions in the 
images obtained by the cameras, and then they are transferred to the self-organizing maps. 
2) The maps sort the neurons in the order of distance between the target and W  of the 
neurons. In other words, the neurons are sorted in the order as follows. 

        |||||||| 1 nitit WuWu
λ

−<<− L                  (8) 
Where, nλ is the number of the neurons updated in the N-th iteration.  
3) One map outputs the joint angles out

0θ  using Eq. (9), and the manipulator is commanded 
by out

0θ  . 
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Where, n
iorder is the order of i -th neuron decided in the step 2). At this time the end effector 

does not reach the target position for the error of neuron parameters, and the cameras obtain 
the position of the end effector 0v .  
4) In order to reduce the error, the map changes out

0θ  using visual feedback information 

0v as Eq. (10) and the manipulator is commanded by out
1θ . The cameras also obtain the 

position of the end effector 1v  .  
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5) The self-organizing maps update the parameters of each neuron by the method mentioned in 
the following sub-sections. 
 



Collision Avoidance for a Visuo-motor System Using Multiple Self-organizing Maps            135 

2.4 Update of the parameters 
   Each parameter of the neurons are updated using outθ , tu , 0v and 1v . 
(a) Updating W  

iW  is updated by Eq.(11). 
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i

n
i WuordergWW −+=+ λε ,1                      (11) 

Where, n
Wε  is the learning coefficient of W . It has a large value for early stages of learning 

process and has a small value for late stages. Updating W by Eq. (11), the neurons will be 
distributed all over the image spaces. 
(b) Updating J  

iJ  is updated by Eq.(12). 
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Where, n
Jε  is the learning coefficient of J , and it changes just like n

Wε . n
iJΔ  is determined 

by Widrow-Hoff's learning rule. The evaluation function JE  is  
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Where, 0101 vvv −= , outoutout
0101 θθθ −= , 

2

01/1 out
JC θ= . By updating J  using Eq. 

(12), the maps become to output more appropriate outθ . 
(c) Updating ξ   

a) Updating Mξ  

iM ,ξ is updated by Eq. (15). 
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Where, 
n
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ε  is the learning coefficient of Mξ . n

iM ,ξΔ  is updated as n
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evaluation function is 
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Where, j  is the number of the neuron that has the 1st order for the distance between it and 
the target, and k  is the number of the neuron that has the 2nd order. 
Therefore, n

iM ,ξΔ  becomes 
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b) Updating Oξ  

iO,ξ  is updated by Eq.(18). 
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Where, n
Oξ

ε  is the learning coefficient of Oξ . n
iO,ξΔ  is updated as n

iJΔ . The evaluation 
function is 
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Where, 0,OH   is the potential value for 0v , and 1,OH  is the potential valve for 1v . 
Therefore, n

iO,ξΔ  becomes 
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Where, 0,1,01, OOO HHH −= , nnn
0101 θθθ −= , 

2

01/1 out
O

C θξ = . 
By updating Mξ  and Oξ  using Eq. (11) and Eq. (18), the maps become to output outθ     
that achieve high manipulability and obstacle-free poses. 
(d) Updating θ  

iθ  is updated by Eq. (21). 
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Where, n
pk  is a positive coefficient that meets the condition where high manipulability is 

achieved and the manipulator takes an obstacle-free pose. It decreases with learning times. 
Therefore, n

iθΔ becomes 
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By updating θ  using Eq. (21), the maps become to output outθ  for the manipulator with 
small errors of the end effector, high manipulability and obstacle-free poses. 
 

3. Accomplishment of Collision Avoidance  
 

3.1 Our approach to achieve collision avoidance 
Our system realizes collision avoidance in the image spaces by combining two 

self-organizing maps and a simplified path planning system. In the image spaces the path 
planning plans a collision-free path for the end effector, it based on the idea, "as long as 
projected path does not interfere with projected obstacles in the image spaces, the path is also 
not collision with the obstacles in the 3D spaces". Therefore, it is not required to reconstruct a 
3D model of the workspace. Consequently collision avoidance problems in 3D spaces are 
transformed to problems in 2D spaces. The learned self-organizing maps determine the joint 
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angles of the manipulator so that the end effector of the manipulator reaches a target point 
given in the image spaces arbitrarily, and also ensures the manipulator take obstacle free poses. 
The path planning system uses Laplace's potential method to plan a collision-free path for the 
end effector from an initial to a goal position without plagued into local minima. Once the 
path planning system plans a collision-free path for the end effector of the manipulator, the 
manipulator drives the end effector from the initial to the goal along the path. Since the 
self-organizing maps guarantee to make the manipulator with obstacle free poses in the 
learning, in the process of driving the end effector it is not necessary to check the collision 
between the links and obstacles. This feature makes our method different from many other 
collision avoidance systems. Thereby we say such a path planning as a simplified one.  

As mentioned above our path planning is performed in image spaces, and the system plans 
collision-free projected paths for the end effector in respective image space. The points on the 
projected paths are extracted and passed to the self-organizing maps as inputs. We have to 
match two different points in the images of a single point in the 3D space. Correspondence 
problem between the images is occurred. Some researchers use epipolar constraint to settle 
this problem10). In our previous study, we settle the correspondence problem in a very simple 
way; the cameras were set with the same height. In this study, we proposed to use a data base 
instead of any calibrations of the camera system to solve the problem. The data base is 
composed of the example targets which constructed automatically in the self-organizing maps 
learning, so it does not expend an extra computation cost.  

 
3.2 Path planning by laplace potential method 

In this study, we utilize a solution of Laplace’s equation to generate a path for the end 
effector. In the following parts we explain a procedure for path planning using Laplace’s 
equation11). The procedure is divided into three steps:  
1) Calculating a numerical solution of the Laplace’s equation using the Gauss-Seidel iterative 
method. Laplace’s differential equation Eq. (25) can be replaced by a simple discrete formula 
as Eq. (26)  
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Equation (26) illustrates that a potential value on a mesh point is the mean of the adjacent 
points. In order to satisfy the relationship of Eq. (26) over the whole region, Gauss-Seidel 
iterative method is used with boundary conditions as Eq. (27) 
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Where, ( )n
ji ,Φ is a numerical solution on the mesh point ( )ji,  obtained from the n-th iterative 

of Eq. (27). 
2) In order to obtain a continuous potential field from discrete one, we interpolate the discrete 
potential field by the method of weighted average as follows. A continuous potential field   
( ) jiyx ,,Φ at a point ( )1,1|, +<≤+<≤ jyjixiyx  is obtained by 
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Where, the subscript i  and j are coordinate of the nearest point to the origin of the square 
region including a point ( )ji,  and ji,Φ is the potential value on the mesh point obtained 
through the Gauss-Seidel method.  
3)  Searching a collision-free path in the calculated potential field, the path planning system 
traces the potential valley from the initial point to the goal point according to the method of 
steepest descent. 
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l , ( )nx and ( )ny  are the coordinates of the n -th point on the 

collision avoidance path, and s is the moving distance of one step. 
 

4. Simulation Results  
 

The proposed method has been successfully validated in simulations. We assume a 4-DOF 
redundant manipulator moving in a 3 dimensional workspace with an obstacle. Three CCD 
cameras, arranged as Fig.1, see the workspace. Each camera has 512512×  Pixel resolution.  
 
4.1 Coordination of the visuo-motor system 
In the simulations, the self-organizing maps were learned with 15,000 targets given in the 

workspace and each map consisted of 240 neurons. The time required to complete the learning 
was about 5 minutes (A PC with 3.0GHz Pentium4 was used.).  
After learning, 80 targets were given randomly to test the positioning accuracy of the end 

effector and to confirm the poses of the manipulator. In view of the visibility of the targets, the 
map1 or map2 output the joint angles outθ of the manipulator for them. Figure 3 and Figure 
4 show the positions of the end effector and poses of the manipulator seen in each camera. 
Figure 3 shows the case that the targets were visible in two maps, and both map1 and map2 
can output joint angles for them. Figure 4 shows the case that the targets were occluded by the 
obstacle or cross the obstacle in one front camera image. In this case only map1 or map2 is 
available to output the joint angles of the manipulator for them. In the presented figures, we 
can see that the manipulator takes obstacle-free poses and the end effector reaches the targets 
precisely. The average positioning error of the end effector is 0.22 pixels. It is approximately 
0.7 percent of the linear dimension of the workspace. 
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Fig. 3 Targets can be observed in two maps.  

 
 

             
                 a) Using map1                  b) Using map2 

  Fig. 4 Targets can be observed in only one map. 
 

4.2 Accomplishments of collision avoidance 
In the learning stages of the maps, 15,000 targets were given arbitrarily in the workspace. 

These targets were also used as a data base while planning a path. The path was searched in 
this data base space. Thereby, corresponding problems were solved simply without any 
calibrations of the camera system. 
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In our previous researches9), the path planning planed a collision-free path for the end 
effector which avoids obstacles in both images. In fact, as the projected path in one image is 
collision-free from the obstacles, the path in the 3D space is also free from the obstacles. 
Therefore, in this paper the path planning system planed a collision-free path for the end 
effector in one side image and calculated a shortest projected path in another image.  

 
4.2.1 Collision avoidance completed by one map 

When the initial position of the end effector and a goal position can be observed in one front 
camera, the collision avoidance of the manipulator can be performed by using one map. Here, 
some simulation results were presented to show the process of collision avoidance in this case.  

Figure 5 shows the process of collision avoidance seen in the camera1 and camera3 
respectively. The initial position of the end effector was obtained in camera3 with (300,130) 
and in camera1 in (300,100). A goal position was projected in the camera3 and camera1 with 
ordination (450, 90) and (450, 20). The path planning system planed a collision-free path in 
the camera1 image space using Laplace potential method. In the camera3 image space, the 
shortest path was calculated. Then, the system searched mid-targets along the planned path in 
the data base (example targets) space and passed them as the input of the self-organizing map. 
Map1 was chosen to output joint angles outθ  in this case. The manipulator was commanded 
by outθ , and it reached the goal without collision. As shown in Fig. 5 (a) a collision-free path 
was planned in the image of the camera1. The path planning system pursued the shortest path 
in the camera3 image space. Alternatively, the system also can plan a collision-free path in the 
image of the camera3, and calculate the shortest path in camera1. Accomplishment of collision 
avoidance was shown in Fig.5 (b).  

       

      
(a)                                          (b) 

Fig. 5 Collision avoidance completed by one map. 
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 Fig. 6 Collision avoidance completed by the cooperation of two maps. 

 
4.2.2 Collision avoidance completed by the cooperation of two maps 

When the initial position of the end effector and a goal position can not be observed in one 
front camera at one time, the collision avoidance of the manipulator is performed by the 
cooperation of two maps. Figure 6 shows such a case that there exists changeover of the 
self-organizing maps in collision avoidance. Since the initial point and the goal point were 
visible only in one side front camera, a middle point M was set as the changeover point of two 
maps. The path from the initial point to the middle point was planned in camera2 and 3 image 
spaces, and then the manipulator was driven by the outputs outθ of map2. The path from the 
middle point M to the goal was planned in camera1 and camera3 images, and map1 was used 
to output the joint angles outθ of the manipulator. In section 2.3, it has been discussed that the 
learning algorithm guarantees the manipulator move smoothly and efficiently in the whole 
workspace no matter which map outputs joint angles outθ . As shown in the Fig. 6, although at 
the middle point M the maps were switched to output joint angles of the manipulator, the 
manipulator proceeded smoothly and coherently without sudden pose changes.  

 
5. Conclusion 

 
The implementation of collision avoidance for a visuo-motor system, which is composed of 

a redundant manipulator, three cameras and two self-organizing maps, was demonstrated. The 
achievement of collision avoidance is based on a simplified path planning and motion control 
by the cooperation of the self-organizing maps. In contrast to previous studies, path planning 
system plans a collision-free path of the end effector in much simpler and more efficient way. 
In addition, by using a data base, which was constructed in the self-organizing learning stage, 
the system solved the corresponding problem without any camera system calibration. The 
proposed method was proved effectively to achieve collision avoidance for the visuo-motor 
system by the simulations. It is expected to be verified in a real experiment in our future 
works. 
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