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Abstract 

This paper is concerned with the problem of learning tlra~~slations from min- 
imally adequate teacher. A t ranslat ion considered here is a binary relation 
over strings and defined by an elementary formal system (EFS, for short) in 
a special form. An EFS consists of several predicates, in general, but the de- 
fined translation is directly characterized by only one designated predicate in 
them. This means that every other predicates, which are indirectly necessary 
for defining the translation, are never ohserved in the interaction between a 
teacher and a learner. The main problem investigated in this paper is how 
to inventing such unobserved predicates and tjo complete learning. The pre- 
sented algorit hrn learns successfully the target EFS inventing such auxiliary 
predicates via membership and ecluivalence queries in polynomial time. 
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1 Introduction 

We consider the problem of learning translations using membership and equivalence queries, 
that is, from a minimally adequate teacher. A translation considered here is a binary relation 
over strings and defined by an elementary formal system (EFS, for short) in a special form, 
called a translation EFS (TEFS, for short). 

The EFS's are well knowll to be flexible enough to define various classes of languages in 
Chomsky hierarchy [5]. Furthermore, since the EFS's are logic programs over strings, they can 
easily define various relations over strings. The TEFS7s are one of such EFS's, which are espe- 
cially tuned to define binary relations over strings, that is, translations. Sugimoto introduced 
several classes of translations defined by TEFS's and gave some properties of them [Is]. In 
this paper, we focus on the learnability of a particular class of translations defined by some 
restricted TEFS's, called deterlnillistic right linear TEFS's (DR-TEFS, for short). The class 
of trarnslatioas is a proper super-class of those defined by sequential machines and a proper 
sub-class of those defined by sequential transducers. 

The learning model investigated in this paper is polynomial time exact learning from a 
minimally adequate teacher. In general, each translation is defined as a partial Herbrand model 
of a DR,-TEFS, which consists of all the elements with one designated predicate symbol in the 
model. The minimally adequate teacher assumed in this paper call answer questioas about 
the translation, that is, the partial Herbrancl model. This means that the target DR-TEFS 
might include predicates never observed in the interact ion between the teacher and the lea,rner . 
Thus, in order to learn the target DR-TEFS, the learner also has to invent such necessary but 
unobserved predicates for itself. 

This problem of learning both concepts and languages for describing the concepts, in other 
words "inventing theoretical terms", is one of the most important and difficult theme in machine 
learning [6, 8, 9, 10, 111. Ishizal<a gave algorithms which work well in such franlework [8, 91. 
The presented algorithm is based on his algorithm. That is, the algorithnl learns not only 
a target TEFS but also the predicates which are necessary for the TEFS but never observed 
in the interaction between a teacher and a learner. \.lie show that the algorithm learns any 
translations definable by a DR-TEFS from a minimally adequate teacher in polynomial time. 

2 Preliminaries 

I11 this section, we present basic definitions needed in the following sections. We define elemen- 
tary formal systems according to [5, 13, 14, 161 and translations according t,o [l , 21. 

2.1 TEFS 

Let C, X and I'I be mutually disjoint sets. We assume that C is finite. We refer to each element 
of C as a constant symbol, to each element of .X as a variable, and to each elernent of I'I as 
a predicate symbol. Each predicate symbol is associated with a non-negat ive integer called its 
arity. In what follows, variables are denoted by z, g. For a finite set A, we denote the set 
of all finite strings of symbols from A by A*. A term is an element of (C U X ) " .  A term is 
said to  be gro~lnd if it is an element of C*. The length of a term n is denoted by InI. A11 
atomic formula (atom, for short) is of the form p(al,  az, . . . , n,), where p is a predicate symbol 
with arity n and each ai is a term (1 5 i 5 n). The size of an atoln a = p(nl, . . . , n,), 
denoted by size(@), is defilled size(a) = lnll + . . + Ia,l. An atom p(nl, ~ 2 , .  . . , n,) is said to  
be ground if all nl,  a2, . . . , n, are ground. A definite clause (clause, for short) is of the form 



A +- B1,. . . , B, ( n  2 0), where A, B1,. . . , B, are at'oms. The atom A is called the head and 
the sequence B1,. . . , B, of atoms is called the bodg of the clause. For a clause C ,  the head of 
C is denoted by head(C). A goal clause (goal, for short) is of the form +- B17 . . . , B ,  (n 2 0) 
and the goal with n = 0 is called the e q t g  goal. A substitution is a finite set of the form 
{xl/al,  . . . , x,/a,}, where 21,. . . , x, are distinct variables and each a, is a term distinct froin 
xi (0 5 i 5 n). We refer t o  either a term, an atoll1 or a clause as an expression. Let E be an 
expression. Then, for a substitution 0 = {xl/.rrl, . . . , x,/?i,,}, Ed, called an instance of E, is the 
expression obtained froin E by simultaneously replacing each occurrence of the variable xi in 
E by the term n-i (i = 1 , .  . . , n). Let a and ,8 be a pair of expressions and 0 be a substitution. 
If a 0  = PO then we say that 0 is a unifier of a and p. When there exists a unifier of a and P, 
we say that a and /3 are unifiable. 

An elernentarg formal system (EFS, for short) is a finite set of clauses [14]. The set of all 
predicate symbols which occur in I' is denoted by HI.. l i e  define a translation EFS (TEFS, 
for short) as a EFS with at least one predicate symbol with arity 2. Let I' be a TEFS, and 
40 E IIr be a predicate symbol with arity 2. 

A TEFS I? is right linear if each clause of I? is of one of the following forms: 

1- ~ ( € 7  €1 +-, 
2- p(ax,b?l) +- CI(N,Y) ,  

where a, b E C and E is a term whose length is 0. A right linear TEFS I' is said to  be 
deterministic if, for each p E IIr and each a ,  b E C, I' includes at  most one clause whose head 
is of the form p(ax, by). In what follows, we refer to a deterministic right linear TEFS as 
DR- TEFS for short. 

For an EFS I' and grouiid atom a,  a derivation tree of a on I' is a finite tree that satisfies 
the following conditions. 

1. Each node of the tree is a gro~uld atom. 
2. The root node is a. 

3. For each internal node a and its children PI, . . . , Pn (n  2 I), a +-- P I , .  . . , ,8,, is a groulld 
instance of a clause in I'. 

A proof tree of a on I' is a derivation tree of a on I' such that each leaf of the tree is a ground 
instance of a clause with empty body in I'. We define 

SS(I') = {a 1 a is a ground atom and there exists a proof tree of a on I?). 
If I? is a DR-TEFS, since for any ground atom a, there exists at most one clause in I' whose 

head and a are unifiable, then ally possible derivation tree of a is unique aiid of the very simple 
form as in Figure 1. 

qi (a l  a2 a3 . . . an,  bl b2 b3 . . . b,) 

I 
qil (a2a3 . an ,  b2b3 - - .  bn) 

qi2 (a3  . . . an,  b3 . . . bn) 

Figure 1: A derivation tree on a DR-TEFS 

In this paper, we assume some effective procedure which, for any given ground atom a and 
any given DR-TEFS I?, constructs a proof tree of a on I' if it exists. Such a procedure can be 
implemented based on SLD-resolution [4]. For a general EFS, the computatioilal cost of the 
procedure is rather expensive. However, for a DR,-TEFS, we can construct any proof tree very 
easily. In fact, for any given DR-TEFS I' and given ground atom a, the problem whether there 
exists a proof tree of a on I' is decidable in linear time in size(a).  



2.2 Models and translations 

The Herbrand base, denoted by B, is the set of all ground atoms. For an EFS I?, the Herbrand 
base of I?, deiloted by B(F), is the set of all ground atoms whose predicate symbols are in IIr. 
An interpretation is a subset of B. 

Let C = A +- B1, . .  . , B,, ( n  2 0 )  be a clause and 114 be an interpretation. A ground atom 
a is said t o  be covered by C with respect to  M if there exists a substitutioll 0 such that a = A8 
and Bib E il/I for each i (1 5 i 5 n) .  The set of all ground atoms covered by C with respect to 
M is denoted bj7 C(M) .  A clause C is said to be true in Nf if C ( M )  C M ,  otherwise C is said 
to be false. 

An Herbrand model of I' is an interpretation which inal<es every clause in I' true. We define 
M ( r )  = n { M  I M is a11 Herbrand model of I?) 

then, M ( r )  is also an Herhrand model of I?, and called the least Herbrund model of I?. Ya- 
marnoto [I61 showed that M ( r )  = SS(F)  for any EFS. Thus; froin the argument in the previous 
subsection, the rnembership of arbitrary ground atom u in M ( r )  is decidable in linear time in 
s i z e ( u ) .  

A translation is a subset of C* x C*. For a TEFS I?, we define 
T ( ~ , Q o )  = { ( ~ 1 , ~ 2 )  E C* x C' I qo(w1,w2) E J W ( ~ ) ) .  

A translation T is said to be defined by a TEFS I' if T = T ( r ,  qo) for some qo E I I r .  The 
predicate symbol qo is called the start symbol. For a translation T ,  if there exists a TEFS I' 
such that T = T ( r ,  qo) then T is said to be definable by TEFS's. We refer to a translation 
which is definable by DR-TEFS's as a DR-translation. 

For right linear TEFS's, we can obtain the following theorem. 
Theorem 1 For any translation T ,  T is  definable by right linear TEFS's  if and only if T is 
definable by DR- TEFS7s .  
We can prove the above theorem along the same line of argument as in the proof of equivalence 
of det erministic finite automat a ancl non-deterministic finite automata. Furthermore, from the 
definition, it can be easily shown that the class of translations defined by DR-TEFS's is a 
proper superclass of those of sequential machines and a proper subclass of those of sequential 
transducers [7]. A sequential machine defines a translation froin one string to one string with 
same length. A sequential transducer call define a translation from one string to  many strings 
with different length. On the other hand, a DR-TEFS defines a translation from one string 
to inally strings with same length. Esseiltially, all of t hein define translations over regular 
languages. 

2.3 Types of queries 

The algorithm described in the following section is allowed to use two types of queries: inein- 
bership queries and equivalence queries. 

Let T be a target DR-translation. A mentbersl~ip query proposes a pair of strings (wli wz) E 
C* x C* and aslis whether (wl, w2) E T .  The reply is yes or no. An equivalence query conjectures 
a DR-TEFS I' and aslcs whether T = T ( r ,  qo). The reply is either yes or no .  If it is no ,  then a 
counterexample is also provided. A counterexample is a pair of strings (wl, w2) in the syminetric 
difference of T and T ( r ,  q o )  If (wl, w2) E T - T ( r ,  qOj then (wl, w2) is called a positive 
counterexample, and if (wl , w2) E T ( r ,  qo) - T then (wl , we) is called negative counterexainple. 
The choice of a counterexample is assumed to be arbitrary. According to Angulin [3], w-e call a 
teacher who ailswers equivalence queries ancl rnembership queries a minimally adequate teacher. 



3 A learning algorithm 

In this section, we show a learning algorithm for DR-translations based on Isl~izaka's inference 
algorithm [8, 91. In what follows, we fix a target translation T .  Furthermore, we assume that 
a start symbol qo and C are fixed ancl known to the learning algorithm. A TEFS I? such that 
T = T ( r ,  yo) and Ktr - {qo) are intended to be constructed by the algorithm. 

3.1 An extended model 

The algorithm given in this section is essentially based on Shapiro's model inference theory 
[12]. Our setting, however, differs from Shapiro's in available informat ion to the leaner. In 
our setting, the learner is assumed to be given only one predicate qo and the interpretation for 
it via interactions with the minimally adequate teacller. Hence, the learner has to generates 
necessary predicates except for qo and construct an appropriate interpret ation for them. Our 
algorithm makes the construct ion according to the model extension technique given in [8]. 

A predicate cha~acterizution for a DR-TEFS I?, denoted by CHr,  is a one to one mapping 
from Ktr to  C* x C*. Let T be a translation and CHr be a preclica,te characterization for a 
DR-TEFS I?. We define an extended model of T with CHIT, denoted by I(T, CHr) ,  as follou-s. 

I (T ,  C H r )  {qi(wl, ~ 2 )  E B ( r )  I CHr(qi) = (u ,  V )  and (awl, V W ~ )  E T). 
From the definition, we can obtain a model over B ( r )  defined by T and CHr.  However, it 
is nonsense that arbitrary model is produced from T. For a suitable extension of the moclel, 
I (T ,  CHr)  should satisfy the followiiig condition: 

T ( T , q 0 ) = T  M ( r ) = I ( T , C H r ) .  
We show some conditions of CHr satisfying the above condition. Let CHr  be a predicate 
characterization for a DR-TEFS r .  The CHr is said to be consistent if CHr(qi) = ( u , v )  for 
any qi E IT, then there exists a derivation tree of q0(zl, v)  011 S in which qi (E, E) appears. 
Lemma 2 For any DR-TEFS I?, i f  a predicate characterization CHr for r is consistent, then 
it holds that M ( r )  = I (T(P ,  qo), CHr) .  
Proof: From the uniqueness of the deriva'tion tree on and consistency of C H r ,  for any 
4i E nr and wl, w2 E C*, if CHr(qi) = (u, v), then it holds that 

qi(w1, w2) E lvqr) - ~ O ( Z ~ W ~ ,  V W ~ )  E iw(r1. 
Hence, it holds that 

qi ( WI ~ 2 )  E M ( r )  ~ O ( U W I  7 ~ 1 ~ 2 )  E M ( r )  - (uw1, vw2) E T(r, qo) 
qi ( W I ,  ~ 2 )  E I ( T ( r ,  C ~ O )  , CHr) .  

Theorem 3 Sz~ppose CHr  for a DR- TEFS I' is consistent and CHr (qo) = (E, E). Then. for 
any translation T ,  T ( r ,  qo) = T zf and on19 if Al( r )  = I (T,  CHr) .  
Proof: Since the only if direction immediately follows from Lemma 2, it is sufficient to prove 
the if direction. For any 201, w2 E C*, it holds that 

(zul ,  202) E T qo ( w 1, w2) E I(T, C H r  ) (from CHr (40) = ( E ,  E)) 
++ qo(wl, m2) E M ( r )  (from the assumption) 
++ (w1, ~ 2 )  E T ( r ,  qo) 

Therefore, for a target translation Ti we should construct a DR-TEFS I' and a consistent 
predicate characterization CHr with CHr (qo) = ( E ,  E). 



3.2 A leaning algorithm for DR-translations 

We need to give some more definitions and properties of DR-TEFS's before explaing our algo- 
t ihm. 

We say that a clause C is suf ic ient  in an interpretation M if, for any ol E M ,  if a is unifiable 
with the head of C ,  then it holds that A E C(M). A clause C is said to be insuf ic ient  in A4 if 
C is not sufficient in M. A clause C is said to be complete in M if C is both true and sufficient 
in 11.1. The following proposition is directly obtained from the definition. 
Proposition 4 Let M be a n  arbitrary interpretation. Then, the following two statements are 

1. A clause qi(ux, by) + qj(x, y) i s  complete i n  M .  
2. For any  wl, to2 E C*, qi(nw1, bw2) E M if and only ~f qj (wl, ~ 2 )  E M .  

For any DR-TEFS I', since there exists at most one clause which covers a ground atom a 
in M(I'), each clause in I' is sufficient in &!(I?). Thus, we have the followiilg proposition. 
Proposition 5 For any  DR-TEFS I?, every clause in I? i s  complete in M ( r ) .  

With Lernina 2, this implies the following proposition. 

Proposition 6 Let T be a translation and CHr be a con.sistent predicate characterization for 
a DR- TEFS I?. If T(r, yo) = T then evenJ clause in I? is  complete in I(T,  CHr) .  

From the above proposition, if a hypothesis I? has a clause which is not complete in an ex- 
tended model I ( T ,  CHI.), then I? is incorrect. Hence, such inco~nplete clauses must be removed 
froin the hypothesis. 

Algorithm 1 : A learning algorithm for DR-TEFS's 
Given : A iliiiiiinally adequate teacher for T. 
Output : A DR-TEFS I' such that  T(r, qo) = T. 
Procedure: 

I' := 0; C& := (qa, (5, E ) ) ;  Sta.te = 0; 
repeat 

nlalte an equivalence query with I?; 
if the reply is a positive counterexample (w l ,  w2) then 

Let P be the proof tree of qo(wl, 2u2) on I?; 
C :=contradiction-backtracing(P); 
r := r - {c}; 
C' :=next -clause(C); 
r := r u {cl}; 

if the reply is a negative counterexample (wl ,  w2) then 
a =uncovered-atom(qo (wl ,  w2));  
C =search-clause(a); 
r = r u { c } ;  

until the reply is yes; 
r. 

contradiction-backtracing : 
Given: A iliinimally adequate teacher for T. 
Input: A proof tree of an atom pi(au, bv) on I' such that q i ( q  bv) E M ( T )  but qi(,u, bv) f I(T, CHr). 
Output: A clause C E I' which is false in I(T, CHr). 
Procedure: 

let qj(th, u) be the child of q;(au, bv) in the input proof tree; 
if qj (u, V) E I(T, CHI.) then 

return qi (ax, by) + qj (x, 9); 
else 

let P be the proof tree of qj(u, v) on I'; 
return contradiction-backtracing(P). 



next -clause : 
Input: A clause qi(az, b y )  t- qj(a,  9). 
Output: A clause qi(c~x, b g )  t- qj+l (a ,  y ) .  
Procedure: 

if j = State then  
State := State + 1; 
let a, u be the striilgs such. that  (q i ,  (u, u))  E C&; 
CHr := CHI. U { ( q j + l ,  (ua, ub))}; 

return q ; ( ~ z ,  b y )  + qi+l(z, y ) .  

uncovered-atom : 
Input: An atom a. such that  a E I (T ,  C&) but a 6 M(l?). 
Output: A11 atom in I (T ,  C f i )  which is not covered by any clause in I' with respect to I (T ,  C&). 
Procedure: 

if there exists a clause qi(nx, b y )  t- qj(a, y )  such that 
qi(az, b y ) %  = a aild qj  (a ,  y)O E I (T ,  CHr ) for some substitution % then 
return uncovered-atom(qj (a ,  y ) % ) ;  

else return a. 

search-clause : 
Input: An uncovered atom q;(u, u) which is returned by the procedure uncovered-atom. 
Output: A new clause C whose head is unifiable with qi(u, v).  
Procedure: 

if u = V = E  then  
return q; ( E ,  E ) ;  

else let u = au', u = but; 
if there exists C E I' such that heacl(C) = qi(aa, b y )  then  

r := r - {c}; 
return next -clause(C) ; 

return q;(aq b y )  t- qo (z, y ) .  

Here, we explain how the algorithm worlis. There are follo~viilg two cases in which a hy- 
pot hesis I? should be modified. 

1. The hypothesis is too strong, that is, M ( r )  colltaiils some negative fact. 
2. The hypothesis is too weali, that is, M ( r )  does not contain some positive fact. 

In the case 1, there exists at least one clause in I? which is not true in I(T, CHr  ). The algorithm 
find such a clause using the procedure contradiction-backtracing. The clause is removed 
from I?. Then an alternate clause coilstructed by the procedure next-clause is added to  the 
hypothesis. 

In the case 2, there exists a ground atom qi(wl, w2) E I(T, C H r )  ~vhich is not covered by 
any clause in I? with respect to  I(T, CHr) .  The procedure uncovered-atom finds out such 
an atom, and the procedure search-clause outputs a clause which covers the atom. If the 
uncovered atom is qi(&, E )  then the procedure outputs qi(i ,  E) +-. If the uncovered atom is 
qi (au, bu) such that there is no clause in I' whose head is uilifiahle with qi (au, bv) , then the 
procedure outputs the clause qi(az, by) +- qo(z, y). If the ullcovered atom is qi(au, bv) and 
there exists a clause C = qi(az, by) +- qj (z,  y) in I?, the11 C is insufficient in I ( T ,  CHr ) . Thus, 
C is removed from I' and the procedure outputs next-clause(C). 

In the algorithm, the predicate characterization is represented as a set of pairs of the form 
(q, ( a ,  v)) where q E n r  and u,  v E C*. Let C H r  = {(qo, (E, E ) ) ,  (q1, (ul ,  vi)),  . . , (qk, (uk, ve))). 
Now we assume that the algorithm finds out a clause qi(nz, by) +-- qk (x, g )  in I' which is not 
complete in I ( T ,  CHI.). The11 C is removed from I? and the alternate clause qi(nz, by) +- 

qictl(x, y) is added to I?. When the new predicate symbol q,++1 is introduced, the algorithm 
adds the pair (qk+i, (uka, ukb)) to  CHr .  



3.3 Correctness of the algorithm 

We prove that the learning algorithm is correct. First, we give a proposition concerned with 
the property of a predicate characterization. 
P ropos i t ion  7 Let ri ( i  = 1 , 2 )  be any DR- TEFS such that IIrl nr,. Szippose that 
CHrl (q) = CHr2(q) for any q E n r , .  Then, for any translation T und q(wl, 2u2) E B( r l ) ,  
q(tu1, w2) E I(T, C H r l )  if and only zf q(wl, w2) E I (T,  CHr2).  

For the procedure contradict ion-backtracing,  we do not consider the atom of the form 
(I;(&+) as its input. Because, at any time on the learning process, there is no case in which 
qi (E, E) is in M ( r )  but not in I ( T ,  CHr ). The ground atom qi(c, E) is in il/l(I') if and only if 
there exists a clause qi(E, E) +- in I?. The clause qi (E, E )  +- is added to r' after the procedure 
search-clause is called with the input q&, E). Let I?' be the hypothesis for which the procedure 
call is occurred. Then, q&, E) is in I (T ,  CHrl). By the Proposition 7 ,  gi(&; E) is ensured to be 
in I(T, CHr  ) for any subsequent hypothesis I?. Hence, there is no case in which qi (E, E) is in 
&i(r )  but not in I (T ,  CHr) .  
L e m m a  8 Suppose that the procedure contradict ion-backtracing is called with the proof tree 
of a E M ( r )  such that a $ I(T, CHr) .  Then, the procedzire returns a clause in I? (which is not 
true in I (T,  CHr) .  
Proof :  Suppose that the procedure contradict ion-backtracing given a proof tree of qi(azl, bv) 
returns a clause qi(ax, by) +- qj(x, y), where a ,  b E C and u, v E C". Then, it is ensured that 
qi(nt6, bv) $ I(T, CHr)  but qj (u ,  v) E I (T,  CHr). Hence the clause is ensured to  be false in the 
extended model I (T ,  CHr) .  

On the other hand, every input proof tree has the leaf qk(e, E). From discussion above, it 
is ensured that q l i ( ~ ,  E) E I (T ,  CHr) .  Since the input proof tree of each recursive call clear the 
input condition, a clause which is false in I (T ,  CHr)  must be found eventually. 

L e m m a  9 Suppose that the procedure uncovered-atom is called witlt an input a E I (T ,  CHr)  
such tlmt a $ M ( r ) .  Then, the procedure returns a' E I (T ,  CHr)  such that a' is not coz~ered 
by any clause in with respect to I (T ,  CHr) .  
Proof: Since the procedure examines if qj(x, y)B E I (T ,  C H r )  before calling itself recursively, 
every input qj(x, 9)0 for its recursive call is ensured to be ill I (T ,  CHI . ) .  On the other hand, if an 
input qj(x, y)O for its recursive call in M ( r ) ,  then the i n ~ u t  has a proof tree 011 I?. This implies 
that all ancestors of the input have also proof tree on I?. This contradicts that cu Ff &/I(I'). 
Thus, every input for its recursive call is not in -U(I'). 

Since qi(€, E) is not unifiable with any qi(ax, by), the procedure called wit 11 an input of the 
form %(E, E) returns the input directly. Since q i ( ~ ,  E )  @ M ( r ) ,  it holds that q@, E) +-$ I?. For 
any clause in DR-TEFS, qi(&, E) is covered only by the clause qi (E, E )  +. Thus, if the procedure 
is called with the input qi(€, E ) ,  then it immediately follows that qi(e, E) is not covered by a,ily 
clause in I' with respect to I (T ,  CHr) .  

For an input of the form qi(au, bv), if there is no clause whose head is unifiable with qi(a2l, bv) , 
it is clear that qi (au, bv) is not covered by any clause in r . Since a clause of the forin qi (ax, by) +- 

qj+l(x, y) is introduced into a hypothesis after the clause qi(ax, by) +- qj(x, y) is removed from 
the hypothesis, there is at most one clause whose head is unifiable with qi(azc, bv). Thus, if 
qi(au, bv) is not covered such a clause, there is no other clause which can cover qi(azl, bv) with 
respect to  I ( T ,  CHr).  Thus, if the procedure makes an output, then the output is ensured to  
satisfy the claim of the lemma. 

On the other hand, the size of each input qj(x, y)O for the recursive call is decreasing two 
at  a time. Thus, even if in the worst case, the procedure will encounter an input of the form 
qi ( E ,  E) and terminate. This cornplet es the proof of the lemma. 



Next, we show the justification of the way of constructillg a predicate cha~racterization. We 
can restate Propositioll 7 as follows. 
Proposition 10 Let ( i  = 1,2) be any DR- TEFS such that ITr, c nr , .  Suppose that 
CHrl (q) = CHr2(q) for any q E ITrl .  Then, for any translation T and C E r l ,  C is complete 
in I ( T ,  C H r l )  if and only if C is complete in I (T ,  CHr2).  
Lemma 11 Let I' be u DR-TEFS. Suppose that CHr(qi) = (26, v) and CHr((lj) = (ua, vb) for 
some a ,  b E C. Then, for any translation T ,  the clause qi(ax, by) +- qj(x, y) is complete in 
I (T,  C H r  ) . 
Proof: By the definition of the extended model, for any 24, v E C* , it holds that 

qi(awl, bzuz) E I (T ,  CHr)  o (uawl, vbw2) E T (where CHr(qi) = (ZL;  v)) 
qj(wl,w2) E I ( T , C H r )  ( f romCHr(q j )=(ua ,vb) )  

Hence, from Proposition 4, qi(ax, by) +- qj(x, y) is complete in I (T ,  CHr) .  

Theorem 12 The predicate cl~aructel.z,zation CHr constructed by the algorithm is, a t  any time, 
consistent and C Hr (yo) = (E, E) . 
Proof: It is clear that CHr (qo) = (E,  E). 

From the way of constructing the predicate characterization, for ally qj E IIr ( j  2 1))  there 
exists qi E I I r  such that CHr(qi) = (u ,  V) and CHr(qj) = (ua, vb) for soine (I,, b E C. On the 
other hand, in defining CHr(qj),  the clause qi(ax, by) +- a ( x ,  y) is added to I? simultaneously. 
Since Lemma 11 ensures that the clause is complete in I (T ,  CHr) ,  it is llever removed from 
the hypothesis. Hence, for any qj E IIr ( j  2 I),  there exists clauses in I' that are necessary for 
constructing a derivation tree as in the definition of the consistency of CHr . 

Since CHr(qo) = (E, E) ,  qO(&, E )  itself gives a derivation tree as in the defiilition of the 
consistency of CHr  . This holds even if I' = 0. Thus, the theorem holds. 

Lemma 13 Let I? be any hypothesis and CHr  be the predicate characterization for I' con- 
structed by Algorithm 1. For any qi € ITr, there esist wl, w2 € C* such that (uwl,vw2) E T 
where CHr  (qi) = (26, v) . 

Proof: First, we show that ,  for any clause qk(az, by) +- %(xi y) E I?, there exist wl , w2 E C* 
such that qk(awl, bw2) E I (T ,  CHr) .  The clause whose head is qk(ux, by) first appears in a 
l~ypothesis after executing the last else statement in the procedure call of search-clause on 
the illput qk(awl, bwz). Let I?' be the algorithm's hypothesis at that time. Then, qk(awl, bw2) E 
I(T, C H p )  and qk(awl, bw2) $ M ( r f ) .  By the Proposition 7, for ally subsequent CHr, it 
holds that qk(azul, bw2) E I ( T ,  CHr).  Thus, for ally clause qr;(ax, by) +- qj (x, g), there exist 
wl, wz E C* such that qk(awl, bw2) E I (T,  CHr). 

On the other hand, for any qi E IIr (i 2 1))  there exists a predicate symbol qk E IIr such 
that CHr  (qk) = (u, v)  and CHr(qi) = (ua, vb) for some a ,  b E C. By the argument in the proof 
of Theorem 12, there exists the clause qk (ax, by) + qi(x, y) E I?. By the above discussion, there 
exist wl, w2 E C* such that qk(atul, bzuz) E I(T, CHr) ,  that is, (uawl, vbu12) E T .  Hence, for any 
qi E llr ( i  2 I), there exists wl, w2 E C* such that C H r ( ~ )  = (ua, vb) and (uuwl, vbzu2) E T .  

For the predicate qo, since T is not empty and CHr (qo) = (E, E ) ,  there exist wl , ru2 E C* 
such that (wl, w ~ )  E T .  

Lemma 14 Let I? be a DR-TEFS with the minimum number of predicate sgmbols st~ch that 
T = T ( r ,  qo). Let I? be an arbitrary hypothesis constructed by t11.e algorithm. Then it follows 
that IIIrI 5 /IIpl. 

Proof: Let CHr be the predicate characterizatioll for I' constructed by tlle algorithm. From 
Lemma 13, for ally qi E I? such that CHr(qi) = (ui, vi), there exist wl, tu, E C* such that  



(u;wl, viw2) E T .  Since T = ~ ( f ' ,  qo), tlhere uniquely exists a proof tree of q O ( ~ ~ i ~ l r  viw2) on 
. Hence, for any qi E ITr, there uniquely exists a predicate symbol Qi E I'IF such that Qi ( E ,  E )  

appears in the derivation tree of q0(ui, vi) on I?'. For such Qi, it holds that, for any zul, ru2 E C*, 

q i ( ~ l  ~ 2 )  E ~ ( f ' )  * qo(uiwl , v ~ w ~ )  E ~ ( r )  (1) 
Now, we consider the mapping r from IIr to IIp such that r($) = 4. For the proof of the 

lemma, it is sufficient to show that r is injective. 
Suppose that r(qi) = r(qj) for some i < j and CHr(qr) = (tii, vi) and CHr(qj) = ( ~ j ,  v,). 

Then, for any w1, w2 E C" , it holds that 
yO(uiw1, 1 ~ ~ ~ 2 )  E ~ ( f ' )  t~ ( W  W )  E ( )  (from 1) 

Qj (wl, w2) E ~ ( f ' )  (from the assumption) 
a qo(tijwl, ~j w,) E ~ ( f ' )  (fro111 1). 

Hence, we obtain the following relation. 
(uiwl, viw2) E T - ( Z L ~ W ~ ;  V ~ U J ~ )  E T. 

Since 0 < i < j ,  there exists qk E IIr ( I ;  < j) such that CHr(qk) = (uk, vk) and CHr(qj) = 
(uka, vkb) for some a ,  b E C. Hence, for any wl , wl E C*, the following relation holds. 

(uiwl, viw2) E T - ( Z L ~ W ~ ,  v ~ w ~ )  E T * (ukawl, u ~ ~ z . u ~ )  E T. 
As a result, it holds that 

~ i ( w l ,  ~ 2 )  E I(T, CHr)  a  CAW^, b ~ 2 )  E I(T, CHI.). 
Hence, it follows from Proposition 4 that the clause C = qk(ax, b g )  +- rl, (xi y) is complete 

in I(T, CHI.). Since i < j, C is generated by the procedure next-clause and added to the 
hypothesis before the clause qk(ax, by) +- qj (x, y). From Propositio~l 10, C is coillplete in any 
extended model subsequently. Thus, C is never removed from subsequent hypothesis. This 
contradicts that CHr (qi) = (uka, vkb). 

Theorem 15 For any DR-translation TJ Algoritl~nt 1 outputs a DR-TEFS I' such that T ( r ,  yo) = 
T. 
Proof: It is clear that the procedures next-clause and search-clause terminated finitely 
and return the desired output. It follows from Lemma 8 and Lemma 9 that the proceclures 
contradiction-backtracing and uncovered-atom terminate finitely and return the desired 
output. Hence, each computation in the bodies of two if statements terminates finitely and one 
of following operat ions is executed. 

1. A clause of the form CI,(E, E) +-- is added to I'. 
2. 4 clause of the form qi (a,x, by) +-- qo (z, y ) is added to I'. 
3. A clause qi(ax, by) +- qj(x, y) in is replaced by qi(ax, by) +-- qj+1(x, g ) .  

Both operations 1 and 2 are executed at most once for each i and a, b E C. Hence, if only 
finitely many clauses are generated, then it is necessary that the two if statements are entered 
at most finitely many times in total. This means that the ininimally adequate teacher replies 
"yes" in finite time. 

On the other hand, by Proposition 10 and Lemma 11, once a predicatle symbol is introduced 
into a hypothesis, the symbol never disappears from the subsequent hypothesis. Hence, by 
Lemma 14, only finitely many predicate symbols are generated. 

This coinpletes the proof of the theorem. 

3.4 Time complexity of the algorithm 

We assume that tlle given teacher answers each ineinbersl~ip query aild equivalence query 
immediately. Then, we can obtain the following result. Let f' be a DR-TEFS with the minimum 



number of predicate symbols such that T = T ( r ,  qo) and lIIi.l = n. 
Theorem 16 For any DR-translation T ,  at any point during the run, the time used b y  Al- 
gorithm 1 to that point is bounded b y  some polynomial in and the length of the longest 
counterexanzple returned b y  any equivalence querp seen to that point. 
Proof: Let I' be any hypothesis and CHr be the predicate characterization for I' constructed 
by t he algorithm. For notational convenience, we denote / C I by k and the maximum length of 
wl for any counterexample (wl, w2) given so far by m. Then, from Lemma 14, it follows that 
Irl < n ( k 2 + 1 )  and lCHrl 5 72. 

The both procedure next-clause and search-clause just malte a simple search in CHr 
and I' respectively. Thus the time required in each procedure call is bounded by a linear in 
n(k2 + 1). 

From the structure of a proof tree on a DR-TEFS, the input proof tree of some negative 
fact (wl, w2) for the procedure contradiction-backtracing can be treated as a sequence with 
length at most / zul 1 .  Since the procedure just traces the sequence, then the procedure terminates 
and finds a false cla~zse in time linea'r in m. 

For an input ground atom qi(wl, we), the procedure uncovered-atom searches a clause in 
I' whose head is unifiable with qi(wl, w 2 )  If such a cla~ise found then it calls itself recursively 
with input qj(u, v) such that wl = au and we = bv for some a ,  b E C .  Otherwise, it returns the 
input directly. Since the main operation executed in the procedure is to search the clause, the 
time required in the procedure call is bounded by a linear in lwll x lrl < mn(k2 + 1). 

Each examinat ion of whether given counterexample is positive or negative can be done 
immediately, because for a counterexainple n ,  if n E T then n is positive else n is negative. 
Hence, the time required in executing the body of each if statement in Algorithm 1 is bounded 
by a linear in mn(k2 + 1). On the other hand, since the number of possible clauses of a DR- 
TEFS constructed at most n predicate symbols is k2n2 + n, each body of if statement is entered 
at most k2n2 + 72 times. 

Consequently, the amount of the time required in each iteration of the outer repeat loop 
is at inost O((k%x2 + n)(mn,(k2 + 1))) = O(k4mn3). 

4 Conclusion 

We gave a polynomial time learning algorithm for DR-translations using eq~iivalence and mem- 
bership queries. There are inany cases where unobserved sub-concepts we necessary for repre- 
senting a target translation. In this paper, we assumed that the miniinally adequate teacher can 
answer cluest ions about the target translation, that is, the partial Herbrand inodel of a target 
DR-TEFS. I11 the algorithm, new predicate symbols which correspond to such sub-concepts 
are produced. This depends on the property of DR-TEFS's. If we consider learning of more 
complex classes of translations, the probleln might become more difficult. To extend target 
classes is one of the future problems. 

In this paper, we focus on a subclass of translations called DR-translations, but an EFS 
is so powerful as a language generator that we can define various classes of translations larger 
than it. Directly, we can consider two natural exteilsions of DR-TEFS's. One is a TEFS which 
defines a traSnslation between strings with different length. The other is a TEFS which defines a 
translation over larger class of languages. For practical applications, it is important to develop 
learning algorithms for such richer classes of translations. 




