
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Theory-Generating Abduction from Finite Good
Examples

Hirata, Kouichi
Research Institute of Fundamental Information Science Kyushu University

https://hdl.handle.net/2324/3204

出版情報：RIFIS Technical Report. 109, 1995-04-15. Research Institute of Fundamental
Information Science, Kyushu University
バージョン：
権利関係：



RIFIS Technical Report 

Theory-Generating Abduction from Finite Good Examples 

Kouichi Hirata 

April 15, 1 995 

Research Institute of Fundamental Information Science 

Kyushu University 33 

Fukuoka 81 2, Japan 
E-mail:hirata@ai.kyutech.ac.jp Phone:0948-29-7632 



Theory-Generating Abduction from Finite Good Examples 

Kouichi Hirat a 
Department of Artificial Intelligence 

Kyushu Institute of Technology 
Kawazu 680-4, Iizuka 820, Japan 
e-mail: hirata@ai. kyutech.ac.jp 

April 15, 1995 

Abstract 

The theory-generating abduction is a kind of abduction which generates a theory to 
explain a surprising fact, and proposes it as a hypothesis. In this paper, by regarding the 
surprising facts as good examples for machine learning, we investigate theory-generating 
abduction from good examples. First, we introduce a subclass of logic programs, called 
weakly reducing programs WRld1 with dotted pairs. For the class WR{d), we formulate 
the concept of good examples, and design the algorithm of theory-generating abduction. 
Then, we show that the program of the class WRid) is constructed correctly by this 
algorithm from finite good examples. Furthermore, by using not only dotted pairs but 
also concatenations, we extend the class to weakly reducing programs WRId7,) 
with dotted pairs and concatenations. From the viewpoint of learning logic programs, 
any good example for the program of the class WR{d7c) should be given by using only 
dotted pairs. Then, it is a problem how to determine which of the arguments' terms 
for any good example are described by concatenations. In this paper, we design the 
algorithm of theory-generating abduction for the class WRjd7,), which determines such 
arguments, from good examples described by dotted pairs. We show that the program 
of the class WR{d,c) is also constructed correctly by this algorithm from finite good 
examples described by dotted pairs. 

1 Introduction 

C. S. Peirce, who was a philosopher, scientist and logician, asserted that every scientific inquiry 
consists of three stages, abduction, deduction, and induction [Pei65]. According to him, every 
scientific inquiry begins with an observation of a surprising fact. The first stage, abduction, 
of scientific inquiry proposes a hypothesis to explain why the fact arises. The second stage, 
deduction, derives new conclusions from the hypotheses. The third stage, induction, tests 
empirically the hypotheses and conclusions. An inference schema of abduction is described by 
the following three steps [Pei65]: 

1. A surprising fact C is observed. 

2. If A were true, then C would be a matter of course. 

3. Hence, there is reason to suspect that A is true. 

In general, the above inference schema is depicted by the following syllogism: 



Hirata [Hir93] has classified abduction in computer science into five types; rule-selecting 
abduction, rule-finding abduction, rule-generating abduction, theory-selecting abduction, and 
theory-generating abduction. The theory-generating abduction, which is the most powerful 
abduction for acquisition of explanatory hypotheses, is an abduction which generates a theory 
to explain why the surprising fact arises, and proposes it as a hypothesis. In this paper, we 
investigate theory-generating abduction. 

According to Peirce [Pei65], abduction is an inference which begins with an observation 
of a surprising fact. By comparing theory-generating abduction with machine learning, we 
can regard the surprising facts for abduction as good examples for machine learning. The 
learnability from good examples has been first formulated by Freivalds et al. [FKW93] in the 
field of inductive inference of recursive functions. Furthermore, Lange et al. [LNW94] have 
applied it to language learning. On the other hand, in the field of inductive logic program- 
ming, Ling [Ling11 has investigated learning logic programs from good examples. Also Aha et 
al. [ALLM94] has discussed inductive logic programming from a small set of training examples, 
which are considered as good examples. In this paper, we discuss theory-generating abduction 
from such good examples. 

As theoretical results in inductive logic programming, Shinohara [ShigO] has shown that 
the class of linear Prolog programs is inferable in the limit from positive examples. Arimura 
et al. [AS01941 have extended the result by introducing some subclasses of linear Prolog. In 
this paper, we introduce another subclass of logic programs, called weakly reducing programs 
WRld) with dotted pairs, and formulate the concept of good examples for WR{d). For the 
class WRld), we design the algorithm of theory-generating abduction from good examples. In 
particular, we pay our attention to the number of good examples, and show that the program 
of the class WR{d) is constructed correctly by this algorithm from finite good examples under 
fixed constant symbols. 

When we design logic programs, we need to use some auxiliary predicates frequently. How- 
ever, in learning logic programs from examples, it is usual that no examples with the auxiliary 
predicates are given in a learning algorithm. Then, in the field of inductive logic programming, 
the problem to find such auxiliary predicates, called predicate invention, is one of the most 
important problem. In this paper, we discuss this problem by introducing a function concate- 
nation, because we can easily characterize the class of logic programs by the concatenations. 
Then, we extend the class from WRjd) to weakly reducing programs WRld,,) with dotted pairs 
and concatenations. 

For the class WR{d,c), from the viewpoint of learning logic programs, any example should 
be given by using only dotted pairs. Then, it is a problem of theory-generating abduction for 
WR{d,c) how to determine which of the arguments' terms for any good example are described 
by concatenations. In this paper, we design the algorithm of theory-generating abduction for 
WRId,,), which determines such arguments, from good examples described by dotted pairs. 
We also show that the program of the class WRid,,) is correctly constructed by this algorithm 
from finite good examples described by dotted pairs under fixed constant symbols. 

This paper is organized as follows: In Section 2, we prepare some notions necessary for later 
sections. In Section 3, we introduce the class weakly reducing programs WR{d) with dotted 
pairs, and formulate the concept of good examples for WR{d}. In Section 4, we design the 
algorithm of theory-generating abduction for WRjd). We show that the program of WR{d) is 
constructed correctly by this algorithm from finite good examples. In Section 5, we extend the 
class from WRld) to weakly reducing programs WR{d,c) with dotted pairs and concatenations, 
by introducing a function concatenation. The program defining the reversal of a list is included 



in WR{d7cl. In Section 6, we formulate the concept of good examples described by dotted pairs 
for WR{d,c), and design the algorithm of theory-generating abduction for WR{d7c). This 
algorithm also determines which of arguments' terms are described by concatenations. We 
show that the program of WR{d,c) is also constructed correctly by this algorithm from finite 
good examples described by dotted pairs. 

2 Preliminary 

In logic programming [Llo87], the following Tp-operator provides the link between the declar- 
ative and procedural semantics for P .  Let P be a definite program and Bp be the Herbrand 
base for P .  Then, the mapping Tp : 2Bp ---+ 2Bp is defined as follows: 

Tp(I) = {A E Bp I A +-- A1, . , A, : a ground instance of a clause in P, {Al, , A,) 2 I), 

for some Herbrand interpretation I .  In order to represent the number of applications of such 
Tp, we define 

and, for any n 2 0, 

In the following sections, we introduce the concept of good examples. In order to charac- 
terize good examples, we introduce an unfolding operator Up similar to Tp-operator as follows: 

Up(I) = {A0 I A +-- B1, . . . ,  Bn E P, B,' E I, BiO = B,'0 (1 5 i 5 n)). 

Also we define 

and, for any n 2 0, 

Example 1 Let PI be the following program: 

where d means a dotted pair. Formally, d is a function element x list ---+ list such that 
d(W,X) = Y means that Y is a list adding W to the head of X .  Then, 

UPlT 0 = 4, 
UplT 1 = {p(nil, X ,  X)) ,  
Upl T 2 = {p(nil, X ,  X) ,  p(d(W, nil), X ,  d(W7 X))) ,  
UplT 3 = {p(nil, X ,  X) ,  P ( ~ ( W ,  nil), X, d(W, X)) ,  p(d(W1, d(Wz, nil)) X ,  d(W' 7 d(W2 7 XI)  1. 



3 Weakly Reducing Programs with Dotted Pairs 

In this section, we introduce the following subclass of definite programs, called weakly reducing 
programs with dotted pairs, as the target class of theory-generating abduction. 

Definition 1 Let P be the following definite programs: 

Then, P is called weakly reducing with dotted pairs, denoted by P E WR{+ if P satisfies the 
following conditions: 

1. for any i (1 5 i 5 n) , ti is of the form either d(Wi, Xi) or Xi, where Wi is a variable, 

2. a t  least one j ,  t j  is of the form d(Wj,Xj), 

3. for any i (1 5 i 5 n), Xi is mutually distinct, 

4. for any i ,  si is of one of the form nil, X ,  d(Y, nil) or d(W, Z ) ,  

5. if si is of the form either d(Y, nil) or d(W, Z), then ti is of the form d(Wi, Xi). 

Note that WR{d1 is a similar class as context-free transformation ~ 3 7 % ~ ~ ~  with a flat base, 
introduced by Arimura et al. [ASOI94]. 

For a ground atom a and a program P E WRld), input(&, P) is the set of input clauses 
which is applied in the SLD-refutation of P U {+ a) .  On the other hand, length@, P) is the 
length of the SLD-refutation of P U {+ a) .  Note that, for a program P E WR{dl, the length 
of the SLD-refutation is determined uniquely. 

Definition 2 Let P E WR{d). For a ground atom a such that P t- a, a is a good example 
for P in WRId) if input(&, P )  = P, length(@, P )  = 2, and any argument's term of a includes 
at  most one empty list nil. 

Example 2 For PI in Example 1, atoms 

p(d(1, nil), nil, d(1, nil)), 
p(d(1, nil), d(2, nil), d(1, d(2, nil))), 

~ ( 4 1 ,  nil), 4 2 , 4 3 7  nil)), d ( l ,  4 2 , 4 3 7  nil)))), 

are good examples, while atoms 

p(n21, d (1, nil), d(1, nil)) , 
p(d(l,  d(2, nil)), 4 3 ,  nil), d(l,d(2,d(3, nil)))), 
p(d(l,  d(2, nil)), d(3,d(4, nil)), d ( l ,  d(2,d(3,d(4, nil))))), 

are not. 

Lloyd [Llo87] pointed out that if A E Bp and P U {+ A)  has a refutation of length N ,  
then A E Tp 1' N .  The following lemma claims that, if P E WRId), then the converse also 
holds. 

Lemma 1 Let P E WR{d). If A E Bp and A E Tp 1' N ,  then P U {+ A) has a refutation of 
at  most length N.  



Proof The result is proved by mathematical induction on N.  
Let P be the following program: 

If N = 1, the result obviously holds. 
Suppose that the result holds for N - 1. Suppose that A E Tp f N.  By the definition of 

Tp T N ,  there exists a substitution 0 such that p(tl, , tn)O = A and {p(X1, . . . , Xn)O) Tp f 
( N  - 1). By the induction hypothesis, P U {+ p(X1, . . . , Xn)O) has a refutation of at  most 
length N - 1. Hence, P U {+- A) has a refutation of at most length N.  

Note that Lemma 1 only depends on the form of programs. If a given program is binary, 
that is, the number of atoms in bodies in any clauses is at most 1, then Lemma 1 also holds 
for the program. 

Lemma 2 Let P E WRld). Then, a is a good example for P if and only if there exists a 
substitution 0 such that a = p0, where {p) = Up T2 - Up T 1. 

Proof By Lemma 1, for A E Bp, A E Tp f N  if and only if P U {+ A) has a refutation of at  
most length N .  Then, for any A E Bp, A E Tp f N - Tp f ( N  - 1) if and only if P U {t A) 
has a refutation of just length N.  

By Definition 2, a is a good example if and only if P has a refutation of the length 2, and 
if and only if a E Tp f 2 - Tp f 1. On the other hand, by the definition of Tp and Up, 

TP f N = {p(tl, , tn)O I p(tl , .  . . , tn) E Up T N,  0 : ground substitution ). 

Then, a is a good example for P if and only if there exists a substitution 0 such that P0 = a, 
where p E Upf2  - Upf1. For such p, since P E WRld), {P) = UPf 2 - UPTI. 

Let P and Q be formulas. Then, P is more general than Q, denoted by Q 5 P, if there 
exists a substitution 0 such that P = Q0. Furthermore, P = Q means that P 5 Q and Q 5 P .  
In other words, P is a variant of Q. 

For the unfolding operator, the following lemma holds: 

Lemma 3 Suppose that PI, P2 E WRjd) and {pk) = Upk T 2 - Up* f 1 (k = 1,2). Then, 
pl = P2 if and only if PI = P2. 

Proof Suppose that ,& = p2. Then, there exists an n-ary predicate symbol p such that 

By Lemma 2, 

= p(t1, . . , tn)0, where p(s1, . . ., s n )  = p(X1, . . ., Xn)Q, 
p2 = p(ul, . . -  ,u,)o, where p(v1,. . . , vn) = p(K,  .. . , Yn)g- 

Here, p( t l , .  . . , tn)O = p(u1, . . , un)a. 
Since the variables of bodies of Pl and P2 are mutually distinct, we can suppose that 0 and 

o are of the following forms: 



Suppose that p(s17. . , s,) $ p(vl,.  , v,). Then, p(X1, . . . , Xn)O $ p ( 6 ,  . . . , Yn)O. Here, 
a substitution 0 replaces Xi in ti with si and a substitution 0 replaces Y ,  in ui with vi. Since 
p(s17 . . , s,) $ p(v17 . . . , vn), there exists an index j (1 5 j 5 n) such that sj $ vj. Then, we 
consider the following four cases: 

1. S j  = nil, vj = d(Y, nil), 

2. sj = nil, vj = d(W, Z) ,  

3. sj =d(Y,nil),  vj = nil, 

4. sj = d(W, Z), vj = nil. 

For the case 1, t j  is of the form either X j  or d(Wj7 Xj), and uj  is of the form d(K,  5 ) .  
Then, tjO is of the form either nil or d(Wj, nil), and uj0  is of the form d ( 6 ,  d ( 5 ,  nil)). Hence, 
tjO $ u p .  For the case 2, t j  is of the form either X j  or d(Wj7 Xj), and uj  is of the form d(T/, ,Y,).  
Then, tjO is of the form either nil or d(Wj, nil), and uj0  is of the form d ( 5 ,  d(Wj7 2) ) .  Hence, 
tj0 $ Ujg. For the case 3 and 4, we have the same proof. Then, P1 $ P2, it is a contradiction. 
Hence, p(s17 . , s,) = p(v17 , v,). 

Suppose that p(s17 . . , s,) p(vl, . . , vn) and p(t17 . . , t,) $ p(u1, . . . , u,). Since PI, P2 E 
WR{d17 for any i (1 5 i 5 n), ti is of the form either d(Wi7 Xi) or Xi, and ui is of the form 
either d(&, Y,) or Y,. Since p(t17 . . . , t,) $ p(u17 , u,), there exists an index 1 (1 5 1 5 n) 
such that one of the following three cases holds: 

If t l  = d(Wl,Xl) and ul = 6, then t10 = d(Wl, sl) and u p  = vl. Since sl = vl, t10 $ vl0. 
On the other hand, since P1 = P2, t10 = u p ,  and it is a contradiction. 

If t l  = XI and u1 = d(Zl, K), we obtain the same result. 
If tl  = d(Wz7 Xl) and u1 = d(Z17 Y;), then, since p(t17 . . . , t,) $ p(ul, . . . , u,), there exists 

an index k (1 5 k 5 n) such that 

For such indices k and 1, we consider the following two cases. 

1. If there exists an index j such that Wl = Xj  and Zl = Y,, then, we obtain the 
following results. 

2. Otherwise, we also obtain the following results: 

Hence, pl = p(t17.. . , t,)O $ p(u17 , un)O = 02, and it is a contradiction. 
The converse obviously holds. 



4 Theory-Generating Abduction for WR{dl 

The theory-generating abduction is a kind of abduction which generates a theory to explain 
a surprising fact and proposes it as a hypothesis. An inference schema of theory-generating 
abduction is depicted as follows: 

C: surprising fact wrt B 
Generate a theory A such that A makes C true . 
Propose a hypothesis A 

In this paper, we deal with the simplest theory-generating abduction such that B = 4. Hence, 
the above inference schema is described by the following syllogism: 

In this section, we design the algorithm of theory-generating abduction for WRtd).  First, 
we introduce some notions and lemmas. 

For a term ti, the length ltil of ti is defined as follows: Itil = 1 if ti = nil, and ltil = 1 + 1 
if ti = d(a,si) and lsil = 1. For an atom a = p( t l , . . . , t n ) ,  the length la1 of a is defined as 
It11 + . . . + ltnl. 

By considering the algorithm PROPOSE-WR{d) as Figure 1, we obtain the following 
lemma. The algorithm PROPOSE-WR{d) is a refined version of the algorithm PROPOSE 
for rule-generating abduction [Hir94]. 

Lemma 4 Suppose that P E WRld) and {P) = U p  f 2 - Up f 1. Then, P is constructed 
correctly from P in O(lP1) time. 

Proof Let P be an output of PROPOSE-WR{dl(P, P ) .  Suppose that P is of the following 

head +- body 
= { (body)@ 

where ,O = (head)@. Then, U p  T 0 = 4, U p  f 1 = {(body)O), and U p  T 2 = {(body)O, (head)@). 
Hence, U p  f 2  - U p  f 1 = {(head)O) = {P). By Lemma 3, ,O characterizes uniquely P. Hence, 
P is constructed correctly from p. 

It is obvious that the algorithm PROPOSE-WR{d) runs in O(lP1) time. 

By using Plotkin's least general generalization lgg [Plo70], the following lemma holds. 

Lemma 5 If al and a2 are good example for P, then there exists a substitution 0 such that the 
least general generalization lgg(al, a2) of a1 and a 2  is equal to PO, where { P )  = U p  f 2 - Up f 1. 

Proof By Lemma 2, ,8 is a common generalization of a1 and a 2  Then, ,8 is also a generaliza- 
tion of lgg (al, a2) .  

Theorem 1 Suppose that P E WRld), {P) = Up T 2 - Up f 1, and {ai)iEN is a family of good 
examples for P .  Then, there exists an index 1 such that lgg (al, . . , a l )  r P. 

Proof Let /3 be an atom p(ul , .  . . , u,) and yi be the following atom defined inductively: 



Algorithm PROPOSE-WR{d) (P, {Cl, C2}) 
input ,B : atom 
output P = {Cl, Cz} E WR{d1 
for i = 1 t o  n 

if ti is of the form d(W:, . .) then 
head-argi := d ( ~ : ,  Xi); /* Xi is a new variable */ 

else 
head -argi := Xi; 

end if 
end for 
head := p(head-argl,. . - , head-arg,); 
body := p(X1, . , X,); 
Cl := head t- body; 
C2 := (body)0, where P = (head)0; 
output P = {Cl, C2} 

Figure 1: Algorithm PROPOSE_WR{d) 

Let P be the following program: 

By the definition of P, for any i, ui is of the form nil, X, d(Y, nil), d(W, Z),  d(U, d(V, nil)), or 
d(Q, d(R, S)) .  By Lemma 5, 71 5 ,8 and 71 5 yi+l for any 1. 

Let yj and cq be atoms p(v:, . , vi) and p(w;, . . . , wi). Since P E WR{d), P is independent 
of the constant symbols appearing in yj. Then, there exists an index j such that 7, includes no 
constant symbols except an empty list nil. Then, it is sufficient to prove the case that v! is of 
the form d(Al, . . , d(A,, nil) . .) for some j and ui is of the form X, d(W, Z )  or d(Q, d(R, S)) .  

1. If ti = Xi and si = X, then, by the definition of good examples, there exists an index 
k(> j) such that W: = nil. For this index k, vfil = X - - ui. 

2. If ti = d(Wi, Xi) and si = X ,  then, by the definition of good examples, there exists 
an index k(> j )  such that w; = d(al, nil). For this index k, v:+l = d(W, Z) = ui. 

3. If ti = d(Wi, Xi) and si = d(W, nil), then, by the definition of good examples, the 
length of any good examples is just 2. Then, there exists an index k ( 2  j) such that 
v" d(T, d (U, nil)) = ui. 

4. If ti = d(Wi, Xi) and si = d(W, X), then, by the definition of good examples, there 
ICS-1 = exists an index k(> j )  such that wf = d(al , d(a2, nil)). For this index k, vi 

d(Q, d(R, S)) = ui. 

For each i(l 5 i 5 n), let ki be the maximal index satisfying the above cases and 1 be 
max{kl, , kn). Then, lgg(al, . , al) = P. 

Theorem 1 claims that the program P E WR{d) is constructed correctly in the limit from 
good examples for P. 

Let C be a finite set, called an alphabet. For a program P, C means the set of all constant 
symbols appearing in P. Then, the following lemma holds: 



Lemma 6 Let C be an alphabet {al, . , a,, nil). For WRId), the number of ground atoms 
of the form p(tl, . . , t,) under C such that ltil 5 4 and ti includes at most one empty list nil 
for any i (1 5 i 5 n) is at most (1 + m + m2 + m3),. 

Proof The form of ti is nil, d(ai, nil), d(ai, d(aj, nil)), or d(ai, d(aj, d (ak, nil))). Then, the 
number of the the selection of ti is at  most 1 + m + m2 + m3. Hence, the number of ground 
atoms under C is at most (1 + m + m2 + m3),. 

By Lemma 6, the following theorem also holds: 

Theorem 2 Let C = {al, a2, a3, nil) be an alphabet. Suppose that P E WRjd) and {P) = 
Up f 2 - Up 11. Then, for the set G of all good examples p(tl, . , t,) for P under C such that 
ltil 5 4 for any i (1 5 i 5 n), lgg(G) = P. 

Proof Suppose that p(tl, . , t,) is a good example for P in WRid). By Definition 2, ti 
includes at most one empty list nil for any i (1 5 i 5 n). By Lemma 6, the number of good 
examples of the form p(tl, . , t,) such that Iti 1 5 4 for any i (1 5 i 5 n) is finite. Let k be 
such the number. 

Suppose that {P) = Up f 2 - Up f 1 and P = p(ul, . , u,). Then, ui is of the form nil, X ,  
d(Y, nil), d(W, Z) ,  d(U, d(V, nil)), or d(R, d(S, T)). Let G be the set of all good examples for 
P under C such that Iti] 5 4 for any i (1 5 i 5 n). For any good example p( t l , .  . , t,) E S ,  ti 
is of the form nil, ai, d(ai, nil), d(ai, d(aj, nil)) or d(ai, d(aj, d(at, nil))). 

For any good example p(tl, + . . , t,) E S, if ti is of the form nil, then ui is also of the form 
nil. If ti is of the form ai, then ui is of the form X .  If ti is of the form d(ai, nil), then ui is 
of the form d(Y, nil). If ti is of the form d (ai, d(aj, nil)), then ui is of the form d(U, d(V, nil)). 
If ti is of the form d(ai, nil), d (ai, d(aj, nil)) or d(ai, d(aj, d(ak, nil))), then ui is of the form 
d(W, Z). If ti is of the form d(ai, d(aj, nil)) or d(ai, d(aj, d(ak, nil))), then ui is of the form 
d(Q, d(R, S)). If there exists an index i such that ti = nil, then ui is of the form X .  By 
the definition of WRjd),  there exists no case such that good examples are of the form either 
d(ai, nil) or d(ai, d(aj, d(ak, nil))). Also there exists no case such that good examples are of 
the form either nil or d(ai, d(aj, nil)). 

Furthermore, let 1' be 1 in Theorem 1, under the condition such that C = {al, a2, as, nil). 
Since k is the number of all good examples under C, then 1' 5 k. Hence, by Theorem 1 and 
the above proof, the form of ui is determined by all good examples of the form p(tl, . . , t,) 
under C such that ltil 5 4 for any i (1 5 i 5 n). 

In other words, by using the algorithm FIN_CST-WR{d)(G, P) of theory-generating abduction 
for WRld1 as Figure 1, the program P E WRld1 is constructed correctly from finite good 
examples G. 

Example 3 Let an alphabet C be a set {1,2,3, nil). 

1. Suppose that the ground atoms p(d(1, nil)), p(d(2, nil)), and p(d(3, nil)) are given 
as good examples for P2. Then, we obtain the atom p(d(W, nil)) as the least gen- 
eral generalizations of good examples. By PROPOSE-WR{d), we also obtain the 
following program P2 : 

The program P2 means that the argument's term of p is a list. 



A
 

&
 

ti- 
- * u c 3

 
d 
8
 



5 Introducing Function as Auxiliary Predicate 

Consider the following program Prev defining reversal of list: 

rev(d(W, X ) ,  Y) + rev(X, Z), con(W, 2, Y) 
rev (nil, nil) 

Prev = con(X, d(W, Y), d(W, 2)) +- con(X, Y, 2 )  
con(X, nil, d(X, nil)) 

The program Prev means that the second argument's list of rev is the reversal of the first 
argument's list. The least Herbrand model Mpre, I r e ,  with the predicate symbol rev is as 
follows: 

{rev(nil, nil), rev(d(a, nil), d(a, nil)), rev (d(a, d(b, nil)), d(b, d(a, nil))), . . -1. 

Then, the following proposition holds: 

Proposition 1 There exists no program P E WRtd)  such that Mp = Mpr,,Irev. 

Proof Suppose that there exists a program P E WR{d)  such that M p  = MPre,lrev. Then, 

For positive examples of the program defining reversal of list, the length of the first argument 
or p is equal to one of the second argument. Then, C2 is of the form either Czl : rev(ni1, nil) 
or Cz2 : revp(X, X) .  Furthermore, Cl is one of the following forms: 

1. If P = {Cl17 Czl) or {C12, C21), then P rev(d(a, d(b, nil)), d(a, d(b, nil))), but 
rev(d(a7 d(b, nil)) d(a7 d(b7 nil))) @ MpreV Irev- 

2. If P = {C13, C21), then P /== rev(ni1, d(a, nil)), but rev(ni1, d(a, nil)) @ MpreV Irev- 

3. If P = {C14, C21}, then P rev(d(a, nil), nil), but rev(d(a, nil), nil) @ Mpr,, Irev. 

For the above four programs, by using Cz2 instead of Cz17 we have the same proof. Hence, 
there exists no program P E WR{d)  such that  Mp = Mpr,, I,,,. 

If we deal with only dotted pairs as function symbols, then we need to invent predicate 
symbols such as con in Prev in order to design the program defining reversal of list. Hence, 
we introduce another function c : element x list -+ list, called a concatenation, such that  
c(W,X) = Y means that Y is a list adding W to the last of X. Then, we can obtain the 
following programs defining reversal of list: 

p:ev = { p(d(W7 X ) ,  c(W, Y)) + p(X7 Y) 
p(ni1, nil) I 



By using dotted pairs d and concatenations c, we introduce the following subclass of definite 
programs. 

Definition 3 Let P be the following definite programs: 

Then, P is called weakly reducing with dotted pairs and concatenations, denoted by P E 
WRldlC}, if P satisfies the following conditions: 

1. for any i (1 5 i 5 n), ti is of one of the form d(Wi, Xi), c(Wi, Xi) or Xi, where Wi is 
a variable, 

2. a t  least one j ,  t j  is of the form either d(Wj, Xj) or c(Wj, Xj), 

3. for any i (1 5 i 5 n), Xi is mutually distinct, 

4. for any i,  si is of one of the form nil, X ,  d(Y, nil), d(W, Z)  or c(W, Z),  

5. if si is of the form either d(Y, nil) or d(W, Z)  , then ti is of the form d(Wi, Xi), 

6. if si is of the form either c(Y, nil) or c(W, Z), then ti is of the form c(Wi, Xi). 

Obviously, both Pf,, and P;, are included in WRldleI. 

6 Theory-Generat ing Abduction for WR{d,,) 

In this section, we investigate theory-generating abduction for WRidlc1 from good examples. If 
any good example is given by using dotted pairs and concatenations according to an intended 
program, then we can construct the program of WRldlC. as similar as Lemma 6 and Theorem 2, 
by using for-loop of PROPOSE-WR{d,) instead of one of PROPOSKWRld). 

On the other hand, from the viewpoint of learning logic programs from examples, any 
example should be given by using only dotted pairs. Then, in this section, we discuss the 
problem of theory-generating abduction for WRld1,) how to introduce a function concatenation 
into examples described by dotted pairs. 

In order to solve this problem, we prepare two operators dot and con as follows: For a term 
t,  con(t) (resp., dot(t)) is an equivalence term described by concatenations (resp., dotted pars) 
if t is described by dotted pairs (resp., concatenations); otherwise con(t) = t (resp., dot(t) = 
t). For example, con(d(1, d(2, d(3, nil)))) = c(3,c(2, c(1, nil))), and dot(c(l,c(2, c(3, nil)))) = 
d(3, d(2, d(1, nil))). For an atom p(tl, . . . , t,), dot (p(tl, . , t,)) = p(dot(tl), . . , dot (t,)). For 
a set S of atoms {al, . . . , ak}> dot(S) = {dot(al), . . , dot (ak)). 

Let a be a ground atom p(tl , . , t,) described by only dotted pairs. For any j (1 5 j 5 2,), 
we define aj as follows: 



Note that dot(cyj) = a for any j (1 5 j 5 2"). 
Since we consider that any good example should be described by only dotted pairs, then 

we introduce the following definition. Note that, for a dotted pair d and a concatenation c, 
d(X, nil) = c(X, nil), but d(Wl, d(W2, nil)) f c(Wl, c(W2, nil)). Then, length@, P )  = 3 in the 
following definition. 

Definition 4 Let P E WR{d,cl and ai = p(th . . , t i )  (1 5 i 5 k). Then, {al, a 2 ,  . . , ak) is 
the set of good examples for P described by dotted pairs if there exists an index j (1 5 j 5 2n) 
such that, for any i (1 5 i 5 k ) ,  ai = at and a: satisfies the following conditions: 

1. P t a;, 

4. any argument's term of 4 includes at  most one empty list nil. 

If we can regard all 2" programs as hypotheses, then the program of is constructed 
from finite good examples G = {al, . . . , cuk) described by dotted pairs as follows: First, we 
obtain G j  = {a:, , a;) from G for any j (1 5 j 5 2"). Then, by modifying FIxCST-WR{dl 
as Figure 2, we can construct pj from lgg(Gj) for any j. Note that an intended program is 
included in {Pj I 1 5 j 5 2"). Furthermore, the finiteness of the number of good examples 
are guaranteed by the following two corollaries of Lemma 6 and Theorem 2. 

Corollary 1 Let C be an alphabet {al, . , a,, nil). For WR{d,c), the number of ground 
atoms under C such that iti 1 5 5 and ti includes at most one empty list nil for any i (1 5 i 5 n) 
is at  most (1 + 2m2 + 2m3 + 2m4)". 

Corollary 2 Let C = {al, a2, as, a4, nil). Suppose that P E WRld) and {P) = U p  3 - U p  f 2. 
Also suppose that G = {al, . . , ak) is the set of all good examples p(tl, , t,) for P described 
by only dotted pairs under C such that Iti 1 5 5 for any i (1 5 i 5 n). Then, there exists an 
index 1 (1 5 1 5 2") such that lgg(Gj) = P, where G j  = (4,. . , ai). 

However, it is not efficient to consider all 2" programs as hypotheses. Then, we design 
the algorithm FIN_CST-WR{d7c) as Figure 4. Note that the algorithm PROPOSE_WR{d7c) 
as Figure 3 is an extended algorithm of PROPOSE-WRjd) as Figure 1. On the other hand, 
the algorithm recursion-check and variable-check is applied in order to select a program in the 
family of 2" programs. 

For the algorithm recursion-check, the following lemma holds: 

Lemma 7 Let l g g ( ~ ' )  in Figure 4 be an atom p(vl,. . , v,). Then, the following statements 
are equivalent: 

2. For any 1 such that vl = d(Wl, vi) and v; includes no variable Wl, if the variable Wl 
is included in v, (1 5 m 5 n), then Wl is the leftmost variable in urn. 

Proof Suppose that there exist indexes 1 and m (1 5 1, m 5 n) such that 



Algorithm P.ROPOSE-WR{d,c) (P ,  {C1, C2)) 
input ,O = p(tl, . , t,) : atom 
output P = {Cl, (72)  E WR{d ,c}  
for i = 1 to n 

if ti is of the form d(W;, . . .) then 
head-argi := d ( ~ : ,  Xi); /* Xi is a new variable */ 

else if ti is of the form c(W!, - . .) then 
head-argi := c(w;, Xi); 

else 
head-argi := Xi; 

end if 
end for 
head := p(head-argl, . . , head-arg,); 
body := p(X1, . . , Xn); 
C1 := head + body; 
tmp-C2 := (body)$, where ,O = (head)$; 
C2 :=   body)^, where tmp-C2 =   head)^; 
output P = {Cl, C2) 

Figure 3: Algorithm PROPOSE_WR{d,c) 

where Wli f W12, Wli f Wm1, and W12 f Wm1. 
For the case 1, the following program is constructed by PROPOSE-WRjd,c)  : 

For an index 1, t l  = d(Wll, Xl) and sl = X .  For an index Y, tm = d(Wml, Xm) and s, = Y. 
Then, ul = d(Wll, d(Wk, X ) )  and urn = d(Wml, d(WAl, Y)). Hence, l g g ( ~ ' )  $ pl. For the 
cases 2 ,3 and 4, we can also show that lgg(Gi) $ pl. 

As contraposition of the above statement, if lgg(Gi) = ,@, then there exist no indexes 1 
and m such that vl and v, satisfy one of the above cases 1, 2, 3 and 4. In other words, if 
lgg (Gi) - pl, then, for any 1 (1 5 1 5 n) such that vl = d (Wil, vi) and vi includes no variable 
Wll, there exists no index m (1 5 m 5 n) such that v, = d(Wml,vk) and v& includes no 
variable Wll. For such vl, if the variable Wll is included in v, then Wl is the leftmost variable 
in v,. Hence, if lgg(Gi) = Pi and the variable Wl is included in v, then Wl is the leftmost 
variable in urn. 

On the other hand, by the definition of good examples and by the supposition such that  
Gi is the set of all good examples under C = {al, a2, as, a4, nil), if vl = d(Wl1, d(Wl2, X ) )  and 
v, = d(Wll, d(Wm2, Y)), then W12 = W m 2  Hence, the converse also holds. 

In other words, the statement lgg(Gi) $ pl means that pi is too general as a program which 
explains the set G of good examples. 

In the algorithm variable-check, #var(a) means the number of variables appearing in an 
atom a. For the algorithm variable-check, the following lemma holds: 

Lemma 8 For indexes i and j (1 5 i, j 5 Y), suppose that igg(Gi) pl and lgg(Gi) = pj.  

If # var (lgg (Gi)) 5 # var ( lgg (Gi)) , then d o t  ( M P ~ )  C d o t  (MPj).  



Algorithm FIN-CST-WR{d,,) (G,  P )  
input G = { a l , .  , a k ) ,  where at = p( t i ,  . - .  , t i )  (1 < 1 < k )  : 

set of all good examples for P described by dotted pairs 
under {a l ,  az, a3, a4, nil) such that iti 1 5 5 for any i (1 < i 5 n) 

output P E WR{d,,)  
read G; 
recursion-check(G, I ) ;  
variable-check(G, I ,  J ) ;  
select j E J ;  
Gj := {d,,. . . ,CY3,); 
PB OPOSE-wR{d,,l (199 ( ~ j ) ,  pj) ; 
output PJ 

Algorit hm recursion-check(G, I )  
input G = { a l ,  . . , a k }  : set of atoms 
output I : set of indexes 
I := 4; 
for i = 1 to 2n 

Gi := {a:, , a t ) ;  
PROPOSE-WR{~,,) ( z g g  ( G ~ ) ,  P" ; 
{ p i )  := Upi T 3 - Upi t 2;  
if lgg(Gi) - ,@ then 

I := I u { i ) ;  
end if 

end for 

Algorithm variable-check(G, I ,  J )  
input G = { a l ,  . . - , a,+} : set of atoms 

I : set of indexes 
output J : set of indexes 
J := I ;  
while I = 4 do 

H := I ;  
select i E I ;  
Gi := {a; ,  . . , a t ) ;  
while H = 4 do 

select h E H;  
Gh := {a?, . . . , a;);  
if #war (lgg (Gh))  < #war ( lgg (Gi) )  then 

J := J - { i ) ;  
end if 
H = H - { h ) ;  

end while 
I = I - { i ) ;  

end while 

Figure 4: Algorithm FIN-CST-WR{d,,l 



Proof Let lgg(Gi) and lgg(Gj) be of the forms p(v;, . . , vi) and p(v:, . . . , vi). Suppose that 
a E dot(MPi). 

If #var(lgg(Gi)) 5 #var(lgg(Gj)), then there exist indexes 1 and m (1 5 1, m 5 n) such 
that, for el, e2, fl, f 2  E {d, c), vf, vk, v:, and v& satisfy either of the following conditions: 

For the case 1, since lgg(Gi) Pi and lgg(Gj) pj, Wll, w2, Wml, Wm2 are mutually 
distinct. By the supposition, oli E Mpi. Then, by the construction ~ 3 ,  aj E MPj. Hence, 

E dot(Mpj). 
For the case 2, we have the same proof. 

Hence, if lgg(Gi) =_ ,@, lgg(Gj) = pj, and #var(lgg(Gi)) = #var ( lgg(~ j ) ) ,  then dot(Mpi) = 
dot (Mpj). 

By the above lemma, if I JI > 1 for recursion-chech(G, I )  and variable-check(G, I, J), then, 
for any j E J, pj is regarded as an intended program of theory-generating abduction for 
WR{d). 

Hence, the following theorem holds: 

Theorem 3 Let P E WR{d,c). Then, by using the algorithm FIN_CST_WR{d,,)(G, P) of 
theory-generating abduction for WR{d,c) as Figure 4, P is constructed correctly from finite 
good examples G described by dotted pairs. 

Example 5 Let G be the following set of all good examples for P5 under {1,2,3,4, nil) de- 
scribed by dotted pairs: 

~ ( d ( l ,  d(2, nil)), d(l ,  d(2,d(3, nil))), d(2, d ( l ,  nil))) 
p(d(2,d(3, nil)), d(2,d(3, nil)), 4 3 ,  d(2, nil))) 
~ ( 4 4 ,  41, nil)), 4 4 ,  d(1, d(2, d(3, nil)))), d(1, d(4, nil))) 1- 
. . . . . . . . . . . . . . . . . . . . . . . .  

Then, we obtain the following lgg(Gj) (1 5 j < 8): 

2 ,  d(W1, nil)))? d(W2, nil)), d(W1, d(W2, X))7 d(W lgg(G1) = p(d(W 
l g g ( ~ ~ )  = P( .(w2, c(w1, nil)), ~ ( w I ,  d(W2, XI), d(W27 d(Wl, 
l g g ( ~ 3 )  = p(d(Wl, d(W2, nil)), C( ~ 3 ,  c ( ~ 4 ,  X ) )  7 d(W27 d(W1r 

d(W2, nil)), d(W1, d(W2 7 X)) 7 19g(G4) = p(d(W c(W1, c(W2, nil))), 
lgg (G5) = p(c(Wz, c(Wi nil)) 7 c(W3, c(W4, x)), d(W2, d(W1, nil)))? 
l g g ( ~ 6 )  = p ( c ( ~ 2 ,  c(Wl, nil)), d ( ~ 1 ,  d(W2, X ) ) ,  c(W1, ~ ( ~ 2 7  

lgg(G7) = p(d(W1, d(W2, nil)), c(W3, ~ ( ~ 4 ,  X))7 C(WI ~ ( ~ 2  7 7 

lgg (G8) = p(c(W2, c(Wi, nil)) 7 c(W3, c(W4, x ) ) ,  c(W1, c(W2, nil)))* 

By recursion-check(G, I), we obtain the set I = {4,5,7) of indexes. By variable-check(G, I, J ) ,  
we also obtain the set J = (4) of indexes. Hence, we obtain the following program P," by the 
algorithm FIN-CST-WRld,,) : 

The program Pt means that the first argument's term is the prefix of the second argument's 
term, and it is also the reversal of the third argument's term. 



7 Conclusion 

We have introduced a subclass of logic programs, called weakly reducing programs WR{d) 
with dotted pairs, and formulated the concept of good examples for WRfd1. Then, we have 
designed the algorithm of theory-generating abduction for WR{+ and shown that the pro- 
gram of the class WRjd)  is constructed correctly from finite good examples. Furthermore, we 
have extended the class WR{d) to weakly reducing programs WR{d7c) with dotted pairs and 
concatenations by introducing a function concatenation, and investigated theory generating 
abduction for WR{d7c). For the class WR{d,c), we have formulated the concept of good ex- 
amples described by dotted pairs, and designed the algorithm of theory-generating abduction. 
Then, we have shown that the program of the class WR{d1 is constructed correctly by this 
algorithm from finite good examples. We have also shown that this algorithm also determines 
which of arguments' terms are described by concatenations. 

The class given in this paper is based on logic programs for list processing. Introducing 
functions will be applied to other classes of logic programs. Also the class given in this paper 
is based on single recursion of logic programs. It is a future work to extend the class and to  
improve algorithms in order to apply to other data structures and recursions. Furthermore, in 
this paper, we have assumed that only good examples are given in theory-generating abduction. 
It is also an important future work how to select good examples from all examples. 

References 

[ALLM94] Aha, D. W., Lapointe, S., Ling, X. C. and Matwin, S.: Inverting implication 
with small training sets, Proceedings of European Conference on Machine 
Learning (1994), Lecture Notes in Artificial Intelligence 784, 31-43, 1994. 

[AS01941 Arimura, H., Shinohara, S., Otsuki, S. and Ishizaka, I.: A generalization of the 
least general generalization, Machine Intelligence 13, 1994. 

[FKW93] Freivalds, R., Kinber, E. B. and Wiehagen, R.: On the power of inductive 
inference from good examples, Theoretical Computer Science 110, 131-144, 
1993. 

[Hir93] Hirata, K.: A classification of abduction: abduction for logic programming, 
Machine Intelligence 14 (to appear). 

[Hir94] Hirata, K.: Rule-generating abduction for recursive Prolog, Proceedings of the 
4th International Workshop on Analogical and Inductive Inference, Lecture 
Notes in Artificial Intelligence 872, 121-136, 1994. 

[LNW94] Lange, S., Nessel, J.  and Wiehagen, R.: Language learning from good exam- 
ples, Proceedings of the 5th International Workshop on Algorithmic Learning 
Theory, Lecture Notes in Artificial Intelligence 872, 423-437, 1994. 

[Lingl] Ling, C. X.: Inductive learning from good examples, Proceedings of the 12th 
International Joint Conference on Artificial Intelligence, 751-756, 1991; revised 
version in [Mug92]. 

[Llo87] Lloyd, J .  W. : Foundations of logic programming (second extended edition), 
Springer-Verlag, 1987. 

[Mug921 Muggleton, S. (ed.): Inductive logic programming, Academic Press, 1992. 



[Muk92] Mukouchi, Y.: Characterization of finite identification, Proceedings of the 3rd 
International Workshop on Analogical and Inductive Inference, Lecture Notes 
in Artificial Intelligence 642, 260 - 267, 1992. 

Peirce, C. S.: Collected papers of Charles Sanders Peirce (1839-1 914), 
Hartshone, C. S., Weiss, P.(eds.), The Belknap Press, 1965. 

Plotkin, G. D.: A note  o n  inductive generalization, Machine Intelligence 5, 
153-163, 1970. 

Shinohara, T.: Inductive inference of monotonic  formal sys tems from positive 
data,  Proceedings of the 1st International Workshop on Algorithmic Learning 
Theory, 339-351, 1990. 


