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Abstract

This paper is concerned with the problem of learning translations from min-
imally adequate teacher. A translation considered here is a binary relation
over strings and defined by an elementary formal system (EFS, for short) in
a special form. An EFS consists of several predicates, in general, but the de-
fined translation is directly characterized by only one designated predicate in
them. This means that every other predicates, which are indirectly necessary
for defining the translation, are never observed in the interaction between a
teacher and a learner. The main problem investigated in this paper is how
to inventing such unobserved predicates and to complete learning. The pre-
sented algorithm learns successfully the target EFS inventing such auxiliary
predicates via membership and equivalence queries in polynomial time.

T

WA BT (FEbE 0hT)

T 820 HFTTRF)IHEE 680-4

FUNTZERS: B LFE MR LEHE
TEL: +81-948-29-7630, FAX: +81-948-7601
EMAIL: sugimoto@ai.kyutech.ac.jp




1 Introduction

We consider the problem of learning translations using membership and equivalence queries,
that is, from a minimally adequate teacher. A translation considered here is a binary relation
over strings and defined by an elementary formal system (EFS, for short) in a special form,
called a translation EFS (TEFS, for short).

The EFS’s are well known to be flexible enough to define various classes of languages in
Chomsky hierarchy [5]. Furthermore, since the EFS’s are logic programs over strings, they can
easily define various relations over strings. The TEFS’s are one of such EFS’s, which are espe-
cially tuned to define binary relations over strings, that is, translations. Sugimoto introduced
several classes of translations defined by TEFS’s and gave some properties of them [15]. In
this paper, we focus on the learnability of a particular class of translations defined by some
restricted TEFS’s, called deterministic right linear TEFS’s (DR-TEFS, for short). The class
of translations is a proper super-class of those defined by sequential machines and a proper
sub-class of those defined by sequential transducers.

The learning model investigated in this paper is polynomial time exact learning from a
minimally adequate teacher. In general, each translation is defined as a partial Herbrand model
of a DR-TEFS, which consists of all the elements with one designated predicate symbol in the
model. The minimally adequate teacher assumed in this paper can answer questions about
the translation, that is, the partial Herbrand model. This means that the target DR-TEFS
might include predicates never observed in the interaction between the teacher and the learner.
Thus, in order to learn the target DR-TEFS, the learner also has to invent such necessary but
unobserved predicates for itself.

This problem of learning both concepts and languages for describing the concepts, in other
words “inventing theoretical terms”, is one of the most important and difficult theme in machine
learning [6, 8, 9, 10, 11]. Ishizaka gave algorithms which work well in such framework [8, 9].
The presented algorithm is based on his algorithm. That is, the algorithm learns not only
a target TEFS but also the predicates which are necessary for the TEFS but never observed
in the interaction between a teacher and a learner. We show that the algorithm learns any
translations definable by a DR-TEFS from a minimally adequate teacher in polynomial time.

2 Preliminaries

In this section, we present basic definitions needed in the following sections. We define elemen-
tary formal systems according to [5, 13, 14, 16] and translations according to [1, 2].

2.1 TEFS

Let 3, X and II be mutually disjoint sets. We assume that ¥ is finite. We refer to each element
of ¥ as a constant symbol, to each element of X as a wariable, and to each element of II as
a predicate symbol. Each predicate symbol is associated with a non-negative integer called its
arity. In what follows, variables are denoted by z,y. For a finite set A, we denote the set
of all finite strings of symbols from A by A*. A term is an element of (X U X)*. A term is
said to be ground if it is an element of ¥*. The length of a term 7 is denoted by |r|. An
atomic formula (atom, for short) is of the form p(my, 79, ..., m,), where p is a predicate symbol
with arity n and each 7; is a term (1 < @ < n). The size of an atom a = p(my,...,7,),
denoted by size(), is defined size(a) = |mi| + -+ + |7,|. An atom p(wy, 79, .., 7,) is said to
be ground if all my,ma, ..., m, are ground. A definite clause (clause, for short) is of the form
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A« By,...,B, (n>0), where A, By,...,B, are atoms. The atom A is called the head and
the sequence By, ..., B, of atoms is called the body of the clause. For a clause C, the head of
C is denoted by head(C). A goal clause (goal, for short) is of the form «— By,...,B, (n >0)
and the goal with n = 0 is called the empty goal. A substitution is a finite set of the form
{@x1/m1, ... &/ Tn}, where 21,..., 2, are distinct variables and each 7; is a term distinct from
z; (0 <7 < n). We refer to either a term, an atom or a clause as an ezpression. Let E be an
expression. Then, for a substitution 8 = {z;/71,...,2,/m}, E6, called an instance of E| is the
expression obtained from E by simultaneously replacing each occurrence of the variable z; in
E by the term 7; (i = 1,...,n). Let a and [ be a pair of expressions and 6 be a substitution.
If af = 36 then we say that 6 is a unifier of a and 5. When there exists a unifier of o and f,
we say that o and  are unifiable.

An elementary formal system (EFS, for short) is a finite set of clauses [14]. The set of all
predicate symbols which occur in I' is denoted by Ilp. We define a translation EFS (TEFS,
for short) as a EFS with at least one predicate symbol with arity 2. Let I' be a TEFS, and
qo € IIp be a predicate symbol with arity 2.

A TEFS T is right linear if each clause of I' is of one of the following forms:

1. p(e,e) «,

2. plaz, by) — q(x,y),
where a,0 € ¥ and ¢ is a term whose length is 0. A right linear TEFS I' is said to be
deterministic if, for each p € Ilr and each a,b € ¥, I includes at most one clause whose head
is of the form p(azx,by). In what follows, we refer to a deterministic right linear TEFS as
DR-TEFS for short.

For an EFS I' and ground atom «, a derivation tree of o on T' is a finite tree that satisfies
the following conditions.

1. Each node of the tree is a ground atom.
2. The root node is a.

3. For each internal node « and its children fy,..., 5, (n > 1), a < f1,..., 5, is a ground
instance of a clause in I'.

A proof tree of o on I is a derivation tree of o on I' such that each leaf of the tree is a ground
instance of a clause with empty body in I'. We define
SS(I') = {o| a is a ground atom and there exists a proof tree of o on I'}.

If ' is a DR-TEFS, since for any ground atom «, there exists at most one clause in T" whose
head and « are unifiable, then any possible derivation tree of « is unique and of the very simple
form as in Figure 1.

qi(a1a2a3...aT,blb2b3...bn)

gi, (asag ... an,babs ... by)

G, (ag...an,bg...0,)

Figure 1: A derivation tree on a DR-TEFS
In this paper, we assume some effective procedure which, for any given ground atom « and
any given DR-TEFS I', constructs a proof tree of o on I' if it exists. Such a procedure can be
implemented based on SLD-resolution [4]. For a general EFS, the computational cost of the
procedure is rather expensive. However, for a DR-TEFS, we can construct any proof tree very
easily. In fact, for any given DR-TEFS I' and given ground atom «, the problem whether there
exists a proof tree of o on I' is decidable in linear time in size(a).




2.2 Models and translations

The Herbrand base, denoted by B, is the set of all ground atoms. For an EFS I', the Herbrand
base of ', denoted by B(I'), is the set of all ground atoms whose predicate symbols are in IIp.
An interpretation is a subset of B.

Let C = A« Bi,...,B, (n >0) be a clause and M be an interpretation. A ground atom
o is said to be covered by C with respect to M if there exists a substitution 6 such that o = A6
and B;0 € M for each i (1 <4 <n). The set of all ground atoms covered by C with respect to
M is denoted by C(M). A clause C' is said to be true in M if C(M) C M, otherwise C' is said
to be false.

An Herbrand model of T is an interpretation which makes every clause in I' true. We define

M(T) =n{M | M is an Herbrand model of I'}

then, M(T') is also an Herbrand model of I', and called the least Herbrand model of I'. Ya-
mamoto [16] showed that M(I") = SS(T') for any EFS. Thus, from the argument in the previous
subsection, the membership of arbitrary ground atom « in M(I') is decidable in linear time in
size(a).

A translation is a subset of X* x ¥*. For a TEFS I', we define

T(F,qg) = {(wl,wg) ey x ¥ I qo(wl,wg) € lM(F)}

A translation 7' is said to be defined by a TEFS I' if T' = T(T', qp) for some ¢y € IIr. The
predicate symbol ¢ is called the start symbol. For a translation 7', if there exists a TEFS I’
such that 7" = T(T, q) then T is said to be definable by TEFS’s. We refer to a translation
which is definable by DR-TEFS’s as a DR-translation.

For right linear TEFS’s, we can obtain the following theorem.
Theorem 1 For any translation T, T is definable by right linear TEFS’s if and only if T is
definable by DR-TEFS'’s.
We can prove the above theorem along the same line of argument as in the proof of equivalence
of deterministic finite automata and non-deterministic finite automata. Furthermore, from the
definition, it can be easily shown that the class of translations defined by DR-TEFS’s is a
proper superclass of those of sequential machines and a proper subclass of those of sequential
transducers [7]. A sequential machine defines a translation from one string to one string with
same length. A sequential transducer can define a translation from one string to many strings
with different length. On the other hand, a DR-TEFS defines a translation from one string
to many strings with same length. Essentially, all of them define translations over regular
languages.

2.3 Types of queries

The algorithm described in the following section is allowed to use two types of queries: mem-
bership queries and equivalence queries.

Let T be a target DR-translation. A membership query proposes a pair of strings (wy, ws) €
¥*x ¥* and asks whether (wy,wy) € T. The reply is yes or no. An equivalence query conjectures
a DR-TEFS T" and asks whether T' = T(T', q9). The reply is either yes or no. If it is no, then a
counterexzample is also provided. A counterexample is a pair of strings (wy, w9) in the symmetric
difference of T' and T(T', qp). If (wy,ws) € T — T(T',qo) then (wy,ws) is called a positive
counterexample, and if (wq,ws) € T(I', go) — T" then (w,ws) is called negative counterexample.
The choice of a counterexample is assumed to be arbitrary. According to Angulin [3], we call a
teacher who answers equivalence queries and membership queries a minimally adequate teacher.



3 A learning algorithm

In this section, we show a learning algorithm for DR-translations based on Ishizaka’s inference
algorithm [8, 9]. In what follows, we fix a target translation 7". Furthermore, we assume that
a start symbol ¢y and ¥ are fixed and known to the learning algorithm. A TEFS T' such that
T =T(T, q) and IIr — {¢o} are intended to be constructed by the algorithm.

3.1 An extended model

The algorithm given in this section is essentially based on Shapiro’s model inference theory
[12]. Our setting, however, differs from Shapiro’s in available information to the leaner. In
our setting, the learner is assumed to be given only one predicate gy and the interpretation for
it via interactions with the minimally adequate teacher. Hence, the learner has to generates
necessary predicates except for ¢y and construct an appropriate interpretation for them. Our
algorithm makes the construction according to the model extension technique given in [8].

A predicate characterization for a DR-TEFS I', denoted by C Hr, is a one to one mapping
from IIp to ¥* x ¥*. Let T be a translation and C'Hr be a predicate characterization for a
DR-TEFS I'. We define an extended model of T with C Hr, denoted by I(T', CHr), as follows.

I(T,CHr) = {gi(wy,ws2) € B(T') | CHr(¢;) = (u,v) and (wwy,vws) € T}.
From the definition, we can obtain a model over B(I') defined by T and C'Hp. However, it
is nonsense that arbitrary model is produced from 7. For a suitable extension of the model,
I(T,CHr) should satisfy the following condition:
T(T,q)=T <= M(')=I(T,CHry).
We show some conditions of CHr satisfying the above condition. Let C'Hr be a predicate
characterization for a DR-TEFS I'. The C'Hy is said to be consistent if CHr(q;) = (u,v) for
any ¢; € II, then there exists a derivation tree of go(u,v) on S in which ¢;(e,¢) appears.
Lemma 2 For any DR-TEFS T, if a predicate characterization C Hy for T' is consistent, then
it holds that M (') = I(T(T", q), CHr).
Proof: From the uniqueness of the derivation tree on I'" and consistency of C'Hr, for any
¢; € Iy and wy,we € ¥*, if CHp(¢:) = (u,v), then it holds that
gi(wy,wy) € M(T') < qo(uwy,vwy) € M(T).
Hence, it holds that
g(wy,wa) € M(T') <= qo(uwy,vwe) € M(T)
< (uwy,vwy) € T(T, qo)
= qi(wl,wQ) S I(T(F,QO),CHF)
[
Theorem 3 Suppose CHr for a DR-TEFST is consistent and CHr(qy) = (e,¢). Then, for
any translation T, T(I', qo) = T if and only if M(T") = I(T,CHr).
Proof: Since the only if direction immediately follows from Lemma 2, it is sufficient to prove
the if direction. For any wy,ws € ¥*, it holds that
(wi,we) €T <= qwi,we) € I(T,CHy) (from CHr(q) = (¢,¢))
<>  qo(wy,we) € M(T') (from the assumption)
=  (wy,wq) € T(T, qo)-

L

Therefore, for a target translation 7', we should construct a DR-TEFS I' and a consistent
predicate characterization C Hr with CHr(qo) = (¢, ¢).
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3.2 A leaning algorithm for DR-translations

We need to give some more definitions and properties of DR-TEFS’s before explaing our algo-
tihm.

We say that a clause C is sufficient in an interpretation M if, for any a € M, if «v is unifiable
with the head of C, then it holds that A € C(M). A clause C is said to be insufficient in M if
C is not sufficient in M. A clause C is said to be complete in M if C is both true and sufficient
in M. The following proposition is directly obtained from the definition.

Proposition 4 Let M be an arbitrary interpretation. Then, the following two statements are
equivalent.

1. A clause gi(ax,by) < qj(z,y) is complete in M.
2. For any wy,we € %, ¢i{awy,bwy) € M if and only if ¢;(wi,w2) € M.

For any DR-TEFS T, since there exists at most one clause which covers a ground atom «
in M(T"), each clause in I' is sufficient in M(I"). Thus, we have the following proposition.
Proposition 5 For any DR-TEFS T, every clause in I" is complete in M(T).

With Lemma 2, this implies the following proposition.

Proposition 6 Let T be a translation and C Hy be a consistent predicate characterization for
a DR-TEFST. IfT(T,q) =T then every clause in T is complete in I(T,C Hy).

From the above proposition, if a hypothesis I' has a clause which is not complete in an ex-
tended model I(T, C Hr), then I is incorrect. Hence, such incomplete clauses must be removed
from the hypothesis.

Algorithm 1 : A learning algorithm for DR-TEFS’s
Given : A minimally adequate teacher for T.
Output : A DR-TEFS T such that T(T', go) = 7.
Procedure:
I':=0; CHr = (qo, (,¢)); State = 0;
repeat
make an equivalence query with T
if the reply is a positive counterexample (w;,ws) then
Let P be the proof tree of go(wi,ws) on T}
C :=contradiction_backtracing(P);

r:=T-{C}
C’ :=next_clause(C);
=TU{C'}

if the reply is a negative counterexample (w;,ws) then
« =uncovered_atom(gy(wy, ws));
C' =search_clause(a);
I=TU{C}k
until the reply is yes;
output T

contradiction_backtracing :
Given: A minimally adequate teacher for 7.
Input: A proof tree of an atom ¢;(au,bv) on I such that ¢;(au, bv) € M(T') but ¢;(au,bv) ¢ I(T,CHry).
Output: A clause C' € T" which is false in I(T, C'Hr).
Procedure:
let g;(u,v) be the child of g;(au,bv) in the input proof tree;
if ¢;(u,v) € I(T,CHr) then
return g;(axz, by) — ¢;(z,y);
else
let P be the proof tree of ¢;(u,v) on T}
return contradiction_backtracing(P).




next_clause :
Input: A clause ¢;(az,by) — g;(z,y).
Output: A clause ¢;(az,by) — g¢jt1(2,y).
Procedure:
if j = State then
State := State + 1;
let u, v be the strings such that (¢, (v,v)) € CHr;
CHr = CHr U{(gj+1, (ua,vb))};
return ¢;(az, by) — gj+1(z,y).

uncovered_atom :
Input: An atom « such that a € I(T,CHyr) but o ¢ M(T).
Output: An atom in I(7, C'Hy) which is not covered by any clause in I’ with respect to I(T, CHy).
Procedure:
if there exists a clause ¢;(az, by) «— ¢;(z,y) such that
¢i(az,by)8 = a and ¢;(z,y)8 € I(T,CHy) for some substitution # then
return uncovered_atom(q;(z,y)0);
else return a.

search_clause :
Input: An uncovered atom ¢;(u,v) which is returned by the procedure uncovered_atom.
Output: A new clause C' whose head is unifiable with ¢;{u, v).
Procedure:
if u=v =¢ then
return ¢;(g, £);
else let v = au’, v = bv';
if there exists C' € T" such that head(C) = ¢;(az, by) then
r:=T-{C}
return next_clause(C');
return ¢;(az, by) «— qo(z,y).

Here, we explain how the algorithm works. There are following two cases in which a hy-
pothesis I" should be modified.

1. The hypothesis is too strong, that is, M(I') contains some negative fact.
2. The hypothesis is too weak, that is, M(I") does not contain some positive fact.

In the case 1, there exists at least one clause in I' which is not true in I(7, CHr). The algorithm
find such a clause using the procedure contradiction_backtracing. The clause is removed
from I'. Then an alternate clause constructed by the procedure next_clause is added to the
hypothesis.

In the case 2, there exists a ground atom ¢;(wy,we) € I(T,CHr) which is not covered by
any clause in I with respect to I(T,CHyr). The procedure uncovered_atom finds out such
an atom, and the procedure search_clause outputs a clause which covers the atom. If the
uncovered atom is ¢;(¢,e) then the procedure outputs ¢(e,e) <. If the uncovered atom is
¢i(au,bv) such that there is no clause in I" whose head is unifiable with ¢;(au,bv), then the
procedure outputs the clause ¢;(ax,by) <« go(z,y). If the uncovered atom is ¢;(au,bv) and
there exists a clause C' = ¢;(ax, by) « ¢;(z,y) in ', then C is insufficient in I(7, C Hy). Thus,
C is removed from I' and the procedure outputs next_clause(C).

In the algorithm, the predicate characterization is represented as a set of pairs of the form
(¢, (u,v)) where ¢ € II; and u,v € ©*. Let CHr = {(qo, (¢,¢)), (q1,(u1,v1)), - - -, (@, (ur, vz))}-
Now we assume that the algorithm finds out a clause ¢;(ax,by) < ¢.(x,y) in T’ which is not
complete in I(T,CHyp). Then C is removed from T' and the alternate clause ¢(az,by) «
Gr+1(2,y) is added to I. When the new predicate symbol g1 is introduced, the algorithm
adds the pair (grt1, (ura, vb)) to CHr.




3.3 Correctness of the algorithm

We prove that the learning algorithm is correct. First, we give a proposition concerned with
the property of a predicate characterization.

Proposition 7 Let I'; (i = 1,2) be any DR-TEFS such that IIr, C Ilp,. Suppose that
CHr,(q) = CHr,(q) for any q € y,. Then, for any translation T and q(wy,ws) € B(T'y),
q(wy,wq) € I(T,CHr,) if and only if g(wy,ws) € I(T,CHr,).

For the procedure contradiction_backtracing, we do not consider the atom of the form
¢i(¢,¢) as its input. Because, at any time on the learning process, there is no case in which
¢i(¢,¢) is in M(T") but not in I(T,CHr). The ground atom ¢(e,¢) is in M(T") if and only if
there exists a clause ¢;(¢,e) « in I'. The clause ¢i(e,e) « is added to I after the procedure
search_clause is called with the input ¢;(¢,¢). Let I be the hypothesis for which the procedure
call is occurred. Then, ¢;(¢,¢) is in I(T,CHyp:). By the Proposition 7, ¢;(¢,¢) is ensured to be
in I{T,CHr) for any subsequent hypothesis I'. Hence, there is no case in which ¢(¢e,¢) is in
M(T") but not in I(T,CHr).

Lemma 8 Suppose that the procedure contradiction backtracing is called with the proof tree
of « € M(T) such that o ¢ I(T,CHry). Then, the procedure returns a clause in T which is not
true in I(T,C'Hy).

Proof: Suppose that the procedure contradiction_backtracing given a proof tree of ¢;(au, bv)
returns a clause ¢;(ax,by) < ¢;j(z,y), where a,b € ¥ and u,v € ¥*. Then, it is ensured that
¢:(au,bv) ¢ I(T,CHr) but ¢;(u,v) € I(T,CHr). Hence the clause is ensured to be false in the
extended model I(T,CHry).

On the other hand, every input proof tree has the leaf ¢i(e,2). From discussion above, it
is ensured that ¢x(e,¢) € I(T,CHry). Since the input proof tree of each recursive call clear the
input condition, a clause which is false in I(7, CHr) must be found eventually. ]

Lemma 9 Suppose that the procedure uncovered_atom is called with an input o € 1(T, CHy)
such that o ¢ M(T"). Then, the procedure returns o/ € I(T,CHry) such that o/ is not covered
by any clause in T with respect to I(T, C Hry).

Proof: Since the procedure examines if ¢;(z,y)0 € I(T,CHry) before calling itself recursively,
every input ¢;(x, y)0 for its recursive call is ensured to be in (T, C Hr). On the other hand, if an
input ¢;(z,y)d for its recursive call in M(I'), then the input has a proof tree on I". This implies
that all ancestors of the input have also proof tree on I'. This contradicts that o ¢ M(T).
Thus, every input for its recursive call is not in M(T').

Since ¢i(e,¢) is not unifiable with any ¢;(ax, by), the procedure called with an input of the
form ¢;(e, e) returns the input directly. Since ¢;(e,¢) ¢ M(T"), it holds that ¢;(e,s) «¢ I'. For
any clause in DR-TEFS, ¢;(¢, ¢) is covered only by the clause ¢;(¢,¢) «. Thus, if the procedure
is called with the input ¢;(e,¢), then it immediately follows that ¢;(c,<) is not covered by any
clause in I" with respect to I(7, C Hr).

For an input of the form ¢;(au, bv), if there is no clause whose head is unifiable with ¢;(au, bv),
it is clear that ¢;(au, bv) is not covered by any clause in I'. Since a clause of the form ¢;(az, by) «—
¢j+1(7,y) is introduced into a hypothesis after the clause ¢;(ax, by) < ¢;(z,y) is removed from
the hypothesis, there is at most one clause whose head is unifiable with ¢;(au,bv). Thus, if
gi(au, bv) is not covered such a clause, there is no other clause which can cover ¢;(au, bv) with
respect to I(T,CHr). Thus, if the procedure makes an output, then the output is ensured to
satisfy the claim of the lemma.

On the other hand, the size of each input g;(x,y)é for the recursive call is decreasing two
at a time. Thus, even if in the worst case, the procedure will encounter an input of the form
¢:(e,¢) and terminate. This completes the proof of the lemma. ]
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Next, we show the justification of the way of constructing a predicate characterization. We
can restate Proposition 7 as follows.

Proposition 10 Let I'; (i = 1,2) be any DR-TEFS such that IIp, C Ilp,. Suppose that
CHr,(q) = CHr,(q) for any q € Ily,. Then, for any translation T and C € T'y, C is complete
in I(T,CHry,) if and only if C is complete in I(T,CHr,).
Lemma 11 LetI' be a DR-TEFS. Suppose that CHr(gq;) = (u,v) and CHr(g;) = (ua,vb) for
some a,b € ¥. Then, for any translation T, the clause g;(azx,by) — q;(z,y) is complete in
I(T,CHry).
Proof: By the definition of the extended model, for any u,v € ¥*, it holds that

¢i(awy,bws) € I(T,CHy) <= (uaw;,vbwy) € T (where CHr(g;) = (u,v))

— g(w,wy) € I(T,CHr) (from CHr(g;) = (ua,vb))

Hence, from Proposition 4, ¢;(ax,by) < ¢;(z,y) is complete in I(T', C Hr). (]

Theorem 12 The predicate characterization C Hy constructed by the algorithm is, at any time,
consistent and CHr(qo) = (g, ¢).

Proof: It is clear that CHr(q) = (g, ¢).

From the way of constructing the predicate characterization, for any ¢; € IIr (5 > 1), there
exists ¢; € IIr such that CHr(g;) = (u,v) and CHyp(g;) = (ua,vb) for some a,b € £. On the
other hand, in defining CHr(g;), the clause ¢;(az,by) < ¢;(x,y) is added to I' simultaneously.
Since Lemma 11 ensures that the clause is complete in I(T, CHry), it is never removed from
the hypothesis. Hence, for any ¢; € Iy (j > 1), there exists clauses in I" that are necessary for
constructing a derivation tree as in the definition of the consistency of C' Hr.

Since CHr(q) = (g,¢), qo(e,¢) itself gives a derivation tree as in the definition of the
consistency of CHp. This holds even if I' = §). Thus, the theorem holds. ]

Lemma 13 Let [' be any hypothesis and CHy be the predicate characterization for ' con-
structed by Algorithm 1. For any ¢; € U, there exist wy,ws € T such that (vwy,vws) € T
where CHr(g;) = (u,v) .

Proof: First, we show that, for any clause gr(ax,by) «— ¢;(z,y) € T, there exist wy, w, € T*
such that g¢.(awy,bws) € I(T,CHr). The clause whose head is gi(ax,by) first appears in a
hypothesis after executing the last else statement in the procedure call of search_clause on
the input gx(aw;,bws). Let I be the algorithm’s hypothesis at that time. Then, g.(awy, bws) €
I(T,CHyp) and gqp(awr,bws) ¢ M(I'). By the Proposition 7, for any subsequent CHrp, it
holds that gx(aw,bws) € I(T,CHy). Thus, for any clause g.(az,by) «— g;(z,y), there exist
wy,wy € ¥* such that g,(awy, bws) € I(T, CHry).

On the other hand, for any ¢; € IIp (i > 1), there exists a predicate symbol ¢, € IIp such
that CHr(qx) = (u,v) and CHy(¢;) = (ua,vd) for some a,b € ¥. By the argument in the proof
of Theorem 12, there exists the clause ¢x(ax,by) < ¢(x,y) € I'. By the above discussion, there
exist wy, wy € ¥* such that gx(awy,bwy) € I(T,CHy), that is, (uawy, vbws) € T. Hence, for any
q; € IIp (4 > 1), there exists wy, we € E* such that CHr(g;) = (ua, vb) and (uawy, vbws) € T.

For the predicate qo, since T' is not empty and CHr(gqo) = (g,¢), there exist wy, ws € T~
such that (wy,ws) € T. ]

Lemma 14 Let I’ be a DR-TEFS with the minimum number of predicate symbols such that
T =T(',q). LetT be an arbitrary hypothesis constructed by the algorithm. Then it follows
that |IIp| < |13

Proof: Let CHr be the predicate characterization for I' constructed by the algorithm. From
Lemma 13, for any ¢; € I' such that CHr(g;) = (us,v;), there exist wy,wy € ¥* such that




(uiwl,viuzg) € T. Since T = T(T', qo), there uniquely exists a proof tree of go(uswy,vsws) on
I'. Hence, for any ¢; € I, there uniquely exists a predicate symbol ¢ € II; such that gi(e,¢)
appears in the derivation tree of go(u;,v;) on . For such g, it holds that, for any wy,ws € &%,

cji(wl,wg) € M(f) Qs QQ(inl,’U,‘wz) € M(f‘) (1)

Now, we consider the mapping 7 from IIp to Il such that 7(¢;) = ¢;. For the proof of the
lemma, it is sufficient to show that 7 is injective.

Suppose that 7(¢;) = 7(g;) for some i < j and CHy(g;) = (u;,v;) and CHr(g;) = (uy, vj).
Then, for any w;, ws € ¥*, it holds that

@(uiwy, viwy) € M(T) <= Gi(wy,wz) € M(T) (from 1)
= §;(wy,wy) € M(T) (from the assumption)
= qlujwy,vjwy) € M(T) (from 1).
Hence, we obtain the following relation.
(wjwy, viws) € T <= (ujwy,v;ws) € T.
Since 0 < i < j, there exists ¢r € Iy (k < j) such that CHr(qx) = (uk, v) and CHr(g;) =
(ura, vib) for some a,b € X. Hence, for any wq, ws € £, the following relation holds.
(wwy, viwe) €T <= (ujwy,vjwr) € T <= (upawr, vpbws) € T.
As a result, it holds that
¢(wy,wy) € I(T,CHy) <= qi(awy,bws) € I(T,CHry).

Hence, it follows from Proposition 4 that the clause C = gqy(ax,by) « ¢;(x,y) is complete
in I(T,CHry). Since ¢ < j, C is generated by the procedure next_clause and added to the
hypothesis before the clause g.(az,by) <« ¢;(x,y). From Proposition 10, C' is complete in any
extended model subsequently. Thus, C is never removed from subsequent hypothesis. This
contradicts that CHr(q;) = (ura, vib). B

Theorem 15 For any DR-translation T, Algorithm 1 outputs a DR-TEFST such thatT(T", qq) =
T.

Proof: It is clear that the procedures next_clause and search_clause terminated finitely
and return the desired output. It follows from Lemma 8 and Lemma 9 that the procedures
contradiction_backtracing and uncovered_atom terminate finitely and return the desired
output. Hence, each computation in the bodies of two if statements terminates finitely and one
of following operations is executed.

1. A clause of the form ¢;(e,e) « is added to T.

2. A clause of the form ¢;(az,by) < qo(2,y) is added to T.

3. A clause ¢(az,by) « g;j(z,y) in T is replaced by ¢;(ax,by) «— gj+1(z,y).

Both operations 1 and 2 are executed at most once for each 7 and a,b € ¥. Hence, if only
finitely many clauses are generated, then it is necessary that the two if statements are entered
at most finitely many times in total. This means that the minimally adequate teacher replies
“yes” in finite time.

On the other hand, by Proposition 10 and Lemma 11, once a predicate symbol is introduced
into a hypothesis, the symbol never disappears from the subsequent hypothesis. Hence, by
Lemma 14, only finitely many predicate symbols are generated.

This completes the proof of the theorem. ]

3.4 Time complexity of the algorithm

We assume that the given teacher answers each membel;ship query and equivalence query
immediately. Then, we can obtain the following result. Let I be a DR-TEFS with the minimum
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