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Learning of Associative Memory
Networks by Penalty Methods

Koichi Niijima

Abstract— This paper concerns the learning of asso-
ciative memory networks. We derive inequality associa-
tive conditions for stored patterns in the network. Un-
der these associative conditions, we find regions each of
which is mapped by the network function into a neigh-
bor of an associative pattern. To make large the re-
gions, a functional is derived using their shape. The
functional is minimized under the inequality associative
conditions. We show that this minimization problem has
a unique solution, and solve the problem by combining
the penalty methods with the gradient methods. This
solving process gives a learning algorithm for associative
networks. Our theory is first used to analyze two-layer
autoassociative networks. It is shown that the network
function becomes a contraction mapping in each of the
regions derived under inequality autoassociative condi-
tions. We also show that the function has a fixed point
extremely near a stored pattern. This implies that the
region obtained is a domain of attraction and that the
fixed point is its attractor. Next, our learning algorithm
is applied to make a heteroassociative network which is
useful for solving classification problems. By adding one
more layer to the network, we construct a three-layer
autoassociative network whose input-output function is
shown to be a contraction mapping in some domains.
In simulations, efficiency of our two autoassociative net-
works is verified in character recognition.

1. INTRODUCTION

Associative memory networks have been studied from
mainly two aspects. One of them is research on learning al-
gorithms for these networks and the other concerns capabil-
ity of such networks. There are several learning algorithms
of associative memories such as the correlation recording,
the generalized-inverse recording [6], and the Ho-Kashyap
algorithm [5]. In [4], these learning techniques have been
surveyed together with the capacity and performance of
associative memories. Recently, Caianiello and Benedictis
[2] proposed a memorization rule for associative memories
with minimum connectivity. Storage capacity of associative
memory networks has been investigated by Amari [1], Cot-
trell [3], McEliece, Posner, Rodemich, and Venkatesh [7],
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from the viewpoint of domains of attraction. These papers
on storage capacity, however, treat only binary-valued vec-
tors.

In our recent works [8] and [9], we proposed a learning
method for associative memory networks. The method can
deal with analog patterns and is based on the domains of
attraction in the network. These domains were derived un-
der equality associative conditions. Associative conditions
are not necessarily of equality type. Equality associative
conditions restrict the number of stored patterns and the
size of domains of attraction.

In this paper, we consider inequality associative condi-
tions in place of equality ones for stored patterns. Under
these relaxed conditions, we derive regions including stored
patterns, each of which is mapped by the network function
into a neighbor of an associative pattern. It is shown that
the region is larger than that obtained under equality as-
sociative conditions. We also show that these regions are
mutually disjoint. These results are given in Section II.

We wish to determine connection weights in the network
so that the region obtained becomes as large as possible.
For the purpose, a functional to be minimized is derived
using the shape of the region. This minimization problem,
however, does not have a unique threshold parameter which
is a part of weights in the network. So we impose some
conditions on the threshold parameters. Thus a modified
functional is derived and it is minimized subject to the in-
equality associative constraints. This minimization problem
has a unique solution, and can be solved by combining the
penalty methods with the gradient methods. This solving
process gives a learning algorithm for determining connec-
tion weights of associative networks. These are described in
Section ITI.

Our theory is first used to analyze two-layer autoassocia-
tive networks. We put on the network the condition that
when a binary valued stored pattern is input in the net-
work, almost the same pattern is output. This condition
is expressed in an inequality form and the above theory is
applied to obtain regions each of which is mapped by the
network function to almost a stored pattern. We show by
the contraction mapping theorem that the function has a
unique fixed point in the region, which is extremely near a
stored pattern. This implies that the region is a domain of
attraction and that the fixed point is its attractor. A min-
imization problem to determine connection weights of the
network is easily derived using the method described above.



These results are described in Section IV.

Our learning algorithm is also applied to make a specified
heteroassociative network in which only one output neuron
fires for one stored pattern. Neural networks of this type
are useful for solving classification problems. By adding one
more layer to the network, we construct a three-layer au-
toassociative network. It is shown that the network function
becomes a contraction mapping in some domains. These are
discussed in Section V.

In simulations which will be given in Section VI, character
recognition ability of our two autoassociative networks is
compared with that of the networks obtained under equality
associative conditions in [8] and [9].

Concluding remarks are described in Section VII.

II. INEQUALITY ASSOCIATIVE CONDITIONS
AND NEIGHBORS OF STORED PATTERNS

Let n be the number of input nodes and £ the number
of output neuron units. We consider the following neural
network:

n
Y, = f(z WijT5 — 01’), 1= 1,2,...,£, (1)

i=1

where w;; and 0; denote weights between the input and out-
put layers. The function f(¢) indicates the sigmoid function

1
1+ exp(—t)

£(8)

We put W; = *(wi1, Wiz, .o, Win)y © = (@1, 2, ..., T,) with
the transpose symbol ¢ and rewrite (1) as

yi = f(Wi-z—-0;)

= gi(z), 1=12,..,¢ (2)

where - denotes the inner product symbol. We also put

50(37) = t($01(13),(,02(£8),...,(pg(33)) and y = t(yl)y%'")y@)-
Then (2) may be written as

y = p(z). (3)

Let z¥,v = 1,2,...,m, denote patterns to be stored in
the network. We assume that when z” is input into (2), a
number larger than 1 — ¢ or smaller than € is output, where
€ is a sufficiently small positive parameter. We define two
sets of indexes:

{v|f(Wi-z"—0;) >21-¢}, (4)
{v|f(Wi-2" - 0;) <e}. (5)

Ii,_f_ =
I -

Using the monotonicity of f(¢) and the inverse function t =
In(s/(1—s)) of s = f(¢), we have

Vil —m; > 1 for vel,, (6)

where W; = V;In((1 — ¢)/¢) and 6; = n;In((1 — €)/e). On
the other hand, we have

Vi-z" —m; < =1 for vel;_. (N

We call (6) and (7) inequality associative conditions for the
network (2). Under the conditions (6) and (7), the following
theorem holds.

Theorem 1: Suppose that V; and 7; satisfy (6) and (7).
For 0 < p < 1 and each stored pattern z¥, we define the
region D,(z"”) in R™ by

Dya")=A{a||Vi- (& —a")| <p|Vi-z¥ = 74|, 1 =1,2,...,£}.

Then we have for any z, T € D,(z"),
1
lpi(z) — @i(Z)] <77 In - Vi-(z-%)|, :=1,2,....,£. (8)
Especially, when & = ¢, we have

1
lpi(z) — @i(z”)] < pet P In = [Vi-a” - i

= ¢ i=1,2,..L (9)

27

Proof: See APPENDIX. a
In (8] and [9], we put the equality output condition

f(W;-z" —6;)=1~¢ or ¢

which is stronger than the condition in (4) and (5). Then
the equality holds in (6) and (7) and we have |V;-z¥—n;| = 1.
Under (6) and (7), we have |V;-z¥ — ;| > 1. Therefore, the
region D,(z") is larger than that obtained under equality
associative conditions.

The right hand side €7 of (9) is small enough for a suffi-
ciently small . This implies that any pattern in D,(z") is
recognized as the pattern z”.

Assume that for any pair (z¥,z"), v # p, there exists
at least one index iy such that if v € I;, 4, then p € I;;
holds. That is,

‘Pio(a:u) = (10)
pio (") = (11)

Then it can be shown that D,(z"),v = 1,2,...,m are mu-
tually disjoint. The proof is as follows: Assume D,(z”) N
D,(z*) # ¢, where ¢ indicates the empty set. Then there
exists z* € D,(z*)ND,(z*). By (9) of Theorem 1, we have

fWiy - z¥ — i) 2

i (27) = pio ()] < iy, (12)
|‘10i0(x*) - Soio(mu)' < Si’;* (13)

Combining (10) with (12), we get
(") > 1—e—er. (14)

On the other hand, we have by (11) and (13),
‘Pio(m*) <e+ Eélo'
This contradicts (14).



III. LEARNING METHOD

From the viewpoint of recognition ability, it is desirable
for the region D,(z") in Theorem 1 to be as large as pos-
sible. One way to make large D,(z") is to maximize the
distances from z” to the hyperplanes H; : V;-(z —z¥) = %p
|Vi-z¥—mn;l, ¢ = 1,2,...,n. The distance is sought as follows:
Since a normal vector for H; is V;, a vector z from z¥ with
the direction Vj is represented as z = z”+aV;. By the condi-
tion that this z is on H;, we obtain a = +p|V;-z” —n;|/||Vil|?,
where || - || denotes the Euclidean norm. Therefore, the dis-
tance is given by

plVi-z¥ —n;

e ==l ="

We wish to determine the weights V; and 7; so that the dis-
tance is maximized under the conditions (6) and (7). This
leads to the following minimization problem:

Vil
(Vi z¥ —n;)?

— min

subject to (6) and (7). However, the solutions V; and 7;

depend on the index v of the stored pattern z”. So, using
the inequality
Vil
<|Vi 15
T < IV (15)

which follows from (6) and (7), we minimize
Ivill?

subject to (6) and (7). This minimization problem can be
solved by the penalty methods. Let C be a sufficiently large
penalty constant and introduce the functional

R=VilP+ ¢ (> (1-Vi-a"+m)i

vel; +

+ 3 A+ Vieat —m)h).

pel;

The functional J? is strictly convex with respect to V;. On
the variable 7;, the functional J? is convex, but not strictly
convex. Therefore, the solutions of this problem are not
unique. To obtain a functional yielding a unique minimum,
we return to to the functional (15).

For theindex i such that I; y # ¢ and I; _ # ¢, we choose
v el and p € I; _. Then we have from (6) and (7),

Vicab+1<m <V 2" - L.

Put n" =V, - (z¥ + z#)/2. Then |V; - ¥
|V; - «# — n?°¥| holds. Using these n;"*, we determine 7; so
as to minimize the functional

2. 2

vel; + pel; -

,r]::’yy'] —

—'772

This makes |V; - ¥ — ;| for all v keep as equally as pos-
sible, and justiﬁes our idea that minimizes ||V;||*> instead
of ||[Vi||?/(Vi - ¥ — n;)®. We thus arrive at a minimization
problem:

lleHz + Z Z (i * — m)z — min

vel; 4+ veIl;

(16)

subject to (6) and (7). We solve the problem (16) by a
penalty method:

L=Vl + > Y @t -m)?

vel; . pel;, -
+ C( Y (1=Vira"+m)}
vel; ¢
+ Z (14 Vi-z# —m)%)
pel;

—— min. (17)
Since the functional J; is strictly convex with respect to V;
and 7;, it possesses a unique minimum. This minimization
problem can be solved by various gradient methods.

For the index ¢ such that I; = ¢, we choose 7; = 1.
Then J? has a unique minimum V; = 0.

For the index ¢ such that I; _ = ¢, we choose 7; = —1.
Then J? also has a unique minimum V; = 0.

Therefore, it suffices to solve the minimization problem
(17) only for ¢ such that I; + # ¢ and I; - # ¢. Thus we
can compute the weights of the network. The computing
process gives our learning algorithm for associative meniory
networks.

IV. TWO-LAYER AUTOASSOCIATIVE
MEMORY NETWORK

We apply our theory to analyze two-layer autoassociative
memory networks. The stored patterns z¥,v = 1,2,...,m,
are assumed to be (0,1)—valued vectors. We choose £ =n
in the network (2). As an output condition for the stored

pattern z¥ = (2%, 2}, ..., z%), we use
>1- for ¥ =1,
f(Wi- 2" —6) { for z¥ =0. (18)

The condition (18) means that when z” is input, a pat-
tern extremely near z” is output, because of a sufficiently
small parameter . Namely, the network satisfying (18) is
almost of autoassociative type. The condition (18) may be
rewritten as

Vi-a¥
Vi-z”

1 for
-1 for

zi =1,
L
T, = 0,

(19)
(20)

-
-7
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which are called inequality autoassociative conditions. The-
orem 1 holds for such a network and the regions D,(z"),



v = 1,2,...,m, are mutually disjoint. The region D,(z")
is larger than that obtained under equality autoassociative
conditions in [8].
From Theorem 1, we obtain the following theorem.
Theorem 2: Suppose that V; and n; satisfy (19) and (20).

Then we have for any @, Z € D,(z”),
le(2) = @I < &lle - 2]l, (21)

where

" 1
E [|V;ll1? el™P In =.
=1 €

If € is sufficiently small so as to satisfy x < 1, the function
¢ becomes a contraction mapping in D,(z").

Moreover, the equation # = ¢(z) has a unique solution
z¥* in D,(z") satisfying ||z — z”|| < Ke with a positive
constant K.

Proof: The inequality (21) is proved by estimating (8)
in Theorem 1 from above. Indeed,

~ - 1 ~
lpi(2) = pu(@) < &7° In — [[Vil |]o — 2.

Summing up both sides after squared, we obtain (21).

The latter can be proved by the contraction mapping the-
orem (See p.65 of [10]). To apply this theorem, let us define
a ball Bs(z") in D,(z") by

min  —— }

Bs(z")={z |||z —2"]| <é, 6=
(@) = {o | o = a*| pn T

and put
ey ==l
1-%
By the contraction mapping theorem, ¢ has a fixed point
z"* in Bs(z"), that is, there exists a solution z** € Bs(z")
such that z"* = p(z"*). Furthermore, we have

|| = z"|| <.

Since r < Ke holds for a positive constant K, we obtain the
second result of Theorem 2. (]
Let {z(®}4=0,1,... be a sequence generated by the iteration

g+ = (™), E=0,1,..,

where z(®) is in D,(z”). This sequence converges to the
fixed point z**. Therefore, we may say D,(z”) a domain
of attraction.

Let 0 be the identity mapping in R" and define ¢4, ¢ >
1, by ¢9(z) = (¢ !(z)) recursively. We consider the do-
mains

Di(z"") ={z | |Vi- (p%(z) -
1=1,2,..,n}

2 < plVi- 2" =l
(22)

Since z¥* is extremely near z”, the domain D?%(z"*) is al-
most equal to the domain D,(z"). We also have the follow-
ing theorem.

Theorem 8: Suppose that e satisfies the assumption of
Theorem 2. Then the function ¢ becomes a contraction
mapping in DY (z"*).

Put

n

> (Vi-avm —m)2,

g==1

L, =
Then we have for any z € Di(z"),

1
le?™(z) — 2"*|| < Lyp '™ In - (23)

Moreover, if € is small enough so as to satisfy

1
i 1-p
L, i_mlyza’xm’nnwl € In —6 <1,

we have the inclusions

D,(") 2 D%(a"*) C DX(a"") C D2(a"*) C ..  (24)

Proof: In the same way as in Theorem 1, we can show
that for any z, Z € DY(z"*),

lpi(2) — 0i(@)| < &7 lné Vi-(z=%), i=1,2...m.
(25)
By estimating this inequality, we obtain the same inequality
as (21) which implies that ¢ is a contraction mapping also
in DY ().
The proof of (23) is as follows: For any z € D4(z""*), we
have u = ¢%(x) € DJ(z"*). Hence, from (25) and (22),

loi(u) = pi(z")]

IN

1
0 In 2 (Vi (u = 2|

IA

1
pet™? In - Vi ¥ —msl.

Summing up both sides after squared, we obtain (23).
The inclusions (24) are proved as follows: For any z €
D4(z"*), we have from (23),

IN

Vi (9" (z) — 27| Vil lle®™ (z) = 2™

1
L, Vil p =" In—.

IN

Using the assumption on ¢ and the inequality |V;-z"* —n;| >
1, we obtain

Vi (9% (z) = 2™")[ < p [Vi- 2" = mi

which implies z € DIt (z). O
This theorem shows that the domains DY(z"*) are ex-
tended domains of attraction of the network. It is easily
proved that DE(z*) and D§(z**) are disjoint for any p
and ¢ if v # p.
The weights in the network are learned by minimizing the
functional

T=ViPE + D> > @t -m)

vel; 4 peli -



+ C( > (1-Vi-a"+m)}
vel; ¢

+ > (14 Vi-a*—n)})  (26)
pel; -

forisuchthat I; . = {v |z =1} #dand [; - = {v |z} =
0} # ¢.

V. THREE-LAYER AUTOASSOCIATIVE
MEMORY NETWORK

In the network (2), we choose { = m, where £ and m
denote the numbers of output units and of stored patterns,
respectively. And we assume that the i-output unit fires
only when the i-stored pattern z® is input in the network.
That is,

>1-¢ for
<e for

v =1,

— o

Then we have I; . = {i} and I; - = {v | v # 1}. In the
present case, Theorem 1 also holds and the regions D,(z")
with £ = m, v = 1,2,...,m, are mutually disjoint. There-
fore, we can use such a network to solve classification prob-
lems. The condition (27) can be written as

(27)

Vi = > 1,

> (28)
VieaV = < =1 for

v#i. (29)

The weights of the network are obtained by minimizing the
following functional:

Ti=VilP + Yo —m)
=3
+ C((1-Vi-a' +m)

+Y A+ Vieah —m)).
nFi

(30)

We construct here a three-layer autoassociative memory
network by adding one more layer to the above specified
neural network. From the added layer units, linear combi-
nations of ¢;(z) with new weights cy; are output:

Zp = Z cripi(z)
i=1

= ’l/)k(;v), (31)
We put ¥(z) = *(¢1(z),9¥2(2),...,¥n(x)) and z =

(21,22, ..., 2,). Then (31) may be written in the form
z=1(z)

which is a mapping from R" into R™. The weights c;; are
determined by the autoassociative condition

¥ = ¢(z"),

k=1,2,...,n.

v=12,..

7m?

that is,

m

Y wila)er = af,

=1

v=12..,m.

The elements of the coeficient matrix (¢;(z")) satisfy

1-e<gi(z) <1 for v=1

and

0<gi(z”)<e for v#i1.
Therefore, the coeflicient matrix almost equals to the unit
matrix and we have

cri = zh 4+ O(e).

Concerning the network z = 9(z), the following theorem
holds.

Theorem 4: Suppose that V; and 7, satisfy (28) and (29).
Then we have for any z, T € D,(z"),

9u(e) = (@) < & 2 Y fewd [V (2= Bl

k=1,2,..,m. (32)
Especially, when Z = ¥, we have
[Bae) ~ 9ale)] <0 7 I L S el Vi 2 — i,
€=
k=1,2,...,m. (33)
Proof: The proof follows immediately from the defini-
tion of ¥ () and Theorem 1. O

In the same as in Theorem 3, we can derive extended do-
mains of attraction for the above D,(z"). In the present
case, we do not need the contraction mapping theorem to
show the existence of fixed points. Because the stored pat-
terns z” themselves are fixed points of the function 1.

Let 4° be the identity mapping in R™ and define 99 for
q > 1 by ¢¥4(z) = (¢ (z)) recursively. We put

Ei(z") = {z | |[Vi- (¥*(z) — 2")| < plVi- 2" — mil,
1=1,2,...,m }.

We have one more theorem which corresponds to Theo-
rem 3.
Theorem 5: Let us define T by

n m ~ 1
= 30 lewlllVill)® €7 In -

k=1 i=1

Then if ¢ is small enough so as to satisfy 7 < 1, the function
1 becomes a contraction mapping in D,(z").
Put

n e

My = |3 lewillVi -2 = mil)”.

k=1 =1



Then we have for any z € E¥(z"),

7+ (@) 21| < Myp 0 In 2. (34)

Moreover, if € is small enough so as to satisfy

1
M,  max |Vi]le'™” In=<1,
m 3

1=1,2,...,
we have the inclusions

D,(z") = E%(2") C EX\a") C EX(2") C ...  (35)
Proof: By estimating (32) in Theorem 4 from above
and summing up both sides from & = 1 to n after squared,
we obtain
4(z) -4 @) < 7 [l= - 2.

This proves the first assertion.

The second and third assertions (34) and (35) are ob-
tained in the same way as the proof in Theorem 3. (]

By this theorem, we see that E¢(z") are extended do-
mains of attraction of the network. It is easily seen that
E?(z") and E¥(z*) are disjoint for any p and q if v # p.

VI. SIMULATIONS

Using the two-layer and three-layer autoassociative mem-
ory networks constructed in Sections IV and V, respectively,
we carry out simulations of character recognition.

First, we apply the two-layer network to the recognition
of the alphabet. We store the following 26 alphabet in the

network.
| ]
E

E
[,
-]

AT

G
[~J7 T

L
1
[
]

]

Fig. 1. Stored alphabet. Each character is represented by a 10 x 10

grid matrix. Black and white squares indicate 1 and 0, respectively.

The number of the input and output units is n = 100.
Hence, we have 10100 connection weights. For the learning
of the network, we minimize the functional (26) by the gra-
dient method with step size 2.0 x 107¢. We select p = 0.989
and € = exp(—1000). Then the value In(1 — €)/e equals to
1000 and the value of e'~?In(1 — ¢)/e is 0.0167.

We check the assumptions in Theorems 2 and 3. The
contraction factor & in Theorem 2 is 0.171 which is
smaller than 1. Since L, < 15.049 for all v and
max;=12,..100 ||Ville? 7? In(1/e) < 0.026, their product is

smaller than 0.392, which satisfies the assumption of Theo-
rem 3.

We shall try the recognition of the following noisy pat-
terns:

Fig. 2. 26 noisy patterns. Each pattern is represented by a 10 x 10
grid matrix. The area of a square is proportional to the gray level of
the pattern.

Before inputting these patterns in the network, we normal-
ize each pattern by dividing its maximum element. To check
which domain of attraction they are contained in, we com-
pute the ratio

s Welee) - e

r —
i=1,2,...,100 |V2 LpVer — ”h’l

ineq
for 0 <¢g<10and v =1,2,...,26, where we use z” in place
of z¥*. If r;f’neq < 0.989 for some ¢ and v, the input pattern
z is recognized as z¥. In the table below, we list the results

of recognition.

TABLEI
REesurTs or Recoenrtion. Top, MippLE anp BorTom in Eacu Box
REPRESENT THE VALUES OF g, 'rfneq AND THE REcoeNIZED PATTERN.

Tue SymsoL X DenoTEes 4 FaiLure oF REcoaNITION.

4 10 ) 3 5 3

0.767 | 1.685 | 0.748 | 0.000 | 0.792 | 0.775
A x C D E F
10 3 3 1 2 3

1.367 | 0.766 | 0.825 | 0.886 | 0.889 | 0.000
x H I J K L
1 3 3 3 3 10

0.578 | 0.476 | 0.000 | 0.785 | 0.870 | 1.295
M N 0 3 Q x
8 6 8 4 4 1

0.784 | 0.837 | 0.762 | 0.687 | 0.000 | 0.628
S T U % W X
0 1

0.907 | 0.787
Y v/




We compare these results with those obtained by the
two-layer autoassociative network which was learned under
equality associative conditions. Since |V;-z” — ;| = 1 holds
in this case, the ratio is given by

2 - q oV

Teq = ,_pax Vi (p"(z) - 2")].

If rgq is smaller than p = 0.989 for some ¢ and v, the input
pattern @ is recognized as z¥. The following table shows the

results of recognition.

TABLE I1
Resurrs or RecoanNiTioN. Topr, MippLE AND BoTrToM IN EacH Box
REPRESENT THE VALUES OF g, qu AND THE REcoGNIZED PATTERN.

Tue SymeoL X DeEnoTEs A FaiLure or ReEcocnITION.

10 4 10 4 10 10
1.773 | 0.063 | 1.945 | 0.000 | 1.431 | 2.100
X B X D X X
10 10 10 10 10 10
1.830 | 2.117 | 1.232 | 1.531 | 1.660 | 1.894
X X X X X X
1 10 10 10 10 10
0.616 | 1.467 | 1.054 | 1.486 | 1.655 | 1.367
M X X X X X
10 10 10 10 10 1
1.714 | 1.931 | 1.930 | 1.876 | 1.898 | 0.616
X X X X X X
3 10
0.000 | 1.547
Y X

As is easily seen from these results, the former is superior
to the latter in the viewpoint of recognition ability.

Next, we apply the three-layer autoassociative memory
network constructed in Section V to recognize the alphabet.
The 26 alphabet in Figure 1 are stored to learn the network.
It suffices to determine only 2626 weights which connect the
input and the middle layers. The weights are determined by
minimizing the functional (30). Let us choose ¢ = exp(—50)
and p = 0.800. In this case, the value of e!77In(l — ¢)/e
is 0.00227, and so 7 in Theorem 5 is smaller than 0.145.
Also max,=1,... 26 M, in Theorem 5 is 119.995, and hence
M, max;=1,. 26 ||Vil| € 7In(1/e) < 0.418. Therefore, all
the conditions in Theorem 5 are satisfied. To verify the
recognition, the ratio

3 _ Vi - (9%(z) — =)
‘ [Vi-zv —

is compared with the parameter p = 0.800. A simulation
is carried out using the noisy patterns in Figure 2. In the
simulation, the output ¢%(z) at the middle layer for the
noisy pattern z is normarized as %(z)/ max;=1s,.. 26 ¥ ()
which is regarded as a new output vector at the middle
layer. The table below shows the results.

TABLE I1I
Resvrts or RecoaniTion. Tor, MippLE aND BoTToM v Eacu Box
RePRESENT THE VALUES OF ¢, Tfmq AND THE REcoGNiZED PATTERN.

Tue Symeor X DenNoTes A FAILURE oF RECOGNITION.

1 1 1 1 1 1
0.000 | 0.000 | 0.034 | 0.000 | 0.000 | 0.011
A B x D E x
1 1 1 1 1 2
0.001 | 0.022 | 0.000 | 0.000 | 0.000 | 0.000
G x I J K x
1 1 1 1 1 1
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
M N 0 P Q R
1 1 1 1 1 1
0.000 | 0.009 | 0.059 | 0.000 | 0.000 | 0.000
S T U \% w X
1 1
0.000 | 0.000
Y z

These results are compared with those obtained by the
three-layer autoassociative network which was learned un-
der equality associative conditions. In this case, the ratio is
given by

3
Teq =, _max  |Vi- (¢9(z) - 2")]
by the same reason previously. The outputs at the middle
layer are normarized as before. The table below shows the
results of recognition.

TABLE IV
Resurrs oF REcoenition. Tor, MippLE aND BorToMm in Eacu Box
REPRESENT THE VALUES OF ¢, 'rgq AND THE REcoaNIZED PATTERN.

Tue SymsorL X DeEnoTEs A FAlLure oF REcoaNITION.

1 1 1 1 1 1
0.000 | 0.000 | 0.061 | 0.000 | 0.000 | 0.024
A B X D E F
1 10 1 1 1 1
0.004 | 2.101 | 0.000 | 0.020 | 0.000 | 0.000
G X I X K X
1 1 1 1 1 1
0.590 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
M N 0) P Q R
1 1 1 1 1 0
0.000 | 0.281 | 0.000 | 0.004 | 0.000 | 0.638
S T X X W X
1 1
0.000 | 0.379
Y Z

Obviously, the former has higher recognition ability than
the latter.



VII. CONCLUDING REMARKS

We proposed a learning method of associative memory
networks. Our learning algorithm for the network is a min-
imizing process of a functional under inequality associative
conditions for stored patterns. By relaxing equality asso-
ciative conditions into inequality associative conditions, we
could obtain the regions, each of which is mapped into a
neighbor of an associative pattern, larger than those de-
rived under equality associative conditions. These regions
become domains of attraction in the case that the network
is of autoassociative type. In this case, the network function
can be shown to be a contraction mapping in the domains.
The functional to be minimized was derived based on the
shape of the obtained regions.

In the simulation, two kinds of autoassociative memory
networks in this paper were applied to character recognition
and their recognition ability was compared with that of the
neural networks constructed under equality associative con-
ditions in [8] and [9].

Our discussion is in a linear theory, because the network
contains only one nonlinear layer. However, regions, each of
which is mapped into a neighbor of an associative pattern,
can be obtained under inequality associative conditions im-
posed on the final layer of a network, even if it is a mul-
tilayer network. These regions contain nonlinear functions
and their shape is complicated. It is a future work to clarify
such regions and to find learning algorithms for multilayer
networks.

APPENDIX

Proof of Theorem 1: The proofis done by using essentially
the same technique as in Theorem 1 in [8]. By the mean
value theorem, we have

pi(@) = 9i(@) = f(2:)(1 = f2))Wi- (2 = F),  (Al)
where z; is given by
Zi=/\(Wi'(l:-—9,;)+(1—)\)(Wz‘-%—gi), 0<A<l.

We rewrite z; as

Wi~m"—0i+Wi-()\:c+(1—>\)5-—a:”)

_ (ag+m-(xm+(1-A)z-mV))1n1;'5,

zZ; =

where af = V; -2¥ —n;. We put

v v l-¢
(af —plaf]) In p

1—¢
(af +p la¥]) In —=.

Z

+
2

Since Az 4 (1 — A\)Z belongs to D,(z"), we have

— ) +
z; Lz Lz

By the monotonicity of f, it holds that
F(27) < flz) S £(=).
Therefore, we have for 7 € I; _,

1—-¢
€

F() < (=14 p)la| m 2 —5) <

and hence,

1-¢

IN

F(z)(1 = f(2) F((=1+p)la¥| In
(1= f((=1+p)laf| In

exp(~(1 - p)lay| In :=%)
(1+ exp(—(1 - p)lay| In 1z=))2’

)

1—¢

)

(A2)
Since |a?| > 1 and exp(—t)/(1+ exp(—t))? is monotonically
decreasing, we have

exp(=(1 - p) In %)
(1+exp(—(1-p) Intz5))2

F(z)(1 = f(z)) <
Using here the inequality 1/(1+exp(—(1—p)In(1—¢)/¢))? <
(1 — €)?, the last term is bounded by e!~?. Therefore we
obtain

Flzi)(1 = flz:)) < €77 (A3)

When ¢ € I; 1, it follows that

1—¢
€

% < F((1 = p)ar] In ==5) < f(z).

Hence,

F) - F(z) < A= p)lat| n 125

(L= F((1 = p)la?] 1n 2

- &

)-

By an easy calculation, we see that the right hand side
equals to the last term of (A2). Consequently, we obtain

Flz)(1 = f(z:)) < e

Combining (A3) and (A4) with (A1) gives the first result
(8) of Theorem 1.
If we choose T = z” in (8), we have for any z € D,(z"),

(A4)

[pi(e) = (")l S & T Vi (a0

IA

_ 1 Y
pet =’ lngﬂ/;-a: — 04l

since z is in D,(z*). This proves (9) of Theorem 1. O
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