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Networks by Pena ty Methods 

Koichi Niijima 

Abstract- This paper concerns the learning of asso- 
ciative memory networks. We derive inequality associa- 
tive conditions for stored patterns in the network. Un- 
der these associative conditions, we find regions each of 
which is mapped by the network function into a neigh- 
bor of an associative pattern. To make large the re- 
gions, a functional is derived using their shape. The 
functional is minimized under the inequality associative 
conditions. We show that this minimization problem has 
a unique solution, and solve the problem by combining 
the penalty methods with the gradient methods. This 
solving process gives a learning algorithm for associative 
networks. Our theory is first used to analyze two-layer 
autoassociative networks. I t  is shown that the network 
function becomes a contraction mapping in each of the 
regions derived under inequality autoassociative condi- 
tions. We also show that the function has a fixed point 
extremely near a stored pattern. This implies that the 
region obtained is a domain of attraction and that the 
fixed point is its attractor. Next, our learning algorithm 
is applied to make a heteroassociative network which is 
useful for solving classification problems. By adding one 
more layer to the network, we construct a three-layer 
autoassociative network whose input-output function is 
shown to be a contraction mapping in some domains. 
In simulations, efficiency of our two autoassociative net- 
works is verified in character recognition. 

Associative memory networks have been studied from 
mainly two aspects. One of them is research on learning al- 
gorithms for these networks and the other concerns capabil- 
ity of such networks. There are several learning algorithms 
of associative memories such as the correlation recording, 
the generalized-inverse recording [6], and the Ho-Kashyap 
algorithm [5]. In [4], these learning techniques have been 
surveyed together with the capacity and performance of 
associative memories. Recently, Caianiello and Benedictis 
[2] proposed a memorization rule for associative memories 
with minimum connectivity. Storage capacity of associative 
memory networks has been investigated by Amari [I], Cot- 
trell [3], McEliece, Posner, Rodemich, and Venkatesh [7], 
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from the viewpoiilt of domains of attraction. These papers 
on storage capacity, however, treat only binary-valued vec- 
tors. 

In our recent works [8] and [9], we proposed a learning 
method for associative inenlory networks. The method can 
deal with analog patterns and is based on the domains of 
attraction in the network. These domains were derived un- 
der equality associative conditions. Associative conditions 
are not necessarily of equality type. Equality associative 
conditions restrict the number of stored patterns and the 
size of domains of attraction. 

In this paper, we consider inequality associative condi- 
tions in place of equality ones for stored patterns. Under 
these relaxed conditions, we derive regions including stored 
patterns, each of which is mapped by the network function 
into a neighbor of an associative pattern. I t  is shown that 
the region is larger than that obtained under equality as- 
sociative conditions. We also show that these regions are 
mutually disjoint. These results are given in Sectioil 11. 

We wish to  determine coilnection weights in the network 
so that the region obtained becomes as large as possible. 
For the purpose, a functional to be miniinized is derived 
using the shape of the region. This inininlization problem, 
however, does not have a unique threshold parameter which 
is a part of weights in the network. So we impose some 
conditions on the threshold parameters. Thus a modified 
functional is derived and it is minimized subject to  the in- 
equality associative constraints. This minimization problem 
has a unique solution, and can be solved by combining the 
penalty methods with the gradient methods. This solving 
process gives a learning algorithm for determining connec- 
tion weights of associative networks. These are described in 
Section 111. 

Our theory is first used to analyze two-layer autoassocia- 
tive networks. We put on the network the coildition that 
when a binary valued stored pattern is input in the net- 
work, almost the same pattern is output. This condition 
is expressed in an inequality form and the above theory is 
applied to obtain regions each of which is mapped by the 
network function to almost a stored pattern. We show by 
the contraction mapping theorem that the function has a 
unique fixed point in the region, which is extremely near a 
stored pattern. This implies that the region is a domain of 
attraction and that  the fixed point is its attractor. A mill- 
imization problem to determine coilnection weights of the 
network is easily derived using the method described above. 



These results are described in Section IV. 
Our learning algorithm is also applied to make a specified 

heteroassociative network in which only one output neuron 
fires for one stored pattern. Neural networks of this type 
are useful for solving classification problems. By adding one 
more layer to the network, we construct a three-layer au- 
toassociative network. I t  is shown that the network function 
becomes a contraction mapping in some domains. These are 
discussed in Section V. 

In sinlulatiolls which will be given in Section VI, character 
recognition ability of our two autoassociative networks is 
compared with that of the networks obtained under equality 
associative conditions in [8] and 191. 

Concluding remarks are described in Section VII. 

where = V,ln((l  - &)I&) and 8; = qiln((1 - &)I&). On 
the other hand, we have 

Vi .x"  - Ti < -1 for u E Ii,-. (7) 

We call (6) and (7) inequality associative conditions for the 
network (2). Under the collditions (6) and (7), the following 
theorem holds. 

Theorem 1: Suppose that  V,  and q; satisfy (6) and (7). 
For 0 < p < 1 and each stored pattern xu ,  we define the 
region DP(xu)  in Rn by 

Dp(xY)  = {x 1 IV, (x - xu)I < p l V , .  xu - q i = 1,2, ..., l } .  

Then we have for any x, 53 E %(xu),  

11. INEQUALITY ASSOCIATIVE CONDITIONS Especially, when Z = xu,  we have 
AND NEIGHBORS O F  STORED PATTERNS 

1 
Let n be the number of input nodes and & the number ( x )  - ( x u )  < P In - IV,. xu - qil 

& 

of output neuron units. We consider the following neural 
network: 

n Proof: See APPENDIX. 

y i =  f ( E w i j x j - B i ) ,  i = 1 , 2  ,..., l ,  (1) In [8] and [9], we put the equality output condition 

where w;j and 8; denote weights between the input and out- 
put layers. The function f (t)  indicates the siginoid function 

We put Wi = "wil, wi2, ..., win), x = t (xl ,  22, ..., x,) with 
the transpose symbol and rewrite (1) as 

where . denotes the inner product symbol. We also put 

4.) = t ( ~ l (  x),  ~ z ( x ) , - - - ,  ~ e ( x ) )  and Y = t ( ~ ~ , ~ z ,  ..., ye). 
Then (2) may be written as 

Let xu,v = 1,2, ..., m, denote patterns to be stored in 
the network. We assuine that when xu is input into (2), a 
number larger than 1 - E or smaller than E is output, where 
E is a suficielltly small positive parameter. We define two 
sets of indexes: 

which is stronger than the condition in (4) and (5). Then 
the equality holds in (6) and (7) and we have I&-xu -qi 1 = 1. 
Under (6) and (7), we have lV, . x u  - qil > 1. Therefore, the 
region Dp(xu)  is larger than that obtained under equality 
associative conditions. 

The right hand side E! of (9) is small enough for a suffi- 
ciently small E. This implies that any pattern in Dp(xu)  is 
recognized as the pattern xu. 

Assume that for ally pair (xu,xp) ,  v # p,  there exists 
a t  least one index io such that if v E I;,,+, then p E I;,,- 
holds. That is, 

pi0 (xu)  = f (WiO . xu - qio) > 1 - E ,  (10) 

~ io (x ' l )  =I f(Wio . x p - q i 0 )  9. (11) 

Then it can be show11 that Dp(xY),v = 1,2, ..., m are mu- 
tually disjoint. The proof is as follows: Assume Dp(xu)  n 
D,(xp) # 4, where 4 indicates the empty set. Then there 
exists x* E D,(xu) f l  D,(xp). By (9) of Theorem 1, we have 

I~ io (x* )  -~ iO(x") l  < &ro, (12) 

l i p i , ( ~ * ) - ~ i , ( ~ ~ ) I  5 &:- (13) 

Combining (10) with (12), we get 

{U I f ( W i .  X" -0;) > 1 - E), (4) yio (x*) 2 1 - E - &Yo. Ii,+ = (14) 

I = {v I f ( K  . x u  - Oi) < E } .  ( 5 )  On the other hand, we have by (11) and (13), 

Using the nlonotonicity of f (t)  and the inverse function t = pio($*) < E + E:. 

ln(s / ( l  - s))  of s = f (t), we have This contradicts (14). 

V ; . x " - q ; > 1  for UEI i ,+ ,  [GI 



111. LEARNING METHOD This makes ITJ, . xu  - q;1 for all u keep as equally as pos- 
sible, and justifies our idea that minimizes 1 1 & 1 1 2  instead 

From the viewpoint of recognition ability, it is desirable of ~~v~ll"(l/: . x~ - v i l i ) ~ .  We thus arrive a t  a minimization 
for the region D,(xY) in Theorem 1 to be as large as pos- problem: 
sible. One way to make large D,(xV) is to maxiinize the 
distances from xY to  the hyperplanes Hi : V,  . (x - xY) = i p  IlV,jj2+ C C(Tr"-Ili)"min (16) 
IV; .xv  -q; 1, i = 1,2, ..., n. The distance is sought as follows: Y E I i , +  Y E I i , -  

Since a norinal vector for Hi is Vi, a vector x froin xV wit11 
the direction V,  is represented as x = xY+aV,. By the condi- subject to (6) and (7)- We solve the problem (16) by a 
tion that this x is on Hi, we obtain a = iplll,.~Y-qil/llQI12, penalty nlethod: 
where 11 - 11  denotes the Euclidean norm. Therefore, the dis- 
tance is given by Ji = lITJ,112 + C C (?7Y'p - 

v E I i , +  pEI i , -  

We wish to  determine the weights V,  and qi so that the dis- 
tance is maximized under the conditions (6) and (7). This 
leads to  the following minimization problem: 

subject to (6) 
depend on the 
the inequality 

--+ min. (17) 

Since the functional Ji is strictly convex with respect to 

and ( 7 ) .  H ~ ~ ~ ~ ~ ~ ,  the solutions vi and vi and qi, i t  possesses a unique minimum. This minimization 
index of the stored pattern so, problem can be solved by various gradient methods. 

For the index i such that Ii,+ = d,,  we choose vi = 1. 
Then J! has a unique minimum V,  = 0. 

I I K I I  5 llV,ll (15) For the index i such that I , ,  = d, ,  we choose vi = -1. IV,. xV -qiI 
Then J! also has a unique minimum V,  = 0. 

which follows from (6) and (7), we minimize Therefore, it suffices to  solve the minimization problem 
(17) only for i such that Ii,+ # $ and I;,- # d,.  Thus we 

llV,1I2 can compute the weights of the network. The computing 
process gives our leariling algorithm for associative memory 

subject to (6) and (7). This minimization problem can be networks. 
solved by the penalty methods. Let C be a sufficiently large 
penalty constant and introduce the functional 

IV. TWO-LAYER AIJTOASSOCIATIVE 
J: = l l ~ , i l ~ +  + ( (I - V,  xY + Ti): MEMORY NETWORK 

"EIi ,+  

We apply our theory to analyze two-layer autoassociative 
+ C ( l+V, -xp-q i ) : ) .  memory networks. The stored patterns xV,v = 1,2,  ..., rn, 

PE&,- are assumed to be (0, 1)-valued vectors. We choose 1 = n 
. . 

in the network (2). As an output condition for the stored 
The functional J,O is strictly convex with respect to V,. On pattern = t(xi/, x;), we use 
the variable vi, the functional J t  is convex, but not strictly 
convex. Therefore, the solutions of this problem are not 2 1 - E  for x y = l ,  f (W . x" - 0;) 
unique. To obtain a functional yielding a unique minimum, for x r  = 0. (18) 

we return to to the functional (15). 
For the index i such that I;,+ # d, and I , ,  # d, ,  we choose The (18) means that when xY is input, a pat- 

v € I,,+ and ,u E I;,-. Then we have from (6) and (7), tern extremely near xV is output, because of a sufficiently 
small parameter E. Namely, the network satisfying (18) is 

Vi x p +  15 7; 5 V; axV - 1. almost of autoassociative type. The conditioil (18) may be 
rewritten as 

Put  q3u"1 = V,  - (xu + xp)/2. Then /I/, . xV - q,Y"l = 
IT/, xp - r17u1pl holds. Using these 177u'p, we determine qi so V , . x V - 7 i  > 1 for x ~ = I ,  (19) 

as to ininimize the functional TJ,.xV-qi < -1 for x;=O, (20) 

which are called inequality autoassociative conditions. The- 
orem 1 holds for such a network and the regions D,(xY), 



v = 1,2, ..., m, are mutually disjoint. The region Dp(xu)  
is larger than that obtained under equality autoassociative 
conditions in [8]. 

From Theorem 1, we obtain the following theorem. 
Theorem 2: Suppose that V,  and qi satisfy (19) and (20). 

Then we have for any x, 7: E Dp(xU), 

Ilp(x) - p(?)Il 5 .llx - $ 1 1 7  (21) 

where 

If E is suficiently small so as to  satisfy tc < 1, the function 
p becoines a contraction mapping in Dp(xu) .  

Moreover, the equation x = p(x)  has a unique solution 
xu?* in D,(xu) satisfying IlxY.* - xu 11 < K E  with a positive 
constant K .  

Proof: The inequality (21) is proved by estimating (8) 
in Theorem 1 from above. Indeed, 

Summing up both sides after squared, we obtain (21). 
The latter can be proved by the contraction mapping the- 

orem (See p.65 of [lo]). To apply this theorem, let us define 
a ball Bs(xu) in Dp(xu)  by 

P B a ( ~ u ) = { ~ I / / ~ - ~ Y I I < 6 ,  6 =  min - }  i=1121...1n Il'Kll 

and put 

T =  119(xU) - ~ " 1 1  
1-. 

By the contraction mapping theorem, p has a fixed point 
xu>* in Ba(xY),  that is, there exists a solution xu>* E Bg(xV) 
such that xu>* = p (xu~*) .  Furthermore, we have 

Since r < Kt: holds for a positive constant K ,  we obtain the 
second result of Theorem 2. 123 

Let { x ( ~ ) } ~ = ~ , ~ , . . .  be a sequence generated by the iteration 

where x(O) is in Dp(xY).  This sequence converges to  the 
fixed point xu?*. Therefore, we may say Dp(xu)  a domain 
of attraction. 

Let p0 be the identity mapping in Rn and define p4, q 2 
1, by pq(x) = p(iDq-l(x)) recursively. We consider the do- 
mains 

z = 1,2 ,..., n } .  (22) 

Since xu)* is extremely near xY,  the domain D!(xY,*) is al- 
most equal to the domain Dp(xY).  We also have the follow- 
ing theorem. 

Theorem 3: Suppose that E satisfies the assumption of 
Theorem 2. Then the function p becomes a contraction 
mapping in D; (xV>* ). 

Put  

Ll, = JG. i= 1 

Then we have for any x E D;(xul*), 

Moreover, if E is small enough so as to satisfy 

1 
L, , max lll$ll simp 111 - < 1, 

z=1,2, ..., n E 

we have the inclusions 

Proof: In the same way as in Theorem 1, we can show 
that for any x, ? E D ~ ( x u ~ * ) ,  

1 
lpi(x) - pi(?)l 5 E'-P ln - IK (x - ? ) I ,  i = 1,2 ,..., n. 

E 

(25) 
By estimating this inequality, we obtain the same inequality 
as (21) which implies that cp is a contraction mapping also 
in D!(X~>*). 

The proof of (23) is as follows: For any x E D;(xY?*), we 
have u = pq(x) E D ~ ( x Y ~ * ) .  Hence, from (25) and (22)) 

1 
p i )  - ( x * )  1 < zl-p In - E IV, (ZL  - xV>*) 1 

Summing up both sides after squared, we obtain (23). 
The inclusions (24) are proved as follows: For any x E 

Dz(xV;*), we have from (23), 

Using the assumption on E and the inequality IV,.xV1* -qi ( 2 
1, we obtain 

which implies x E D;+' (xY$*). 123 
This theorem shows that the domains D;(xY>*) are ex- 

tended domains of attraction of the network. It is easily 
proved that D:(xu>') and D;(x'l*) are disjoint for any p 
and q if v # p. 

The weights in the network are learned by miilimizing the 
functional 



that is, 

for i such that I,)+ = {v I xy = 1) # $ and I , ,  = {v I xy = 
01 # 4. 

In the network (2), we choose I = m, where I and m 
denote the numbers of output units and of stored patterns, 
respectively. And we assume that  the i-output unit fires 
only when the i-stored pattern x<s input in the network. 
That is, 

Then we have I,,+ = {i} and I,)- = {v I v # i}. In the 
present case, Theorem 1 also holds and the regions Dp(xY) 
with I = m,  v = 1,2, ..., m, are mutually disjoint. There- 
fore, we can use such a network to solve classification prob- 
lems. The condition (27) can be written as 

T/z.x"vi > 1, (28) 

v i . x U - q i  5 -1 for v # i .  (29) 

The weights of the network are obtained by ininimizing the 
following functional: 

We construct here a three-layer autoassociative memory 
network by adding one more layer to the above specified 
neural network. From the added layer units, linear combi- 
nations of cp;(x) with new weights cki are output: 

w e  put $(x) = t($~(~),$a(~),...,$n(x)) and z = 
t ( z l , ~ ? ,  ..., 2,). Then (31) may be written in the form 

which is a mapping from RrL into Rn. The weights cki are 
determined by the autoassociative conditioil 

The elements of the coefficient matrix (cp;(xU)) satisfy 

l - ~ < ~ ~ ( x ~ ) < l  for v = i  

and 
0 < yi(xY) 5 E for v f- i. 

Therefore, the coefficient matrix almost equals to the unit 
matrix and we have 

Concerning the network z = $(x), the followiilg theorem 
holds. 

Theorem 4: Suppose that  V,  and vi satisfy (28) and (29). 
Then we have for any x, 2 E D,(xY), 

Especially, when 2 = xu ,  we have 

Proof: The proof follows immediately from the defini- 
tion of q k ( x )  and Theorem 1. • 

In the saine as in Tlieorein 3, we can derive extended do- 
mains of attraction for the above Dp(xY). In the present 
case, we do not need the contraction mapping theorem to  
show the existence of fixed points. Because the stored pat- 
terns xY themselves are fixed points of the functioil $. 

Let $' be the identity mapping in Rn and define $* for 
q 2 1 by $*(x) = $($q- '  (x)) recursively. We put 

E:(x~) = {X I IK - ($'(x) - xU)I 5 PIK . x V  - IliIr 
i = 1,2  ,..., m}.  

We have one more theorem which corresponds to  Theo- 
rem 3. 

Theorem 5: Let us define r by 

Then if E is small enough so as to satisfy r < 1, the function 
$ becomes a contraction mapping in Dp(xY). 

Put  
71 TTL 



Then we have for any x E Ez(x"), We check the assuinptions in Theoreins 2 and 3. The 
contraction factor K in Theorem 2 is 0.171 which is 

1 
Il+q+'(x) - x"ll < MVp 111 -. (34) smaller than 1. Since L;,, < 15.049 for all u and 

E n1axi=l,2~...,loo IIV,IIE'-~ 111(1/~) 5 0.026, their product is 
smaller than 0.392, which satisfies the assumptioil of Theo- 

Moreover, if E is small enough so as to satisfy 
rem 3. 

1 
Mu max IlKIl 111 - < 1, 

.... i=112, m E 

we have the inclusions 

Proof: By estimating (32) in Theorem 4 from above 
and suinining up both sides from k = 1 to n after squared, 
we obtain - 

ll+(x) - +(Z)Il 5 113 - X I I S  

This proves the first assertion. 
The second and third assertions (34) and (35) are ob- 

tained in the same way as the proof in Theorem 3. 
By this theorem, we see that E,4(xu) are extended do- 

mains of attraction of the network. I t  is easily seen that 
EF(xu) and Ez(xp) are disjoint for any p and q if u # p. 

VI. SIMULATIONS 

Using the two-layer and three-layer autoassociative mem- 
ory networks constructed in Sections IV and V, respectively, 
we carry out siinulatioils of character recognition. 

First, we apply the two-layer network to the recogilitioil 
of the alphabet. We store the followiiig 26 alphabet in the 
network. 

Fig. 1. Stored alphabet. Each character is represented by a 10 x 10 

grid matrix. Black and white squares indicate 1 and 0, respectively. 

The number of the input and output units is n = 100. 
Hence, we have 10100 conilection weights. For the learning 
of the network, we minimize the functional (26) by the gra- 
dient method with step size 2.0 * low6.  We select p = 0.989 
and E = exp(-1000). Then the value ln(1 - E) /E  equals to 
1000 and the value of E'-Pln(1 - E) /E  is 0.0167. 

We shall try the recognition of the following iloisy pat- 
terns: 

Fig. 2. 26 noisy patterns. Each pattern is represented by a 10 x 10 

grid matrix. The  area of a square is proportional t o  the  gray level of 

the  pattern. 

Before inputting these patterns in the network, we normal- 
ize each pattern by dividing its maxiinum elenlent. To check 
which domain of attractioil they are contained in, we com- 
pute the ratio 

for 0 < q < 10 and Y = 1,2, ..., 26, where we use zV in place 
of xVl*. If rZneq < 0.989 for some q and u, the input pattern 
x is recogilized as xV. I11 the table below, we list the results 
of recognition. 

TABLE I 
RESULTS OF RECOGNITION. TOP,  MIDDLE A N D  BOTTOM IN EACH BOX 

REPRESENT THE VALUES O F  q, T : ~ , , ~  A N D  THE RECOGNIZED PATTERN. 

THE SYMBOL X DENOTES A FAILURE OF RECOGNITION. 



We compare these results with those obtained by the 
two-layer autoassociative network which was learned under 
equality associative conditions. Since /V, . x" - 7; 1 = 1 holds 
in this case, the ratio is given by 

max IS/z.(cpq(x)-x")I. 
"q = i=1,2, ..., 100 

If rzq is smaller than p = 0.989 for some q and u, the input 
pattern x is recognized as xu.  The followiizg table shows the 
results of recognition. 

TABLE I1 
RESULTS OF RECOGNITION. TOP,  MIDDLE AND BOTTOM IN EACH BOX 
REPRESENT THE VALUES O F  q, r:q AND THE RECOGNIZED PATTERN. 

THE SYMBOL x DENOTES A FAILURE O F  RECOGNITION. 

As is easily seen from these results, the former is superior 
to the latter in the viewpoint of recognition ability. 

Next, we apply the t hree-layer autoassociative memory 
network constructed in Section V to recognize the alphabet. 
The 26 alphabet in Figure 1 are stored to learn the network. 
I t  suffices to determine oilly 2626 weights which connect the 
input and the middle layers. The weights are determined by 
nliniinizing the functional (30). Let us choose E = exp(-50) 
and p = 0.800. In this case, the value of ~ ' ~ l n ( 1  - E ) / E  

is 0.00227, and so T in Theorem 5 is smaller than 0.145. 
Also maxu,l,2 ,..., 2s Mu in Theorem 5 is 119.995, and hence 
Mu maXi=1,2,...,26 l l & l l  ln(l/h) < 0.418. Therefore, all 
the conditions in Theorem 5 are satisfied. To verify the 
recognitio~~, the ratio 

&,, = max IK . (+"x) - - " ) I  
i=1,2, ..., 26 I &  . xu - 7;1 

is compared with the parameter p = 0.800. A siillulation 
is carried out using the noisy patterns in Figure 2. I11 the 
simulation, the output @(x) a t  the middle layer for the 

4 noisy pattern x is normarized as @(x)/ maxi=1,2,...,26 pi (x) 
which is regarded as a new output vector a t  the middle 
layer. The table below shows the results. 

TABLE I11 
RESULTS OF RECOGNITION. TOP, MIDDLE A N D  BOTTOM IN EACH BOX 
REPRESENT THE VALUES O F  q, T : ~ ~ ~  AND THE RECOGNIZED PATTERN. 

THE SYMBOL x DENOTES A FAILURE OF RECOGNITION. 

These results are compared with those obtained by the 
three-layer autoassociative network which was learned un- 
der equality associative conditions. In this case, the ratio is 
given by 

- max 1 V . e  ( $ J ~ ( X )  - x")I 
T,3q - i=1,2, ..., 26 

by the same reason previously. The outputs a t  the middle 
layer are normarized as before. The table below shows the 
results of recognition. 

TABLE IV 
RESULTS OF RECOGNITION. TOP, MIDDLE AND BOTTOM IN EACH BOX 
REPRESENT THE VALUES OF q, rZq AND THE RECOGNIZED PATTERN. 

THE SYMBOL x DENOTES A FAILURE OF RECOGNITION. 

Obviously, the former has higher recognition ability than 
the latter. 



VII. CONCLUDING REMARKS By the monotonicity of f ,  it holds that 

We proposed a learning method of associative memory 
networks. Our learning algorithm for the network is a min- 
imizing process of a functional under inequality associative 
conditions for stored patterns. By relaxing equality asso- 
ciative conditions into inequality associative conditions, we 
could obtain the regions, each of which is mapped into a 
neighbor of an associative pattern, larger than those de- 
rived under equality associative conditions. These regions 
become domains of attraction in the case that the network 
is of autoassociative type. In this case, the network function 
can be shown to be a contraction mapping in the domains. 
The functional to be minimized was derived based on the 
shape of the obtained regions. 

In the simulation, two kinds of autoassociative memory 
networks in this paper were applied to character recognition 
and their recognition ability was compared with that of the 
neural networks constructed under equality associative con- 
ditions in [8] and [9]. 

Our discussion is in a linear theory, because the network 
contains only one nonlinear layer. However, regions, each of 
which is mapped into a neighbor of an associative pattern, 
can be obtained under inequality associative conditions im- 
posed on the final layer of a network, even if i t  is a mul- 
tilayer network. These regions contain nonlinear functions 
and their shape is complicated. I t  is a future work to clarify 
such regions and to find learning algorithms for multilayer 
networks. 

Therefore, we have for i E I;,-, 

and hence, 

(A21 

Since la; 1 2 1 and exp(-t)/(l + e ~ ~ ( - t ) ) ~  is monotonically 
decreasing, we have 

Using here the inequality l /(l+exp(- (1-p) ln(1 - E ) / E ) ) ~  5 
(1 - E ) ~ ,  the last term is bounded by E'-P. Therefore we 
obtain 

f (z i ) ( l  - f (zi)) i E'-'. (A31 

When i E Ii,+, it follows that 

1 1 - E  
Proof of Theorem I: The proof is done by using essentially - < f ( ( 1  - P ) I ~ Y I  111 -) < f(zi) .  2 E 

the same technique as in Theorem 1 in [8]. By the mean 
value theorem, we have Hence, 

where z; is given by 1 - E  
41 - f ((1 - ~)la:l In -)I* - E 

Zi = X(Wi . X  -0;) + (1 - X)(Wi. x - O i ) ,  O < X < 1. 
By an easy calculation, we see that  the right hand side 

We rewrite as equals to  the last term of (A2). Consequently, we obtain 

Z; = W; . X" - 0; + W; . ( A X  + (1 - A)% - x") f (zi)(l  - f (zi)) 5 $-'. (A4) 
1 - E  

= (a ,"+r/ , - (Xx+(l--A)%-xv)) ln---- ,  Combining (A3) and (A4) with (Al )  gives the first result 
E 

(8) of Theorem 1. 
where a: = V,  . xu - 7;. We put If we choose k = xu in (8), we have for any x E Dp(xV), 

- 1 - E  zi = (aY-plaYI) ln-, 
1 

p i x )  - ( x )  1n - IV, (x - zz')I 
E E 

Since Ax + (1 - X)Z belongs to Dp(xY),  we have 

z; zi 5 z+. 

1 
p ~ l - p  1 1 1 - I l / ; . ~ ~ - 7 ~ j ,  

E 

since x is in Dp(xY). This proves (9) of Theorem 1. 
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