
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Refutable Inference of Functions Computed by
Loop Programs

Miyahara, Tetsuhiro
Computer Science Laboratory, Kyushu University

https://hdl.handle.net/2324/3206

出版情報：RIFIS Technical Report. 112, 1995-04-24. Research Institute of Fundamental
Information Science, Kyushu University
バージョン：
権利関係：

RIFIS Technical Report

Refutable Inference of Functions

Computed by Loop Programs

Tetsuhiro Miyahara

April 24, 1995

Research Institute of Fundamental Information Science

Kyushu University 33

Fukuoka 81 2, Japan

E-mail: miyahara@rc.kyushu-u.ac.jp

Refutable Inference of Functions
Computed by Loop Programs

Tet suhiro Miyahara

Computer Science Laboratory
Kyushu University 01, Ropponmatsu, Fultuoka 810, Japan

phone: +81-92-771-4161 ext .399
fax: $81-92-716-9392

e-mail: miyahara@rc.kyushu-u.ac.jp

April 24,1995

Abstract

Refutable inference is a process of inductive inference with refutability of hypothesis spaces

and is essential in Machine Discovery(Mukouchi and Arikawa). Though some refutable

inferabilities under language model are known, most scientific laws are represented by func-

tions. Thus we investigated refutable inferability of function classes. In order to develop a

realistic theory of function learning, we investigated the refutable inferability of primitive

recursive functions computed by a concrete programming system, loop programs (Meyer

and R.itchie).

Let FLoop(n) be the set of all primitive recursive functions computed by a loop program

with at most n nesting of loops. We show .FLoop(n)(n > 1) and a natural subclass of

FLoop(1) are not refutably inferable. Thus the existent natural hierarchies of loop programs

are shown to be not suitable for machine discovery. Then we construct two types of rich

series of refutably inferable classes such that each union of the series is FLoop(l) and show

the inside structures of these series.

1. Introduction

Machine Discovery is to discover scientific laws from very large experimental or observa-

tional data by computer. So implementing real machine discovery systems, e.g., ABACUS

[FM9O] and BONSAI [AMSKMS93], and establishing theoretical foundations of machine

discovery are important and prospective research areas in artificial intelligence and machine

learning. Recently, Algorithmic/Cornputational Learning Theory of Machine Discovery is

originated by Mukouchi and Arikawa [MA93, MA951 and is attracting much attention

[LW94, Mat94, WS951.

Mukouchi and Arikawa investigated the refutable inferability under formal language

model and gave firm theoretical foundat ions of machine discovery from facts.

However, the general target of machine discovery system cannot be represented by formal

language. In fact, most scientific laws are represented by functions, e.g., F = ma, E = me2,

P V = nRT. Thus, this paper investigates the refutable inferability of recursive functions

that are most general target concepts computed by programs and presents a theoretical

foundation of machine discovery of scientific laws represented by functions.

Lange and Watoson [LW94] gave hierarchical results of identification types related

to refutable inferability based on the conventional theory of function learning in Gold's

paradigm [GolF7]. But the hierarchical results of identification types, inferring powers un-

der criteria of success, are too abstract and have little to do with real machine discovery

systems.

Our approach is completely different from the conventional approach. We investigated

the refutable inferabilities of concrete programming systems for recursive functions in order

to develop a realistic theory of function learning and machine discovery. We adopted two

concrete programming systems, loop programs [MR67, Tsi7OI and expressions of simple

functions [Tsi7O], for primitive recursive functions. And we investigate the refutable infer-

abilities of function classes computed by the two programming systems and construct rich

series of refutably inferable classes.

This paper is organized as follows. In Section 2, we give our framework of refutable

inference of recursive functions and formalize the notion of rich series of refutably inferable

classes slicing a class which is not refutably inferable. In Section 3, we give brief review of

loop programs and simple functions. In Section 4, we show FLoop(n)(n 2 1) and a natural

subclass of FLoop(l) are not refutably inferable, where FLoop(n) be the set of all primitive

recursive functions computed by a loop program with at most n nesting of loops. Thus

the existent natural hierarchies of loop programs are shown to be not suitable for machine

discovery. I11 Section 5 , we construct two types of rich series of refutably inferable classes

slicing FLoop(1) and show the inside structures of the series and give a characterization of

refutable inferabilities of simple functions computed by loop programs.

2. Refutable Inference of Recursive Functions

We give our framework of refutable inference of recursive functions according to Mukouclii

and Arikawa [MA93, MA951.

A number is a natural number over N = {O, 1 ,2, . . .). A function means a function

with many inputs and a single output. Given a programming system, an index is a number

which represents a program in the programming system. p; denote the recursive function

computed by a program with index i.

Definition 1. A class C = {vi)iEN of recursive functions is said to be an indexed family

of recur.sive functions if there exists a recursive function uc : N x N -+ N such that

where <, . . . , >i, denotes a fixed recursive encoding from N h n t o N , and arity (i) denotes

the total number of input variables of a program with index i. u c represents the universal

function for C.

An indexed family of recursive functions is a natural extension of an indexed family of

recursive languages. A class means an indexed family of recursive functions. For a set S
of programs, F(S) (or FS) denotes the set of all functions computed by a program in S .

Slayit,,, denotes the set of all n-ary programs in S. For a set F of functions, Flarity=n
denotes the set of all n-ary functions in F .

Example 1. The following sets of functions which are defined in later sections are all

indexed families of recursive functions. In this paper,we investigate refutable inferabilit ies

of these various classes. FLoop(n), F(Loop(1, m)), FSimple, FSimple(#pred 5 c, IIdvs 5
d), FSimple((#pred + 3)IIdvs 5 k) .

The set of all recursive functions is not an indexed family of recursive functions.

ar i ty(f) denotes the arity of a partial function f . The graph notation, graph(f), of a

partial function f denotes the set {(el, . . . , Car i ty (f) , d) I f (el, . . . , defined and equal to d} &
Nayity(f)+'. A finite graph is a graph notation of a partial function with a finite domain. A
partial function f explains (or is consistent with) a partial functioii g if arity(g) = arity(f)
and graph(g) & graph(f) . For a set S, card(S) denotes the cardinality of S. F'inFuncl

denotes the set { f I f is a single input 0,l-valued recursive function and card({x E N I
f (x) = 1)) is finite }.

A presentation a of a total s-ary function f is an infinite sequence of (s $ 1)-ary pairs of

numbers (cy, . . . , c:, f (cy, . . . , c:)), (ct, . . . , c:, f (ci, . . . , c:)), (c;, . . . , ct, f (c?, . . . , ct)) , . . . such

that the set {(cy, . . . , c:, f (cy, . . . , cy)), (ct , . . . , c:, f (c:, . . . , ct)), (c:, . . . , ct, f (c:, . . . , c'F))), . . .}
is graph(f) & NS+'. a[n] denotes the initial segment of a of length n + 1.

Definition 2. [MA93, MA951 A refutably inductive inference machine (RIIM, for short) is

an effective procedure that requests inputs from time to time, and either produces indices

from time to time or produces the sign"refute" and stops. For an RIIM M and a presen-

tation o, M(a[nj) denotes the last output produced by M which is successively presented

a[n]. M on a converges to an index i , if there is a number no such that for any n 2 no

M(a[n]) is defined and equal to i.

Let C = a class. For a function pi E C and a presentation a of pi, M infers

pi w.r.t. C in the limit from o if M on o converges to an index j with pj = pi. M refutes

the class C from a if there exists a number n such that M(o[n]) = "refute". An RIIM M
refutably infers a class C if for any total function f and any presentation a of f , if f E C
then M infers f w.r.t. C in the limit from a, otherwise M refutes the class C from a . An

RIIM M refutably and finitely infers a class C if M refutably infers C and in the process

of inference of any f E C, the RIIM M produced at most one index.

Lemma 1. [MA93, MA951 (1) If a class CluTity=l contains F i n ~ u n c ' then the class C is

not refutably inferable.

(2) If a class C satisfies the following conditions (a) and (b), then the class C is refutably

inferable. (a) For any f 6 C , there exists a finite graph gG graph(f) G ~ ~ ~ " y (f l) + ' such

that, no vi E C explains g. (b) For any finite graph g, whether or not there there exists

vi E C that explains g is decidable.

The purpose of this paper is to construct rich series of refutably inferably classes of

functions. So we give a brief review of rich inferable classes in language learning. Con-

sider CSL, the set of context-sensitive languages. CSL has very rich power and is an

importnt languages class. If a hypothesis space is refutably inferable, then in principle we

can constract a machine discovery system for concepts in the hypothesis space. But C S L

is easily shown to be not refuably inferable from Lemma 1,(1). Mukouchi and Arikawa

[MA93, MA951 constructed a rich subhierarchy {L(LB[<"])),>~, - defined in the follwoing,

of CSL such that each L (L B [< ~]) is refutably inferable from complete dat,a and solove this

problem.

EFS is a kind of logic programming over character strings [ASY92]. Let LB[<"] be

the set of length-bounded EFS's with at most m axioms and L(LB[<"]) be the set of

languages defined by such EFS's. u , ~ ~ L (L B [~ ~]) = c s L . For any m 2 1, L(LB[Lrn])

contains infinitely many languages. L(LB[<']) contains the set of pat tern languages [Ang80],

which is refutably inferable. In this case, we say that { L (L B [~ ~ ~)) , > ~ - is a 1-dimensional

rich series of refutably inferable classes slincing CSL. Shinohara [Shi94] showed the similar

richness of L(LB[LrnI) about inferability from positive data.

From the above consideration, we formalized the notion of rich series of refutably infer-

ably classes of functions slicing a class which is not refutably inferble as follows. For a class

C of functions, # f unc(C) denotes the number of functions in C.
Since an RIIM know the arity of a target function from its presentation in our frarne-

work, it is worth nothing to consider a rich class which is not ric,h when the a,rity of fun~t~ios

in the class is fixed. Thus in the following definition, the cardinality of a class of functions

with any fixed arity is considered.

Definition 3. (1) Let C(m) be a class defined for m 2 mo. Let C, be a class which is

not refutably inferable. {C(m)),>,, - is said to be a I-dimensional rich series of refutably

inferable classes slicing C, if the following conditions are satisfied.

(a) There exsits a class B such that B C(mo), #func(BlUTit,=,) = cr, for any s 2 1
and B is refutably inferable.

(b) For any m 2 mo, C(m) is refutably inferable and # f unc((C(m+l) \C(m)) I u T i t y = s) =

oo for any s 2 1.

(c) ~m>moC(m) = C*.
(2) Let C(m, n) be a c,lass defined for m 2 mo and n _> no. Let C, be a class which

is not refutably inferable. {C(m, n)) m ~ m o , n ~ n o is said to be a 2-dimensional rich series of

refutably inferable classes slicing C, if the following conditions are satisfied.

(a) There exsits a class B such that B & C(rno, no), # ~ u ~ c (B . . ~ ~ , = ,) = oo for any

s > 1 and B is refutably inferable.

(b) For any rn > rno and n > no, C(rn, n) is refutably inferable, # f unc((C(m + 1, n) \
C(m, n)) laTity=s) = for any s 2 1, and #f unc((C(rn, n + 1) \ C(m, n)) larity=s) = 00 for

any s > 0.

(c) Urn>mo,n>noC(rnr n) = Cx.

3. Loop Programs and Simple Functions

Loop program is an abstract model of conventional procedure-oriented programming lan-

guages, e.g., Pascal or C. Thus the programming system of loop programs is very suitable

to develop a realistic theory of function learning.

Definition 4. [MR67] Let X and Y be variables. A loop program is a finite sequence of

instructions of the following 5 types with input and output instructions. X:=Y (substitute

the contents of Y to X), X:=X+l (increment X by I) , X:=O (make the contents of X

to 0), LOOP X, END. Each variable stores one arbitrary number. The contents of work

variables and output variable are initialized to 0. The instructions "LOOP X" and "END"

are balanced. "LOOP X subprogram A END" means executing subprogram A by the [XI

times, where [XI is the contents of variable X upon entering the loop. The number of

looping is not changed in executing the loop. For n E N, Loop(n) denotes the set of all

loop programs containing at most n nesting of loops.

Example 2. In the following, the first loop program is in Loop(1) and computes the func-

tion Z=2X+Y. The second loop program is in Loop(2) and computes the function Z=XY.

INPUT X,Y; Z:=0; LOOP X Z:=Z+l; Z:=Z+l END; LOOP Y Z:=Z+I END; OUTPUT Z
INPUT X,Y; Z:=O; LOOP X LOOP Y Z:=Z+l END END; OUTPUT Z

The set of SF-programs is another programming system for the set FLoop(1) and is

needed later to construct rich series of refutable classes.

Definition 5. [Tsi70] The set of all SF-programs is the closure set of expressions (left hand

sides of the following equations) constructed through finite number of applications of cornpo-

sitions from the following 8 types of initial expressions. succ(x) = x + 1, zeron(xl, . . . , xn) =

0, u:(x1,. . . ,x,) = xi, plus(xl, x2) = 21 + 2 2 (2-ary), pred(x) = X-1, i f (x l ,xz) = 21 if

x2 = 0, zero if x2 > 0, div(x, d) = x div d(unary), rnod(x, d) = x mod d(unary) (truncated

devision and residue by a constant d > 1). (For integers x and y, x l y = x - y if x > y , 0

otherwise.)
A simple function is a function computed by an SF-program. For an SF-program g ,

#pred(g)(or P,) denotes the total number of occurrences of "pred" appearing in g. Let

dl, . . . , dt be all constants that occur in an SF-program g either as div(x, di) or mod(x, di)

allowing repetition. IIdvs(g)(or D,) denotes the product dl x . . . x dl, if such a constant

exists, 1 otherwise. Let (#pred(g) + l)IIdvg(g) be denoted by bound(g)(or B,).

E x a m p l e 3. Let g and h be the following SF-programs. Then we have #pred(g) = 0,

II$VS(~) = 1, #pred(h) = 2, IIdvs(h) = 36.

g=plus (p l u s (i f (x , y) , succ (succ (zero3 (x , y , z)))) , z) ,
h = i f (d i v (mod (x ,4) , 3) , d i v (pred (pred (u: (x , y , z))) , 3)) .

Let 6) l , d) 1 and n 2 1. Two points x = (x l , . . . ,x,) and x' = (x i , . . . ,xk)

are compatible w.r.t. b and d if the following two conditions are satisfied. (1) For each i

(1 5 i 5 n) with xi < b or xi < b, we have xi = xi. (2) For each i (1 5 i 5 n) with

xi 2 b and xi 2 b, we have xi = xi(mod d). Compatibility w.r.t. two constants b and

d is an equivalence relation on Nn . For n 2 1 and b) 0, Cube(n, b) denotes the set

{(xl, . . . , x n) E Nn I O < b'i 5 n,O 5 X i < b).

Let b) 1, d) 1, n) 1 and e be a graph notation of n-ary function with Cube(n, b +
2d) as its domain. Let x = (xl, . . . , x,) be any point on Nn. Consider the points y =

(yl , . . . , y n) and Z' = (z;, . . . , z r n) (l < r 5 n) defined as follows. Let yi = xi for i with

1 5 i 5 n and xi < b, let yi = b + (xi mod d) for i with 1 < i 5 n and xi) b, let

z: = yi for i with 1 < i < n and i # r , and let z; = yT + d. Define the function

L(n, b, d, e)(x) = e(y) + C:=l(e(zr) - e(y))(xr - yr)ld-
We summarize the fundamental results of loop programs and simple functions.

T h e o r e m 1. [MR67, Tsi7OI (i) F (L o o ~ (O) ~ ~ ~ ~ ~ ~ = ~) = {f (~ 1 , . . . , x,) = xi + k I 1 5 i 5 n

and k E N} U {f (x l , . . . , x,) = k I k E N). Thus, FLoop(0) is refutably inferable.

(ii) F.Loop(l) is the set of all simple functions.

(iii) FLoop(n) $ FLoop(n + l) (n 2 0).

(iv) UnENFLoop(n) is the set of all primitive recursive functions.

(v) Loop(2) contains T(x, x, y), where T is Kleene's T-predicake.

(vi) Let g be an SF-program with arity n. For any equivalent class C of compatible

points w.r.t. bound(g) and IIdvs(g) and any i with 1 < i < n, there exist constants E &$
such that the following equation holds, where &$ denotes the set of all non-negative rational

numbers. For a n y x = (21,. . . , x,) and y = (~ 1 , . . . ,y,) E C , g(x)-g(y) = c ~ = ~ ~ F (x ~ - ~ ~) .

Further, 9 = L(n, bound(g), ndvs(g), graph(9) / ~ u b e (n , b 0 u n d (~) + 2 n d ~ ~ (~))) .

(vii) Consider gl = L(n, bl, dl, el) and g2 = L(n, b2, d2, e2). If gl and 92 are agree on

Cube(n, max(bl, b2) + 2 x gcm(dl, d2)), then gl and 92 are agree on Nn.

4. Existent Natural Hierarchies of Loop Programs
Are Not Suitable for Machine Discovery

Let P r i m be the set of all primitive recursive functions. Since P r i m contains FinFuncl ,

P r i m is not refutably inferable. The hierarchy { F L o ~ p (n)) , > ~ - is a candidate for rich

series of refutably inferable classes slicing Pr im. So we investigate refutable inferabili ty of

FLoop(n).

Theorem 2. (1) FinFuncl & F(Loop(1) l,,ic,l).

(2) For any n 2 1, FLoop(n) are not refutably inferable.

Proof. Let f be a function in FinFuncl defined by f (x) = 1 if x = di (l 5 i 5 n) , 0

otherwise, where d l , . . . , d, are constants satisfying dl < d2 < . . . < d,(n 2 0).

The following Loop(1) program P computes the function f .

{Program P)

INPUT X

Y:=O;I[O] :=O;I [l] :=1[1]+1;1[2] :=1[2]+1; . . . , I [dn-I] := I [dn - l]+ l ;

I [dn] :=I [dn] + I ; I [dn+I] : = I [dn+l] + I ;

LOOP X I[dn+l] :=I[dn];I[dn] :=I[dn-I] ; . . . I[2] : = I [I] ; I [l] :=0 END;

LOOP I [d l+l] Y [I] :=Y [I] +I END; LOOP I [dl] Y [I] :=0 END

LOOP I [d2+1] Y [2] : =Y [2] +I END; LOOP I [d2] Y [2] : =0 END

. . .
LOOPI[dn+l] Y[n]:=Y[n]+lEND; LOOPI[dn] Y[n]:=O END;

LOOP Y [I] Y : = Y + l END; LOOP Y [2] Y:=Y+l END; . . . LOOP Y [n] Y :=Y+1 END;

OUTPUT Y

Even the second smallest class FLoop(1) in the hierarchy { F L o ~ p (n)) , > ~ - is not refutably

inferable. Theorem l(i),(v) say that FLoop(0) is a trivial class and FLoop(2) is a set of

functions hard to compute in realistic meaning. So we focus our attention on FLoop(1) and

seek a rich series of refutable inferable classes slicing FLoop(1). Goetze and Nehrich[GN65]

constructed a natural sub-hierarchy {FLoop(l, m))m>o - of FLoop(l), where Loop(1, m) de-

notes the set of all loop programs containing at most rn unnested loops. The first program

in Example 2 is in Loop(l,2). FLoop(1,l) is conceived to be the smallest class in the

existent natural hierarchies of loop functions containing FLoop(0).

By using a simulation technique [GN65], we show that FLoop(l, 1) is not refutably

inferable. Thus, we need another view in order to construct a rich series of refutable classes

slicing FLoop(1).

5 . Refutable Inference of Simple Functions Computed
by Loop Programs

We adopt SF-programs as another programming system for FLoop(l) , and #pred(g) and

IIdvs(g) as views for measuring an SF-program g. Since FSirnple(arity = n) , defined in

the following, is equal to the set of all n-ary simple functions, we use an SF-program in

Simple(arity = n) as a standard form of an n-ary SF-program.

Definition 6. Let Simple(arity = n) be the set of expressions defined inductively as

follows. Let X I , . . . , x , be variables. (1) z ~ ~ o ~ (x ~ , . . . , s,), u : (x l , . . . , x,)(O 5 i 5 n)
E Sirnple(arity = n) . (2) f , f l , fi t Sirnple(arity = n) + succ (f) , plus(f i , f 2) , p red (f) ,

i f (f l , f i) , d i v (f , k) (k 2 I) , m o d (f , k) (k) 1) E Simple(arity = n) .

Let Simple = ~ , > ~ S i m l e (a r i t y - = n) . For c) 0 and d) 1, Sirnple(#pred 5 c, Ilclvs <
d) denotes the set {g E Simple I #pred(g) < c,I ldvs(g) 5 d}. For c 2 0 , d) 1 and

n 2 1, Simple(' c, < d, = n) denotes the set {g E SimpZe(arity = n) / #pred(g) 5
c,Hdvs(g) < d } . For k) 3 and n 2 1, Simple((#pred + 3)Ildvs 5 k) denotes the set

{g E Simple I (#pred(g) + 3)ndvs (g) 5 k } .

First, we show the inside structure of FSimple(ari ty = n) . The following lemma says

that F,S imple (l c, < d, = n) is a fundamental subclass with 2 independent views.

Lemma 2. Let c, c' 2 0,and d, d' 2 1,and n 2 1.

(1) F(Loop(0) laTity=n) $ FSimple(< 075 1, = n) .

(2) FSirnple(< c, 5 d, = n) $ FSimple(< c + 1 , s d, = n) .

(3) F S i m p l e (5 c, 5 d, = n) $ F S i r n p l e (l c, 5 d + 1, = n) .

Further, each gap in (1) ,(2) , (3) contains infinitely many functions.

(4) [c=c7 and d=d7] H FSimple(< c, 5 d, = n) = FSimple(< c', 5 dl, = n) .

Proof. (1) Let x = (s l , . . . , s,). Consider gs(x) = i f (s , x l) E FSimple(< 0, < 1, = n) (s >
1) . By Theorem 1, gs $ FLoop(0) IaTity=n-

(2) Consider gs(x) = i f (x l , d i v (x l , d) i (c + 1)) +s E F S i m p l e (5 c+ 1 , s d, = n) (s E N) .

Assume that there exists h E Simple(< c, 5 d, = n) such that g s (x) = h (x) . Let s o =

(c+2)d-1, xo = (xo,O,. . . ,O),xl = (xo+Dh,O,. . . ,O). Wehavegs(xo) = xo+s,g,(xl) = s.

Since xo, xl are compatible w.r.t. Bh and Dh, Theorem 1 shows that there exist a constant

q E &$ such that g S (x l) - g s (x o) = qDh and Thus q = - xO/Dh (x O > 1, Dh 2 1) . This is

a contradiction.

(3) Consider g s (x) = div(x l , d + 1) + s E FSimple(< c, < d + 1, = n) (s E N) . Assume

that there exists h E Simple(' c, 5 d, = n) such that g s (x) = h (x) . Let xo = min{ t (d +
1) I t E N , t (d + 1)) Bh}, X O = (X O , ~ , . . . , O) , X 1 = (2 0 + Dh,O,. . . , O) , xz = (xo +
(d div Dh)Dh , 0 , . . . , O) , X Q = (so + (d div Dh + l) D h , 0 , . . . , 0) . We have g s (x o) = g s (x l) =

g S (x z) = t + s , g S (x 3) = t + 1 + s. Since xo, x l , x2 and X Q are compatible w.r.t. Bh and

Dh, Theorem 1 shows that there exist a constant q E &$ such that gs(xl) - gs(xo) = qDh
and gs(x3) - gs(x2) = qDh. Thus q = 0 and q = l /Dh(Dh) I). This is a contradiction.

(4) By arguments similar to (2) and (3).

procedure RIIM-SF(c, d);
input: a presentation of a total function;

given: integers c 2 0, d 2 1;
output: an SF-program in Simple(#pred 5 c, ndvs < d) or "refute";

begin
EX := 0; readstore(EX);
let n be the arity of a presentation in EX;
repeat readstore(EX) until {(xl, . . . , x,) I (XI, . . . , x,, y) E EX} contains Cube(n, (c + 3)d);

9 := {(XI) . . . , xn, y) E EX I (21, . . . , x,) E Cube(n, (c + 3)d));
H := {h = L(n, (P + l)D, D,g) I 0 5 P 5 c, 1 5 D 5 d, h explains EX};
while H contains two equivalent functions do remove the redundant function from H;
/* card(H) denotes the number of elements in H * /
if card(H) = 0 then output "refute" and stop;

while card(H) > 1 do begin
read-store(EX);
remove from H all functions that do not explain EX;
if card@) = 0 then output "refute" and stop

end;
let h be the only function left in H ;
alternately execute the following two processes 1 and 2;

begin /* process 1 */
repeat read-store(EX) until h does not explain EX;
output "refute" and stop

end;
begin /* process 2 */

enumerate all programs q in Simple(#pred 5 c, IIdvs 5 d, arity = n)

and search for a program q that is equivalent to h;

if such a program q is found then output q and stop the process 2

end;
end;
procedure read-store(EX);
begin

read the next fact (XI , . . . , x,,y); EX := EX U {(XI, , x ~ , Y) }
end

An RIIM for the class FSimple(#pred 5 c, ndvs 5 d)

We give a procedure RIIM-SF(c, d) that refutably infers class FSimple(#pred 5
c, IIdvs 5 d) and produces only one SF-program. An RIIM for FSimple((#pred+3)IIdvs 5

Ic) is similarly obtained. Thus, we have the following refutable inferabilities and rich series

of refutably inferable classes slicing FLoop(1).

Theorem 3. (1) For any c 2 0 and d 2 1, the class +Sirnple(#pred 5 c, IIdvs 5 d)

is refutably and finitely inferable. Thus, {FSirnple(#pred < c, I'Idvs 5 d)},>o,d>l - - is a

2-dimensional rich series of refutably inferable classes slicing FLoop(1).

(2) For any Ic 2 3, the class FSirnple((#pred + 3)IIdvs < k) is refutably and finitely

inferable. Thus, {FSirnple((#pred + 3)IIdvs 5 IC)}J+~ - is a 1-dimensional rich series of

refutably inferable classes slicing FLoop(1). And this slicing is maximal w .r. t . the size of

finite examples needed to determine all candidates.

6. Concluding Remarks

In this paper, we investigated refutable inferabilities of primitive recursive functions com-

puted by a concrete programming system, loop programs, in order to develop a realistic

theory of machine discovery for scientific laws represented by functions. The existent natu-

ral hierarchies of loop programs are shown to be not suitable for machine discovery. Then

we construct two types of rich series of refutably inferable classes and gave a characteriza-

tion of refutable inferabilities of simple functions computed by loop programs.

Acknowledgments
The author wishes to thank Professor Setsuo Arikawa for his essential suggestions which

initiated this work. He also wishes to thank Takayoshi Shoudai, Hiroki Arimura, Eiju

Hirowatari, Takeshi Shinohara and Hiroki Ishizaka for their productive suggestions and

encouragements.

References

lAW-801 Angluin,D., Inductive inference formal languages from positive data, Informa-

tion and Control, vo1.45, pp.117- 135, 1980.

[AS831 Angluin,D., Smith,C .H., Inductive inference:Theory and methods, Computing

Survey, vo1.15, pp.237-269, 1983.

[ASY92] Arikawa,S. ,Shinohara,T. ,Yamamoto,A., Learning elementary formal systems,

Theoretical Computer Science, vo1.95, pp.97-113, 1992.

[AMSKMS93] Arikawa,S. ,Miyano,.S. ,Shinohara,A. , S a r a , T . ,

A machine discovery from amino acid sequences by decision trees over reg-

ular patterns, New Generation Computing, vol.ll,pp.361-375,1993.

[BB75] Blum,L. ,Blum. ,M., Toward a mathematical theory of inductive inference, In-

formation aslid Control, vo1.28, pp. 125-155, 1975.

[GN65]

[Go1671

[LW 9 41

[Mat941

[MA931

[MA951

[MR67]

[Shi94]

Case, J. ,Smith$. , Comparison of identification criteria for machine inductive
inference, Theoretical Computer Science, vo1.25, pp. 193-220, 1983.

Falkanbaineer,B .C., Michalski,K. S., Integrating quantative and qualitative
discovery in ABACUS system, KodratofF,Y., Michalski,R. ed. Machine Learn-
ing, An artificial intelligence, vo1.3, pp.153-190, 1990.

Goetze,B., Nehrich,W., The number of loops necessary and sufficient for com-
puting simple functions, EIK, vo1.17, 363-376, 1981.

Gold,E.M., Language identification in the limit, Information and Control,

vol.10, 447-474, 1967.

Lange,S. ,Watson. ,P., Machine discovery in the presence of incomplete or am-
biguous data, Proc. of ALT 94, Springer-Verlag,LLAI 872.,438-452, 1994.

S .Matsumoto,A.Shinohara, Refutably Probably Approximately Correct
Learning, Proc. of ALT 94, Springer-Verlag,LNAI 872.,469-483, 1994.

Mukouchi,Y ., Arikawa,S., Inductive inference machines that can refute hy-

pothesis spaces, Proc. of ALT'93, LNAI 744, pp.123-136, 1993.

Mukouchi,Y., Arikawa,S., Towards a mathematical theory of machine discov-
ery from facts, Theoretical Computer Science, 1995.

Meyer,A.R., Ritchie,D.M., The complexity of loop programs, Proc. of 22nd
National Conference of ACM, pp.465-469, 1967

Shinohara,T., Rich class inferable from positive data: length-bounded ele-
mentary formal systems, Information and Computation, vol. 108, pp.175-186,

1994.

Tsichritzis,D., The equivalence problem of simple programs, J.ACM, vol. 17,

No.4, pp.729-738, 1970.

Watanabe, N., Sato, M., On a class of regular languages refutably inferable
from complete date in polynomial-time, LA Symposium, Winter, 1995, Kyoto.

