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Abstract 

Refutable inference is a process of inductive inference with refutability of hypothesis spaces 

and is essential in Machine Discovery(Mukouchi and Arikawa). Though some refutable 

inferabilities under language model are known, most scientific laws are represented by func- 

tions. Thus we investigated refutable inferability of function classes. In order to develop a 

realistic theory of function learning, we investigated the refutable inferability of primitive 

recursive functions computed by a concrete programming system, loop programs (Meyer 

and R.itchie). 

Let FLoop(n) be the set of all primitive recursive functions computed by a loop program 

with at most n nesting of loops. We show .FLoop(n)(n > 1) and a natural subclass of 

FLoop(1) are not refutably inferable. Thus the existent natural hierarchies of loop programs 

are shown to be not suitable for machine discovery. Then we construct two types of rich 

series of refutably inferable classes such that each union of the series is FLoop(l) and show 

the inside structures of these series. 

1. Introduction 

Machine Discovery is to discover scientific laws from very large experimental or observa- 

tional data by computer. So implementing real machine discovery systems, e.g., ABACUS 

[FM9O] and BONSAI [AMSKMS93], and establishing theoretical foundations of machine 

discovery are important and prospective research areas in artificial intelligence and machine 

learning. Recently, Algorithmic/Cornputational Learning Theory of Machine Discovery is 

originated by Mukouchi and Arikawa [MA93, MA951 and is attracting much attention 

[LW94, Mat94, WS951. 



Mukouchi and Arikawa investigated the refutable inferability under formal language 

model and gave firm theoretical foundat ions of machine discovery from facts. 

However, the general target of machine discovery system cannot be represented by formal 

language. In fact, most scientific laws are represented by functions, e.g., F = ma, E = me2, 

P V  = nRT. Thus, this paper investigates the refutable inferability of recursive functions 

that are most general target concepts computed by programs and presents a theoretical 

foundation of machine discovery of scientific laws represented by functions. 

Lange and Watoson [LW94] gave hierarchical results of identification types related 

to refutable inferability based on the conventional theory of function learning in Gold's 

paradigm [GolF7]. But the hierarchical results of identification types, inferring powers un- 

der criteria of success, are too abstract and have little to do with real machine discovery 

systems. 

Our approach is completely different from the conventional approach. We investigated 

the refutable inferabilities of concrete programming systems for recursive functions in order 

to develop a realistic theory of function learning and machine discovery. We adopted two 

concrete programming systems, loop programs [MR67, Tsi7OI and expressions of simple 

functions [Tsi7O], for primitive recursive functions. And we investigate the refutable infer- 

abilities of function classes computed by the two programming systems and construct rich 

series of refutably inferable classes. 

This paper is organized as follows. In Section 2, we give our framework of refutable 

inference of recursive functions and formalize the notion of rich series of refutably inferable 

classes slicing a class which is not refutably inferable. In Section 3, we give brief review of 

loop programs and simple functions. In Section 4, we show FLoop(n)(n 2 1) and a natural 

subclass of FLoop(l) are not refutably inferable, where FLoop(n) be the set of all primitive 

recursive functions computed by a loop program with at most n nesting of loops. Thus 

the existent natural hierarchies of loop programs are shown to be not suitable for machine 

discovery. I11 Section 5 ,  we construct two types of rich series of refutably inferable classes 

slicing FLoop(1) and show the inside structures of the series and give a characterization of 

refutable inferabilities of simple functions computed by loop programs. 

2. Refutable Inference of Recursive Functions 

We give our framework of refutable inference of recursive functions according to Mukouclii 

and Arikawa [MA93, MA951. 

A number is a natural number over N = {O, 1 ,2,  . . .). A function means a function 

with many inputs and a single output. Given a programming system, an index is a number 

which represents a program in the programming system. p; denote the recursive function 

computed by a program with index i. 

Definition 1. A class C = {vi)iEN of recursive functions is said to be an indexed family 

of recur.sive functions if there exists a recursive function uc : N x N -+ N such that 



where <, . . . , >i, denotes a fixed recursive encoding from N h n t o  N ,  and arity (i) denotes 

the total number of input variables of a program with index i. u c  represents the universal 

function for C. 

An indexed family of recursive functions is a natural extension of an indexed family of 

recursive languages. A class means an indexed family of recursive functions. For a set S 
of programs, F(S) (or FS) denotes the set of all functions computed by a program in S .  

Slayit,,, denotes the set of all n-ary programs in S. For a set F of functions, Flarity=n 
denotes the set of all n-ary functions in F .  

Example 1. The following sets of functions which are defined in later sections are all 

indexed families of recursive functions. In this paper,we investigate refutable inferabilit ies 

of these various classes. FLoop(n), F(Loop(1, m)), FSimple, FSimple(#pred 5 c, IIdvs 5 
d), FSimple((#pred + 3)IIdvs 5 k) .  

The set of all recursive functions is not an indexed family of recursive functions. 

ar i ty(f)  denotes the arity of a partial function f .  The graph notation, graph(f),  of a 

partial function f denotes the set {(el, . . . , Car i ty ( f ) ,  d) I f (el, . . . , defined and equal to d} & 
Nayity(f)+'. A finite graph is a graph notation of a partial function with a finite domain. A 
partial function f explains (or is consistent with) a partial functioii g if arity(g) = arity( f )  
and graph(g) & graph( f ) .  For a set S, card(S) denotes the cardinality of S. F'inFuncl 

denotes the set { f I f is a single input 0,l-valued recursive function and card({x E N I 
f (x) = 1)) is finite }. 

A presentation a of a total s-ary function f is an infinite sequence of (s $ 1)-ary pairs of 

numbers (cy, . . . , c:, f (cy, . . . , c:)), (ct, . . . , c:, f (ci, . . . , c:)), (c;, . . . , ct, f (c?, . . . , ct)) ,  . . . such 

that the set {(cy, . . . , c:, f (cy, . . . , cy)), (ct , . . . , c:, f (c:, . . . , ct )), (c:, . . . , ct, f (c:, . . . , c'F))), . . .} 
is graph( f )  & NS+'. a[n] denotes the initial segment of a of length n + 1. 

Definition 2. [MA93, MA951 A refutably inductive inference machine (RIIM, for short) is 

an effective procedure that requests inputs from time to time, and either produces indices 

from time to time or produces the sign"refute" and stops. For an RIIM M and a presen- 

tation o, M(a[nj)  denotes the last output produced by M which is successively presented 

a[n]. M on a converges to an index i ,  if there is a number no such that for any n 2 no 

M(a[n])  is defined and equal to i. 

Let C = a class. For a function pi E C and a presentation a of pi, M infers 

pi w.r.t. C in the limit from o if M on o converges to an index j with pj = pi. M refutes 

the class C from a if there exists a number n such that M(o[n])  = "refute". An RIIM M 
refutably infers a class C if for any total function f and any presentation a of f ,  if f E C 
then M infers f w.r.t. C in the limit from a, otherwise M refutes the class C from a .  An 

RIIM M refutably and finitely infers a class C if M refutably infers C and in the process 

of inference of any f E C, the RIIM M produced at most one index. 



Lemma 1. [MA93, MA951 (1) If a class CluTity=l contains F i n ~ u n c '  then the class C is 

not refutably inferable. 

(2) If a class C satisfies the following conditions (a) and (b), then the class C is refutably 

inferable. (a) For any f 6 C ,  there exists a finite graph gG graph( f )  G ~ ~ ~ " y ( f l ) + '  such 

that,  no vi E C explains g. (b) For any finite graph g, whether or not there there exists 

vi E C that explains g is decidable. 

The purpose of this paper is to construct rich series of refutably inferably classes of 

functions. So we give a brief review of rich inferable classes in language learning. Con- 

sider CSL,  the set of context-sensitive languages. CSL has very rich power and is an 

importnt languages class. If a hypothesis space is refutably inferable, then in principle we 

can constract a machine discovery system for concepts in the hypothesis space. But C S L  

is easily shown to be not refuably inferable from Lemma 1,(1). Mukouchi and Arikawa 

[MA93, MA951 constructed a rich subhierarchy {L(LB[<"])),>~, - defined in the follwoing, 

of CSL such that each L ( L B [ < ~ ] )  is refutably inferable from complete dat,a and solove this 

problem. 

EFS is a kind of logic programming over character strings [ASY92]. Let LB[<"] be 

the set of length-bounded EFS's with at most m axioms and L(LB[<"]) be the set of 

languages defined by such EFS's. u , ~ ~ L ( L B [ ~ ~ ] ) = c s L .  For any m 2 1, L(LB[Lrn]) 

contains infinitely many languages. L(LB[<']) contains the set of pat tern languages [Ang80], 

which is refutably inferable. In this case, we say that { L ( L B [ ~ ~ ~ ) ) , > ~  - is a 1-dimensional 

rich series of refutably inferable classes slincing CSL. Shinohara [Shi94] showed the similar 

richness of L(LB[LrnI) about inferability from positive data. 

From the above consideration, we formalized the notion of rich series of refutably infer- 

ably classes of functions slicing a class which is not refutably inferble as follows. For a class 

C of functions, # f unc(C) denotes the number of functions in C. 
Since an RIIM know the arity of a target function from its presentation in our frarne- 

work, it is worth nothing to consider a rich class which is not ric,h when the a,rity of fun~t~ios  

in the class is fixed. Thus in the following definition, the cardinality of a class of functions 

with any fixed arity is considered. 

Definition 3. (1) Let C(m) be a class defined for m 2 mo. Let C, be a class which is 

not refutably inferable. {C(m)),>,, - is said to be a I-dimensional rich series of refutably 

inferable classes slicing C, if the following conditions are satisfied. 

(a) There exsits a class B such that B C(mo),  #func(BlUTit,=,) = cr, for any s 2 1 
and B is refutably inferable. 

(b) For any m 2 mo, C(m) is refutably inferable and # f unc((C(m+l) \C(m))  I u T i t y = s )  = 

oo for any s 2 1. 

(c) ~m>moC(m) = C*. 
(2) Let C(m, n) be a c,lass defined for m 2 mo and n _> no. Let C, be a class which 

is not refutably inferable. {C(m, n ) ) m ~ m o , n ~ n o  is said to be a 2-dimensional rich series of 

refutably inferable classes slicing C, if the following conditions are satisfied. 



(a) There exsits a class B such that B & C(rno, no),  # ~ u ~ c ( B . . ~ ~ , = , )  = oo for any 

s > 1 and B is refutably inferable. 

(b) For any rn > rno and n > no, C(rn, n)  is refutably inferable, # f unc((C(m + 1, n)  \ 
C(m,  n))  laTity=s) = for any s 2 1, and #f unc((C(rn, n + 1) \ C(m,  n))  larity=s) = 00 for 

any s > 0. 

(c) Urn>mo,n>noC(rnr n)  = Cx. 

3. Loop Programs and Simple Functions 

Loop program is an abstract model of conventional procedure-oriented programming lan- 

guages, e.g., Pascal or C. Thus the programming system of loop programs is very suitable 

to develop a realistic theory of function learning. 

Definition 4. [MR67] Let X and Y be variables. A loop program is a finite sequence of 

instructions of the following 5 types with input and output instructions. X:=Y (substitute 

the contents of Y to X), X:=X+l (increment X by I ) ,  X:=O (make the contents of X 

to 0), LOOP X, END. Each variable stores one arbitrary number. The contents of work 

variables and output variable are initialized to 0. The instructions "LOOP X" and "END" 

are balanced. "LOOP X subprogram A END" means executing subprogram A by the [XI 

times, where [XI is the contents of variable X upon entering the loop. The number of 

looping is not changed in executing the loop. For n E N, Loop(n) denotes the set of all 

loop programs containing at most n nesting of loops. 

Example 2. In the following, the first loop program is in Loop(1) and computes the func- 

tion Z=2X+Y. The second loop program is in Loop(2) and computes the function Z=XY. 

INPUT X,Y; Z:=0; LOOP X Z:=Z+l; Z:=Z+l END; LOOP Y Z:=Z+I END; OUTPUT Z 
INPUT X,Y; Z:=O; LOOP X LOOP Y Z:=Z+l END END; OUTPUT Z 

The set of SF-programs is another programming system for the set FLoop(1) and is 

needed later to construct rich series of refutable classes. 

Definition 5.  [Tsi70] The set of all SF-programs is the closure set of expressions (left hand 

sides of the following equations) constructed through finite number of applications of cornpo- 

sitions from the following 8 types of initial expressions. succ(x) = x + 1, zeron(xl, . . . , xn) = 

0, u:(x1,. . . ,x,) = xi, plus(xl, x2) = 21 + 2 2  (2-ary), pred(x) = X-1, i f (x l ,xz)  = 21 if 

x2 = 0, zero if x2 > 0, div(x, d) = x div d(unary), rnod(x, d) = x mod d(unary) (truncated 

devision and residue by a constant d > 1). (For integers x and y, x l y  = x - y if x > y ,  0 

otherwise. ) 
A simple function is a function computed by an SF-program. For an SF-program g ,  

#pred(g)(or P,) denotes the total number of occurrences of "pred" appearing in g. Let 



dl, .  . . , dt be all constants that occur in an SF-program g either as div(x, di) or mod(x, di) 

allowing repetition. IIdvs(g)(or D,) denotes the product dl x . . . x dl, if such a constant 

exists, 1 otherwise. Let (#pred(g) + l)IIdvg(g) be denoted by bound(g)(or B,). 

E x a m p l e  3. Let g and h be the following SF-programs. Then we have #pred(g) = 0, 

II$VS(~) = 1, #pred(h) = 2, IIdvs(h) = 36. 

g=plus  ( p l u s  ( i f  (x ,  y)  , succ  (succ  (zero3 (x ,  y , z )  ) ) ) , z )  , 
h = i f  ( d i v  (mod (x ,4) , 3 )  , d i v  (pred (pred (u: (x , y , z )  ) ) , 3 )  ) . 

Let 6 ) l , d  ) 1 and n 2 1. Two points x = (x l , .  . . ,x,) and x' = (x i , .  . . ,xk) 

are compatible w.r.t. b and d if the following two conditions are satisfied. (1) For each i 

(1 5 i 5 n)  with xi < b or xi < b, we have xi = xi. (2) For each i (1 5 i 5 n)  with 

xi 2 b and xi 2 b, we have xi = xi(mod d). Compatibility w.r.t. two constants b and 

d is an equivalence relation on Nn .  For n 2 1 and b ) 0, Cube(n, b) denotes the set 

{(xl, . . . , x n )  E Nn I O < b'i 5 n,O 5 X i  < b). 

Let b ) 1, d ) 1, n ) 1 and e be a graph notation of n-ary function with Cube(n, b + 
2d) as its domain. Let x = (xl, . . . , x,) be any point on Nn. Consider the points y = 

(yl , .  . . , y n )  and Z' = (z;, . . . , z r n ) ( l  < r 5 n) defined as follows. Let yi = xi for i with 

1 5 i 5 n and xi < b, let yi = b + (xi mod d) for i with 1 < i 5 n and xi ) b, let 

z: = yi for i with 1 < i < n and i # r ,  and let z; = yT + d. Define the function 

L(n, b, d, e)(x) = e(y) + C:=l(e(zr) - e(y))(xr - yr)ld- 
We summarize the fundamental results of loop programs and simple functions. 

T h e o r e m  1. [MR67, Tsi7OI (i) F ( L o o ~ ( O ) ~ ~ ~ ~ ~ ~ = ~ )  = {f ( ~ 1 , .  . . , x,) = xi + k I 1 5 i 5 n 

and k E N} U {f (x l , .  . . , x,) = k I k E N).  Thus, FLoop(0) is refutably inferable. 

(ii) F.Loop(l) is the set of all simple functions. 

(iii) FLoop(n) $ FLoop(n + l ) ( n  2 0). 

(iv) UnENFLoop(n) is the set of all primitive recursive functions. 

(v) Loop(2) contains T(x,  x, y), where T is Kleene's T-predicake. 

(vi) Let g be an SF-program with arity n. For any equivalent class C of compatible 

points w.r.t. bound(g) and IIdvs(g) and any i with 1 < i < n,  there exist constants E &$ 
such that the following equation holds, where &$ denotes the set of all non-negative rational 

numbers. For a n y x  = (21,. . . , x,) and y = ( ~ 1 , .  . . ,y,) E C ,  g(x)-g(y) = c ~ = ~ ~ F ( x ~ - ~ ~ ) .  

Further, 9 = L(n, bound(g), ndvs(g), graph(9) / ~ u b e ( n , b 0 u n d ( ~ ) + 2 n d ~ ~ ( ~ ) ) ) .  

(vii) Consider gl = L(n, bl, dl, el) and g2 = L(n, b2, d2, e2). If gl and 92 are agree on 

Cube(n, max(bl, b2) + 2 x gcm(dl, d2)), then gl and 92 are agree on Nn.  



4. Existent Natural Hierarchies of Loop Programs 
Are Not Suitable for Machine Discovery 

Let P r i m  be the set of all primitive recursive functions. Since P r i m  contains FinFuncl ,  

P r i m  is not refutably inferable. The hierarchy { F L o ~ p ( n ) ) , > ~  - is a candidate for rich 

series of refutably inferable classes slicing Pr im.  So we investigate refutable inferabili ty of 

FLoop(n). 

Theorem 2. (1) FinFuncl  & F(Loop(1) l,,ic,l). 

(2) For any n 2 1, FLoop(n) are not refutably inferable. 

Proof. Let f be a function in FinFuncl  defined by f ( x )  = 1 if x = di ( l  5 i 5 n) ,  0 

otherwise, where d l , .  . . , d, are constants satisfying dl < d2 < . . . < d,(n 2 0). 

The following Loop(1) program P computes the function f .  

{Program P) 

INPUT X 

Y:=O;I[O] :=O;I [ l ]  :=1[1]+1;1[2] :=1[2]+1; .  . . , I [dn-I]  := I [dn - l ]+ l ;  

I [dn] :=I [dn] + I  ; I [dn+I] : = I  [dn+l] + I  ; 

LOOP X I[dn+l]  :=I[dn];I[dn]  :=I[dn-I] ;  . . . I[2] : = I [ I ] ; I [ l ]  :=0 END; 

LOOP I [d l+l ]  Y [I] :=Y [I] +I END; LOOP I [dl]  Y [I] :=0 END 

LOOP I [d2+1] Y [2] : =Y [2] +I END; LOOP I [d2] Y [2] : =0 END 

. . . 
LOOPI[dn+l] Y[n]:=Y[n]+lEND; LOOPI[dn] Y[n]:=O END; 

LOOP Y [I] Y : = Y + l  END; LOOP Y [2] Y:=Y+l END; . . . LOOP Y [n] Y :=Y+1 END; 

OUTPUT Y 

Even the second smallest class FLoop(1) in the hierarchy { F L o ~ p ( n ) ) , > ~  - is not refutably 

inferable. Theorem l(i),(v) say that FLoop(0) is a trivial class and FLoop(2) is a set of 

functions hard to compute in realistic meaning. So we focus our attention on FLoop(1) and 

seek a rich series of refutable inferable classes slicing FLoop(1). Goetze and Nehrich[GN65] 

constructed a natural sub-hierarchy {FLoop(l, m))m>o - of FLoop(l),  where Loop(1, m)  de- 

notes the set of all loop programs containing at most rn unnested loops. The first program 

in Example 2 is in Loop(l,2). FLoop(1,l)  is conceived to be the smallest class in the 

existent natural hierarchies of loop functions containing FLoop(0). 

By using a simulation technique [GN65], we show that FLoop(l,  1) is not refutably 

inferable. Thus, we need another view in order to construct a rich series of refutable classes 

slicing FLoop(1). 



5 .  Refutable Inference of Simple Functions Computed 
by Loop Programs 

We adopt SF-programs as another programming system for FLoop( l ) ,  and #pred(g) and 

IIdvs(g) as views for measuring an SF-program g. Since FSirnple(arity = n ) ,  defined in 

the following, is equal to the set of all n-ary simple functions, we use an SF-program in 

Simple(arity = n )  as a standard form of an n-ary SF-program. 

Definition 6. Let Simple(arity = n )  be the set of expressions defined inductively as 

follows. Let X I , .  . . , x ,  be variables. ( 1 )  z ~ ~ o ~ ( x ~ , .  . . , s,), u : (x l ,  . . . , x,)(O 5 i  5 n )  
E Sirnple(arity = n ) .  ( 2 )  f ,  f l ,  fi  t Sirnple(arity = n )  + succ ( f ) ,  plus(f i ,  f 2 ) ,  p red ( f ) ,  

i f ( f l , f i ) ,  d i v ( f ,  k ) ( k  2 I ) ,  m o d ( f , k ) ( k  ) 1)  E Simple(arity = n ) .  

Let Simple = ~ , > ~ S i m l e ( a r i t y  - = n ) .  For c ) 0 and d ) 1, Sirnple(#pred 5 c, Ilclvs < 
d )  denotes the set {g E Simple I #pred(g) < c,I ldvs(g)  5 d}.  For c 2 0 ,  d ) 1 and 

n 2 1, Simple(' c, < d,  = n )  denotes the set {g E SimpZe(arity = n )  / #pred(g)  5 
c,Hdvs(g)  < d } .  For k ) 3 and n 2 1, Simple((#pred + 3)Ildvs 5 k )  denotes the set 

{g  E Simple I (#pred(g) + 3)ndvs (g )  5 k } .  

First, we show the inside structure of FSimple(ari ty  = n ) .  The following lemma says 

that F,S imple ( l  c, < d,  = n )  is a fundamental subclass with 2 independent views. 

Lemma 2. Let c, c' 2 0,and d, d' 2 1,and n 2 1. 

( 1 )  F(Loop(0)  laTity=n) $ FSimple(< 075 1, = n ) .  

( 2 )  FSirnple(< c, 5 d, = n )  $ FSimple(< c + 1 , s  d,  = n ) .  

( 3 )  F S i m p l e ( 5  c, 5 d, = n )  $ F S i r n p l e ( l  c, 5 d + 1, = n ) .  

Further, each gap in ( 1 )  ,(2) , (3)  contains infinitely many functions. 

(4) [c=c7 and d=d7] H FSimple(< c, 5 d,  = n )  = FSimple(< c', 5 dl, = n ) .  

Proof. ( 1 )  Let x = ( s l , .  . . , s,). Consider gs(x) = i f  ( s ,  x l )  E FSimple(< 0, < 1, = n ) ( s  > 
1) .  By Theorem 1, gs $ FLoop(0) IaTity=n- 

( 2 )  Consider gs(x) = i f  ( x l ,  d i v (x l ,  d ) i ( c +  1 ) )  +s E F S i m p l e ( 5  c+ 1 , s  d,  = n )  ( s  E N ) .  

Assume that there exists h E Simple(< c,  5 d, = n )  such that g s ( x )  = h ( x ) .  Let s o  = 

(c+2)d-1, xo = (xo,O,.  . . ,O),xl = (xo+Dh,O,. .  . ,O).  Wehavegs(xo) = xo+s,g,(xl) = s.  

Since xo, xl are compatible w.r.t. Bh and Dh,  Theorem 1 shows that there exist a constant 

q E &$ such that g S ( x l )  - g s ( x o )  = qDh and Thus q = - xO/Dh  ( x O  > 1, Dh 2 1) .  This is 

a contradiction. 

( 3 )  Consider g s ( x )  = div(x l ,  d  + 1) + s  E FSimple(< c, < d + 1, = n )  ( s  E N ) .  Assume 

that there exists h E Simple(' c, 5 d,  = n )  such that g s ( x )  = h ( x ) .  Let xo = min{ t (d  + 
1)  I t E N , t ( d  + 1)  ) Bh}, X O  = ( X O , ~ ,  . . . , O ) ,  X 1  = ( 2 0  + Dh,O,. . . , O ) ,  xz = (xo + 
(d div Dh)Dh ,  0 , .  . . , O ) ,  X Q  = (so + (d div Dh + l ) D h ,  0 , .  . . , 0 ) .  We have g s ( x o )  = g s ( x l )  = 

g S ( x z )  = t + s ,  g S ( x 3 )  = t + 1 + s. Since xo, x l ,  x2 and X Q  are compatible w.r.t. Bh and 



Dh, Theorem 1 shows that there exist a constant q E &$ such that gs(xl) - gs(xo) = qDh 
and gs(x3) - gs(x2) = qDh. Thus q = 0 and q = l /Dh(Dh ) I).  This is a contradiction. 

(4) By arguments similar to (2) and (3). 

procedure RIIM-SF(c, d); 
input: a presentation of a total function; 

given: integers c 2 0, d 2 1; 
output: an SF-program in Simple(#pred 5 c, ndvs < d) or "refute"; 

begin 
EX := 0; readstore(EX); 
let n be the arity of a presentation in EX; 
repeat readstore(EX) until {(xl, . . . , x,) I (XI,  . . . , x,, y )  E EX} contains Cube(n, (c + 3)d); 

9 := {(XI) . . . , xn, y )  E EX I (21, . . . , x,) E Cube(n, (c + 3)d)); 
H := {h = L(n,  (P + l )D, D,g) I 0 5 P 5 c, 1 5 D 5 d, h explains EX}; 
while H contains two equivalent functions do remove the redundant function from H; 
/* card(H) denotes the number of elements in H * /  
if card(H) = 0 then output "refute" and stop; 

while card(H) > 1 do begin 
read-store(EX); 
remove from H all functions that do not explain EX; 
if card@) = 0 then output "refute" and stop 

end; 
let h be the only function left in H ; 
alternately execute the following two processes 1 and 2; 

begin /* process 1 */ 
repeat read-store(EX) until h does not explain EX; 
output "refute" and stop 

end; 
begin /* process 2 */ 

enumerate all programs q in Simple(#pred 5 c, IIdvs 5 d, arity = n) 

and search for a program q that is equivalent to h; 

if such a program q is found then output q and stop the process 2 

end; 
end; 
procedure read-store(EX); 
begin 

read the next fact (XI ,  . . . , x,,y); EX := EX U {(XI, , x ~ , Y ) }  
end 

An RIIM for the class FSimple(#pred 5 c, ndvs 5 d) 

We give a procedure RIIM-SF(c, d) that refutably infers class FSimple(#pred 5 
c, IIdvs 5 d) and produces only one SF-program. An RIIM for FSimple((#pred+3)IIdvs 5 



Ic) is similarly obtained. Thus, we have the following refutable inferabilities and rich series 

of refutably inferable classes slicing FLoop(1). 

Theorem 3. (1) For any c 2 0 and d 2 1, the class +Sirnple(#pred 5 c, IIdvs 5 d) 

is refutably and finitely inferable. Thus, {FSirnple(#pred < c, I'Idvs 5 d)},>o,d>l - - is a 

2-dimensional rich series of refutably inferable classes slicing FLoop(1). 

(2) For any Ic 2 3, the class FSirnple((#pred + 3)IIdvs < k )  is refutably and finitely 

inferable. Thus, {FSirnple((#pred + 3)IIdvs 5 IC )}J+~  - is a 1-dimensional rich series of 

refutably inferable classes slicing FLoop(1). And this slicing is maximal w .r. t . the size of 

finite examples needed to determine all candidates. 

6. Concluding Remarks 

In this paper, we investigated refutable inferabilities of primitive recursive functions com- 

puted by a concrete programming system, loop programs, in order to develop a realistic 

theory of machine discovery for scientific laws represented by functions. The existent natu- 

ral hierarchies of loop programs are shown to be not suitable for machine discovery. Then 

we construct two types of rich series of refutably inferable classes and gave a characteriza- 

tion of refutable inferabilities of simple functions computed by loop programs. 
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