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Abstract 

We define a motif as an expression Z1 .Z2 Zn with sets Zl, Z2,  . . . , Zn 
of strings in a specified family 0 called the type. This notion can capture 
the most of the motifs in PROSITE as well as regular pattern languages. 
A greedy strategy is developed for finding such motifs with ambiguity 
just from positive and negaiive examples by exploiting the probabilistic 
argument. This paper concentrates on describing the idea of the greedy 
algorit hm with its underling theory. Its experiment a1 results on splicing 
sites and E. coli promoters are also presented. 

1. Introduction 

Technologies for discovering knowledge from nucleic acid and amino acid 
sequences are most expected in Genome Informatics/Molecular Bioinformatics. 
Various alignment techniques [a] have traditionally played a very important 
role in knowledge discovery from sequences. The knowledge on sequences is 
often expressed as a motifwhich is a pattern common to a family of sequences. 
PROSITE Database [3] collects such "motifs" of amino acid sequences of pro- 
teins which are expressed in a systematic way. For example, [AC]-x(1)-V-x (4)- 
{ED} is a motif representing [A or C]-any-V-any-any-any-any-{my but E or D}. 
In a motif C-x(2,  4 ) - C - ~ ( 1 2 ) - H - x ( 3 ,  5)-H,  x (2 ,4 ) ,  x (12) ,  and x ( 3 , 5 )  represent any 
sequence of length between 2  ancl 4 ,  any sequence of length exactly 12, and any 
sequence of length between 3  and 5 ,  respectively. Thus some kind of ambigu- 
ity is allowed in motifs since diversity and uncertainty are involved by nature. 
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Finding such motifs from nucleic acid and amino acid sequences is a crucial 
problem since motifs provide biologically important knowledge expressed as se- 
quences. The most powerful techniques are the finely t uiied sequence alignment 
algorithms which assume in advance some knowledge such as the Dayhoff ma- 
trix. Recently, as to the practice of motif discovery, Wu and Brutlag [22] have 
taken an interesting approach and shown a very successful result on the sub- 
class of retroviral and retrovirus-related reverse transcriptases by their heuristic 
search algorithm although no mathemati~a~l proof is supplied to the algorithm 
for showing its performance. 

This paper presents a greedy strategy for finding such motifs with ambiguity 
just from positive and negative examples. The idea is based on the probabilis- 
tic argument invented for designing approximation algorithms for the maximum 
satisfiability problem [l 1, 231. For motifs of a special type, Tateishi et al. [20] 
proved a lower bound of the performance of the algorithm. Thus some per- 
formance guarantee is provided for our method. We describe the details of 
algorithm together with its underling theory, and present its experimental re- 
sults on splicing sites a,nd E. coli promoters. We also provide a variation of 
the algorithm in order to handle a more general case though no mathematical 
results are yet shown for supporting its performance. 

We define a motif as an expression Z1 . Z2 . . Zn, where Zl, Zz, . . . , Zn are 
sets of strings in a specified family fl called the type. When Zi consists of several 
elements, such as [AC], the expression allows ambiguity. This notion completely 
captures the above cases and the case of regular patterns [I] in a uniform way. 

We should note that the motif discovery involves computationally difficult 
obstacles. As well known, The longest common subsequence problem is NP- 
complete [12]. The complexity issues on the problem of finding a best consensus 
motif from positive and negative examples have been throughly investigated by 
Tateishi et al. [20]. It is shown in [20] that even a problem for a very simple 
type is NP-complete whether ambiguity is allowed in a motif or not since its 
proof works for both cases. Simila,r works related to the complexity issues on 
pattern hnguages are also found in Jiang and Li [lo] and Miyano et al. [13]. 

2. Motifs and Complexity 

For a.n alphabet C, we denote by C* the set of all strings over C. The length 
of a string w in C* is denoted by lwl. We denote C+ = C* - { E )  ( E  is the empty 
string) and En = {w E C* I iwl = n) for an integer n 2 0. For a set S, the 
number of elements in ,S is also denoted by I SI . 
Defiilition 1 Let fl be a family of subsets of C* called a type. A motif T of 
type fl is an expression of the form 



where Zl, . . . , Z, are elements in 0. For a motif K = Zl . . Zn, we denote by 
L(n) the set of strings defined by {tvl . . . w, 1 w1 E Zl, . . . , w, E 2,). For a 
string w and a motif n ,  we say thak x accepts (rejects) w if w E L(n) ( W  $ L(n)). 

Example 1 A regular pattern [I] is an expression of the form 
n = woxlwl . W , - ~ X , W ~  consisting of strings wo, . . . , w, E C* and distinct 
variables xl, . . . , x,. The pattern n defines a set L(n) of strings in C* obtained 
by substituting any strings in Cf to the variables xl, . . . , x,. Then any regular 
pattern is regarded as a motif of type 0 = {Cf) U {{w) I w E C*). 

Example 2 Let C be the set of amino acid residues. For integers k, i < j ,  let 
X(k) = {W I w E C*, I w I  = k }  and X ( i , j )  = {w I w E C*, i 5 Iwl 5 j}. 
Let 0 = {X(k) I k 2 l ) U { X ( i , j )  1 1  5 i < j}U{Z 1 0  # Z C}. Then 
the zinc finger motif C-x(2, 4)-C-x(12)-H-x(3, 5)-H, the leucine zipper L-x(6)-L- 
x(6)-L-x(6)-L and a motif such as LAC]-~(1)-V-x(4)-{ED) in PROSITE can be 
regarded as motifs of type 0, where [AC] represents "Ala or Cys" and {ED) 
represents "any but Glu or Asp." 

A yes-no example is a pair (a ,P)  of strings in C* with a f p. For a motif 
a and a yes-no example (N,P),  we say that (a ,  p) is good for n if n accepts u 
but rejects p. A yes-no sample is a, set S = {(a(l), p(l)), . . . , (dm), ~ ( ~ 1 ) )  of 
yes-no e~a~mples.  We call strings a('), . . . , a(") positive examples and strings 

. . . , @(") negative examples. Then, for a motif n and a yes-no sample S, we 
define cost($, n)  to be the number of pairs in S which are good for T .  Note that 
cost(S, n) = IL(n) n PI x I(C* - L(?r)) n NI if a yes-no sample S is provided as 
P x N with two disjoint sets P and N of strings. 

Let 0 be a type. The best consensus motif problem for type 0 is, given a 
yes-no sample S, to find a motif n of type 0 that maximizes cost(S, T ) .  

Tateishi et al. [20] have shown that the best consensus motif problem is 
computationally intractable by proving with a rather hea,vy argument the NP- 
completeness of the decision version of the problem. Therefore, we have to 
develop approximatel heuristic strategies which shall work in practice for the 
best consensus motif problem. The purpose of this paper is to give a strategy 
coping with this ~omputa~tional difficulty. 

Theorem 1 [ZO] The best consens?is motif problem is NP-complete for the fol- 
lowing type: 

(1) Q1 : all nonempty subsets of C. 

(2) 0+ : Cf , all nonempty subsets of .XV(k) for all k > 1 ,  all nonempty subsets 
ofX( i , j )  f o r a l l j  > i >  1. 

The above results also hold even if a yes-no sample S is provided as P x N of 
two disjoint sets P and N of strings in  {0, I}*. 



It should be noticed that the problem of deciding if there is a motif a of type 
Q1 such that all yes-no examples atre good for a is easily solved in polynomial 
time (see Section ). Thus the maxinlization problem has a sense. Although 0+ 
includes 01, different arguments axe required in [20] for the proofs. 

3. Greedy Strategy for Best Consensus Motif Problem 

Let 0 be a type. For 1 5 I; 5 n, let pk : 0 -+ [O, 11 be a probability 
distribution on 0 and let r k  be a racndom variable taking values in 0 with the 
probability distribution pk, i.e., the probability of a k  = Z is given by pk(Z) for 
Z in Q. 

We call an expression 

with ZE,. . . , ZLt E 0 (1 < t < ?2 + 1, kt 2 0 for 1 5 t < 72 + 1) a random motif 
with random variables ax, . . . , a,. We denote by p(I<, . . . , I/,) the (random) 
motif obtained by ~ubstit~uting Yk to a k  for 1 5 k 5 n. For a random motif 
p ( r l , . .  . , a,), we denote by P{(a, P) is good for /&(a1,. . . , T,)} or, more simply, 
P((a, p), p(al ,  . . . , G)), the probability that a yes-no exalrnple (a, p) is good for 
p(al ,  . . . , a,). FormaJly, let 

Then P((a, P) ,  p(al ,  . . . , a,)) is given by 

For a yes-no sample S = {(a('), ,@I)), . . . , (dm), ,dm))} and a random motif 
p(al, . . . , an), the expected number E(S ,  /&(a1, . . . , a,)) of the yes-no examples 
in S which are good for p(al, . . . , a,) is given by 

m 

E(S, /6(sl, . . . , a,)) = C P((cY(", P'"), p(al ,  . . . , an)).  
i=l 

Our greedy strategy shown in Fig. 1 assumes that the probability distri- 
butions pl, . . . , p, are ltnown beforehand. Then it determines Z1,. . . , Zn in $2 
consecutively in the following way: When Z1, . . . , Zk-l asre determined, Zk is 
set to be an element 2 in 0 such that E(S ,  p(Z1,. . . , Zk-l, Z, q + 1 , .  . . , an))) is 
maximized, where a k + l ,  . . . , a, are ra.ndom variables. 

This greedy strategy requires (R,1 ) and (R2) for effective implement ation. 

(R1) The expectation E(S, p(Z1, . . . , Zkwl, Z, a k + 1 ,  . . . , a,)) must be easily com- 
put able. 



/* Let p (rl, . . . , rrl) = rl . . T, be a ranclom motif. */ 
/* This a+lgorithm determines Z1, . . . , Z, in 0 .  */ 
for k +- 1 to n 

begin 
Find Z E O maximizing E(S, p(Z1,. . . , Zk-l,Z, r;,+l,. . . , G)));  
z;, t- z 

end 

Figure 1: Greedy algorithm. 

(R2) For Z in 0, let gain(R, 2,s) be the difference 

In order to guarantee t11a.t the expectation does not decrease in each iter- 
astion, it must be shown that gain@, Z, S) 2 0 for some Z in 0 for each 
1 5 k 5 n. It is also a problem to give the prol~a~bility distributions so 
that we can have such guarantee. 

In Section 4, we deal with the ca,se tlmt this greedy strategy is applicable in 
practice by solving all these difficulties. Section 6 proves its usefulness with its 
experimental results. In Sec.tion 5 ,  we consider a more general case and devise a 
heuristic algorithm for the best consensus motif problem although we have not 
yet succeeded in providing a sound theoretical basis. 

4. Approximation Algorithm for Motifs of Type O1 

In this section we concentrate on the ca,se that the type is Ol = {Z I 0 f Z 
C). For example, L - r  (6)-L-r (6)-L-r(6)-L a.nd [AC]-x(1)-V-~(4)- {ED) in Example 
2 are motifs of type O1. For a yes-no salnple S = {(a('), /?(')), . . . , (dm), P ( ~ ) ) ) ,  
we assume that 

1,(1) 1 = I/?(') I = . . . = 1*(4 1 = 1/?(n4 1 
since the length of a motif / L  must be the same as the length of if (a(i) ,  
is good for p. 

The problem of finding, if any, a motif po of type Ol such that all yes-no 
examples in S are good for /LO can be solved in polynomial time since po must 

(4 be of the form po = il 2, with ik = {ak I 1 < i < rn) for 1 5 k 5 n 

and po must reject all negative examples from S, where a(" = a?) . . cut) with 
(4 a, , . . . , at) E C. However, by Theorem 1 (I) ,  the best consensus motif problem 

for fll is harclly solvable in p~lynomia~l t'ime. 



Let rl . . rn be a, ra,ndoin inotif with ra4ndom varriables r l ,  . . . , r, taking 
values in Rl. Let, pk : R1 -+ [O, 11 be the proba,l~ility clistribution of r k  for 
1 5 k 5 n. We first see tha.t the exl~ecta~t~ion 

with 21,. . . , Zk-1 in R1 is easily comp~ta~ble.  
For a E C, let 

S, = {Z E a E 2) 

and 

For a string y = yl . . . y,, let S(y, Z1 . . Zkwl) = 1 if . - ~ k - 1  E Z1 . ZkWl 
else 0. Then for a yes-no example (a, P )  ( a  = a1 . . a,, P = PI ... P n ) ,  the 
probability that ( a ,  P) is good for Z1 . . Zk-lnk . . rn is expressed as: 

This c.an be c.omputed in polynomial tiine and therefore the expectation 

is also computable in polynomial time. This fulfills the requirement (Rl )  in 
Section 3. Since R1 is a finite set, it is also trivial to find an element Z in R1 
that maxilnizes the expect at ion. 

For satisfying the requirement (R2) in Section 3, Takeishi et al. [20] proved 
the following result: 

Theorem 2 [20] Let r k  be a I-a~xdorn vn,riable taking valves in O1 with a prob- 
ability distribution pk jol- 1 < k 5 12. Let s = 1x1. Assume that the probability 
distributions pk (1 < k < 72,) satisfy the j'ollo~uing con,dition,s: 

1. pk(Sg) < for all o- in C .  

2. pk(S, n ST) 2 for all 0 . 7  in C.  

Then, for each 1 < k 5 n,  there is some Z ilx $"I1 such that gain@, 2 ,  S )  2 0, 
where S is a yes-no sample. 

Theorem 2 has an aclvantage that it allows varia,tioils for motifs by speci- 
fying the probal~ilities for Z in $"I1 a.s long a.s they satisfy the two conditions 
in Theorem 2. As a corolla.ry of Tlieorei~l 2, we can prove the following lower 
bounds of the expectation: 



Corollary 1 Let m = IS/, s = ICI and let n be the length of a motif. 

(1) If pk(Z) = $ for all Z in Ql and for all 1 5 k 5 n, then 

This is the case that any Z is allowed for a motif. 

(2) If pk({a)) = & fo7- all a in C, pk(C) = and pk(Z) = 0 for other Z in 
O1 for all 1 < k < n,  then 

This is the case that only C and {o) for a E C nre allowed for a motif. 

From Theorem 2, the greedy algorith~n produces a motif F = Z1 . . Zn with 
cost (S, F) a t  least as large as E(S ,  71.1 . . F,). The lower bounds of E(S,  ?rl . . . F,) 

in Corollary 1 are not good when n and s are larger. However, experiments in 
Section 6 show that our greedy strategy exhibits much better performance in a 
series of experiments on exon/intron splicing sites and promoter regions. 

5. Heuristic Method for Finding More General Motifs 

This section gives a greedy heuristic algorithin which can deal with a motif 
of the form 

with Z1,. . . , Zn in O1. For simplicity, we denote the above motif by *Zl . Zn*. 
Motifs of type O1 in Section 4 ca.n cope with the case that the location of a 
segment of interest in a sequence is clear or determined beforehand. On the 
other hand, the motifs of the form *Z1 . . Zn* aAre more flexible than the motifs 
of type 0, .  

From a practical point of view, we consider how to apply the greedy strategy 
to this case by employing the random motif p(?rl,. . . , T,) = *TI . . F,* with 
probability distributions pl , . . . , p,. 

First, let Z1, . . . , ZkVl be elements in Q1. For a yes-no example (a, p), it is, 
in general, hard to compute efficiently t*he probability that (a ,  P) is good for 
p(Z1,. . . , Zk-l, ~ l ; ,  . . . , F,). In practice, instead of evaluating the exact proba- 
bility, we shall give a lower bound of the probability amnd use it for obtaining a 
rough estima.tion of E(S, p(nl, . . . , F,)) for a, yes-no saomple S. 

Let a = a l . . . a , a ~ n d p = p l - . . p q ,  whereaj  ~ C f o r  15 j < p a n d P k  E C 
for 1 5 k 5 q. We assume n 5 p, q. We coilsider the segments of length n of a 



and ,O. Let aj = ( Y j  . . (YSi+,-1 for 1 5 J' 5 - 12 + 1 and /I" ,Ok - ,Ok+n-l for 
k 1 < k < q - n + 1. We denote a: = oj+i-1 and /Ii = ,!j'k+i-l for 1 < i < n. First 

note tlia,t 

P{(cu, p) is good for p(Z1,. . . , Zk-1, r k , .  . . , ~ n ) j  

2 max P{(o;j ,p)isgoodforp(Z1 , . . . ,  Zk-l,rrk ,..., n,)}. 
l<j<p-n+1 

Then we shall give a lower bound of the probability that (aj, ,8) is good for 

~ ( ~ 1 7  . . - ,  zk-l,nk? * * -  7nn))- 
In the argument below, for a set U P ( U )  represents the probability 

of U, i.e.7 P ( U )  = C [ I ~ , . . . , I ~ , ) ~ U P ~ ( ? ~ )  . . pn(Yn). Let 

for 1 < j < p - n + l  and 

for 1 < t < q - 12 + 1. Then for ea,cli ( r l , .  . . , r t )  E It, let, 

Fk (j, (r,, . . . , rt )) = n (Sa: n ,S,: n . . . n S,: ). 
i=k 

Note that Fk(j, (rl , . . . , rt)) C Ek(j) for any (rl, . . . , r t) .  Recall that 

~ { ( a j ,  ,Or) is good for /l(Z1, . . . , Zk-lr r,+, . . . , r n ) j  

for 1 < j 5 p - n + 1 and 1 < r 5 q - n + 1, where 1 - ~ ~ ( j , r )  = Fk(j,r) 
and 0 . Fk(j, r )  = 0. For convenience, let Ek(j, r) = 6(Pr, Zl - . ZkW1) . F k ( j ,  r) .  
Then let 

Let So = S(&, Zl . . Zk-, ). Then we have 

P{(aj, p) is good for p(Z1,. . . , Zk-l, ~ k , .  . . , rn)) j 
= 60 . p((Ek((j) - Fk(j, 1)) n . . . n (Ek(j) - F k ( j ,  - n + 1))) 
= 60 ~ ( E y j )  - (Pk(j, I )  u . u Ek(j, q - n + I ) ) )  
= 60 P(Ek(j)) - So . P(F"j, 1) u . . U F"j, - 1,  + 1)) 
- - 60 (Qo - QI + Q2 - Q3 + . . . + (-l)tQt + . . + (-l)q-n+lQq-n+l). 



Note that p k ( j ,  rl) n n pk(j, r,) = Fk(j, ( ~ 1 , .  . . , r t ) )  Thus for t 2 1 

where s,,,, ,ql,.*., , q t }  = {Z E 01 I {a:, PT1 7 . , PTt} c 2) Qt contains O ( n t )  

terms. Thus, the total computation of c ~ ~ ~ "  (- l ) t  Q ,  requires exponential 
time. Therefore, we may take aan odd constant integer I< > 0 and let 

Then we use 

as a lower bouiid for the estimation. The greedy algorithm in Fig. 1 uses 

instead of the exact expectation which requires exponential time to compute. 
No mathematical proofs a3re yet provided for the requirements (Rl )  and 

(R,2) though Theorem 2 solves a special case of the problem. We implemented 
this heuristic algorithm by rnodifj~iiig &(a', P ) ,  p(Zl, . . . , Zk-l, ?rk, . . . , rn))  into 
60(C(r l )EI l  QO - Q1) instead of taking a large integer IC 2 1 so that it shall work 
in practice. Some experimental results shall be given in Section 6. 

6. Results 

The purpose of this section is to evaluate the performance of the greedy 
strategy in Fig. 1 by implementing two kind of algorithms. The first is the 
greedy a91goritlirn for type fll discussed in SectZion 4. We denote this algo- 
rithm by G R E E D Y [ ~ ~ ~ ] .  We use the probability distributions pl,  . . . , pn given in 
Corollary 1 (1). The second is the heuristic algoritllrn for finding a motif of 



-30 -20 -10 I 10 20 30 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . g  c . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

t 

Figure 2: Motif ~(30)-g-[ctl-x(28) for exonlintro splicing sites. From 269 yes-no 
examples in SeiYOO are good for this motif. 

the form C*Z1.. . Z,C* discussed in Sectioii 5. This algorithm is denoted by 
GREEDY [*01 *]. 

6.1. Experiments b y  GREEDY[O~] 

For testing GREEDY[O~], we use data on exon/intron splicing sites and E. 
coli promoters since good statistics are li110~11 a,nd the problem is very suited 
for the motifs of type 01. The approach with HMM 17, 151 also seems very 
suited for the best consensus motif problem for type Ctl by definition. We have 
not compared our strategy with the HhlM appproa3c1l on the same data. 

6.1 .l. Exon/intron splicing sites 

We shall present some experimental results of the algorithms on exon/intron 
splicing sites. For tlie coding region identification problem, there are many 
papers aiming ak predicting splicing sit,es. For example, Brunak et al. [4] 
applied neural networks to predict splicillg site loca*tions in human pre-mRNA. 
Some software is also available [19]. 

Exa4mples are taken from GenBank. Positive examples are sequences of 
length 60 each of which comprises a segment of length 30 in tlie exon and a 
segment of length 30 in the intron. Negative exarmples are sequences which are 
known not to include any splicing sites. 

The first sapmple SeiYOO consists of 300 yes-no examples ratnclomly generated 
from the above positive a#nd negative examples. The motif length is 60. From 
300 yes-no examples, 269 yes-no examples are good for a very (too) simple 
motif (Fig. 2). It accepts all positive examples but does not reject 31 negative 
examples. This motif is consistent with the GT-AG rule [21]. 

The secoild sample Seiso:loo was constracted in the following way: First, we 
took 50 positive examples a1, . . . , a.50 a,nd 100 negative exainples PI, . . . , boo. 
Then for each positive exaImple ai, two yes-no exa~mples (ai, ,Bloci-ll+j) ( j  = 1,2) 
are gei~era~ted. Thus in total, 100 yes-no examples are generated. Fig. 3 shows 
the result. G R E E D U [ ~ ~ ~ ]  found a motif for which all yes-no examples axe good 
(100%). 

The third ~a~inple  Se;lo:loo with 100 yes-no exarmples was constructed from 
10 positive examples and 100 negative esa~inples in the same way. Fig. 4 shows 



Figure 3: 97 yes-no examples in Seiso:loo are good for the above motif. Letters 
in vertical line, for example a, c, g at position 3, represent the set consisting of 
these letters. 

-30 -20 -10 1 10 20 30 
.a................a...a....aacgtaag...ca.a...cccc.a.c....... 
C c c ccg cc gc c gggg c g 

g g g gg gt g g tttt g t 

Figure 4: All (100) yes-no examples in ,SeilO:lOO are good for the above motif. 

the result. G R E E D Y [ ~ ~ ]  found a motif for which a.11 yes-no examples are good 
(100%). 

6.1.2. E. coli promoters 

For testing G R E E D Y [ ~ ~ ~ ] ,  the E. coli promoters ajre a41so good examples since 
those sites axe very well characterized 19, 14, 61. Examples atre again taken from 
GenBank. Positive asnd negative examples are taken from a sequence as shown 
in Fig. 5. 

Se~,,lilo:loo are generatled in the same waoy as SeS,ilo:loo by taking 10 positive 
examples and 100 negative examples. Fig. 6 shows the result. GREEDY [fill 
found a motif for which all yes-no examples are good (100%). 

6.2. Experiments b y  G R , E E D Y [ * ~ ~ ~  *] 

Euka,ryotic promoters are more complex a i d  larger than E.coli proinoters. 
No definite consensus has been built for eukaryotic promoters although some 
ma>jor elements are known, such a.s CCAAT, GC and TATA boxes. 

Positive and negative examples for eukaxyotic promoters aare collected in the 

<- CDS starts here 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

....................... length 30 ..................... 
- length 50 - > - length 50 - > 
positive example negative example 

Figure 5: Positive and negative examples for Se.coliloo. 



-50 -40 -30 -20 -10 -1 
.a.c..a.aac.c.c..aaa...a...a.a.a.a.a..aaaa.a....aa 

g g c egg g g CCC c c g  g c t3ggg c cg 
t t  t t t t t t  t t g  t t t t t t  t t t  t 

Figure 6: All (100) yes-no examples in Se.,,l;lo:lw are good for the above motif. 

Table 1: Three samples for eukaryotic promoters. For example, Sl consists of 20 
yes-no examples constructed from 10 positive and 20 negative examples whose 
length is 50. 

same way as E.coli promoters. M7e tool; three sa,rnples S1, Sz and S3 shown in 
Table 1. 

Experiments were done for these sajrnples S1, S2 and S3. by changing the 
motif length from 10 to the maximum length in step 10. Fig. 7 shows an 
exa,mple of a motif of length 40 that G R E E D Y [ * ~ ~ ~ * ]  found from S1. Only 6 yes- 
no examples are good for this motif t11oug.h there seems to be a TATA-like region 
in the motif. As a whole, experimental results by G R E E D Y [ * ~ ~ * ]  on eukaryotic 
promoters are not attractive in any case. It seems dificult for G R E E D Y [ * ~ ~ ~ * ]  
to find interesting motifs for eukaryotic promoters. Eukaryotic promoters are 
less well characterized [5]. It seems more reasonable to find motifs of the form 
*fll * fll * . . * 01%. However, currently, we do not ha,ve any efficient strategy 
for finding such motifs. 

Motivated by the problem of e~tra~cting motifs, such as in PR*OSITE, we 
have developed a greedy strategy for finding motifs from positive and negative 
sequences by exploiting prol~ahilistic arguments. We presented some of the 
experimental results on E. coli and eukaryotic promoters a.nd splicing sites. The 

. . . . . . . . . . . . . .  a.a.aaa . . . . . . . . .  aaaa.aa..t 
C t CCCC CC 

t t g t g  tt 

Figure 7: A motif of length 40 found from Sl. 



results by GREEDY[Q~] axe not so much astonishing, but reasonable knowledge 
are found by our strategy. The lower bounds in Corollaxy 1 are not good but 
these experiments showed that the performance of our greedy algorithm is much 
better. The experimental results by GREEDY [*nI *] on eukaryotic promoters 
are unfortunately not successful. In order to characterize eukaryotic promoters, 
we need another strategy that can cope with more complicated motifs. In 
this paper we have dealt with only DNA sequences and ignored amino acid 
sequences. This is simply because the alpha,bet of 20 symbols is too large for 
our algorithm since the time complexity increases exponentially with respect 
to the size of the alphbet. The difference between 24 and 220 is very serious 
in our algorithm. From both theory and practice, it is an challenging open 
problem to devise efficient approximation algorithms for finding such general 
motifs together wit,l~ proofs g~a~ranteeing their performance. 

Aiming at knowledge discovery from amino acid sequences, the second au- 
thor's research group has developed a system called BONSAI [2, 16, 181 that 
produces, from positive and negakive exa,inples, a mapping 5 called an alphabet 
indexing which classifies twenty amino acid residues into a smaller categories 
and a decision tree whose internal nodes are labeled with regular patterns. 
Since regular patterns are used for niaking decisions at nodes, only exact pat- 
tern matching is a,llowed. We are planning to implemeut the strategy developed 
in this paper in a forthcomiilg version of BONSAI so t,lia$t it can cope with 
sequences with a.rnbigui ty. 
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