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Abstract 

An EFS is a kind of a grammar and generates a language. During an E m ' s  with the 
subword property generating an output, once a word appears, the word is a subword 
of the output. The property is not 0111y natural and simple but ample to describe a 
computation of a polyno~nial time- bounded deterministic Turing machine. Our main 
result is that the class of elementary for~nal systems (EFSs for short) with the subword 
property is equal to the class P. We also give a membership problem for EFSs with 
the subword property and show that the class of languages generated by EFSs with 
the property is closed under some operations. 

1 Introduction 

Elementary formal systems (EFSs for short) introduced by Smullyan [I] has a rich structure 

to generate languages such as grammars. An EFS is a set of rules which transform patterns 

to patterns. A pattern consists of a variable and a constant symbol which correspond to a 

non-terminal and a terminal symbol, respectively, of a grammar. 

Some classes defined by Turing machines and grammars has been studied by using EFSs. 

The following results are shown [3]: a language is recursively enumerable (resp. context- 

sensitive, context-free and regular) if and only if it is definable by a variable-bounded (resp. 

length-bounded, regular and linear) EFS. However there has been no study about computa- 

tional complexity classes characterized by some EFSs. The purpose of this paper is to show 

computational complexities of EFSs with some properties, especially to show what property 

characterizes the class P. 
Miyano et al. [4] showed that a language generated by an EFS with the subword property 

is accepted by a deterministic Turing machine in polynomial time. In each rule of an EFS 

with subword property, each pattern in body has to appear in the head, so that once a word 

appears during the EFS's generating a word w, w contains it. We show that any language 



in P is generated by an EFS with the subword property, the converse of their result. Thus 

P = H-EFS, which is the set of languages generated by EFSs with subword property. 

Decision problems and closure properties for classes of grammars have been studied. 

We focus the membership problems and closure properties for H-EFS. We show that  a 

membership problem for H-EFS is DEXPTIME-complete. We also show that H-EFS posses 

some closure properties. 

In Section 2, the definitions of two-way multihead alternating finite automata and EFS 

are given. It is shown that  the set of languages accepted by the autoinata is equal to  the 

class P. We show the relation between P and tH-EFS using two-way multihead alternating 

finite automata, in Section 3. In Section 4, we give a membership problem and closure 

properties for EFSs. 

2 Preliminaries 

2.1 Two-way Multihead Alternating Finite Automata 

A two-way multihead alternating finite automaton is intuitively a nondeterministic mul- 

tihead finite autoinaton whose heads can move both left and right, and states are either 

existential or universal. Its definition is formally given as follows. 

Definition 1. A two-way alternating finite automaton with k heads (2AFA(k) for short) is 

a 6-tuple ( K ,  C, 6, yo, F, U ) ,  where 

0 K is the noneinpty finite set of states, 

0 C is the input alphabet which does not contain the endmarkers @ and $, 

6 is a mapping from li x (C U {@ , $))k into a subset of K x {-1,0, + I ) ~  with the 

restriction that for each 1 < j < k, d j  2 0 if a j  = @,  and d j  < 0 if a j  = $, 

40 E li is the initial state, and F 5 li is the set of accepting states, and 

0 U li is the set of universal states and li - U is the set of existential states. 

Let M = ( l i ,  C, 6, qo, F, U) be a 2AFA(k). A configuration of M on input w E C* is a 

(k + 1)-tuple (q, h l , .  . . , hk) E li x {O,. . . , n + lik, which means that  the state of M is y 

and the j-th head is scanning the hj-th symbol of the input tape for each 1 < j < k. We 

define by convention that the 0-th and (n + 1)-st symbols of & w$ are C and $, respectively. 

A transition relation of M is a binary relation on the configurations of M on input w given 

by 
( ~ , h l , . . . , h k )  F M  ( ~ , h l  + d  l , . . .  ,hk +dk) 



if (q ,d l , .  . . , d k )  E 6(p ,a l , .  . . ,ak) and for each I < j < k, a j  is the hj-th symbol of Cw$. If 
C I- D for some configurations C and D ,  then we say that D is an immediate  descendant 

of C .  We denote by I-& the reflexive transitive closure of I - n l .  The initial configuratio~a is 

(go, 1, . . . ,I) and an accepting configuration is any configuration (q, hl,  . . . , hk) with q E F. 
A configuration (q, hl,  . . . , hk) is universal (ex is ten t ia l )  if q is universal (existential). 

Definition 2. An accepting computat ion tree of M on the input w is a finite tree T whose 

nodes are labeled with configurations of M ,  where 

o The root is labeled with the initial configuration of M. 

o Let u be an internal node labeled with a configuration C ,  and Dl ,  . . . , D, be all the 

immediate descendants of C. If C is universal then u has the children ul ,  . . . , u, 
labeled with Dl ,  . . . , D,, respectively. If C is existential then u has exactly one child 

labeled with ui for some 1 < i < n. 
e The leaves are labeled with accepting configurations. 

We say that M accepts 211 if there is an accepting computation tree of M on input w. 

Then, the language accepted by M is the set of strings accepted by M .  We denote by 

2AFA(k) the class of languages accepted by a 2AFA(k) . We define 2AFA = Uk>12AFA(k). - 

Theorem 1. (Chandra el a1.[5], King [2]) P = ASPACE(1ogn) = 2AFA. 

2.2 Elementary Formal Systems 

Let C be a finite alphabet, X a set of variables, and II a set of predicate symbols. We 

assume that C, X, and II are mutually disjoint. Let C* be the set of all words, C+ the set 

of all nonempty words. 

First we define a non-erasing EFS. A pattern is an element of (C U X ) + .  An a t o m  is an 

expression of the form p(rl ,  . . . , rn) ,  where p is a predicate symbol in IT with arity n and 

7-1,. . . , rn are patterns. A definite clause is a clause of the form 

where m 2 0 and A, B1, .  . . , B, are atoms. The atom A is called the head and the part 

B1, . . . , B, the body of the definite clause. We say that a definite clause 

is hereditary if, for each 1 < j < ti, a pattern rj is a subword of some T ; .  



An elementary formal system (EFS for short) is a triplet S = (C, II, I?), where I' is a 

finite set of definite clauses. An EFS (C, It, I?) is hereditary if all definite clauses in I? is 

hereditary. 

A substitution 0 is a homomorphism from patterns to themselves such that @(a) = a for 

each symbol a E C. For a pattern ?r and a substitution 0, we denote by ~0 the pattern 

obtained from .ir by applying 6. For an atom A = p(.irl,. . . , T,) and a definite clause 

C = A + B1,. . . , B,, we define A0 = p(.irlO,. . . , . irnO) and C0 = A0 t 4 0 , .  . . ,B,0. 

A substitution B is said to be erasing if 0 maps some variables to the empty string, and 

non-erasing otherwise. 

A definite clause C is provable from an EFS S = (C, II, I?), denoted by I? t- C ,  if C 
is obtained from I? by finitely many applications of non-erasing substitutions and modus 

ponens. That is, we define the relation I? I- C inductively as follows: 

(1) if I? 3 C then I?I- C, 

(2) if I? t- C then I? t- C0 for any non-erasing substitution 0, and 

Note that the empty pattern i and erasing substitutions are not allowed in the definitions 

of EFS and the provability I-. If we allow i and erasing substitutions, then we obtain erasing 

EFS and erasing provability I-, instead. To emphasize the difference, we sometimes write 

non-erasing EFS and non-erasing provability for ordinary ones. 

For p E II of arity one, we define L(I?,p) = {w E C+ I I? I- p(w) +} and L,(r ,p)  = {w E 

* 1 r t-, ( w )  t}. A language L C+(L C*) is non-erasingly (erasingly) definable by 

EFS if there exist a non-erasing (erasing) EFS S = (C, II, I?) and some p E I? such that 

r I- p(w) t (I? t-, p(w) t ) .  The class of languages definable by non-erasing (erasing) 
hereditary EFS is denoted by H-EFS (H-EFS,). 

A proof tree for an atom A from a non-erasing (erasing) EFS S = (C, 11, I') is a finite 

tree such that 

(1) if l? 3 A t ,  then a tree consisting of a single node labeled with A is a proof tree for A 
from S, and 

(2) if there exists a clause B + B1,. . . , B, such that A = BO for some non-erasing (erasing) 

substitution 6, and if there are proof trees TI,. . . ,Tn for atoms B18,. . . , B,6 from S, 
respectively, then a tree whose root node is labeled with A and has children labeled 

with the atoms BIB, . . . , Bn6 is a proof tree for A from S .  

The following lemlxa is immediate from the definition. 

Lemma 1. For any atom A and any non-erasing (erasing) EFS S, a definite clause A t is 

provable from S if and only if there exists a proof tree for A froin S .  



3 H-EFS is equal to P 

To show H-EFS = P ,  we pay attention to the result showed by Miyano et al. [4]. They 

studied the hereditary EFS from the viewpoint of PAC learnability and showed that the 

class H-EFS(m, k, t, r )  is polynomial time learnable for any m ,  k, t ,  r 2 0, where definite 

clauses are a t  most ,n and each of thein satisfies the following: (1) the munber of variables 

occurrences in the head is at  most k: (2) the number of atoms in the body is at  most 

t: (3) the arity of each predicate symbol is at most r .  In this proof, they construct a 

deterministic Turing machine that,  given w E C+ and H-EFS S ,  decides whether w E L(S, p) 

in polynomial time. 

Theorem 2. (Miyano el al. [4]) P = 2AFA > H-EFS. 

To simplify the proof of the converse of the above theorem, we give the following lemma. 

It inaltes a 2AFA(k) standarized. It is easy to prove the lemma by adding new states. 

Lemma 2. For every 2AFA(k), there exists a 2AFA(k) M such that when p is the state 

of M ,  (1) if p is universal, M does not move its heads but change its state: (2) if p is 

existential, M moves at  most one head at a tii~ie. 

Theorem 3. P C H-EFS,. 

Proof: Let L E P ,  then there exists a 2AFA(k) M = (I<, C, 6, qo, F, U) such that M accepts 

L and satisfies Leinma 2. 

Let UI E C* an input for M, C = (p, hl ,  . . . , hk) be a configuration of M on input w and 

C' = (q, hl,  . . . , h,+ h,+d, . . . , hk) be an immediate descendant of C.  The idea of this proof 

is that ,  if d = + I ,  the position of the s-th head is expressed by a triplet (x,, ay,, x,ay,), 

where a is the h,-th symbol on the input tape and x,ay, = w, and one at  C' is also expressed 

by another triplet (x,a, y,, x,ay,). The position of all the other heads at  C is expressed by 

a triplet (xj,  yj , xjyj) for all 1 5 j # s 5 k and it is also expressed by the same triplet 

(xj,  yj, ~ j y j )  a t  C' since only the s-th head can move. Therefore, we can describe the above 

transition of M, C tM C', by the definite clause 

where t, = (x,, ay,), t: = (x,a, y,), t j  = (xj,  yj) for each j # s, and p, q are the predicate 

symbols with arity 2k + 1 since the last patterns in all t,, t', and t j ( l  5 j # s 5 k) are the 

same. If the s-th head is scanning leftmost symbol of w, we use the empty word E instead 

of words over C because erasing substitutions are allowed. 

Although the input tape contains iwl + 2 symbols including the endmarkers, the above 

triplet (x,a, y,, xsays) can express only I U J I  positions for each head. So we introduce the 



boundary flag b = bl . . . bk E {G , $, l)k for a configuration of a 2AFA(k) and use predicate 

symbols with the boundary flag. A predicate symbol pb with b = bl . . . bk means that if 

bj = e , the j- th head is at  the left endmarlter, if bj = $, at  the right endmarlter, and if 

b j  = 1, at  any symbol of an input for each 1 < j < k. If b j  # 1, we use a triplet ( E ,  ay,, ay,) 

to indicate the s-th head position. 

We construct an erasing hereditary EFS S = (C, rM) by which L is definable. The 
alphabets of S and M are the same. The set of predicate symbols IIM is defined as 

where po is the symbol such that po 6 K. The predicate symbol po is arity one and the 

other predicate sylnbols are arity 2k + 1. 
The set of definite clauses of S is defined as rM = u ~ = ~ I ' ~ .  A definite clause in ro 

corresponds to the start and the end of a computation of M. The initial configuration is 

(go, 1,1, . . . , I) ,  so that ro consists of the following definite clauses: 

 PO(^) +- qob(&, x, . . . , E,  s, x) with b = 1 . .  . 1, 

qb(t1,. . . , tk ,xlyl)  +- for all q E F and b E {G,$, l)k,  

where ti = xi, yi E X for each 1 5 i 5 k. In the rest of the proof, we assume xi, yi E X and 

denote a pair xi, yi by ti .  

A definite clause in rl, r2 and r3 corresponds to a transition with heads of M moving. 

In this case, all we have to do is to consider existential states. 

A definite clause in rl represents the s-th head at C is not at an endmarlter and the 

head a t  C' is not at it. Thus the set rl consists of the following: for all (q, d l , .  . . , dk) E 

b(p ,a l , .  . . , a k )  with d j  = O ( 1  5 j # s 5 k) and b = bl . . . b k ,  b' = bi . . . bk with b, = b: = 1, 

Definite clauses in r2 and r3 represent transitions between two configurations a t  one of which 

the s-th head is at  an endmarlter. A definite clause in r2 corresponds to a transition from 

a configuration with b, # 1, and one in r3 corresponds to a transition into a configuration 

with b, # 1. Therefore, r2 consists of the following: for all (q, d l , .  . . , dk) E 6(p, a l ,  . . . , a k )  

such that p is existential and dj = O ( 1  5 j # s < k), and for all b = b1 . . . bk,  b' = b: . . . b:, 



where b, = 1, b', = $ in the first dinite clauses and b, = 1, bj = $ in the second. r3 consists 

of the same definite clauses except that the boundary flags b and b' are exchanged. 

A definite clause in r4 and r5 represents a transition without the heads of M moving, 

when a configuration of iZf is universal and existential, respectively. So r4 consists of the 

following definite clauses: for all b E {$ , $, l)k, 

where p E I< is universal and ql, . . . , q, are the states of the immediate descendants. Note 

that ~ i y i  = xjyj for all I 2 2, j 2 k .  

Even if the configuration of M is existential, M does not have to move heads of it. Thus 

r5 consists of the following definite clauses: for all (q, 0, . . . , 0 )  E 6(p, a1 , . . . , a k )  and for all 

b E { $ , $ , l j k  

where p is existential. 

The last patterns in each atoms of the definite clauses in rM except for po assures for 

hereditariness. Thus the EFS (C, ITnf, I'M) is hereditary. 

Let T be a proof tree for the clause po(w) + froin the EFS (C, IIM, I'M). An atom which 

labels a node of T represents a configuration of an accepting computation tree. Therefore, 

M accepts w E C* if and only if the clause po(w) + is provable froin the erasing hereditary 

EFS (c, I I ~ ,  r M ) .  T ~ U S  L(M) = ~ , ( r ~ , p ~ ) .  CI 

In the above theorem, we construct an erasing hereditary EFS. We can remove the 

erasing substitutions from the above proof. 

Theorem 4. For any erasing hereditary EFS S = (C, 11, r), there exists a non-erasing 

hereditary EFS S' = (C, II, r') such that L,(r,  p) - {E) = L ( r l ,  p). 

Proof: We define I?' as 

where xl ,  . . . , x, are the variable symbols in C. Thus, proof trees for S and S' are the same. 

Finally we get the main theorem. 

Theorem 5. P = H-EFS. 



4 A membership problem and closure properties. 

The membership problem for a class L of languages (MEMB(L)) is, given any string t u  and 

any grammar G for a language in L, to determine whether w E L(G). 

Let DEXPTIME be the class of languages that is accepted by deterministic Turing 

machines in time 0 ( 2 d n ) )  for some polynomial p. An alternating Turing machine (ATM for 

short) is a nondeterministic Turing machine with universal states in addition to existential 

states. Configurations and accepting computation trees of ATMs are defined similarly as 

those of 2AFA(k). Let ASPACE(s(n)) denotes the class of languages accepted by an ATM 

with space s(n) .  

Theorem 6. The membership problem for H-EFS is DEXPTIME-complete. 

Proof: Since ASPACE(po1y) = DEXPTIME, it is sufficient t o  show that  the probleiii is 

log-space complete for ASPACE(po1y). First we describe an ATM that ,  given an H-EFS 

S and an atom A, decides whether S I- A. M starts with the atom A on the first work 

tape and the H-EFS S = (C, II, I?) on the input tape. M nondeterministically guesses an 

definite clause C = B +- B1,. . . , B, in I? and a substitution B such that A = BB. Then, 

M universally branches for all 1 5 i 5 ?n to recursively check whether S t BiB holds. If we 

start  with p(w) on the work tape, any atoiii on the first work tape contains only substrings of 

w as its arguments since S is hereditary. Thus, M uses O(rn)  space to decide S t A, where 

r is the maximum arity of q E II. This prove that MEMB(H-EFS) is in ASPACE(po1y). 

Let L {0,1)* be a language in ASPACE(po1y). Then for some polynomial s (n) ,  there 

is an ATM M = (K, C, A ,  6,qo, B, F, U) such that  (1) M has only one work tape and no 

input tape: (2) A = C = (0, I)*: (3) Given an input w of length n, M starts with the initial 

state p, and the work tape $ w ~ ~ ( ~ ) - ( ~ + ~ )  of length s (n)  padded with the blank symbol B: 
(4) M changes only its state in any transition from universal configuration: (5) M accepts 

L using a t  most s (n )  space. 

Given an input string UJ and a one-tape ATM M ,  we define an atom A and an H-EFS 

S = (C, II, I?) as follows. Let C = {0,1) and II = li, where every predicate symbols are 

arity s (n )  + 4. The idea is to  represent a configuration J = (p, a1 . . . ( L ~ - ~ @ ( L ~  . . . a,(,)) of 

M by an atom AJ = p(a l , .  . . ,ai-1, @ , a i , .  . . ,as(,), 0 ,1,  B), where the symbol @ stands for 

the position of the head. The last three arguments O , 1 ,  B are dummy ones to ensure the  

hereditariness of definite clauses below. We assume an appropriate encoding of O , 1 ,  B, @, C 

over {O,l). 

Let p E li - U be an existential state. Then for each transition ((p, a ) ,  (q, b, d ) )  E 5 & 
(li x C) x (K x C x {+I, 0, -1)) and for each 1 5 i 5 s(n) ,  we add the following definite 

clauses to  I?: 



For a universal state p E U ,  every transition is of the form ((p, a ) ,  (qi, a ,  0)) E 6 for 

some states ql, . . . , q, by the above assumption. Thus, for each 1 5 i 5 s ( n ) ,  we add the 

following definite clause to r :  

Finally, we add the definite clause below to I' for the special unary predicate q: 

In these definite clauses, it is easy to see that every arguments in the body appears in 

the head. Thus, they are hereditary. It is not difficult to see that there is an accepting 

computation tree for the initial configuration I = (qo, $ W B ~ ( ~ ) - ~ )  corresponding to u~ by M 

if and only if there is a proof tree for the atom q($ WB"(")-"O~B) from S.  The transformation 

is obviously computable in logarithmic space. Hence MEMB(H-EFS) is log-space hard for 

hSPACE(po1y). This completes the result. 

We give some closure properties for H-EFS. The following theorem obviously holds since 

the class P is closed under the following operations. But an importance of the theorem is 

to show how to describe such operations using hereditary EFSs, while it is not easy to do 

using usual grammars. 

Theorem 7. The class H-EFS is closed under the operations of union, intersection and 

concat enat ion. 

Proof: We sketch the outline. Let L1, L2 E H-EFS and Li = L ( r i ,  pi),  where ri is the set 

of definite clauses and pi is the predicate symbol with arity one for each i = 1,2 .  

We define the set of hereditary definite clauses rU, ri, rc as 



Then L ( r U ,  pu)  = L1 U L2, L ( r i ,  pi) = LI L2, and L ( ~ c ,  PC) = L1 L2- 

The  closure properties under the operations in Theorem 7 are effective since we give effec- 

tive procedure how to construct a hereditary EFS from a ZAFA(k) and it it easy to construct 

a polynomial time-bounded deterministic Turing machine which accepts the complement of 

a language. 
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