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Abstract 

The quantum Turing machines by Bernstein & Vazirani are based on vectors and 
matrices as in quantum mechanics, so that it is difficult to make clear difference between 
the quantum Turing machines and the usual probabilistic Turing machines. This paper 
gives another formulation which can make difference clear. 

We consider that the superposition of configurations, a basic concept of the quantum 
Turing machines, should also be applied to the probabilistic Turing machines. From this 
viewpoint we first give a new definition of the probabilistic Turing machines. Then we 
define the quantum Turing machine as an extension of the probabilistic Turing machine. 
We show the relationship between Bernstein & Vazirani's definition and ours. 

In both types of the quantum Turing machines there still remains another difficulty 
that the machines are required to be time-bounded in order for users to get results 
explicitly from the machines. We overcome this difficulty by modifying our quantum 
Turing machines, and show that our new machines can solve the satisfiability and the 
validity problems in polynomial time. 

Introduction 

The computation theory based on Turing machines does not take account of quantum mechan- 
ics which is a basic theory of physics. In quantum mechanics, physical states of some objects 
are changed by observations. The observer can only know the states after the observations but 
can not know the states before the observations. The physical states correspond to configura- 
tions in computations of Turing machine, which are to be recognized by a user, the observer. 
The user may observe all the configurations of a Turing machine, but the observations do not 
have any effects on the subsequent computation of the machine. 

In order to introduce quantum mechanics into the computation theory, Deutsch [2] has 
proposed the quantum computers. In the quantum computers, as in quantum mechanics, a 
configuration is defined as a base vector in Hilbert space and a transition is described by a 
unitary matrix. A computation by a quantum computer is defined to operate a unitary matrix 
to vectors. 

To theoretical computer scientists, the representation of computers in terms of matrices 
and vectors is less comprehensible than that in terms of transition functions. Bernstein & 
Vazirani [I] have formulated the quantum computers called quantum Turing machines in terms 
of the transition functions. However, a condition for the transition functions is still written in 



terms of vectors and it is hard to check, given a transition function, whether it satisfies the 
condition or not. The definition of computations by their quantum Turing machines is exactly 
the same as by quantum mechanics, so that they do not make full use of their own definition. 
Other researches on the quantum Turing machines so far published make use of vectors and 
matrices [3, 4, 5, 61. 

In this paper first we define quantum Turing machines without using matrices and vectors. 
The quantum Turing machine defined by Bernstein & Vazirani behaves according to a prob- 
abilistic distribution. Hence it is natural to take a quantum Turing machine as an extended 
probabilistic Turing machine. We define quantum Turing machines by extending the proba- 
bilistic Turing machines and show that our quantum Turing machines have the same powers 
as those by Bernstein & Vazirani. 

Both Bernstein & Vazirani's machines and ours are required to be time-bounded in order 
for users to get results explicitly from the machines. We remove this restriction by modifying 
the quantum Turing machines so that they can show users the ends of their computations. 
In order to show the power of the new quantum Turing machines, we prove that a class of 
languages accepted by the new machines in polynomial time includes both NP and co-NP. 

In Section 2, we introduce the concepts of superpositions of configurations and observations 
into the probabilistic Turing machines. In Section 3, we define the quantum Turing machine as 
an extension of the probabilistic Turing machine, and show a difference between Bernstein & 
Vazirani's definition and ours. In Section 4, we point out a difficulty which lies in both types 
of the quantum Turing machines, and solve it by introducing new machines called halting 
quantum Turing machines. In Section 5, we show the power of the halting quantum Turing 
machines. 

2 Probabilistic Turing Machines 

We start with modifying the probabilistic Turing machines from a viewpoint of quantum 
mechanics, by which we can extend the probabilistic Turing machines to the quantum Turing 
machines as seen in Section 3. The modification does not cause any essential difference from 
the original probabilistic Turing machines. 

A probabilistic Turing machine consists of a finite control, an infinite tape that is divided 
into cells, and a tape head that can read and write. The tape has a leftmost cell, but it is 
infinite to the right. 

Definition 1. A probabilistic Turing machine is a quintuple M = (K, C ,  6, qo, F), where 

(a) K is the finite set of states. 

(b) C is an alphabet, i.e., the finite set including a blank symbol B. 

(c) 40 E K is the initial state. 

(d) F K a the set of final states. 

(e) 6 is a partial function from K x C x K x C x { L ,  R} to [-I, 11 called transition function, 
where 

(1-a) for any p E K and a E C, 6(p, a ,  q, b, d)2 = 1. 
q,b,d 



We call a value of a transition function a transiton value and assume that any transiton 
value is not equal to 0. 

Assume that a probabilistic Turing machine M = (K, C, 6, qo, F )  is in a configuration such 
that the current state is p E K and the head is reading a symbol a E C. Then S(p ,  a,  q, b, d) = a 
denotes that the probability with which M changes the state into q, the symbol into b and moves 
the head toward the direction d is a2, where q E K, b E C, d E {L ,  R) - 1,s a 5 1, a f 0. A 
transition from a configuration C to another configuration D with transiton value a is denoted 
by C I- D(a) .  

Now we define superpositions of configurations and observations. Let M be a probabilistic 
Turing machine. Then a superposition of M is defined as a sequence of pairs of a real number 
ai and a configuration Ci (1 5 i 2 m) of M ,  that is, ((al ,  Cl), . . . , (a,, Cm)). For an initial 
configuration Co, initial superposition is (1, Co). A real number ai of (ai, Ci) is called an 
amplitude of Ci and a: is called an expectation value of Ci. Let S = ((al ,  Cl), . . . , (a,, Cm)) 
be a superposition of M. Then an observation of S changes S itself into another superposition 
(1, Ci) with an expectation value c$ for some i (1 5 i 5 m). 

Definition 2. Let M be a probabilistic Turing machine and S = (1, C) be a superposition of 
M .  Then the subsequent superposition S' of S is defined by 

where each Ci (1 5 i 5 m) is a configuration of M such that C I- Ci(ai). M is said to move 
from S to S' by one step and denoted by S I- S'. I 

In the above definition, the sum of all expectation values of S' is equal to 1, that is, C a: = 1 
by the condition (I-a). Thus we can identify the expectation value with the probability. 

A configuration C in a traditional probabilistic Turing machine corresponds to the super- 
position (1, C).  A transition of the traditional machine C I- C' with probability a is considered 
that first the machine moves (1, C) I- S', where S' includes C', and then an observation changes 
S' into (1, C') with the expectation value a .  A user can only know the superposition (I, C') 
that is a physical state after the observation. The time for observations can be neglected. 

3 Quantum Turing Machines 

In this section, we extend the probabilistic Turing machines into the quantum Turing machines. 
The probabilistic Turing machines defined in the previous section have to be observed at every 
step, because we have defined only the transitions from a superposition (1, C).  However, it is 
not necessary for a user to observe at every step, because the user want to get just results. 
So we define transitions from a superposition before an observation to another superposition. 
In these transitions, there appears another feature of quantum mechanics that might change 
the sum of all expectation values. If the sum is changed, we can not identify the expectation 
value with the probability. In quantum mechanics the sum is preserved, so that a probabilistic 
Turing machine needs another conditions on the transition function. The probabilistic Turing 
machines with the new conditions are the quantum Turing machines that we want. 

Definition 3. A quantum Turing machine is a probabilistic Turing machine M = (K, C, 6, qo, F), 
where the transition function 6 is a partial function from K x C x K x C x {L, R) to [-I, 11 
such that 



(3-a) for any p E K and a E C, x S(p, a,  q, b, d)2 = 1, 
q,b,d 

(3-4 for S ( P ,  a,  q, b, d) = a and 6(p1, a', q', b', dl)  = a', if q = q' then d = d'. B 

Only the condition (3-4 is different from one in Bernstein & Vazirani7s quantum Turing 
machine [I], in which the following condition corresponds to the condition (3-4: 

(4-a) In IKl dimension complex space cIKI, there exists two mutual orthogonal subspaces 
CL and CR such that 

where q is a vector corresponding to a state q E K. 

It is hard to check, given a transition function, whether it satisfies the condition (4-a) or 
not. In fact, there are 2n possible ways to divide n base vectors into two groups, even if the 
sum of the dimensions of CL and CR are restricted to n = IKI. On the other hand, it is easy 
to check whether a given transition function satisfies the condition (3-4 

Now we extend the transitions in Section 2 into those from a superposition before an obser- 
vation. Then the expectation value can also be identified with the probability as in Theorem 1. 
From now on, (a lCl , . .  . , h C , )  also denotes a superposition ((al, Cl), . . . , (a,, C,)). 

Definition 4. Let M be a quantum Turing machine, S = (alCl,  . . . , a&',) be a superposi- 
tion of M ,  and each Di, (1 < i < rn, 1 < j 5 ni) be a configuration of M and pij be a transiton 
value such that Ci I- Dij(&). Then the subsequent superposition S' of S is defined as follows: 

for all i , j ,  where T/,j is the set of all (k,  1 )  such that Dkl = Dzj. M is said to move from S to 
S' by one step and denoted by S t S'. I 

Note that each K j  contains at  least one element (i, j ) .  In the above definition, if there is 
no configuration D such that Ci t D for a configuration Ci, then we consider that M moves 
from Ci into itself with the expectation value 1. If there exist configurations in a superposition 
such that DG = Dk2 (i # k), then M is said to have interference. Figure 1 shows transitions of 
a quantum Turing machine, where there are no interferences, i.e., the case Dij # Dkl(i # k). 

Lemma 1. Let M a quantum Turing machine and S = (alC1, . . . , cu,C,) be any superposi- 
tion of M. Then 

m 



Figure 1: A superposition of a quantum Turing machine 

Proof: We prove it by an induction on step t. The case t = 1 is trivial, because a transition 
is from an initial superposition and the condition (3-a) holds. 

Let S = (alC1,. . . , amCm) be a superposition of M at step t, and assume that 

Let P be the sum of the expectation values of the configurations in S, and each Dij be a 
configuration and Pij (1 ( i 5 m, 1 5 j ( ni) be an amplitude such that Ci t Dij(PV). For 
any D, and Dkl(i f k), if Dij f Dkl then 

because the equation (1) and the condition (3-a) hold. 
Next we consider the case where there is a configuration which appears more than once in 

S'. Let Dll be configurations of M and Biz (1 5 1 5 nl) be amplitudes such that C1 t Dll(Pll) 
and Ck t- DI1(Pkl), where k f 1. Then, since the amplitude of Dll is (alPll + akPkl), the 
expectation value of Dll is 

Now we consider the transition function which is applied to the transitions Cl I- DlZ(Pl1) 
and Ck t Dll (Pkl). Let pi E K,  ai E C (i = 1, k) be the current state and the symbol scanned 
by the head in Ci (i = 1, k), respectively. The head positions in C1 and Ck are identical, and 
so are the move directions. Therefore the symbols newly written are also identical. We denote 
these states, directions and symbols by ql E K ,  d E { L ,  R),  bl E C, respectively. Then the 
transiton values applied to Ci(i = 1, k) are 



From the equations (2) and (3), the sum Pl of the expectation values of Dl j  for all j (1 5 j 5 
\ .  

n1 n k  

= a; Cp?j +a; CpEj +2alak C 6 ( ~ l , a l ,  q~,bl ,d)  . 6(pk, ak, QZ, bl, d). 

Since Cl # Ck, (pl, a l )  # (pk, ak). Therefore 

by the condition (3-b). Thus we have: 

A similar argument to the above is valid also for interferences of configurations except for Dlz. 
Hence we have: 

m 

P=CaS=l 
2-1 

by the equation (1). I 

As seen in the proof of Lemma 1, we have made the conditions (3-b) and (3-4 to prevent 
invalid interferences from occurring. If there is no interference terms except for the last one 
in the equation ( 2 ) ,  the sum of all expectation values are not equal to 1. However there must 
exist configurations which negate the last term by the conditions (3-b) and (3-4. 

. . 

Now we prove the converse of Lemma 1. Althouh the probabilistic Turing machines are 
assumed to be observed at each step, we do not need this assumption in the rest of this section. 

Lemma 2. Let S = (alCl, . . . , amCm) be any superposition of a probabilistic Turing machine 
m 

M = (K, C, 6, qo, F). Then M is a quntum Turing machine if C a: = 1. 
2=1 

Proof: The condition (3-a) holds, because M is a probabilistic Turing machine. Also the 
condition (3-b) trivially holds. Now assume that the condition (3-c) does not hold. Consider 
the following qunturn Turing machine: 

where the 0 denotes any symbol in C. For an input x = ala2a3 E C*, the above machine 
moves as follows: 



Thus a: $. 1 for the above S. Hence the condition (3-c) holds if a: = 1. I 

We obtain the following theorem by Lemma 1 and Lemma 2. 

Theorem 1. Let S = (oclCl, . . . , amCm) be any superposition of a probabilistic Turing ma- 
m 

chine M = (K, C, 6, qo, F). Then M is a quntum Turing machine if and only if a: = 1. 
i=l 

Due to this theorem, we hereafter use probability instead of expectation value. The con- 
ditions (3-a),(3-b) and (4-a) hold if and only if the sum of the expectation values is equal to 
1 [I]. By this result and the above theorem, Bernstein & Vazirani's quntum Turing machines 
are equivalent to ours. 

4 Halting Quantum Turing Machines 
In this section, we describe a problem of the quantum Turing machines, and solve it by in- 
troducing the quantum Turing machines with new ability, called the halting quantum Turing 
machines. First consider the following example. Let M be a quantum Turing machine and 
Ci (1 = 1,2),  Dj (1 5 j 5 4), and Ek (k = 1,2) be the configurations of M at  step t ,  t + 1, 
and t + 2, respectively. Figure 2 shows the transitions between these configurations. The 
numbers beside the arrows denote transiton values. If M is observed only at  step t + 2, the 

Figure 2: An example of quantum Turing machines 

configuration of M is El with probability 1, and we can not know whether the computation 
path is C1 t Dl t El or Cz t D3 t El.  On the other hand, if A4 is observed at  each step, a 



configuration of M is either Cl or C2 with the same probability at step t. At step t + 1 each 
probability of Dj ( l  5 j 5 4) are also the same. The probability that a configuration of M is 
El at  step t + 2 is 112 . 112 + 112 112 = 112 if M is observed at  each step. 

The above example shows that an observation changes the rest of a computation of a 
quantum Turing machine. Then the following problem arises: A user can not know when to 
observe a quantum Turing machine to  get results. Bernstein & Vazirani have defined the class 
BQP. 

Definition 5. (Bernstein & Vazirani) L E BQP if there exists a quantum Turing machine 
M and a polynomial p(n) such that, when M is observed at step ~(1x1) on a given input x, if 
x E L, then M is an in acceptable configuration with probability more than or equal to 213; 
otherwise, M is not in an acceptable configuration with probability more than or equal to 213. 

In the above definition, a quantum Turing machine is time-bounded, so that it is no matter 
when the user should observe the quantum Turing machine. The user, however, should know 
the time. This is a conspicuous restriction on quantum Turing machines. So we introduce new 
quantum Turing machines called halting quantum Turing machines to remove the restriction. 
For a superposition S, IS1 denotes the number of different configurations in S .  

Definition 6. A halting quantum Turing machine M is a quntum Turing machine such that, 
for any superposition S of M ,  M tells whether IS1 = 1 or not. Let Ch be a halting configuration 
of M.  Mis sa id  to stop if IS1 = 1 and S =  (l ,Ch) .  I 

Intuitively a halting quantum Turing machine is a quntum Turing machine which has a 
speccall cell called a halting cell. Before a computation, the blank symbol is written on the 
halting cell. When IS1 = 1 in the computation, the machine writes 1 on the cell. The halting 
cell is always allowed to be observed, that is, any observaiton of the halting cell does not 
change the rest of the computation even if IS1 > 1. Because the blank symbol is written on 
the halting cell in all the configurations in S if IS1 > 1, the cell does not have any effects on 
interference. Thus a user is allowed to  observe only the halting cell at  any time. After I is 
written on the halting cell, the user can observe the other parts of M and check whether M 
accepts a given input. 

Let M be a halting quantum Turing machine , x E C* be an input for M ,  and T(n) be a 
function. Then M is said to accept x if a superposition includes an acceptable configuration 
when M stops. L(M) denotes the set of all words accepted by M .  M is said to be T(n)  
time-bounded if x is accepted by M in O(T(lxl)) steps. 

5 Power of Halting Quantum Turing Machine 

In this section, we show the power of halting quantum Turing machines. Let Q be the set of 
all languages accepted by polynomial time bounded halting quantum Turing machines. 

In general, even if the halting cell shows the stop, a user can not decide whether a given 
input is accepted or not without observation. The following proposition, however, assures that 
the user can decide whether the halting quantum Turing machine M accepts an input only 
with an observation of the halting cell, where L(M) E Q. 

Proposition 1. Let L E Q be a language, x E C* be an input and M be a halting quantum 
Turing machine which accepts L in polynomial time p(n). Then there exists a polynomial 



pl(n) = O(p(n)) and a halting quantum Turing machine M' such that, at  step pf(lxJ), if x E L, 
then 1 is written on halting cell; otherwise 0 is written. 

Proof: We construct the following halting quantum Turing machine MI. MI simulates Ad on 
an input x counting the steps of ill up to ~(1x1) . If M stops within ~(1x1) steps and accepts 
the input, then MI writes 1 on the halting cell, otherwise, writes 0. For this MI, observations 
of the halting cell at  any step are also allowed. I 

Now we show the relationship between Q and co-NP by using the validity problem: 

VALIDITY = { f I Boolean formula f is valid}. 

Theorem 2. VALIDITY E Q. 

Proof: Consider the halting quantum Turing machine M which realizes Algorithm 1. Assume 
that an input for the algorithm is a Boolean formula f ,  and it is written on the tape from the 
leftmost cell to the right. al, a2,. . . denote cells starting from the cell next to the input on the 
right. In Algorithm 1, a statement within the parentheses [ and ] , say 

means that, for two transitions which write 0 and 1 on the cell al, the transiton values are 
both 1/JZ. 

Algorithm 1 
1 count the number of variables in the input f ; 

D Let it be m. 
2 for i = 1 to rn do [ai+O(l/fi), ai+l(l/&)]; 

D assign 0 or  1 to  each variable with same probability. 

3 am+l+f(ali...,am); 
4 f o r i = r n t o l  do 
5 if ai = 0 then do 
6 if am+] = 1 then 
7 [.m+1+0(-1lJZ), a m + l + l ( l l ~ ) ] ;  
8 ai+l; 
9 else change state into pl, write i next to am+l; 

D Assume that  there is no  S (p l ,  *, *, *). 
10 end 
I1 else do 
12 if am+l = 1 then 
13 [am+~+o(l/fi),  am+l+l(l/fi)]; 
14 ai+l; 
15 else change state into pl, write i next to a,+l; 
16 end 
17 end 

We show that M accepts VALIDITY in polynomial time. Let So be a superposition just 
after the line 3 on an input f .  Then 



where each xi E { O , 1 )  (1 < i 5 m) and x,+1 = f (xl, . . . , x,). In this proof, a configuration 
is represented only by the contents of the tape except for the input. Semicolon(;) is used to 
distinguish a truth assignment from its value f .  

(1) The case f E VALIDITY. For all configurations in So, x,+l = 1. We show it by an 
induction on m such that for any m 2 1, M moves from So to the superposition St, where 

m - st = ( 1 , l l . .  . l ;  1). 
If m = 1, then M moves from So as follows: 

1 1 1 1 
I-- K-z, 0; ( 9 7  (- JZz' 0; I) ,  (z, 1; o), (z, 1; 1)) 

Figure 3 shows the above transition. 

Figure 3: The case m = 1 

Assume the case m. M moves from So to the superposition T ,  where 

because there is no interference between a configuration with the cell a1 written 0 and one 
with the cell written 1. The contents of all other cells a j ( j  2 2) are not changed in the rest of 
the computation, so that they do not have any effect on it. Therefore we can prove the case 
m + 1 in a similar way to the case m = 1. This procedure is finished in polynomial time. 



(2) The case f 6 VALIDITY. There are configurations in So such that am+, = 0. Since A4 
changes its state into pl from one of such configurations and since then it never moves after 
that, M does not enter to any acceptable configuration. 

By the claims (1) and (2), if f E VALIDITY, then ill moves from So to (1, Ch) in polynomial 
time, where Ch is a halting configuration. Hence the proof is completed by Proposition 1. I 

Corollary 1. co-NP C &. 

By modifying the above discussion in the following way, we can also prove that there exists 
a halting quantum Turing machine which accepts the satisfiability problem in polynomial time. 
First we exchange the symbol 0 for 1 in the halting cell in Proposition 1. We also replace the 
statements am+l = 1 in line 6 and 12 in Algorithm 1 with am+l = 0. Then it is clear that, for 
any input formula f ,  the halting quantum Turing machine constructed in this way writes 0 on 
the halting cell if and only if f @ SAT, where 

SAT = {f I Boolean formula f is satisfiable). 

Hence we have the following theorem and corollary. 

Theorem 3. SAT E Q. 

Corollary 2. NP & Q. 

6 Discussion 

We have introduced the superpositions of configurations and observations into the probabilis- 
tic Turing machines and modified their transitions. In our formulation, a transition from a 
configuration to another configuration is interpreted in the following way: A probabilistic Tur- 
ing machine moves from a superposition of only one configuration to another superposition 
of some configurations, and then a configuration is chosen from the latter superposition with 
some expectation value by an observation. 

We have extended these probabilistic Turing machines into the quantum Turing machines. 
We have presented a necessary and sufficient condition for the total probabilities of configura- 
tions to be 1, which is more easily checkable than that by Bernstein & Vazirani. We have also 
shown that our quantum Turing machines are equivalent to Bernstein & Vazirani's. 

Since a user can not know configurations of a quantum Turing machine without an ob- 
servation, (s)he can neither know when the machine stops nor get results explicitly. To solve 
this problem, we have introduced the halting quantum Turing machine, which is a quantum 
Turing machine with an additional function. To show the power of the halting quantum Tur- 
ing machines, we have presented a polynomial time algorithm which solves the validity and 
the satisfiability problems. While this result shows that the function newly added to halting 
quantum Turing machine is powerful, it does not immediately means the quantum Turing 
machines themselves are powerful. 
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