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Abstract 
We define the best consensus motif (BCM) problem motivated by the problem of 

extracting motifs from nucleic acid and amino acid sequences. A type over an alphabet 
C is a family R of subsets of C*. A motif ;.r of type R is a string ;.r = 7~1 . ;.rn of motif 
components, each of which stands for an element in R. The BCM problem for R is, given a 
yes-no sample S = {(a('), @('I), . . . , (dm) ,  ,dm))} of pairs of strings in C* with a(') f 
for 1 < i < m, to find a motif rr of type R that maximizes the number of good pairs 
in S, where (a('), @(')) is good for ;.r if .rr accepts a(') and rejects ,di). We prove that 
the BCM problem is NP-complete even for a very simple type R1 = {t 1 fJ # t. C C}, 
which is used, in practice, for describing protein motifs in the PROSITE database. We 
also show that the NP-completeness of the problem does not change for the type R, = 
O1 U {C+} U {C['jl I 1 < i < j}, where C['7jl is the set of strings over C of length between 
i and j .  Furthermore, for the BCM problem for R1, we provide a polynomial-time greedy 
algorithm based on the probabilistic method. Its performance analysis shows an explicit 
approximation ratio of the algorithm. 

Keywords: algorithms and computational complexity, genome informatics 

1 Introduction 
PROSITE Database [3] compiles various important "motifs" of amino acid sequences of pro- 
teins. Most motifs have been extracted by biological experiments and alignment techniques 
tuned up with knowledge on molecular biology. Such motifs are expressed in a systematic way 
in PROSITE. For example, a motif of some family of DNA-binding proteins is expressed as 
a pattern W-x(2)- [LI]-[SAG]-x(4, 5)-R-x(8)- [YW]-x(3)-[LIVM] . Here each component in the motif is 
separated from its neighbor by '-'. The component of the form [symbols] represents that any 
of the symbols between the brakets is accepted for the position. For example [SAG] stands for 
"S or A or G." The component x(i, j )  (x(1)) represents any sequences of length between i and j 
(of length 1). Another example of a motif is [AC]-x-V-x(4)-{ED), where x is used for a position 
where any symbol is accepted and {ED) stands for any symbol except E and D. Thus this can 
be translated as [A or c]-any-V-any-any-any-any-{any but E or D). 

Finding such motifs from sequence data is a very crucial problem in Genome Informat- 
ics/Molecular Bioinformatics since motifs provide us biologically important knowledge in terms 
of amino acid residues. Traditionally, various alignment techniques [5], which shall find a "rea- 
sonable" common subsequence for a family of amino acid sequences or nucleic acid sequences, 
have played a significant role in discovering these motifs from sequence data. 

In this paper we consider the problem of finding such "motifs" from a collection of positive 
and negative examples while alignment techniques deal with only positive examples. We call 
a string .rr = .irl . . ~ r ,  a motif, where TI , .  . . , .ir, stand for such components as V, [SAG], {ED), 
x(i, j ) ,  x(1) and x. A yes-no sample is a set S of pairs (a('), /3(')) 7 . . , ( d m ) ,  ~ ( ~ 1 )  of positive 
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and negative examples. A pair ( d i ) ,  P (~ ) )  in S is said to be good for a motif a if a accepts di) 
and rejects ~ ( ~ 1 .  The best consensus motif (BCM) problem is, given a yes-no sample S, to find a 
motif that maximizes the number of good pairs in S .  Some interesting results have been shown 
in [6, 71 for the consistency problem of regular patterns [I] from the point of computational 
learning theory. But regular patterns do not allow ambiguity in their expressions. An important 
motivation for defining the BCM problem is that sequences in the biological databases such as 
PIR, PDB, GenBank, etc., involve diversity and uncertainty. 

The problem of finding, if any, a motif .ir such that all yes-no examples in S are good for .ir 
can be solved in polynomial time if the motif is restricted to use only components of the form 
[symbols]. In contrast, we show that the BCM problem for this special case turns NP-complete 
as in the case of MAX2SAT [4]. More generally, the BCM problem for motifs with [symbols], 
x(i, j ) ,  x(1), x and x+ is also shown NP-complete, where x+ represents the set of all nonempty 
strings. 

For such obstacles to knowledge discovery from sequences, a big challenge is to devise ef- 
ficient heuristic algorithms for approximating the BCM problem. We do not know whether it 
is possible to obtain any polynomial-time algorithm with any explicit performance guarantee. 
This paper answers a special case of the problem by showing a simple greedy algorithm ap- 
proximating the BCM problem for motifs with components [symbols]. We prove a lower bound 
of its performance by a rigorous analysis of the algorithm with a probabilistic method in [14]. 

This paper is organized as follows: In Section 2, we define the best consensus motif problem. 
The NP-completeness of the problem is proved in Section 3. In Section 4, we give a greedy 
algorithm for the special case of the BCM problem and its performance analysis. 

2 Best Consensus Motif Problem 
For an alphabet A, we denote by A* the set of all strings over A. The length of a string w 
in A* is denoted by lwl. We denote A+ = A* - {E) (E is the empty string). For 1 5 1 and 
1 < - i < j, let A" {w E A* I lwl = I )  and A['>jl = {w E A* / i < Iwl < j ) .  For a s e t  S, the 
number of elements in S is also denoted by /SI. 

Definition 1 Let C be a finite alphabet and R be a family of subsets of C* called a type over 
C. Let V be a set whose elements are called rnotzf components and r be a mapping from V to 
R. For each motif component x E V, the range of x is the set r (x)  in R which specifies the set 
of strings in C* that the motif component x can get. A motzf a of type R is an expression of 
the form 

= T l q * . T n 7  

where x l , .  . . , .rr, are mutually distinct motif components. We denote by L(a) the set of strings 
defined by {wl. w, I wl E ?(al), . . . , w, E r(.ir,)). For a string w and a motif a, we say that 
.rr accepts (rejects) w if w E L(a) (w $! L(.ir)). 

A motif component x whose range r (x )  consists of a single element, say w E C*, is called a 
constant and denoted by w if no confusion occurs. On the other hand, if the range r (x )  consists 
of at  least two elements, x is called a variable. We often confuse a motif component with its 
range without any notice. 

Example 1 A regular pattern [I] is an expression of the form 
a = woxlwl. . Wn-lxnWn consisting of constants WO, . . . , w, E C* and distinct variables xl,  . . . , x, 
with range C+. The pattern a defines a set L(a)  of strings in C* obtained by substituting any 
strings in C+ to the variables xl ,  . . . , x,. Thus any regular pattern is regarded as a motif of 
type R = {Cf) U {{w) I w E C*). 

Example 2 Let C be the set of 20 symbols representing the amino acid residues. Let R1 = { z  I 
0 f z C) be the family of all nonempty subsets of C. Then the leucine zipper L-x(6)-L-x(6)- 
L-x(6)-L, a 'helix-turn-helix' motif of some family of DNA binding proteins [LIVM]-x(1)-[DE]- 
[LIVM]-A-~(~)-[STAG]-~-V-[SP]-X(~)-[STAG]-[LIVMA]-X(~)-[LIVMA]-[LIVM] and a motif such as [AC]- 
x(1)-V-x(4)-{ED) in PROSITE [3] can be regarded as motifs of type R1, where x(i) represents 



any strings of length i and the expressions like [LIVM] represents "L or I or V or M" and and 
{ED) represents "any but E or D." Note that x(1) corresponds to C E R1 and x(i) is expressed 
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b 
as x(1) . . x(1). In order to express the zinc finger motif C-x(2, 4)-C-x(12)-H-x(3, 5)-H, we need 
R = {C[qd 1 1 5 I 5 j )  U R1 as its type. 

Since these motifs are embedded in sequences, we should add motif components with range 
C+ at the left and right ends of the motifs when we consider the whole sequences containing 
these motifs. Thus it suffices to consider the type R, = {C+) U {C[',j] / 1 5 i 5 j )  U {z I 0 # 
z c C) for expressing motifs. 

A yes-no example is a pair (a ,  P) of strings in C* with a # P. For a motif a and a yes-no 
example (a, p), we say that (a, p) is good for a if a accepts a but rejects P. A yes-no sample 
is a set S = {(a(l), ,@I)), . . . , (dm), ~ ( ~ 1 ) )  of yes-no examples. We call strings a('), . . . , dm) 
the positive examples of S and strings ~ ( l ) ,  . . . , ,O(m) the negative examples of S .  For a motif a 
and a yes-no sample S, we define cost($ a )  to be the number of yes-no examples in S which 
are good for a .  Note that cost(S, a) = I L(a) n PI x I (C* - L(a) n NI if a yes-no sample S is 
provided as P x N with two disjoint sets P and N of strings. 

Let R be a type over C. The best consensus moti f  problem for type R is, given a yes-no 
sample S, to find a motif a of type R that maximizes cost(S, a). 

3 Best Consensus Motif Problem is Intractable 

This section investigates the complexity of finding a best consensus motif from a yes-no sample 
by considering two kinds of types. The one is 

which allows only simple motif components and the other is 

which involves a variety of expressions. We consider the decision version of the best consensus 
motif problem for R1 (R,), which is, given a yes-no sample S and an integer K 2 0, to decide 
if there is a motif a of type R1 (R,) such that cost(S, a) 2 K.  

We start with an observation on the type R1. Let S = {(a('), ~ ( l ) ) ,  . . . , (dm), ,8("))) be 
a yes-no sample. We can assume that la(l)l = . . = Ia(m)l since the length of a motif of 
type R1 must be the same as the length of a(') if (a('), @('I) is good for p. The problem of 
finding, if any, a motif p* of type R1 such that all yes-no examples in S are good for p* can 
be solved in polynomial time. This is because p* must be of the form p* = ,!il fin with 
,Gk = {a:) I 1 5 i 5 m )  for 1 5 k 5 n and p* must reject all negative examples from S, where 
a(') = a?) a:) with a?), . . . , a:) E C. We do not know wheter the same observation holds 
for the type 0,. 

The main result in this section asserts that the best consensus motif problem is computa- 
tionally intractable even if the type is simple (R1) or ample (R,). 

Theorem 1 
(1) T h e  best consensus mot i f  problem for R1 = { z  / 0 # z c C) i s  NP-complete. 
(2) T h e  best consensus motif problem for R, i s  NP-complete. 
T h e  results also hold even i f  C = {0,1) and a yes-no sample S i s  provided as P x N with 

two disjoint sets P and N .  

Proof. For a technical reason, we shall prove (2) first. The proof of (1) shall be given as a modified version of 
the proof of (2). 

Obviously the problem is in NP. We shall show that there is a polynomial-time reduction from MAX2SAT 
[4], which is, given a formula in 2-CNF and a positive integer K ,  to  decide if there is a truth assignment satisfying 



Figure 1 : Positive examples. 

at least K clauses. Let F = C1. . - Cm be a formula in 2-CNF with variables ul ,  u2, . . . , u,. We may assume 
without loss of generality that any clause does not contain both uk and for any 1 < k < n. We shall define P 
of positive examples and N of negative examples such that at least K clauses of F are satisfiable if and only if 
there is a motif n with cost(S,n) 2 (n+L)(3nM+K), where S = P x  N ,  L = n2-n+2 and M = (2n+L)m+l.  
Let K'  = (n + L)(3nM + K).  The set P consists of the following 2n + 1; positive examples s l ,  . . . , sari, e l ,  . . . , e~ 
and the set N consists of the following 3nM + m negative examples t i ,  . . . , t&, h i , .  . . , h e ,  dl, . . . , dm (see Fig. 
1 and Fig. 2): 

si = (02-1 102"-i) M for 15 i < 2n, 
. - 02nM+i-1 

2 - for 15 i < L, 
t; = (02n)i-1 . (00)L-111(00)"-k . (02")M-2 

f o r l < I c < n , l < j < M ,  
h j  = (02n)j-1 . (02-1 1 -02n-i) . (02n)M-j-1 -02n-1 

for 1 < i < 2n, 1 < j < M ,  
h, = (02n)M-1 . 02-1 . 1 -02n-2-1 for 1 < 2 < 2n, 
h2n - 02nM-1 

M -  9 

di = ( r i r i  . . . r:IM for 1 < i < m, where 
10 if literal UL appears in Ci 
01 if literal appears in Ci 
0 otherwise. 

Note that positive and negative examples are strings over C = {0,1). Therefore Ilt, consists of {0), {I), 
{O,l)+ and {O, l)[i,jl for j > i > 1. In the following argument, w+ represents a variable whose range is 10, I)+ 
and w[i,jl represents a variable whose range is { O , l ) [ i ~ f  for j 2 i 2 1. The constants are 0 and 1. Let X denote 
the set of variables. For convenience, we denote by X U 0 the set consisting of all variables and constants 0. 

Suppose that at  least K clauses of F are satisfied by a truth assignment Gl, . . . , 6,. Then we define a motif 
T = (rl . . . rn) by putting r k  = Ow+ if Gk = true and r k  = w+O if Gk = false for 1 < k < n. Obviously, either 
s2k-1 or S2k is accepted by n for 1 < k < n, and all e l , .  . . , e~ are accepted by n.  On the other hand, n rejects 
t! for all 1 < k < n,  1 < j < M and all hf for all 1 < i < 2n, 1 < j < M .  By the definition of rk, a clause Ci of 
F is satisfied by the truth assignment Gl, . . . ,Gn if and only if dj is rejected by n. Thus the number of clauses 
satisfied by the truth assignment is equal to the number of dj's rejected by n. Then cost(S, n)  > K'. 

Conversely, we suppose that there exists a motif n with cost (S, n) > K'. 
First, we show Claim 1 below. For Claim 1, we introduce the following conventions. A motif is denoted as 

n = O o ~ l O 1  . . On-l ynOn, where yi is a variable in X for 1 < i < n and Oj is a finite (possibly empty) sequence 
of constants 0 and 1 for 0 < j < n. For a variable yk E X ,  let llykll = min{lwl 1 w E yk) for 1 < k < n. 
Then we denote by 1/nll = 1001 + llylll + 1011 + - - . l O n - l l  + llynll + [On( .  For n = OOylel .--On-lynOn, a tuple 
p = [yl t- wl, . . . , yn t- w,] of assignments of strings wi E yi to the variable occurrences yi for 1 < i < n is 
called a Jill-in of n. Let w = OOwlOl - O n - l ~ n O n  be the string, denoted by ncp, obtained by the fill-in cp. We 
say that an occurrence of a substring w' in w is covered by the variable occurrence yi under (o if w' is contained 
in W i -  

CLAIM 1. If a motif n satisfies cost (S, n) > K', then n E (X U 0)+ and /In11 = 2nM. 



Figure 2: Negative examples. 



Proof. If 1 occurs in n,  then n rejects all ei for 1 < i < L. Then cost(S, n) < 2n(3nM + m) < K', by the 
definition of M and K'. Thus a E (XUO)+. If n rejects all si for 1 5 i < 2n, then cost(S, n)  < L(3nM+m) < K'. 
Therefore, 11nll < 2nM and si is in L(n) for some 1 5 i 5 2n. 

Suppose now that /In 1 1  < 2nM - 1. Let n = Bo yl B1 . . - yPBp. Since si is accepted by n ,  there is a fill-in 
(P = [yl + ti,.. . ,yp -+ tp] S U C ~  that T(P = s ~ .  

Fact 1. If n accepts si, then n accepts h j  or h;-' for each 1 < j 5 M ,  where h; = h ; ~ ~ .  
Proof. Note that si  contains exactly M occurrences of 1. For each 1 5 j 5 M ,  we consider the j th  

occurrence of 1 in si. Let y, be the variable occurrence covering the j th  occurrence of 1 in si under 9 .  There 
are two cases according to the location of the j th  occurrence of 1 in <,. 

(1) t, = 1: Since /lnll < 2nM - 1 and Isi/ = 2nM, there is some r with [[,I > 2 such that y, = wf or 
y, = W[".'21 with 11 < ltrl 5 12. When q < r, let [b = 1, th = 01&1-~, and 5; = 01tz (I # q,r).  Then for 

9' = [yl +- [; , . . . ,yp + t;] we have np' = hj. When r < q, let = 1, = 01(r1-~, and = 0lc1l (1 # q,r). 
Then for p' = [yl t &, . . . , yp t t;] we have nv' = hi-'. 

(2) 5, = ylOy' or Eq = yOly': If yq = W+ or y, = w [ ' ~ > ' ~ ]  with ll < /[,I, then let tk = 017110i~'I and ti = 016~1 
(1 f- q) and let p' = [yl +- t i , .  . . , yp +- t i ] .  Then if t, = ylOy', then ap' = h;. If <, = yOly', then ?rp' = hi-'. 

If y, = w[''."] with It = ltql, then by the same argument as (1) we can conclude that n accepts h j  or hi-'. IZI 

Fact 2. If n accepts b positive examples from s l ,  . . . , szn7 then n also accepts at least Lgj - M negative 
examples from h i , .  . . , hz- ,  . 

Proof. Let s i l l . .  . , sib be positive examples accepted by n, where il  < i2 < - - - < ib. By Fact 1, for each 
s ik l  n accepts M distinct negative examples hp-' or h? for 1 5 j < M. Let Hk be the set of these M negative 

examples hp-l or h p  (1 < j < M) accepted by n for si,. 
Then HI, H31 - - - , H2.~$1+1 are pairwise disjoint. Therefore I HI U H3 U - . - U H2- Lq 1 = [;I - M. EI 
By Fact 2, if n accepts b positive examples from s l ,  . . . , ~ 2 , ~  then 

cost (S, n)  < (L + b) ((3n - 1% ) M + m) 

since at  least [g] - M negative examples from hi ,  . . . , h$-l are accepted by T. By easy but tedious calculations, 
we can show that (L  + b)((3n - [gJ )M + m) < K' for all 1 5 b < 2n. This is again a contradiction. Thus IInII 
must be exactly 2nM. 

CLAIM 2. If cost (S, n) > K', n accepts at least n positive examples from sl  , . . . , s2,. 
Proof. Otherwise, cost(S, n) 5 (L + n - 1)(3nM + m) < K'. 

CLAIM 3. Let n be a motif that maximizes cost(S, n). If cost(S, n)  > K', then n can be described as a motif 
of type ((0, I)+)  having the form 

M 
T =  ( T ~ T ~ - . . T ~ ~ )  , 

where n2k-ln2k = Ow+ or n2k-ln2k = w+O for 1 < k 5 n. 
Proof. By Claim 1, the motif n satisfies llnll = 2nM but may contain variables and w["7'2]. However, by 

'1 - 
replacing all occurrences w['ll (w[''.~]) in n with w+ . . . w+, we obtain a motif ir of type {{O, I)+} such that 
liil = 2nM and ii accepts the same positive examples in P as n and ii rejects the same negative examples in N as 
n. Let .rr be this ii. Since 1x1 = 2nM1 n is written as n = nln2 . . - m , ~  with E X or = 0 for 1 5 i < 2nM. 
For each 1 5 k 5 n,  we consider positive examples s2k-1 and s2k and segments n2n(i-1)+2k-la2n(i_1)+2k for 
l < i < M .  

Case 1. s2k-1 E L(n) and sir, E L(n): Then n2n( i -1 )+2k - la2n ( i - l )+2k  = w+wC for all 1 5 i M. If we 
replace ~ 2 ~ ( i - 1 ) + 2 k - 1 ~ 2 ~ ( i 1 ) + 2 1 ;  with OW+ (or w+O) in n for all 1 < i 5 M.  Let n' be the resulting motif obtained 
from n by this replacement. Then n' rejects s2k-1 (or s2k) and M negative examples tt ,  . . . , t& in addition to all 
positive and negative examples rejected by n. On the other hand, n accepts all ei for 1 5 i 5 L since n E (XU())+. 
Moreover, by Claim 2, n must accepts at least n positive examples from s l ,  . . . , s2,. By assumption, n accepts 
s2k-1, S2k and t(k-l)M+l,.. . , t k ~ .  Therefore cost(S, n') - cost(S, n)  2 (n + L)M - 1 - ((3n - l ) M  + m) > 0, 
by the definition of L and M .  This contradicts that n maximizes cost(S, n). 

Case 2. s2k-1 @ L(n) and s2k @ L(n): By Claim 2, n must accept at least n positive examples from 
s l , .  . . , ~ 2 , .  Therefore there is some 1 < j < n such that szj-1 E L(n) and s2j E L(n). But this does not hold 
from Case 1. 

Thus either s2k-1 E L(n) or s2k E L(n) for 1 < k < n. 
Case 3. s2k-1 E L(n) and s2k $.! L(n): Then n2n(i-1)+2k-l?i2n(i-1)+2k is either w+w+ or wfO for 1 < 

2 < M. If ?T2n(i-1)+2k-l?T2n(i-1)+2k = W+W+ for Some 1 5 2 5 M ,  then We replace K2n( i -1 )+2k - l~2n ( i -1 )+2k  

with wf 0 in n. Let n' be the resulting motif. Then n' does not reject any positive examples which are 



accepted by n and n' does not accept any negative examples which are rejected by n. In addition, n' rejects 
t:. Therefore cost (S, n') > cost (S, n). This also contradicts the hypothesis that cost (S, n) is maximum. Thus 
?r2n(i-1)+2k-1?r2n(i-l)+2k = w+O for all 1 < i < M .  

Case 4. s2k -1  $! L(n) and s 2 k  E L(n): In the same way as Case 3, we can see that ~ ~ ~ ( i - ~ ) + ~ k - ~ n ~ ~ ( ~ ~ ~ ~ + ~ ~  = 
Ow+ for all 1 < i 5 M .  

By Cases 1-4, we see that a is written as (nln2 - - - ?i27JM with n2k-lr2k = OW+ or R2k- lT2k  = w+O for 
l < k < n .  

By Claim 3, there is a motif n = (nl . . .n2n)M such that cost(S, a )  2 K' and ? r 2 k - l ? r 2 ~  is OW+ or w+O for 
1 < k < n. The motif n accepts either s2k -1  or s2k for each 1 < k < n and accepts all other positive examples 
while n rejects at least all negative examples except dl, . . . , dm. Since cost (S, T) > K' = (n + L)(3nM + K ) ,  a t  
least K negative examples from d l ,  . . . , dm must be rejected by n. Then we define a truth assignment GI, = true 
if a2k-ln21; = OwS and = false  if n2k-ln2k = wSO for 1 < k 5 n. Clearly, a t  least K clauses ci are satisfied 
by this truth assignment. This completes the proof of (2). 

We now give a proof of (1). Since the basic idea of the proof is similar to that of (2), we shall give 
only the sketch. Since the type is R1, any variable occurrence in a motif gets a symbol in t3. For a 2-CNF 
formula F = C1 . . Cm with n variables and an integer K ,  let M'  = (2n - l ) m  + 1. Then let P' be the set 
of positive examples consisting of e', , s', , . . . , s;,, where e', , s',, . . . , s;, are the strings in (0 ,  I)* obtained from 
el ,  s l ,  . . . ,s2, in Fig. 1 by replacing M with MI. Similarly, let N' be the set of negative examples consisting 
of t':, . . . , t 'Ll and d;, . . . , d k  obtained from t i , .  . . , t& and dl , .  . . ,dm in Fig. 2 by replacing M with MI. Let 
K" = (n + l ) (nM1 + K). Assume that there is a motif a of type R1 such that cost(S1, a )  2 K". Let a be a 
motif that  maximizing cost(S1, a) .  If a contains constant 1, then a t  most one positive example is accepted by 
a. In this case, cost(S1, T) < nM'  + m < K", a contradiction. Then by an argument similar to Claim 3, we can 
show that  n must be of the form a = (ql - - q ~ , ) ~ '  with q j  = Ow+ or qj  = w+O for 1 < j < n. The rest of the 
proof is similar and left to  the reader. This completes the proof of (1). 

4 Approximating the Best Consensus Motif Problem 
for Q1 

From Theorem 1, the best consensus motif problem for R1 = {z 1 0 f z 5 C) is hardly solvable 
in polynomial time. This section presents a polynomial time greedy algorithm for this problem 
and its performance analysis by exploiting the probabilistic method due to Yannakakis [14] 
which was first applied to the maximum satisfiability problem. Since we consider only sets in 
R1, we assume that a yes-no sample S = {(a('), p(l)), . . . , ( d m ) ,  P ( ~ ) ) )  satisfies lac1) 1 = I@(') I = 
... = ldm)l = I/?(")I. For convenience, we identify the range of a motif component with the 
motif component itself. 

For 1 5 k 5 n, we assume probabilities pk(z) for z E R1, i.e., 0 < pt(z) < 1 and 
CzEnl pk (2) = 1. Let r k  be a random variable taking a value z in R1 with probability pk (2). We 
call an expression pk = z1 . zk-11-k an a random motzf of length n with fixed motif compo- 
nents z1,. . . , zk-1 E ill and random variables q, . . . , r n .  For a random motif zl zk-ln-k . . rn, 
we denote by P ( ( a ,  p), zl . . zk-lrk . . r,) the probability that a yes-no example (a, P) is good 
for zl a V 1 r k  . . . r,. Formally, let 

n-k+l 
H((@,P),z~...zk-lrk...rn) = {(YIc,.. . ,yn) E Q1 / ( a ,@)  is good for zl. . .zk-lyk...yn). 

Then P ( ( %  P), 21 . . . zk-lrk . . rn) is given by 

It requires exponential time with respect to n if we simply calculate the above formula. However, 
it is polynomial time computable as shown below. 

For a E C, let So = {z E R1 I 0 E z) and pk(So) = CzES, p k ( z )  For a string y = 71. .yn,  
let G(y, zl . zk-1) = 1 if y1 . . . yk-1 E z1 . zk-1 else 0. Then for a yes-no example (a, P) 
( a  = a l . . .  an, p = P1 . ,On), the probability that (a ,  P) is good for 21.. ~ k - ~ r k . .  -rn is 



Input: a yes-no sample S and propabilities pl (t), . . . , pn (t) for t E ill. 
Output: a motif ? = t l  . . . tn. 

/* a,, . . . , an are random variables with pl, . . . ,p,, respectively. */ 
for k + 1 to n 

begin 
Find z E Q1 maximizing E(S, z l .  . tk-lznk+l. . a,); 
Xk ' X 

end 

Figure 3: Greedy algorithm. 

expressed as: 

This can be computed in polynomial time with respect to n. Therefore, for a yes-no sample 
S, the expectation 

E(S, 2,. . . t t - l ~ r ,  . . a,) = C P((a ,  P ) ,  t1 . . tt-l?~k - 9  7in) 

( ~ , P ) E S  

is also computable in polynomial time with respect to n and rn = ISI. 

Our algorithm for the best consensus motif problem for ill is very simple as shown in Fig. 3. 
We shall give a rigorous analysis of the algorithm and prove a lower bound of its performance. 

Theorem 2 Let s = 1x1. I f  the probability distributions pl, . . . , pn on ill satisfy the following 
conditions for 1 < k < n, 

1. pk(Sff) < for all a in C ,  

2. p k ( S f f  n ST) > 2 for all a, T in C ,  

then 
cost (S, it) > E(S,  ale . .ir,), 

where it is  a motif of type ill produced by the algorithm in Fig. 3 for a yes-no sample S and .irk 

is  a random variable taking a value z with probablity pk(t) for t E ill (1 5 k < n). 

Proof. Let S = {(a('), P(')), . . . , ( d m ) ,  /3("))} be a yes-no sample. We denote a(" and /3(') as a(" = a?) - - - a:) 
and ,O(" = - - .  ,&), where at)  and are in C for 1 < k < n. 

Let 
gain(S, 5, x) = E(S, xl - - - zk-lz./rk+l- - .  nn) - E(S,  zl - - - . - xn) 

for z E fll and 1 < k < n. For the proof, it suffices to prove that for each 1 < 5 < n there is sorne z in IR1 such 
that gain(S, k ,  2) 2 0. In order to describe ~ ( ( a ( ' ) ,  ,O(')), 21 . - xk-ln-k - - - G) conveniently, let 



We first classify the set I = (1, . . . , m }  of indices into the following three sets: 

I1 = {i 1 'V'jl(1 5 jl < k) [a;;), @;;I E zjl]} 

I 2  ii I (tl j i(l  <j i  < k)[aj.f) E z ~ ~ ] ) A  (3j2(1 5 j2 < k)[@;:) f 2Jz])} 

I 3  = {i 1 3 1 ( 1  5 jl < k)[aj.f) f zjl]} 

Then 

By an easy calculation, for z in ill we have 

gain(S, k, z)  = x (1 - pk (Sa(i))) - - (B:i1 - c&) 
i E I l  

a( i ) -  (i) 
k -Pk 
a:)€z 

+ x ~ t j - 1 .  ((1 - ~ k ( ~ , ( i )  1) - ~ f i ~  - (1 - pk(Sa(i) n sat) 1) - c!il) 
i E I l  

(2) 
a( i ) f  Pp 

a t ) , pp€z  

+ ) + ((1 - pk(sa(i))) * B:i1 + c:)) 
i E I l  

a;)#P;) 
a t ) € z ,  ~ L f e z  

We shall show that 

) 121 - gain(S, k, z) > 0 
zCC 

if p l  , . . . , p, satisfy the conditions of the theorem. Then this implies that gain (S, k ,  r )  > 0 for some z in nl. 
We evaluate the above sum in the six parts (1)-(6) constituting gain(S, k, z). 

Part (1): Let D(i,  k) = (1 - pk(Sa(i))) - - (Bfi l  - c(') ). 
k k+l 

Part (2): Let E(i ,  k) = A!!, - ((1 - 

2. C x E(2.k) = 2 r  x x ( 2 , )  = T ( ~ )  ) E ( i , k )  
r=l zCC GIl r=l a , r E C  zCC i€Il r=l r - 2  

i E I l  IzI=.r a( i )ZP(i)  
k b 

IzI=r &(i)# ~ ( i )  
k k 

,(i)#&) 
a p E z  

k 
&(i)- 

b - f fEz 
P ~ ) E Z  P ~ ) = ~ E ~  



Part (3): Let F ( i ,  k) = A:', . ((1 - pk(Sa(i))) - Bfjl + c!)). 
I: 

Part (4): Let G(i,  k) = A:) (B:) - c:)). 

i€ I1 

(5) and (6) are similar to  Par t  (1) and (4), respectively. 

Part (5): Let H( i ,  k) = (1 - pk(Sff(i))) - - B::~. 
k 

Part (6): Let I ( i ,  k) = A:) - B:). 

By definition, if a:) = P:), then = pt(Sac9) B:) = Bfj1, and c?) = cfJ1. If # P!), then 
( - (2)  A,") - A,+,, B:) = ~ t ( S , ( i ) )  - B t i 1 ,  and c:) =p; (~ , ( i )  n S DL) ( ) -G'fJl. Then, by using these relations, we can 

show the following equation: 

= ((s + 1) - 2s-2 - s - 2S-1 - pk (Sac))) - ~ t 1 ~  - (B:$, - C F ~ , )  
iEI l  

(i) 
k -4 

Therefore, if pk satisfies pt (S,) < % for all c in C and pk(S, n ST) 2 for all c ,  r in C, then CzcC 1x1 . - 
gain(S, k ,  x) 2 0. 

Theorem 2 has an advantage that it allows variations for motifs by specifying the proba- 
bilities for z in Q1 as long as they satisfy the two conditions in Theorem 2. As a corollary of 
Theorem 2, we can prove the following lower bounds of the expectation: 



Corollary 1 Let m = ISI, s = 1x1 and let n be the length of a moti j .  

(1) If pk(Z) = & for all Z in R1 and for  all 1 5 k < n, t hen  

T h i s  i s  the case that  any  z E R1 i s  allowed for a moti f .  

(2) If P~({o)) = & for all 0 in C, pk(C) = $ and pk(Z) = 0 for other z in R1 for all 
1 < k < n, then  

T h i s  i s  the case that  only C and {o-) for  o- E C are allowed for a moti f .  

From Theorem 2, the greedy algorithm in Fig. 3 produces a motif .ir = zl . . . zn with 
cost (S, i?) a t  least as large as E(S, r1 rn ) .  The lower bounds of E(S, a1 . . r n )  in Corollary 1 
are not good when n and s are larger. In [13], we have implemented this greedy algorithm and 
applied to finding motifs for exonlintron splicing sites and E. coli promoters. The experimental 
results in [13] reveal that this algorithm can achieve much better performance in practice. 

It is yet another method to apply the approximation algorithm for the maximum generalized 
satisfiability problem (MAXGSAT) (see Theorem 13. 2 in [8]) by reformulating the problem 
as MAXGSAT. Given a set Q = ($1, . . . , $rn} of boolean expressions in n variables, this 
approximation algorithm produces a truth assignment satisfying at  least $ expressions in Q, 
where k is the maximum number of distinct variables in for 1 < i 5 m. For this purpose, we 
transform a yes-no sample S = {(a('), @(I)), . . . , (a(m), ~ ( ~ 1 ) )  to a collection Q = . . . , $rn) 
of boolean expressions as follows: Let s = 1x1. We use boolean variables rk[z] for 1 < k < n 
and z E R1 in a way that rk[z] = true nk = z. Let 

Obviously, a truth assignment satisfying p determines a motif r = zl . 2,. Then for (di), P(~) ) ,  
let $i be a boolean expression with these n (2S - 1) variables defined by 

Let r = zl . . zn be a motif determined by a truth assignment. Then ?Cr, is satisfied if and only 
if (&I, ~ ( ~ 1 )  is good for r for each 1 < i < rn. By applying the approximation algorithm for 
MAXGSAT to the instance Q = {$l,. . . , &}, we obtain a motif n- with 

This lower bound becomes drastically worse if the size s of C gets larger. 

5 Conclusion 
First, we defined the best consensus motif problem (BCM) motivated by the problem of extract- 
ing motifs from positive and negative sequences. Second, we proved the NP-completeness of 
the BCM problem for type R1 = {z 1 0 # z C}. Furthermore, for this problem, we devised a 
polynomial-time greedy algorithm and showed a lower bound of its performance. This problem 
has a special importance when data are provided as tuples of values of attributes Al, . . . ,A, 



as in [9]. We do not know whether there is any polynomial time algorithm with better perfor- 
mance. We also showed that  the BCM problem for type R, = R1 U {C+)  U {C['7f I 1 5 i 5 j) 
is NP-complete. From both theory and practice, i t  is an  challenging open problem t o  devise 
any efficient approximation algorithm for finding such general motifs together with a good 
performance guarantee. 

Aiming a t  knowledge discovery from amino acid sequences, the third author's research group 
has developed a system called BONSAI Garden [2, 10, 121 that  produces, from positive and 
negative examples, a mapping $ called an  alphabet indexing which classifies twenty amino acid 
residues into a smaller categories and a decision tree whose internal nodes are labeled with 
regular patterns. Since regular patterns are used for making decisions a t  nodes, only exact 
pattern matching is allowed. We are planing t o  implement the algorithm developed in this 
paper in a forthcoming version of BONSAI Garden so that  it can cope with sequences with 
ambiguity. 
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