
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

The Learnability of Simple Deterministic
Finite-Memory Automata

Sakamoto, Hiroshi
Department of Informatics Kyushu University

https://hdl.handle.net/2324/3229

出版情報：DOI Technical Report. 127, 1996-09-19. Department of Informatics, Kyushu University
バージョン：
権利関係：

DO1 Technical Report

The Learnability of Simple Deterministic Finite-Memory

Automata

Hiroshi Sakamoto

September 19, 1996

Department of Informatics

Kyushu University 33

Fukuoka 81 2-81, Japan
E-mail:hiroshi@i.kyushu-u.ac.jp Phone:092-641-1101 Ext.8424

The Learnability of Simple Deterministic
Finite-Memory Automat a

Hiroshi Sakamoto
Department of Informatics

Kyushu University 33, Fukuoka 812-81, Japan
email: hiroshi@i.kyushu-u.ac.jp

Abstract

The present paper establishes the learnability of simple deterministic finite-
memory automata via membership and equivalence queries. Simple deterministic
finite-memory automata are a subclass of deterministic finite-memory automata in-
troduced by Kaminski and Francez [9] as a model generalizing finite-state automata
to infinite alphabets.

For arriving at a meaningful learning model we first prove the equivalence prob-
lem for simple deterministic finite-memory automata to be decidable by reducing
it to the equivalence problem for finite-state automata. In particular, we present
a decision algorithm taking as input any two simple deterministic finite-memory
automata A and B which computes a number k from A and B as well as two finite
state automata DlA, iMB over a finite alphabet C of cardinality k such that A and
B are equivalent iff PIA and &Ia are equivalent over C.

Next, we provide the announced learning algorithm and prove its running time
to be polynomially bounded in the length of a longest counter example returned,
in k, the number described above, and in n the number of states of a minimum
deterministic finite state automata being consistent with the target language over
a finite alphabet of cardinality k.

I Introduction

Active learning goes at least back to Shapiro [12], [13], [14] who developed an Algorithmic
Debugging System that uses a variety of types of queries to the user to pinpoint errors
in Prolog programs. Subsequently, Sammut and Banerji (111 proposed a learning system
using membership queries. Theoretical investigation of learning via queries started with
Anglnin's [I] pioneering paper. In particular, Angluin [I] showed the class of regular lan-
guages represented by deterministic finite automata to be learnable by using polynomially
many membership and equivalence queries. For facilating further discussion, we introduce
some additional notation.

Let C be a finite alphabet, and let C* be the set of all finite strings over C. Any L C C*
is called a language. The general problem studied in active learning is to identify a target
language L with respect to some hypothesis space L1, L2, . . . , of languages over C . A
membership query takes as input a string s E C* and returns yes if s E L and no otherwise.
An equivalence query takes as input a language L from the hypothesis space and returns
ges if = L. Otherwise, no is returned as well as a counterexample from the symmetric
difference of L and L. Clearly, in order to arrive at a meaningful model, one has to require
that the languages in the hypothesis space do possess finite descriptions which are provided
as input to an equivalence query. Therefore, we assume the hypotheses to be represented
by its indices. The questions are assumed to be truthfully answered by a teacher. The
learning task is successfully finished if the learning algorithm returns an index i such that
L = Li. Moreover, the relevant equivalence problems should be decidable, since otherwise
the teacher would have to much power (cf. [5]). Finally, the overall number of queries ask
should be polynomially bounded in some suitable parameters, e.g., the minimal index i
with L = Li, and the length of the longest counterexample returned.

During the last decade, various researchers continued along this line. Sakakibara [lo]
generalized Angluin's result to the class of bottom up tree automata. Ishizaka [8] showed
that the class of simple deterministic context-free grammars is polynomially learnable
from membership and equivalence queries. More recently, Burago [3] provided an algo-
rithm for learning the class of structurally reversible grammars in polynomial time using
membership and equivalence queries, and Bergadano and Varricchio [4] showed that rec-
ognizable series are identifiable using polynomially many equivalence queries and shortest
counterexamples. For more information concerning recent results within this learning
model the reader is referred to Gavalda's [6] excellent survey.

We aim to extend this line research into a direction previously not considered, i.e.,
we study the identification of languages defined over an infinite but countable alphabet
2 = {a$ E N). Recently, Kaminski and Francez [9] introduced a model of computation
dealing with languages over 2, the so-called finite-memory automata. Finite-memory
automata are a natural extension of finite state automata in that they accept precisely
the regular languages when restricted to finite alphabets. For the sake of presentation, we
continue with a description of their model. A finite-memory automaton is represented by
6-tuple A = (S, ud, qo, p, p, F), where S is a finite set of states, qo t S is the initial state,
ud E (2 LJ is the initial assignment, p C S x {i E N / 1 5 [i 5 k } is the reassignment,
and ,u C S x { i E N/1 5 i 5 k } x S the transition relation. Finally, F C S is the set of
accepting states, and # is a special syxribol riot belonging to 2.

A finite-memory automaton A is equipped with an auxiliary tape consisting of k

windows each of which can contain precisely one symbol from 9 U {#}. The content of
this tape is referred to as to an assignment, thus uA is called initial assignment of A. A
pair of a state and an assignment is called configuration. For A, the unique configuration
(m, uA) is called the initial configuration of A and a configuration with the first component
in F is called a final configuration of A. Let (p, u) be an actual configuration of A. Then,
for an input symbol a E 2, A may change its actual configuration as follows. First, it
tests whether or not a is contained in some window of u. In case it is, say in the ith
window of u, then, if (p, i, q) E p, A may enter state q and the assignment u remains
unchanged, i.e., (q,u) is the new actual configuration. In the case a is not contained in
u, first j = p(p) is computed and a is placed into the j t h window of u resulting into the
new assignment ii. Furthermore, if (p, j, q) E p, then A may enter state q, and (q,ii) is
A's new configuration.

A computation of A is a sequence of configurations of A. A computation ending in
a final configuration of A is called an accepting run of A. We use L(A) to denote the
set of all strings over 9 that are accepted by A and refer to L(A) as to the language
accepted by A. Similarly to finite-state automata deterministic finite-memory automata
can be defined. A finite-memory automaton A is called deterministic if p is a mapping:
S H {i E NI1 5 i 5 k) and for each p E S and 1 < i 5 k , there exists exactly one q E S
such that (p, i, q) E p.

Furthermore, a finite-memory automata A is called simple if uA E {#Ik. Our domain
of interest is the subclass of simple deterministic finite-memory automata, denoted by
dfma#.

In the following, we consider the problem of learning simple deterministic finite-
memory automata via membership and equivalence queries. After a bit of reflection,
it is easy to see that the set of all dfma# is recursively enumerable. Thus, we fix any
recursive enumeration as hypothesis space. Now, assuming a teacher choosing any
A as target, the learner can ask membership and equivalence queries to obtain information
about the object to be learned.

Next, we discuss how reasonable it is to assume the teacher to answer correctly mem-
bership and equivalence queries. For membership queries, it is easy to see whether or not
any string from C is accepted by the dfma# A chosen by the teacher. Thus, it remains
to consider the feasibility of answering equivalence queries. This problem has not been
studied by Kaminski and Francez [9] and remained, as far as we know, open. Thus, we
first study the decidability of the equivalence problem for dfma#'s. Roughly speaking,
the first result of this paper is as follows: Given any two dfrna#'s A and B such that
the length of their initial assignments are ka and kB, respectively, we compute two dfa's
&IA and &IB consistent with A and B over a finite alphabet of cardinality k 2 kA + kB,
respectively. Then, we prove that A and B are equivalent over 2 if and only if MJ, and &IB
are equivalent over C. Furthermore, the equivalence problem for deterministic finite-state
automata is decidable in polynomial time, the equivalence problem for dfma#'s is decid-
able, too. Thus, we conclude that it is reasonable to allow polynomially many equivalence
queries for learning dfma#'s.

Moreover, we provide an algorithm, denoted by DFMA, that identifies every tlfam#
using polynomially many membership and equivalence queries. There by, the poly nornial
takes as input the length of a longest counterexarnple returned, the number k descril~etl
above as well as n, the number of states of a minimum deterministic finite-state a11tornatl-t

being consistent with the target language L (A) over the finite alphabet C of cardinality
k . Note that the D F M A is partially based on Angluin's [I] observation table technique.

This paper is organized as follows. Section 2 provides all definitions and notations.
The equivalence problem for dfma#'s is studied in Section 3. Section 4 deals with the
learning algorithm mentioned above. The first subsection formalizes the learning problem
and provides the algorithm D F M A . In Subsection 4.2. we prove the correctness of the
D F M A , and the final subsection deals with its running time. Finally, in Section 5 we
discuss open problems.

2 Preliminaries

Let N be the set of natural numbers. An alphabet is a set of symbols. By e { a i l i E N)
we denote an infinite but countable alphabet. Let 2" be the free rnonoid over 2 (cf.
[7]). The elements of 2* are called strings. Let w E 2* be a string.; we use jwl to
denote the length of w and by [w] the range of w is denoted. By range(w), we denote
the set of symbols contained in w. The string E of length 0 is referred to as to the empty
string. Furthermore, for all i = 1, . . . , lw 1, we use w[i] for denoting the i th symbol in w.
Additionally, the prefix of length i of w, 0 5 i 5 Iw!, is denoted by w(i). Let n E N; then
we set cn = {w E e*, lwi = n). Moreover, we set C+ = 2* \ { E) .

Let C c f: be a finite alphabet. By JIC/I, we denote the cardinality of C. A language is
a subset of %* (possibly, a subset of C*). A class of languages is a collection of languages
containing a t least one nonernpty language.

Let # be a special symbol not belonging to 2. An assignment is a string ~ 1 x 2 . x, E
(2 U {#))* such that if xi = X j and i f j, then xi = # for 1 5 i, j 5 n. That is, an
assignment is a string over 2 U {#) such that each symbol in 2 appears at most one time.

Definition 1 (Kaminski and France2 [9]). A finite-memory automaton is 6-tuple
A = (S , qo, u, p, p, F), where S is a finite set of states, qo E S is an initial state, u =
~ 1 x 2 . . xk E (C U {#))le is an initial assignment, p is a mapping: S H {1,2, . . . , k)
called a reassignment, p C S x {1,2, . . . , k) x S is called a transition relation and F C S
is a set of final states.

A pair (q, u) of a state q E S and an assignment u E (~U{#})"S called a con*figuration.
An unique configuration (qo, u) is called an initial configuration, and all the configurations
with the first component in F are called final configurations. We define a relation t over
configurations as follows: Let u = xlx2 . xk and u' = y, y2 . . . y k be assignments, and let
p, q E S. Then, (p, u) t- (q, u') odef there exists a E 2 such that

1. if a = xi for some 1 < i 5 k, then u = u' and (p, i , q) E p, or

2. if a $ [u], then p(p) = j E {1 ,2 , . . . , k) , 1 ~ , = a , for each 15 j ' f j < k, =x j l ,
and (P, j, q) E P.

Intuitively, let p and u be an actual state and an actual assignment of ca1.4, respectively.
Thcn, if (I is equal to the i-th symbol of u and (p, i, q) E p,, then A may change its
state to (1, and otherwise u[p(p)] is replaced by (I and if (p, p(p), q) E p, tlicn A may
change its state to q . When necessary, we write (p, u) Fa (q, u') by specifying the symbol

a. The reflexive, transitive closure of t- is denoted by t-*. We say that A accepts .w =
wlw2 w, E C* if there exists a sequence of configurations co, el, . . . , c, such that Q is
the initial configuration, c, is a final configuration and q-1 krWi q for each 1 5 i 5 n.
The set of all strings accepted by A is denoted by L(A). By (A(z), u,), we denote a
configuration in S x (2 U of A such that (qo, u) kx (Aiz), u,) for z E k*.

Definition 2 (Kaminski and France2 [9]). A finite-memory automaton A = (S, qo, u,
p, p, F) is called deterministic if p is everywhere defined, and for each p E S and each
1 5 i < 1u1, there exists exactly one q E S such that (p , 2, q) E p.

Definition 3 A finite-memory automaton A = (S, qo, u, p, p, F) is called simple if u E

{#I*.
A deterministic finite-memory automaton is written by a dfma. In particular, a simple

dfma is written by a dfma#. By DFMA, we denote the class of languages accepted by
dfma's over 5. Our domain of interest is a subclass of DFMA, denoted by DFMA#, the
class of languages accepted by dfma#'s.

3 Deciding equivalence of dfma#'s

In this section, we discuss the decidability of equivalence for dfma#'s. Given two dfma#'s
and a countable alphabet, the equivalence of the dfma#'s over the alphabet is defined as
follows.

Definition 4 Let A and B be any dfma#'s, and let k = {ao, a l , . . . ,a,, . . .). We sag
that A and B are equivalent over 2 iJ for all w E 2*, w E L(S1) iff w E L(B).

We provide an algorithm Dec deciding whether or not A and B are equivalent over k.
The behavior of Dec is summarized as follows; Let A = (SA, ud, q$, pA, FA) and
G = (SB, uB, qf, pB, pB, FB). Let k = luAl + IuBI. Then Dec takes A, 13 and C =
{ao, a l , . . . , ak) as input. First, it computes a set of configurations of A and B defined on
C as follows; For A, let C(A) = SA x (C U Initially, let C(A, 0) = {(qo, uA)).
For i E R, we proceed inductively. Define C(A, i) = C(A,i - 1) U C(A)i-l, where
C(A)i-l = { C E C(A)13a E C, 3c' E C(A, i - 1) s.t C' Fa c). If G(A, i) = C(A, i - 1) for
some i 2 0, then let C(A) := C(A, 2). For B, a set of possible all configurations, C(B), is
analogously computed. From C(A), a dfa & = (QA, C,p:, bA, f A) is defined as follows;
QA := C(A), p: := (q ~ , l i A) , 6A C C(A) x C x C(A), where (c , a , c') E bA iff c Fa c'.
Furthermore, f A C C(A), where (p , u) E f A iff p E F ~ . &IB is defined analogously. Now,
using any standard algorithm for testing equivalence of two dfa's as a subroutine, Dec
decides whether or not L(&) = L(n/Ig), and returns 'yes' and 'no', respectively. For the
formal description of Dee, we refer to the reader to Figure 1. Next, we deal with the
correctness of algorithm Dec.

Theorem 1 Let A and B be any two dfrnu# 's, and let C be defined us above. O n input
A, B and C, the ulgorithm Dec eventz~allyl terminates.

Input: Two dfrna#'s A and B, and an alphabet C = {ao, a l , . . . , ak}.
begin

Let C(A, 0) = { (q o , uA)).
compute C(A, 1) and let i = 1.
while(C(A, i) # C(A, i - 1))do

compute C(A, i + 1) and i := i + 1.
end while
let C(A) := C(A, 2).
let hiA = (QA7 pf, gA, f A) such that

QA = C(A,i) , pf = (q t , uA),
bA C C(A) x C x C(A), where (c, a , d) E gA iff c Fa c', and
f A C C(A), where (p,u) E f A i f f p e pA.

compute A&.
if(L (MA) = L (A&)) t hen

output 'yes' and halt.
if(L(n/fd) # L(n/lL3)) t hen

output 'no' and halt.
end

Figure 1: Algorithm Dec

Proof. Since C, SA and Sn are finite, C(A) and C(L3) are finite, too. Thus, C (A , i) =
C(A, i - 1) as well as C(L3, i) = C(B, i - 1) must eventually happen. By definition,
C(A, i) = C(A, i - 1) implies C(A, i) = C(A, i + m) for all m 2 0. Thus, assuming
(qo, ktA) kW (p, u) for some w E C* directly results in (p, u) E C(A, I w 1) , a contradiction.
Hence, for all (p, u) E C(A), (qo7 uA) I-* (p, u) iff (p, u) E C(S1). Consequently, C(S1) and
C(L3) are computable. Finally, it is easy to see that h/! and AdB are computable, too.
Hence, algorithm Dec terminates. C1

Next, we show the correctness.

Definition 5 Let A = (S, u, qo, p, ,u, F) be a +a# and C = {ao, a l , . . . , ak) such that
k 2 I u ~ . For w E g+, we define sets wg 5 c I "~ recursively as follows:

a: = C for each a E 2
a' = uwt [i] zf a = u, [i]

(wa)' = ' { a E [u ,] otherwise.
w'€(.lu)i

Let us verify that ?us is well-defined. Every a< is defined for each a E 2. Let w$ be
defined for each ?u E C". If a = u, [i], then a E [w]. Then, let w = aa,8 for some cu E g*
and ,8 E @\{a))*. Since f w g is defined, (on); is also defined. Then, u,,[,i] = a. Thus,
U,I,I [i] = a' f # is defined. Since a $ [PI and u, [i] = a, if jw' = a'u',O1 E ,u,$ (1/3'1 = l,OI),
then a' 6 [/?'I. It follows that L L ~ ~ [i] = a' # #. Thus (cwa); is defined. On the other hand,

let a 6 [u,]. Since 1 lcll = k + 1 > I ~ ~ I I , for each w E g*, clearly, C\[u,] # V). Thus, (wu);
is defined.

Lemma 1 Let .w E f? and w' E w;. Then, for each 1 < i < Iwl and 1 < j < 1111,

~ [i] = uW(i-~)[j] iff (~ ' [i] = ~ , l (~ - ~) [j] , where U W (~) = U.

Proof. It is proved by induction on length of w. Since an initial assignment u contains
no symbol in 2, by the definition, it is clear that, for each a E 2 and a' E a$ = C,
a E [v] iff a' E [u]. Assume the induction hypothesis on 9" (n > 1). Let wa E en+' and
w'a' E (wa)$. If a @ [u,], then, by the definition, a' E C'\[uw/]. I t follows that a' 6 [u,/].
Let a = u, [j] for some 1 5 j 5 1211. By the induction hypothesis, , [j] # # iff uWl [j] # #.
Thus, by the definition, a' = u,~ [j] f #. Cl

Lemma 2 For each w E g+ and w' E wg, A(w) = A(wl).

Proof. It is proved by induction on length of w. Clearly, A(a) = A(al) for each a E 9 and
a' E x$ = C. Assume the induction hypothesis on 2" (n > 1). Let A(w) = A(wl) = p
for w E en and w' E w$. Let wa E en+' and w'a' E (wa)?. Let a @ [u,] and p(p) = i
for some 1 < i 5 juI. Then, (wa)$ = Uwl,w~,a l ,~~~uwllx 'a ' . Thus, by Lemma 1, (p, h) Fa

(qr~wa) on (~7274) E P implies (P ,U-~/) I-" (q,~-w/al) on (p) i , q) E p. Thus, A(wa) =
A(wla') = q. Let a = u,[j] for some 1 < j L, lul. Then, (wa)$ = ~ ~ ~ , , ~ w ' u ~ ~ [j] .

Thus, by Lmnma 1, (p, h) Fa (q, ha) on (p, j, q) E p implies (p , %I) 1-"wlbl (q, %/,I) on
(p, j) q) E p. Thus, A(wa) = A (W ' U ~ I [3]) = A(wla') = q. Hence, A(w) = A(wl) for each
w E en+' and w' E w$.

Lemma 3 Let A and l3 be dfma#'s. Let C = {ao, a', .. . , a t) such that k 2 juAl + IuBl.
Then, for each w E 2+, w$ n WE # 0

Proof. It is proved by induction on length of w. Clearly, for each w E 9, wg = wg = C.
Assume the induction hypothesis on 2" (n >_ 1). Let wa E en+'.
Case 1. Let a E [a$] n [u:] . Then, there exists w' E w$ n WE such that w'u$ [jl] E (wa)$
for a = u$[jl] and w'uEl [j2] E (wa); for a = uE[j2]. Since a E [u;], we can assume
that w = cvaP for some cu E g* and ,8 E (g\{a))*. By the induction hypothesis, there
exists cv'a'Pt E (cvap)e n (&up);. Since a @ [PI and a E [u:] n [u:], uta [js] = U: [jl] =

B A B uaa [j 2] = u: [j z] = a. Thus, by Lemma 1, u$ia1 [jl] = uPwl [j'] = u,~,~ [j2] = .El [j2] = a'.
Thus, (wa)$ 3 w'u$ [jl] = w'a' = w'utl [j 2] E (wa)$.
Case 2. Let a 6 [u$] U [ut] . By the condition IlCll = k + 1 > luAl + luB17 for each
w' E W $ ~ W ; , there exists a' E C such that a' 9 [u:,] U [u:,]. Thus, (wa)$ 3 w'a' E (wa);.
Case 3. Let a E [u$]\[uE]. Since a E [w], let w = olaP for some a E g* and ,8 E (e\{a))*.
By the induction hypothesis, let a'a' E (aa)$. By Lemma 1, there exists 1 5 jl (luAl
such that uta[jl] = a iff u$,,[jl] = a'. Let w' = cv'a',B1 E w i . Since a @ [PI, by Lemma
1, a' 6 [PI]. Thus, w'a' E (wa);. Since a E [u:,], we can assume that a = u:,[j2] and
a' = l z ~ : ~ ~ ~ [j2]. Since a 6 [u:], by Lemma 1, ufta[j2] = a # fu: [j2] implies u$,, [j2] = a' jL
/uEl [jz]. Since a' 6 [/3'], we have that a' 6 [u:,]. Thus, w'a' E (wa):. Consequently,
fw'a' E (~(1); n (wu);. Finally, we have that, for each ,w E gn+', n jL V). The proof
is completed.

Theorem 2 Let A and k3 be dfma# 's. Let C = {ao, al , + , a k) such that k > IuA/ + 1 ~ ~ ~ 1 .
Then, C* n L(A) = C* 0 L(k3) if and only if L(A) = L(B).

Proof. The if-part is always clear, then we prove the only-if-part. Let w E L(S1). By
Lemma 2, urg C L(A). Since C* n L(A) = C* n L(B), w$ C L(B). By Lemma 3, there
exists w' E ~ w $ n wg. By Lemma 2, B(w') = B(w). Thus, ,w E L(13). The converse
direction is analogous. 0

4 Learnability of dfma#'s

We discuss the learnability of dfma#'s using membership and equivalence queries. This
section contains three parts. In the first part, we provide an algorithm using membership
and equivalence queries, and explain its behavior for a target language in DFMA#. In the
last two-part, we analysis its correctness and running time. Finally, the main theorem of
this paper is proved.

First, we define membership and equivalence queries for a target dfma# A*. Given
2, the followings are allowed;

Membership query: an input is w E e*
a response is

yes if w E L(&)
no otherwise

Equivalence query: an input is a dfma#A

a response is
yes if L(A) = L (P)
a string in L(A) @ L(A*) otherwise

We note the result on Section 3. Then, the above queries are not stronger than that
on regular languages. Our goal is to show that every L E DFMA# is learnable on
hypotheses space dfam#'s using membership and equivalence queries in polynomial-time
in the parameters r , n and rn; r is the length of a shortest initial assignment of dfma# A
such that L = L(A), n is the number of states of a minimum dfa M such that L(h1) =
C* n L, where llCl1 = r , and rn is the length of a longest counterexample returned so far.

4.1 Algorithm DFMA

The algorithm D F M A shown in Figure 2 contains three procedures denoted by Table(,),
Cons() and Mini(,). Angluin introduced the notion of observation tables and showed that
every dfa is learnable in polynomial-time using membership and equivalence queries [I].
Table is just the Angluin's algorithm, that is, given a finite alphabet C and a set E of
(counter)exarnples, Table(C, E) is a minimum dfa M such that L(h.1) = C* n L for a
target L.

Given a minimum dfa M such that L(lb1) = C* n L, the procedure Cons shown
in Figure 3 computes a dfma# A with an initial assignment of length n = llCl1 as
follows: Let A1 = (S, C, qo, 6, F) and C = {al, az, . , a,}. Initially, a one-to-one mapping
U ~ ~ , ~ , { U , , I-+ i) is fixed and set A = (S, u, rl,, p, p, F) such that u = #" and for each
1 5 i 5 n, (p, i , q) E p iff 6 (p , a,) = q. Furthermore, p S x {l, 2 , . . . , n) is defined as
follows: Initially, let ,OO = 0. For i 5 In, let pi = pi-1 U pi, where pi & S x { 1 , 2 , . . . , n)

such that (p, i) E pi if£, (p, i) 9 pi-1 and 6(q0, w) = p for some w E C\ {ai}*. For some
i 5 n, if pi = pi-1, then let p := pi.

From M and A, the procedure Mini shown in Figure 4 computes a dfma# A' with
an initial assignment of length n' 5 n as follows: A relation -1 used in Mini is defined;

Definition 6 Let W, = {w E C* 16(qo7 w) = p} . Then, p ~1 q * d e f there exists a
one-to-one and onto mapping I : C C such that Wq = u,,~, {l(w)).

For each
for some
and u' =

p E S such that p(p) = n, if there exists q' E S such that (p, n, q) , (p , j , q') E p
j < n and q rl q.', then let P' = (P\{P(P) = n)) U { P (P) = j), P' = P\{(P, n, q))
#n-l. Remove q E S if qo q or any qo t* q is not defined with no transition

of the form (pi, n , pj). Let S' be such a reduced set of states and F' = Sf n F. For each
p E S and p' E S' such that p p', if, for each a E C, there exists a' E C such that
6(p, a) -1 6(p1, a') and 6(p1, a') E S', then let A := (St, u', qo7 p', p', F') and repeat the
process. Otherwise output A.

Let A be an actual hypothesis of D F M A for a target A*. If L(A) # L(A*), then a
counterexample is returned and a hypothesis is computed using membership and equiva-
lence queries. Once 'yes' is returned, by Theorem 2, D F M A outputs a correct hypothesis
and halts.

Initialize a dfma# A such that L(A) = 0, C = 0 and E = 0.
begin

E: make the equivalence query for A.
if the answer is 'yes', then

output A and halt.
otherwise let w be the counterexample returned.

set E := E u {w) and C := C U range(w)
M := Table(C, E), A := iZfini(M, Cons(M)) and goto E. end

Figure 2: Algorithm DFMA

4.2 Correctness

Proposition 1 (Kaminski and Francez [9]). Let A = (S , qo, u, p, p, F) be a finite-
memory automaton. Then, for each automorphism 1 : 2 H 9, we have that l(L(A)) =

u ~ E L (A) ~ (w) = L(Aqo,l(u)), where Aqo,z(u) =< S7 40 , I(%) , P, p, F >.

From this proposition, we have that, for each dfma# A and each automorphisrn 1 : C H C,
l(L(A)) = L(A). Let 121 = (S, C, qo, 6, F) be a minimum dfa such that L(Ad) = C* n L
for some L EDFMA#. Then, for each one-to-one and onto mapping 1 : C t-+ C, we have
that l (L (d)) = L(hl) .

Lemma 4 if p $, q , then 1 (W,) n IV, = 0, where 1 (VV,) = u , ~ , ~ ~ ~ ~ (w) .

Input: a dfa A1 = (S", C , q f , 6, F M) , where C = {a l7 a2 , . . . , a,).
Initialize a dfma# A = (S , u, qo, p, p, F) such that S := S", u = #", qo = q t f , p = 0
and for all p , q E S and i E {I, 2 , . . . , n) , (p , i , q) E p iff 6 (p , a i) = q.
begin

for each@ E { l , 2 , . . . , (n,) and p E S) d o
i f (p (p) is not defined and 3 w E (C\{ai))* s.t 6(q0, w) = p) t h e n

P (P) = i.
output A.

e n d

Figure 3: Procedure C o n s

Proof. Assume the contrary, that is, there exist w l , w2 E Wp such that l (w l) E Wq
and 1(w2) E kV41 for some 1 : C I---+ C, where q # q'. For each w E C*, 6(qo, w l w) E F iff
S(qo, w 2 w) E F . Since l(L(11.l)) = L(iZ.l), we have that, for each w E C*, 6 (q o , l (~ 1 ~)) E F
iff 6(qo, l (w 2 w)) E F , that is, S(q , 1 (w)) E F iff 6(qt7 1 (w)) E F. Since 1 is a one-to-one
and onto mapping, U , , = ~ . ~ (W) = C*. Thus, for each w E C*, 6(q , w) E F iff 6 (q f , w) E F.
Note that h1 is a rninimum dfa. Contradiction.

Lemma 5 Let p E , q. Then , for each a E C , if 6(p , a) = p' and 6 (q , l (a)) = q', t hen
p' =1 q'.

Proof. From Lemma 4, i t is sufficient to show that there exists at least one string oc E W,!
such that Z (N) E VVq/. Let w E Wp and w' E Wq. Then, for each a E C , w a E Wp! and
wll (a) = 1 (w a) E

Let A = (S , u, qo, p, p, F) be a dfma# computed by Cons on input M . Consider
a state A (w) for w E C*. Also, A (w) is a state of 11.1. Then, if, for each w E C",
6(qo, w) ~1 A (w) , then L (M) = C* n L (A) , because l (L (M)) = L (M) for each 1 : C I+ C.

Lemma 6 L (h f) = C* n L(A) .

Proof. Let C = { a 1 7 a 2 , . . . ,a,) and X = {ai H ill 5 i < n). For w = w 1 w 2 . . . w m E
Cm7 let (q07 uA) kW' (P I , U I) Fw2 (- - 1) Fwm (pm7 urn), where (pi-,, kWi
(pi-1, %-I) for (p i - I , j i ,p i) E p (1 5 i 5 m). Then, define a string wx = X - ' (j l j z . . . jm) E
Em. We first show that for each w E C+, A(w) = A (w x) . I t is true on each w E C .
Then, assume A (w) = A (w x) on each w E En. Let (qo7 uA) t -X- '(j l) (p17 u:) t - X - l (j 2)

(m - ,) (u) . Let a = U , [k] for some 1 < k _< IuA I. Then, there
exists 1 5 i < m such that (pi-1, ui1) ka (p i , %) for (pi-, , k , pi) E p. By the induction
hypothesis7 (pi-, 7 uil) FA-'('") (pi7 11;) for (pi-1, k , pi) E /J. Thus, (p,, h) Fa (p,+, ,
for (Prn,k,prn+~) E P implies (p m , ~ ;) I-"'('") for (p,, l ~ , p , ~ + ,) E p. Let

@ ['uw], ~ (p m) = k and (pm, urn) Fa (pSrn+,, urn+,) for (pm7 lC,p,,+') E p. Thus, for each
a E C , i l (cua) = A ((~ w a) ~) .

Next, we show that for each w E C * , 6 (q o , w) =l A(w). On basis, S(qO,E) = q0 ==1

qo = A(&). Assume the induction hypothesis on some ?u E En, that is, 6(qo, W) = p ,

Input: a dfa il.1 = (S , C, qo7 6 , F) , and a dfma# C o n s (M) .
Let Cons(iL1) = A = (S , u, go7 p, p, F) and n := Ivl
begin

for each(p E S s.t p(p) = n) d o
i f(33 < n s.t (p , n, q) , (p, j , q7) E p and q =1 q f) t hen

P I : = P\{P(P) = n) U { p (p) ' = j } , u ' : = # ~ - ' , p1:=p\{(p7n7q)} ,
S' := { p E Slqo t--* p with no (p i , n,pj) E p} and F' := S' n F .
for each(p E S and p' E S' s.t p -1 pf)do

if(V6(p7 a) E S , 36(p1, a') E S' s.t 6(p, a) -1 6(p1, a l)) then
A := (S i ,u ' , q0,p',p1, F') and n .- .- n - 1.

else goto 0 .
else goto 0.

0: output A .
end

Figure 4: Procedure Mini

A (w) = p' and p ~1 p'. Since A (w) = A (w x) = 6(qo7 wx) = pl, there exists l - l (wx) E
Cn such that 6(qO7 lW1(wx)) = p. Let (wa)x = wxax. Since a = uw[i] iff ax = ux[i] ,
A(wa) = A(wxax). If a E [l - l (wX)] , then 1(1-'(wx)a) = wxax = (wa)x. Thus, 6(qo, wa) =
6 (qo7 l - ' (wx)~) ~1 A((wa)x) = A(wa) . If a 6 [I-'(wx)], then ax @ [wx] . Thus, there exists
1' = @\{a H b}) U { a H ax) for some b E C such that l'(1-l(wAa)) = wxax = (wa)x.
Thus, 6(qO7 wa) = 6(qO7 1-'(wx)a) ~ 1 1 A(wAax) = A(wa) . Hence, we have that for each
w E C*, 6(qo, w) =1 A (w) . It follows that L (M) = C* n L (A) .

Similarly, we show that the relation =l is also preserved on each dfma# computed by
Mini. Let B = (S B , uB7 qo, pB, pn, Fn) be an output of Mini on input M and A.

L e m m a 7 C* n L(B) = C* n L (A) and the length of uB is minimum.

Proof . We can assume that SB 2 SA, pn C pA, FB 2 FA7 luB/ 5 and =
if ,oA(p) 5 luBl. Thus, for each p E SA , there exists p' E Sn such that p G I p', and for each
15 i < n, there exists 15 i' 5 n'such that q ~1 q' for (p , i ,q) E pA and (pl,i',q') E pn.
For w = ~ 1 ~ 2 W n E Cn, let (qo7 u) I-"' (p l , u l) tW2 . (p,-1, twn (p,, k), where
(pi-1, & - I) tWZ (pi, G) for (pi-17ji7pi) E pA. Let C' = {a l , a2,. . . , a,)). Then, there exists
w' = w;w; . . wk E Cfn such that (qo, u) tW; (pi , u i) kwh . . (P L - ~ , uk-,) tw; (p;, uk) ,
where pi =l pi , and (pLWl, ui-,) t-": (p i , ui) for (pi-,, j:,pi) E (j ; < 71'). Thus, A (w) z1
A (w f) . Since no transition in ,uA\pB is applied in the computation (g o , u) twl (p;, L&), this
is a computation of B, too. Thus, A (w f) = B(wf) . Now, we recall Definition 4. Then, from
the condition IlCll > Innl , we have that w' E wg. Thus, by using Lemma 2, B(w') = B(w) .
Consequently, A (w) -1 A(w1) = B(w') = B(,w). Hence, C* n L(A) = C* n L(l3).

Next, we show that the length of un is minimum. Assume that there exists a. dfrna#
C such that C* n L(C) = C* n L(B) and the length of the initial assignment of C is
shorter than 1nnl Since luCl < IICII, for each (w E C* there exist a, b E C such that
C(,wu) = C(?ub). Since L (M) = C* n L(C), it follows that 6(q0, wa) G~ S(qo, wb). For k3,

there exists w E C* such that for each a, b E C, B(wa) gl B(wb). Since for each w E C*,
6(q0, W) -1 B(w), we have 6(qo, wa) 6(qO7 wb). Since M is a minimum dfa, by Lemma
4, either 6(qo, wa) rl 6(qo, wb) or 6(q0, wa) +I 6(qo, wb) holds. Contradiction.

It is easy to see that the procedure Cons terminates on each input dfa. The main
part of the procedure Mini is to decide, for any two states of input dfa, whether or not
the relation rl holds. Let hf = (S , C, qo, 6, F) be an input dfa such that 1 IS1 1 = n. For
p E S, let WT = {w E Wpllwl < n). Then, by Lemma 4, p ~1 q iff 1(Wa) = Wr. Since
C, n/an and W," are finite, it is computable whether or not p rl q. Thus, the procedure
Mini also terminates. From Theorem 1, Lemma 6 and 7, we have the following.

Theorem 3 The algorithm DFMA eventually terminates and outputs a dfma# A such
that L = L(A) for each L E DFMA#.

4.3 Running time

Lemma 8 Given a minimum dfa M such that L(M) = C* n L for some L ELIFMA#.
Let n be the number of states of M and k = IlEll. Then, for all pair of states p and q of
M, the time to compute whether or not p - 1 q is O(k . n3).

Proof. Let M = (S, C, qo, 6, F) and IISII = n. Then, S is divided into some disjoint sets
as follows; S = So @ S1 @ . @ S,, where rn < n and Si = {p E SlVw E lVp, lwl 2 i}
for 0 5 i < m. This computation is O(n) time. By the definition of =(, if p E Si, q E Sj
and i # j , then p $1 q. By the definition of Si, clearly So = {go). Assume that it is
decided whether or not p -1 q for each p, q E Si for some 0 5 i 5 rn - 1. Let p, q E
Define S,, Sq 2 Si as p' E S, (or q' E Sq) iff there exists a E C' such that 6(p1, a) = p (or
6(q17 a') = q).

Then we can check whether or not p ~1 q as follows: Let p' =1 q'. Then we know a
pair of strings (w , w') such that 1 (w) = w', 6(qo, w) = p' and &(go, w') = q'. It follows that
we can compute a partial function 1' 5 1 such that Zf(w) = w'.

If a t--+ a' E I' or a +-+ b 8' 1' for each b E C, then there exists 2" = 1' U {a I-+ a'} such
that l"(wa) = w'a', 6(qo7 wa) = p and 6(q0, w'a') = q. Thus p E, q.

Otherwise for each w E C' such that 6(q0, w) = p' and for each w' E C* such that
6(q0, w') = q', we have that l(wa) S; w'a'. For each pl, q' E Si such that p' zz, q' and for
each a, a' E C such that 6(pt7 a) = p and 6(q1, a') = q, if l(wa) # w'a', then clearly p g1 q.
Thus it can be decided whether or not p ~1 q for each p, q E Si+l.

To decide p ~1 q, it takes a t most cl . k I ISi 1 1 steps for some constant el. Thus for
each p, q E Si+1, it takes a t most c2 k . llSil 1 . 1 lSz+l 1 l 2 steps for some constant c2. Thus
for all p, q E S , it takes a t most c3 . k . ~ Z j l / ISi / / 1 lSi+l 1 l 2 steps for some constant c3.
Since xEi1 llSzll = n, the time is O(k . n3).

By Angluin's result, the running time of Table is O(m2n2 + mn3), where n is the
number of states of a minimum dfa and n is the length of a longest counterexample. The
running time of Cons is linear in n. By Lemma 8, the running time of Mini is O(n3).
The number of repetition of Table and Cons is at most 2r times, respectively, where
r is the length of a shortest initial assignment in dfma#'s for a target. Thus, the total
running time is O((1 + 2 + . . + 2r) (m k 2 + mn3 + rn3)) = O((~772n)~ + r2,mn3 + ((r ~ n) ~) .
Finally, we have the following result.

Theorem 4 The class of simple deterministic finite-memory automata is learnable using
membership and equivalence queries in polynomial t ime in r , n nnd rn, where r is the
length of a shortest initial assignment of dfma# 's for a target, n is the number of states
of a m i n i m u m dfa consistent with a target over a finite alphabet of cardinality r , and m
is the length of a longest counterexample returned so far.

5 Concluding remarks

The class of simple deterministic finite-memory automata, denoted by dfma#'s, was de-
fined in this paper. We have discussed the learnability of dfrna#'s via membership and
equivalence queries. In particular, we concluded that equivalence queries for dfma#'s are
reasonable as well as membership queries for dfma#'s by proving that the equivalence of
any two dfma#'s is decidable. Using this result, we provided a learning algorithm allowed
to make polynomially many membership and equivalence queries. The main result of this
paper was followed from the analysis of correctness and running time of the algorithm.

Almost results of this paper heavily depend on the closure property: for every dfma#
A and automorphism l : 2 I-+ 2, it holds that l(L(A)) = L(A). This closure property is
concerned with initial assignments of dfma#'s, that include only the symbol #. However,
an initial assignment of a finite memory-automata contains some alphabet symbols. When
a (deterministic) finite memory-automaton reads an input symbol contained in its initial
assignment, it may pay special attention for the symbol in comparison with other symbols
not contained initially. In this sense, every symbol is fairly judged on dfma#'s but not
on dfma's. On the other hand, there is no difference between definitions of dfma's and
dfma#'s except their initial assignments. Then, it seems that the problem of learning
whole class of dfma's is reduced to that of identifying initial assignments of dfma's. Finally,
the author summarize an idea to identify an initial assignment. Let A* be a target dfma
with an initial assignment u E (2 U and 13' a dfma# obtained by changing u of JP
by #n. Without loss of generality, we can assume that an initial assignment of length n
is of the form u = ~ 1 x 2 + . Xn such that xi f xj if i # j , that is, every symbol in 5 occurs
in u at most one time (See [9]). The first step is to identify an assignment of length n
u' = ylyz...y, such that yi f yj if i f j and for each 1 5 i 5 n, yi = # iff xi = #.
Let X = [u] and Y = [u']. Then, there exists one-to-one mapping 9 : X I---+ Y such that
cp(u) = u'. Let B be a dfma obtained by changing #n of B* by u'. From Proposition 1, for
each automorphism l : 2 I-+ 2 such that cp 2 !, we have that l (L (A *)) = L(B). The next
step is to find a string in the symmetric difference of L(&) and L(B) . That is, we need to
show that equivalence queries are reasonable on general dfma's, too. If a counterexample
w is given, then by checking if y1(<w) E L(A*) and cpl(w) E L(B) for each p1 : C I-+ C, we
can decide the mapping 9 . Then, L(A*) = L(Bq), where B p is obtained by changing u'
of B by cp-l (u'). In future, the author would like to study the problem.

References

[I] D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75237-106, 1987.

12) D. Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1988.

(31 A. Burago. Learning structurally reversible context-free grammars from queries and
counterexamples in polynomial time. Proceedings of the 7th Workshop on Computa-
tional Learning Theory, New Brunswick, USA, pp.140-146, 1994.

[4] F. Bergadano and S. Varricchio. Learning Behaviors of Automata from Shortest
Counterexamples. Proceedings of the 2nd European Conference on Computational
Learning Theory, Barcelona, Spain, pp.380-391, 1995.

[5] W.I. Gasarch and C.H. Smith. Learning via queries. Journal of the ACM, 39(3):649-
674, 1992.

[6] R. Gavald&. O n the power of equivalence queries. Proceedings of the 1st European
Conference on Computational Learning Theory, Royal Holloway University, London,
1993.

[7] J . E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[8] H. Ishizaka. Learning Simple deterministic Languages. Proceedings of the 2nd Work-
shop on Computational Learning Theory, Morgan Kaufmann Publishers, Inc., San
Mateo, CA, pp.162-174, 1989.

[9] M. Kaminski and N. Francez. Finite-memory automata. Theoretical Computer Sci-
ence, 134:329-363, 1994.

[10] Y. Sakakibara. Learning context- free grammars from structural data i n polynomial
time. Theoretical Computer Science, pp.223-242, 1990.

[ll] C. Sammut and R. Banerji, Learning concepts by asking questions, In R.S. Michalski,
J .G. Carbonell and T.M. Mitchell (Eds.) , Machine Learning: A n artificial intelligence
approach, Vol. 2, 1986, Morgan Kaufmann, San Mateo, Ca.

[12] E. Shapiro, A general incremental algorithm that infers theories from facts, i n "Proc.
7th International Joint Conference on Artificial Intelligence," pp. 446 - 451, 1981,
Morgan Kaufmann, San Mateo, Ca.

[13] E. Shapiro, Algorithmic Program Diagnosis, i n "Proc. 9th ACM Symposium on
Principles of Programming Languages," pp. 299 - 308, 1982, ACM Press

[14] E. Shapiro, Algorithmic program debugging, Cambridge, MA: MIT Press, 1983.

[15] H. U. Simon. Learning decision lists and trees with equivalence-queries. Proceedings of
the 2nd European Conference on Computational Learning Theory, Barcelona, Spain,
1995.

[16] 0. Watanabe. A formal study of learning via queries. Proceedings of the 17th Inter-
national Colloquium on Automata, Languages and Programming, pp.139-152, 1990.

[I71 T. Yokomori. Polynomial- Time Identification of Very Simple Grammars from Pos-
itive Data. Proceedings of the 4th Workshop on Co~nputational Learning Theory,
Santa Cruz, CA, pp.213-227, 1991.

