SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Theory-Generating Abduction from Finite Good
Examples

Hirata, Kouichi
Research Institute of Fundamental Information Science Kyushu University

https://hdl. handle. net/2324/3204

HhRI1EZR : RIFIS Technical Report. 109, 1995-04-15. Research Institute of Fundamental
Information Science, Kyushu University
N—=I 3

HEFIBAMR

RIFIS-TR-CS-109

RIFIS Technical Report

Theory-Generating Abduction from Finite Good Examples

Kouichi Hirata

April 15, 1995

Research Institute of Fundamental Information Science
Kyushu University 33
Fukuoka 812, Japan

E-mail:hirata@ai.kyutech.ac.jp Phone:0948-28-7632

Theory-Generating Abduction from Finite Good Examples

Kouichi Hirata
Department of Artificial Intelligence
Kyushu Institute of Technology
Kawazu 680-4, Iizuka 820, Japan
e-mail: hirata@ai.kyutech.ac.jp

April 15, 1995

Abstract

The theory-generating abduction is a kind of abduction which generates a theory to
explain a surprising fact, and proposes it as a hypothesis. In this paper, by regarding the
surprising facts as good examples for machine learning, we investigate theory-generating
abduction from good examples. First, we introduce a subclass of logic programs, called
weakly reducing programs WR 4 with dotted pairs. For the class WR(4, we formulate
the concept of good examples, and design the algorithm of theory-generating abduction.
Then, we show that the program of the class WRyy is constructed correctly by this
algorithm from finite good examples. Furthermore, by using not only dotted pairs but
also concatenations, we extend the class WRqy to weakly reducing programs WR4,6
with dotted pairs and concatenations. From the viewpoint of learning logic programs,
any good example for the program of the class WR4) should be given by using only
dotted pairs. Then, it is a problem how to determine which of the arguments’ terms
for any good example are described by concatenations. In this paper, we design the
algorithm of theory-generating abduction for the class WR(4), which determines such
arguments, from good examples described by dotted pairs. We show that the program
of the class WR(q) is also constructed correctly by this algorithm from finite good
examples described by dotted pairs.

1 Introduction

C. S. Peirce, who was a philosopher, scientist and logician, asserted that every scientific inquiry
consists of three stages, abduction, deduction, and induction [Pei65]. According to him, every
scientific inquiry begins with an observation of a surprising fact. The first stage, abduction,
of scientific inquiry proposes a hypothesis to explain why the fact arises. The second stage,
deduction, derives new conclusions from the hypotheses. The third stage, induction, tests
empirically the hypotheses and conclusions. An inference schema of abduction is described by
the following three steps [Pei65]:

1. A surprising fact C' is observed.
2. If A were true, then C' would be a matter of course.
3. Hence, there is reason to suspect that A is true.

In general, the above inference schema is depicted by the following syllogism:

1

C A—-C
7 .

Hirata [Hir93] has classified abduction in computer science into five types; rule-selecting
abduction, rule-finding abduction, rule-generating abduction, theory-selecting abduction, and
theory-generating abduction. The theory-generating abduction, which is the most powerful
abduction for acquisition of explanatory hypotheses, is an abduction which generates a theory
to explain why the surprising fact arises, and proposes it as a hypothesis. In this paper, we
investigate theory-generating abduction.

According to Peirce [Pei65], abduction is an inference which begins with an observation
of a surprising fact. By comparing theory-generating abduction with machine learning, we
can regard the surprising facts for abduction as good ezamples for machine learning. The
learnability from good examples has been first formulated by Freivalds et al. [FKW93] in the
field of inductive inference of recursive functions. Furthermore, Lange et al. [LNW94] have
applied it to language learning. On the other hand, in the field of inductive logic program-
ming, Ling [Lin91] has investigated learning logic programs from good examples. Also Aha et
al. [ALLM94] has discussed inductive logic programming from a small set of training examples,
which are considered as good examples. In this paper, we discuss theory-generating abduction
from such good examples.

As theoretical results in inductive logic programming, Shinohara [Shi90] has shown that
the class of linear Prolog programs is inferable in the limit from positive examples. Arimura
et al. [ASOI94] have extended the result by introducing some subclasses of linear Prolog. In
this paper, we introduce another subclass of logic programs, called weakly reducing programs
WR a4y with dotted pairs, and formulate the concept of good examples for WR 4. For the
class WR 4, we design the algorithm of theory-generating abduction from good examples. In
particular, we pay our attention to the number of good examples, and show that the program
of the class WR (4} is constructed correctly by this algorithm from finite good examples under
fixed constant symbols.

When we design logic programs, we need to use some auxiliary predicates frequently. How-
ever, in learning logic programs from examples, it is usual that no examples with the auxiliary
predicates are given in a learning algorithm. Then, in the field of inductive logic programming,
the problem to find such auxiliary predicates, called predicate invention, is one of the most
important problem. In this paper, we discuss this problem by introducing a function concate-
nation, because we can easily characterize the class of logic programs by the concatenations.
Then, we extend the class from WR 4y to weakly reducing programs WR 4y with dotted pairs
and concatenations.

For the class WR (4}, from the viewpoint of learning logic programs, any example should
be given by using only dotted pairs. Then, it is a problem of theory-generating abduction for
WR {4, how to determine which of the arguments’ terms for any good example are described
by concatenations. In this paper, we design the algorithm of theory-generating abduction for
WR 4.y, which determines such arguments, from good examples described by dotted pairs.
We also show that the program of the class WR 4} is correctly constructed by this algorithm
from finite good examples described by dotted pairs under fixed constant symbols.

This paper is organized as follows: In Section 2, we prepare some notions necessary for later
sections. In Section 3, we introduce the class weakly reducing programs WR 4y with dotted
pairs, and formulate the concept of good examples for WR 4. In Section 4, we design the
algorithm of theory-generating abduction for WR (4. We show that the program of WR 4, is
constructed correctly by this algorithm from finite good examples. In Section 5, we extend the
class from WR 4y to weakly reducing programs WR (4 with dotted pairs and concatenations,
by introducing a function concatenation. The program defining the reversal of a list is included

in WR {4 In Section 6, we formulate the concept of good examples described by dotted pairs
for WR (4.}, and design the algorithm of theory-generating abduction for WR 4. This
algorithm also determines which of arguments’ terms are described by concatenations. We
show that the program of WR /4 is also constructed correctly by this algorithm from finite
good examples described by dotted pairs.

2 Preliminary

In logic programming [L1087], the following Tp-operator provides the link between the declar-
ative and procedural semantics for P. Let P be a definite program and Bp be the Herbrand
base for P. Then, the mapping Tp : 2BP — 2PP is defined as follows:

Tp(I)={A€ Bp| A« Ay,---,A, : aground instance of a clause in P, {A;,---, A} C I},

for some Herbrand interpretation I. In order to represent the number of applications of such
Tp, we define

TPTO - (ba
and, for any n > 0,

In the following sections, we introduce the concept of good examples. In order to charac-
terize good examples, we introduce an unfolding operator Up similar to Tp-operator as follows:

Up(I)={A0 | A— By,---,B, € P, Biel, B =DBf (1 <i<n)}.
Also we define
Up10 =9,
and, for any n > 0,

UpT(n+ 1) = UP(UPT’I’L)UUPTTL.

Example 1 Let P; be the following program:

d(W, X),Y,d(W, Z)) «— p(X,Y, Z)
P = { igngz,x,X) g }

where d means a dotted pair. Formally, d is a function element x list — list such that
d(W,X) =Y means that Y is a list adding W to the head of X. Then,

UPlTO - ¢7

Up, 11 = {p(nil, X, X)},

Up 12 = {p(nil, X, X), p(d(W, nil), X, d(W, X))},

Up, 13 = {p(nil, X, X), p(d(W, nil), X, d(W, X)), p(d(W1,d(Wa,nil)), X, d(W1, d(W>, X))}

3 Weakly Reducing Programs with Dotted Pairs

In this section, we introduce the following subclass of definite programs, called weakly reducing
programs with dotted pairs, as the target class of theory-generating abduction.

Definition 1 Let P be the following definite programs:
P= p(tla"'atn)é—p(Xla“'an)
p(s1,7+, 8n) '

Then, P is called weakly reducing with dotted pairs, denoted by P € WR g, if P satisfies the
following conditions:

1. for any ¢ (1 < ¢ < n), t; is of the form either d(W;, X;) or X;, where W; is a variable,

2. at least one j, t; is of the form d(W}, Xj),

3. for any 7 (1 < ¢ < n), X; is mutually distinct,

4. for any 14, s; is of one of the form nil, X, d(Y, nil) or d(W, Z),

5. if s; is of the form either d(Y, nil) or d(W, Z), then ¢; is of the form d(W;, X;).

Note that WR (4 is a similar class as context-free transformation CF7 4y with a flat base,
introduced by Arimura et al. [ASOI94].

For a ground atom « and a program P € WRyqa, input(a, P) is the set of input clauses
which is applied in the SLD-refutation of P U {« a}. On the other hand, length(a, P) is the
length of the SLD-refutation of P U {« a}. Note that, for a program P € WR 4, the length
of the SLD-refutation is determined uniquely.

Definition 2 Let P € WRy4. For a ground atom « such that P - o, a is a good ezample
for P in WR g if input(c, P) = P, length(a, P) = 2, and any argument’s term of « includes
at most one empty list nal. ‘

Example 2 For P, in Example 1, atoms

p(d(1, nil), nil, d(1, nil)),
p(d(1, nil), d(2, nil), d(1, d(2, nil))),
p(d(1, nil), d(2,d(3, nil)), d(1,d(2,d(3, nil)))),

are good examples, while atoms

p(nil, d(1, nil), d(1, nil)),
p(d(1,d(2,nil)),d(3, nil),d(1,d(2, d(3, nil)))),
p(d(1,d(2,nil)),d(3, d(4, nil)), d(1,d(2,d(3, d(4, nil))))),

are not.

Lloyd [L1o87] pointed out that if A € Bp and P U {« A} has a refutation of length N,
then A € Tp T N. The following lemma claims that, if P € WRy4, then the converse also
holds.

Lemma 1 Let P € WRy4. If A€ Bpand A € Tp TN, then PU {« A} has a refutation of
at most length N.

Proof The result is proved by mathematical induction on N.
Let P be the following program:

P { I;E?’::,iﬂ))(_p(Xl,”.,Xn) }

If N =1, the result obviously holds.

Suppose that the result holds for N — 1. Suppose that A € Tp T N. By the definition of
TpTN, there exists a substitution 0 such that p(ty,---,%,)0 = A and {p(Xy,---,X,)0} CTp1
(N —1). By the induction hypothesis, P U {« p(Xj, -, X,,)0} has a refutation of at most
length N — 1. Hence, P U {« A} has a refutation of at most length N. O

Note that Lemma 1 only depends on the form of programs. If a given program is binary,
that is, the number of atoms in bodies in any clauses is at most 1, then Lemma 1 also holds
for the program.

Lemma 2 Let P € WRy4. Then, o is a good example for P if and only if there exists a
substitution # such that o = 86, where {f} =Up12—Up11.

Proof By Lemma 1, for A € Bp, A€ TpTN if and only if P U {«< A} has a refutation of at
most length N. Then, for any A € Bp, A€ TpTN —TpT(N —1) if and only if PU {«— A}
has a refutation of just length V.

By Definition 2, a is a good example if and only if P has a refutation of the length 2, and
if and only if « € Tp 12 — TpT1. On the other hand, by the definition of Tp and Up,

TpIN = {p(t, -,)0 | p(t1,---,tn) € UpTN, 6 : ground substitution }.

Then, a is a good example for P if and only if there exists a substitution ¢ such that 80 = «,
where 3 € Up12 — UpT1. For such f3, since P € WRyqy, {6} =Up12—-UpT1. O

Let P and @) be formulas. Then, P is more general than @, denoted by @ < P, if there
exists a substitution 6 such that P = Q6. Furthermore, P = () means that P < @@ and Q < P.
In other words, P is a variant of Q).

For the unfolding operator, the following lemma holds:

Lemma 3 Suppose that P, P, € WRq and {6s} = Up, 12— Up, 11 (k = 1,2). Then,
f1 = B9 if and only if P, = P,.

Proof Suppose that #; = (5. Then, there exists an n-ary predicate symbol p such that

= {) o))
1 —)

p(sla"'asn)

P, = p(ub"')un)(—_p(}/ly'”a}/:n)

2 — .
p(vla”'J’Un)

By Lemma 2,

/61 = P(tl, e 7tn)07 where P(Sl, Tty sn) = p(Xla Tty Xn)07

Here, p(t1,--+,tn)0 = p(u1,- -, un)o.
Since the variables of bodies of P, and P, are mutually distinct, we can suppose that § and
o are of the following forms:

Suppose that p(sq,- -, sn) #Z p(v1, -+, v,). Then, p(Xy,---, X,)0 # p(Y1,---,Y,)o. Here,
a substitution # replaces X; in ¢; with s; and a substitution ¢ replaces Y; in u; with v;. Since
p(s1,-++,8,) #Z p(v1,---,vp), there exists an index j (1 < j < n) such that s; # v;. Then, we
consider the following four cases:

1. s; = nil, v; = d(Y, nil),
2. s;=mnil, v; =d(W, 2),
3. 55 =d(Y,nil), v; = nil,
4. s; =d(W,2), v; = nil.

For the case 1, t; is of the form either X; or d(W;, X;), and wu; is of the form d(V},Y;).
Then, ;6 is of the form either nil or d(W}, nil), and u;o is of the form d(V}, d(Y}, nil)). Hence,
t;0 # ujo. For the case 2, ¢; is of the form either X; or d(Wj;, X), and u; is of the form d(V}, Y;).
Then, ¢,6 is of the form either nil or d(Wj, nil), and u;o is of the form d(V;, d(W;, Z)). Hence,
t;0 # ujo. For the case 3 and 4, we have the same proof. Then, 3; # (,, it is a contradiction.

Hence7 p(sla T Sn) = p(vla e ,’Un).

SUppOSG that p(slv T Sn) = p(vla e 7vn) and p(tla e 7tn) §é p(ula T un) Since Pl) P e
WRay, for any i (1 < i < n), t; is of the form either d(W;, X;) or X;, and wu; is of the form
either d(Z;,Y;) or Y;. Since p(t1,---,t,) # p(u1,---,uy,), there exists an index | (1 <1 < n)

such that one of the following three cases holds:

tl - d(wthl)? Uy = }/L
=X, w = d(Z,Y)),
L =dW, X)), w=d(Z,Y).

If t; = d(W;, X;) and w; = Y}, then ;0 = d(W,, s;) and w0 = v;. Since s; = vy, 4,0 # v0.
On the other hand, since 8, = [, ;0 = uw;0, and it is a contradiction.

If t; = X; and v = d(Z;,Y]), we obtain the same result.

If t; = d(W;, Xi) and w = d(Z,,Y)), then, since p(t1,---,t,) Z p(us, -+, uy,), there exists
an index k (1 < k < n) such that

ty =d(Wi, Xi), we =d(Zy,V2) (Z # Zi).
For such indices k£ and [, we consider the following two cases.

1. If there exists an index j such that W, = X; and Z; = Y}, then, we obtain the
following results.

tlg = d(Sj, Sg), wo = d(’l)j, ul),
ted = d(sj,s8), wgo = d(Zy, vg) or d(vp, vk) (v, # vj).

2. Otherwise, we also obtain the following results:

tlﬁ = d(VVl, Sl), wo = d(Zl, ul),
tkg = d(VVl, 5k>; UL = d(Zk,’Uk) (Zk 75 Zl)

Hence, 81 = p(t1, -, t0)0 Z p(uy, -+, uy)o = o, and it is a contradiction.
The converse obviously holds. O

4 Theory-Generating Abduction for WR

The theory-generating abduction is a kind of abduction which generates a theory to explain
a surprising fact and proposes it as a hypothesis. An inference schema of theory-generating
abduction is depicted as follows:

C: surprising fact wrt B
Generate a theory A such that A makes C true .
Propose a hypothesis A

In this paper, we deal with the simplest theory-generating abduction such that B = ¢. Hence,
the above inference schema is described by the following syllogism:

C
AFC A

In this section, we design the algorithm of theory-generating abduction for WR 4. First,
we introduce some notions and lemmas.

For a term t;, the length [t;| of ¢; is defined as follows: |¢;| =1 if ¢; = nil, and |t;| =1+ 1
if t; = d(a,s;) and |s;| = I. For an atom « = p(t1,---,%,), the length |a| of « is defined as
[ti] + - -+ |ta]-

By considering the algorithm PROPOSE_.WTR/q as Figure 1, we obtain the following
lemma. The algorithm PROPOSE WR 4 is a refined version of the algorithm PROPOSE
for rule-generating abduction [Hir94].

Lemma 4 Suppose that P € WRy4 and {f} = Up 72— Up 71. Then, P is constructed
correctly from G in O(|g]) time.

Proof Let P be an output of PROPOSE_WR 4 (6, P). Suppose that P is of the following

form:
p_ head «— body
] (body)d ’
where 8 = (head)f. Then, Up 10 = ¢, UpT1 = {(body)8}, and Up 12 = {(body)0, (head)b}.
Hence, Up12 — Up 11 = {(head)8} = {f}. By Lemma 3, B characterizes uniquely P. Hence,

P is constructed correctly from S.
It is obvious that the algorithm PROPOSE_ WR 4y runs in O(|4]) time. O

By using Plotkin’s least general generalization lgg [P1o70], the following lemma holds.

Lemma 5 If oy and ay are good example for P, then there exists a substitution # such that the
least general generalization lgg(as, as) of a; and ay is equal to 36, where {8} = Up 12— UpT1.

Proof By Lemma 2, 3 is a common generalization of oy and «y. Then, 3 is also a generaliza-
tion of lgg(ay,). O

Theorem 1 Suppose that P € WR 4}, {8} = Up12—Up 11, and {e;}icn is a family of good
examples for P. Then, there exists an index [such that lgg(aq,---, ;) = 8.

Proof Let § be an atom p(uq, - - -, u,) and -y; be the following atom defined inductively:

Y1 = g,
Yi+1 = lgg(7i7 a’i-l—l) (Z > 1)-

7

Algorithm PROPOSEWR 4y(8,{C1, Ca})
input 3 : atom
output P = {C1,Cy} € WR{d}
fori=1ton

if ¢; is of the form d(W7,---) then

head_arg; := d(W}, X;); /* X; is a new variable */
else
head_arg; := X;;
end if
end for

head := p(head_argy,-- -, head_aryg,);
body := p(Xla T aXn);

C} := head + body;

Cy := (body)f, where 8 = (head)0;
output P = {C;, Cq}

Figure 1: Algorithm PROPOSEWR 4

Let P be the following program:

o { BT

By the definition of 3, for any 3, u; is of the form nil, X, d(Y, nil), d(W, Z), d(U,d(V, nil)), or
d(Q,d(R,S)). By Lemma 5, 4y < # and 7 =X 7141 for any [.

Let v; and ; be atoms p(vi, - - -, v]) and p(wi, - - - ,w?). Since P € WR(q}, P is independent
of the constant symbols appearing in ;. Then, there exists an index j such that -; includes no
constant symbols except an empty list nil. Then, it is sufficient to prove the case that vf is of

the form d(Ay, - - -, d(Am, nil) - - -) for some j and u; is of the form X, d(W, Z) or d(Q, d(R, S)).

1. If t; = X, and s; = X, then, by the definition of good examples, there exists an index
k(> 7) such that wf = nil. For this index k, vf™ = X = u,.

2. If t; = d(W;, X;) and s; = X, then, by the definition of good examples, there exists
an index k(> j) such that w¥ = d(ay, nil). For this index k, v¥*! = d(W, Z) = u,.

3. If t; = d(W;, X;) and s; = d(W, nil), then, by the definition of good examples, the
length of any good examples is just 2. Then, there exists an index k(> j) such that
- vE = d(T,d(U, nil)) = u;.

4. If t; = d(W;, X;) and s; = d(W, X), then, by the definition of good examples, there
exists an index k(> j) such that w® = d(ay,d(ay, nil)). For this index k, vf*! =
d(Q,d(R,S)) = ;.

For each i(1 < ¢ < n), let k; be the maximal index satisfying the above cases and [be
maz{ky,---,kn}. Then, lgg(caq, -,) = . O

Theorem 1 claims that the program P € WRy4 is constructed correctly in the limit from
good examples for P.

Let X be a finite set, called an alphabet. For a program P, 3 means the set of all constant
symbols appearing in P. Then, the following lemma holds:

8

Lemma 6 Let ¥ be an alphabet {a1,-- -, ay, nil}. For WR (4, the number of ground atoms
of the form p(ty,---,¢,) under ¥ such that |¢;| < 4 and ¢; includes at most one empty list nil
for any i (1 < i < n) is at most (1 + m +m? + m?)™.

Proof The form of ¢; is nil, d(a;, nil), d(a;, d(aj, nil)), or d(a;, d(a;, d(ax, nil))). Then, the
number of the the selection of #; is at most 1 + m + m? + m3. Hence, the number of ground
atoms under ¥ is at most (1 +m +m? +m?)". O

By Lemma 6, the following theorem also holds:

Theorem 2 Let ¥ = {a, as, a3, nil} be an alphabet. Suppose that P € WR4 and {8} =
Up12—Up71. Then, for the set G of all good examples p(ty,- -, t,) for P under ¥ such that
|t:] < 4 for any i (1 <4 < n), lgg(G) = 6.

Proof Suppose that p(ty,---,t,) is a good example for P in WRq. By Definition 2, ¢,
includes at most one empty list nil for any 7 (1 < i < n). By Lemma 6, the number of good
examples of the form p(ty,---,t,) such that |¢;] < 4 for any ¢ (1 < i < n) is finite. Let k be
such the number.

Suppose that {8} =Up12—UpT1 and § = p(uy,---,u,). Then, u; is of the form nil, X,
d(Y,nil), d(W, Z), d(U,d(V, nil)), or d(R,d(S,T)). Let G be the set of all good examples for
P under ¥ such that |¢;] < 4 for any ¢ (1 < i < n). For any good example p(ty,---,t,) € S, t;
is of the form nil, a;, d(a;, nil), d(a;, d(a;, nil)) or d(a;, d(a;, d(ax, nil))).

For any good example p(t1,---,t,) € S, if ¢; is of the form nil, then u; is also of the form
nil. If t; is of the form a;, then wu; is of the form X. If ¢; is of the form d(a;, nil), then w; is
of the form d(Y, nil). If ¢; is of the form d(a;, d(a;, nil)), then w; is of the form d(U, d(V, nil)).
If ¢; is of the form d(a;, nil), d(a;, d(aj, nil)) or d(a;, d(a;, d(ag, nil))), then u; is of the form
dW,Z). If t; is of the form d(a;, d(aj, nil)) or d(a;, d(a;, d(ax, nil))), then w; is of the form
d(Q,d(R,S)). If there exists an index 7 such that t; = nil, then wu; is of the form X. By
the definition of WRq4), there exists no case such that good examples are of the form either
d(a;, nil) or d(a;,d(aj,d(ax, nil))). Also there exists no case such that good examples are of
the form either nil or d(a;, d(a;, nil)).

Furthermore, let I’ be [in Theorem 1, under the condition such that ¥ = {ay, as, as, nil}.
Since k is the number of all good examples under ¥, then !’ < k. Hence, by Theorem 1 and
the above proof, the form of u; is determined by all good examples of the form p(ty,---,%,)
under ¥ such that |¢;] <4 foranyi (1 <i<n). O

In other words, by using the algorithm FIN_CST WR4y(G, P) of theory-generating abduction
for WR 4y as Figure 1, the program P € WRy, is constructed correctly from finite good
examples G.

Example 3 Let an alphabet ¥ be a set {1,2, 3, nil}.

1. Suppose that the ground atoms p(d(1,nil)), p(d(2, nil)), and p(d(3,nil)) are given
as good examples for P,. Then, we obtain the atom p(d(W, nil)) as the least gen-
eral generalizations of good examples. By PROPOSE_WTR 4, we also obtain the
following program Ps:

P, = { ggi%/a X1)) < p(X1) }

The program P, means that the argument’s term of p is a list.

9

Algorithm FIN_.CST WR4(G, P)
input G : the set of all good examples for P
under {a1, as, a3, nil} such that |¢;| <4 for any 7 (1 <7 < n)
output P € WRy
read G;
v = lgg(G);
PROPOSEWR 4 (7, P);
output P

Figure 2: Algorithm FIN_.CST WR 4

2. Suppose that the following ground atoms are given as good examples for Pj:

p(d(1,d(1, mal))), p(d(1,d(2, nal))), p(d(1,d(3, nal))),
p(d(2,d(1, nil))), p(d(2,d(2, mal))), p(d(2,d(3, nil))),
p(d(3, d(1, nil))), p(d(3, d(2, nal))), p(d(3,d(3, nil))).

Then, we obtain the atom p(d(Wi, d(Ws, nil))) as the least general generalizations of
good examples. By PROPOSE_WR 4y, we also obtain the following program Pj:

| p(d(W1, X1)) < p(Xy)
%“{pwmamm }'

The program P; means that the argument’s term of p is a list of at least length 1.

Since Mp, C Mp, for the least Herbrand model Mp, and Mp, of P, and P, WR 4 is not
finitely inferable from all positive examples (c.f. Mukouchi [Muk92]), while WR 4 is finitely
inferable from good examples under ¥ such that the length of all the arguments’ terms is at
most 4.

Example 4 Let ¥ be an alphabet {1,2, 3, nil}. Suppose that the following ground atoms are
given as good examples for P;:

p(1,d(1,d(1, nil))), (2,d(1,d(2, nil))), p(3,d(1,d(3, nil))),
p(1,d(2,d(1, nil))), (2,d(2,d(2, nil))), p(3,d(2,d(3, nil))),
p(1,d(3,d(1, nil))), p(2,d(3,d(2, nil))), p(3,d(3,d(3, nil))),
p(1,d(1,d(1,d(1, ni)))), p(2,d(1,d(2,d(1, nil)))), p(3,d(1,d(3,d(1, nil)))),
p(1,d(1,d(1,d(2, nil)))), p(2,d(1,d(2,d(2, nil)))), p(3,d(1,d(3,d(2,nil)))),
p(1,d(1,d(1,d(3, nil)))), p(2,d(1,d(2,d(3, nil)))), p(3,d(1,d(3,d(3, nil)))),
P(Ld@ d(Ld0Lnd)), pd@d2dL), p(Gd,ddL i),
p(1,d(2,d(1,d(2, nil)))), p(2,d(2,d(2,d(2,nil)))), p(3,d(2,d(3,d(2, nil)))),
p(Ld@d(L (3 ml))), p(d2d2dB), p(3d(2 d((3, mil))))
p(1,d(3,d(1,d(1, nil)))), p(2,d(3,d(2,d(1, nil)))), p(3,d(3,d(3, d(1, nil)))),
p(1,d(3,d(1,d(2, ni)))), p(2,d(3,d(2,d(2, nil)))), p(3,d(3,d(3,d(2, nil)))),
p(1,d(3,d(1,d(3,nil)))), p(2,d(3,d(2,d(3, nil)))), p(3,d(3,d(3,d(3, nil)))).

Then, we obtain the atom p(X, d(W,d(X,Y"))) as the least general generalization of the above
good examples. By PROPOSE WR (4, we also obtain the following program:

_) (X1, d(W, Xy)) « p(Xy, Xy)
ﬂ“{mxaxyn }'

10

5 Introducing Function as Auxiliary Predicate

Consider the following program P,., defining reversal of list:

rev(d(W, X),Y) «— rev(X, Z), con(W, Z,Y)
rev(nil, nil)

con(X,dW,Y),d(W, Z)) « con(X,Y, Z)
con(X, nil, d(X, nil))

Pre'v:

The program P,., means that the second argument’s list of rev is the reversal of the first
argument’s list. The least Herbrand model Mp,,,|r, with the predicate symbol rev is as
follows:

{rev(nil, nil), rev(d(a, nil), d(a, nil)), rev(d(a, d(b, nil)), d(b, d(a, nil))), - - - }.
Then, the following proposition holds:

Proposition 1 There exists no program P € WR 4 such that Mp = Mp,,, |rev-

Proof Suppose that there exists a program P € WR gy such that Mp = Mp,,, |rey- Then,

C1 : rev(ty, ta) «— rev(Xy, Xs)
P =)
Cy : rev(sy, $2)

For positive examples of the program defining reversal of list, the length of the first argument
or p is equal to one of the second argument. Then, C, is of the form either Cy : rev(nil, nil)
or Cyy : revp(X, X). Furthermore, C; is one of the following forms:

C1 : rev(d(Wy, X1),d(Wa, X3)) «— rev(Xy, Xs),
Cis : rev(d(W, X1), d(W, X3)) « rev(X1, Xs),
Ci3 : rev(X1, d(W, X)) « rev(Xq, X»),

Chq : rev(d(W, X1), Xz) « rev(Xy, Xs).

1. If P = {C11,Cy} or {Ci12,Cy1}, then P = rev(d(a,d(b, nil)),d(a,d(b, nil))), but
rev(d(a, d(b, nil)), d(a, d(b, nil))) & Mp,,|rev-

2. If P = {Cy3,Ca}, then P = rev(nil, d(a, ni)), but rev(nil, d(a, nil)) € Mp,.,|rev-
3. If P = {Cy4,Cxn}, then P = rev(d(a, nil), nil), but rev(d(a, nil), nil) & Mp,.,|rev-

For the above four programs, by using Cyy instead of Cy;, we have the same proof. Hence,
there exists no program P € WR g such that Mp = Mp,,,|res. O

If we deal with only dotted pairs as function symbols, then we need to invent predicate
symbols such as con in P, in order to design the program defining reversal of list. Hence,
we introduce another function ¢ : element x list — hst, called a concatenation, such that
c¢(W,X) =Y means that Y is a list adding W to the last of X. Then, we can obtain the
following programs defining reversal of list:

1 (W, X),c(W,Y)) « p(X,Y)
Prev = { nil, nil) ! }

p(d
(

pe {p((W, X),dW,Y)) « p(X,Y) }
(

nil, nil)

11

By using dotted pairs d and concatenations ¢, we introduce the following subclass of definite
programs.

Definition 3 Let P be the following definite programs:

p-{ BT)

Then, P is called weakly reducing with dotted pairs and concatenations, denoted by P €
WR{4,, if P satisfies the following conditions:

1. for any 7 (1 <14 < n), t; is of one of the form d(W;, X;), ¢(W;, X;) or X;, where W, is
a variable,

2. at least one j, t; is of the form either d(W;, X;) or ¢(W;, X;),

3. for any 7 (1 <3 < n), X; is mutually distinct,

4. for any 1%, s; is of one of the form nil, X, d(Y, nil), d(W,Z) or ¢(W, Z),

5. if s; is of the form either d(Y, nil) or d(W, Z), then ¢; is of the form d(W;, X,),
6. if s; is of the form either ¢(Y, nil) or ¢(W, Z), then ¢; is of the form ¢(W;, X;).

Obviously, both P\, and P2, are included in WRq .

6 Theory-Generating Abduction for WR,

In this section, we investigate theory-generating abduction for WR 4 from good examples. If
any good example is given by using dotted pairs and concatenations according to an intended
program, then we can construct the program of WR 4) as similar as Lemma 6 and Theorem 2,
by using for-loop of PROPOSE WRyq4,) instead of one of PROPOSE_WR (gy.

On the other hand, from the viewpoint of learning logic programs from examples, any
example should be given by using only dotted pairs. Then, in this section, we discuss the
problem of theory-generating abduction for WR 4} how to introduce a function concatenation
into examples described by dotted pairs.

In order to solve this problem, we prepare two operators dot and con as follows: For a term
t, con(t) (resp., dot(t)) is an equivalence term described by concatenations (resp., dotted pars)
if ¢ is described by dotted pairs (resp., concatenations); otherwise con(t) = ¢ (resp., dot(t) =
t). For example, con(d(1,d(2,d(3,nil)))) = ¢(3,¢(2, c(1, nil))), and dot(c(1, c(2, (3, nil)))) =
d(3,d(2,d(1, nil))). For an atom p(t1,---,t,), dot(p(t1,---,t,)) = p(dot(ts),- -, dot(¢,)). For
aset S of atoms {ay, -, ax}, dot(S) = {dot(ey), -, dot(ox)}.

Let « be a ground atom p(¢1, - - -, ,) described by only dotted pairs. For any j (1 < 5 < 2"),
we define o as follows:

051 :p(tlat27“')tn):aa
042 = p(con(tl), t29 Tt 7tn),
o® = p(ty, con(ts), -, tn),

o = p(con(ty), con(tsy), -+ -, con(ty))-

12

Note that dot(a?) = o for any j (1 < j < 27).

Since we consider that any good example should be described by only dotted pairs, then
we introduce the following definition. Note that, for a dotted pair d and a concatenation c,
d(X, nil) = ¢(X, nil), but d(Wy, d(Wa, nil)) # c(Wh, c(Ws, nil)). Then, length(a, P) = 3 in the
following definition.

Definition 4 Let P € WRy4 and o; = p(th,---,4,) (1 < i < k). Then, {o, g, -, az} is
the set of good examples for P described by dotted pairs if there exists an index j (1 < j <27)
such that, for any i (1 <14 < k), o; = o and o satisfies the following conditions:

1. P+ ag ,

2. input(al, P) = P,

3. length(ol, P) = 3,

4. any argument’s term of oz{ includes at most one empty list nal.

If we can regard all 2" programs as hypotheses, then the program of WR 4 is constructed
from finite good examples G = {ay,---, 04} described by dotted pairs as follows: First, we
obtain G7 = {a], -, a}} from G for any j (1 < j < 2"). Then, by modifying FIN.CST-WR (4,
as Figure 2, we can construct P? from lgg(G7?) for any j. Note that an intended program is
included in {P? | 1 < j < 2"}. Furthermore, the finiteness of the number of good examples
are guaranteed by the following two corollaries of Lemma 6 and Theorem 2.

Corollary 1 Let ¥ be an alphabet {a;,---,am,nil}. For WR(4,, the number of ground
atoms under ¥ such that |¢;] < 5 and ¢; includes at most one empty list nil for any ¢ (1 < i < n)
is at most (1 + 2m?2 + 2m3 + 2m*)".

Corollary 2 Let ¥ = {ay, as, a3, as, nil}. Suppose that P € WR g and {#} = UpT3-Up12.
Also suppose that G = {a, - - -, o, } is the set of all good examples p(t1, - -, t,) for P described
by only dotted pairs under ¥ such that |¢;| < 5 for any ¢ (1 <4 < n). Then, there exists an
index I (1 <1< 2") such that lgg(G?) = B, where G/ = {of, -, 04}

However, it is not efficient to consider all 2" programs as hypotheses. Then, we design
the algorithm FIN_.CST_WR 4 as Figure 4. Note that the algorithm PROPOSE_WR 4
as Figure 3 is an extended algorithm of PROPOSE_WR 4 as Figure 1. On the other hand,
the algorithm recursion_check and variable_check is applied in order to select a program in the
family of 2" programs.

For the algorithm recursion_check, the following lemma holds:

Lemma 7 Let lgg(G?) in Figure 4 be an atom p(vy,---,v,). Then, the following statements
are equivalent:

1. lgg(GY) = 5.

2. For any [such that v; = d(W;, v}) and v} includes no variable W, if the variable W,
is included in v, (1 < m < n), then W} is the leftmost variable in v,,.

Proof Suppose that there exist indexes [and m (1 <, m < n) such that
1. vy = d(Wyy, d(Wi2, X1)), vm = d(Win1, dWin, X)),
2. vy = c(Wiy, c(Wia, X1)), . = d(Win1, d W1, X)),
13

Algorithm PROPOSEWR 4(8,{C1,C2})
input 8 = p(t1,---,t,) : atom
output P = {C1,Cq} € WR 4,6}
fori=1ton
if ¢; is of the form d(W?,---) then
head_arg; := d(Wi, X;); /* X; is a new variable */
else if ¢; is of the form ¢(W%,---) then
head_arg; := (W}, X;);
else
head_arg; == X;;
end if
end for
head := p(head_arg,,-- -, head_arg,);
body := p(X1,---,Xn);
C1 := head — body;
tmp_Cs := (body)d, where 3 = (head)®b;
Cs = (body)o, where tmp_Cy = (head)o;
output P = {C}, Cz}

Figure 3: Algorithm PROPOSEWR 4

3. vy = dWi,dWia, X1)), vm = c(Win1, c(Win, Xin)),
4' v = C(w/ll7 C(VVQ) Xl))’ Ump = C(Wml7 C(ml: Xm))a

where Wy # Wig, Wit # Win1, and Wip # Wi
For the case 1, the following program is constructed by PROPOSEWR (4.}:

Pi: p(tla"'7tn)Hp(le";Xn)
p(s1,",5n) '

For an index [, t; = d(Wj;, X)) and s, = X. For an index Y, t,, = AWy, Xpn) and s, = Y.
Then, u; = d(Wyy,d(W/, X)) and uy, = d(Wp1,d(W),,,Y)). Hence, lgg(G*) # B°. For the
cases 2 ,3 and 4, we can also show that lgg(G*) # §°.

As contraposition of the above statement, if lgg(G?) = (%, then there exist no indexes [
and m such that v; and v, satisfy one of the above cases 1, 2, 3 and 4. In other words, if
lgg(G?) = B¢, then, for any ! (1 <! < n) such that v; = d(W}y,v]) and v; includes no variable
W1, there exists no index m (1 < m < n) such that v,, = d(Wp,1,v,,) and v}, includes no
variable Wj;. For such wv;, if the variable Wy, is included in v, then W, is the leftmost variable
in v,,. Hence, if lgg(G*) = 8 and the variable W, is included in v, then W, is the leftmost
variable in vy,.

On the other hand, by the definition of good examples and by the supposition such that
G" is the set of all good examples under ¥ = {a4, as, a3, aq, nil }, if v = d(Wjy, d(Wie, X)) and
U = d(Wi1, d(Wy2,Y)), then Wiy = Wi,o. Hence, the converse also holds. O

In other words, the statement lgg(G?) # 3° means that P* is too general as a program which
explains the set G of good examples.

In the algorithm wvariable_check, #var(ca) means the number of variables appearing in an
atom «. For the algorithm variable_check, the following lemma holds:

Lemma 8 For indexes i and j (1 < 4,5 < 27), suppose that lgg(G*) = £ and lgg(G?) = (.
If #var(lgg(G?Y)) < F#var(lgg(G?)), then dot(Mp:) C dot(Mpsi).

14

Algorithm FIN.CST WR 4 (G, P)
input G = {ay, -, ax}, where oy = p(t},---,t4) 1 <1< k) :
set of all good examples for P described by dotted pairs
under {a1, ag, as, a4, nil} such that |¢;| <5 for any ¢ (1 <i < n)
output P € WR4 4
read G
recursion_check(G, I);
variable_check(G, 1, J);

select j € J;

GI = {0{7""%};
PROPOSE_WR{d7C} (lgg(GY), P7);
output P’

Algorithm recursion_check(G,I)
input G = {a1,---,ak} : set of atoms
output 7 : set of indexes
I:=¢;
fori=1to 2"
G = {af, -+, o} };
PROPOSEWR 4, (lgg(G), P');
{8} ==Upi 13~ Up:i 12;
if lgg(G*) = " then
I:=T1U{i};
end if
end for

Algorithm variable_check(G,1,J)
input G = {ay,---,a;} : set of atoms
I : set of indexes
output J : set of indexes
J =T
while I = ¢ do
H =1,
select ¢ € I
G':={af, -, a}};
while H = ¢ do
select h € H;
Gh = {O‘?: T 7a2}§
if #var(lgg(G")) < #var(lgg(G*)) then

J =J - {i};
end if
H =H — {h};
end while
I=1-{i};
end while

Figure 4: Algorithm FIN_.CSTWR 4

15

Proof Let lgg(G?) and lgg(G?) be of the forms p(vi,---,v}) and p(vl,---,v}). Suppose that
a € dot(Mp:).

If #var(lgg(G?)) < #var(lgg(G?)), then there exist indexes [and m (1 < {,m < n) such
that, for e1, 9, f1, f2 € {d,c}, v}, vi , v}, and vJ, satisfy either of the following conditions:

L. of = ex(Wir, e1(Wap, X1)), v = €2(Win, €2(Wia, X)), o] = (Wi, i(Wiz, Xi)), and
VI, = fo(Win, fo(Wima, Xim)), where Wiy # Wiy

2. v} = es(Win, e1(Wiz, X)), w3 = €2(Wi, €2(Wia, X1)), vl = (W, i(Wis, X)), and
'Ugn = f2(VVl17f2(W/l27Xm))a where Xl ?é Xm

For the case 1, since lgg(G?) = ' and lgg(G?) = (7, Wir, Wiz, Win1, Wine are mutually
distinct. By the supposition, o* € Mp:. Then, by the construction P/, o/ € Mp;. Hence,
a € dot(Mp;).

For the case 2, we have the same proof. O

Hence, if lgg(G?) = £, lgg(G9) = 7, and #var(lgg(GY)) = #var(lgg(G’)), then dot(Mp:) =
dot (ij)

By the above lemma, if |.J| > 1 for recursion_chech(G, I) and variable_check(G, I, J), then,
for any j € J, P? is regarded as an intended program of theory-generating abduction for
WRay-

Hence, the following theorem holds:

Theorem 3 Let P € WR{4c- Then, by using the algorithm FIN.CST-WR4,(G, P) of
theory-generating abduction for WR 4 as Figure 4, P is constructed correctly from finite
good examples G described by dotted pairs.

Example 5 Let G be the following set of all good examples for P5 under {1,2,3,4, nil} de-
scribed by dotted pairs:

p(d(1,d(2, nal)), d(1, d(2, d(3, nil))), d(2, d(1, nil)))
o - | P2, d(3,m)), d(2,d(3, nib)), d(3,d(2, nil)))
~] pld(4,d(1, nal)), d(4, d(1,d(2, (3, nil)))), d(1, d(4, nil)))

Then, we obtain the following lgg(G?) (1 < j < 8):

l9g(GY) = p(d(Wh, d(W, nil)), d(W1, d(Wa, X)), d(Wa, d(Wh, nil))),
lgg(Gz) =])(C(Wg, C(Wl, ml)), d(Wl, d(WQ, X)), d(WQ, d(Wl, ml))),
lgg(G®) = p(d(Wy, d(Wa, nal)), c(Ws, «(Wa, X)), d(Ws, d(W1, nil))),
l9g(G*) = p(d(Wh, (W, nil)), d(W1, d(Wa, X)), c(Wy, e(Wa, nil))),
lgg(G®) = p(c(Wa, c(Wy, nil)), c(W3, c(Ws, X)), d(Wa, d(W1, nil))),
lgg(G9) = p(c(Wa, c(Wy, nil)), d(Wy, d(Wy, X)), c(W1, c(Wa, nil))),
lgg(G) = p(d(Wy, d(Wa, nil)), c(Ws, c(Wa, X)), c(W1, c(Wa, nil))),
lgg(G®) = p(c(Wa, c(Wy, nil)), c(Ws, c(Wa, X)), c(W1, (W, nil))).

By recursion_check(G, I), we obtain the set I = {4, 5, 7} of indexes. By variable_check(G, I, J),
we also obtain the set J = {4} of indexes. Hence, we obtain the following program P¢ by the
algorithm FIN_CST-WR{4):

o _ [(AW, X0), d(Ws, Xo), oW, X3)) < p(Xi, Xa, Xs)
5 — . . .
p(nil, X, nil)

The program PZ means that the first argument’s term is the prefix of the second argument’s
term, and it is also the reversal of the third argument’s term.

16

7 Conclusion

We have introduced a subclass of logic programs, called weakly reducing programs WR 4
with dotted pairs, and formulated the concept of good examples for WR 4. Then, we have
designed the algorithm of theory-generating abduction for WR 4y, and shown that the pro-
gram of the class WR gy is constructed correctly from finite good examples. Furthermore, we
have extended the class WR {4 to weakly reducing programs WRy4. with dotted pairs and
concatenations by introducing a function concatenation, and investigated theory generating
abduction for WR 4. For the class WR(q4}, we have formulated the concept of good ez-
amples described by dotted pairs, and designed the algorithm of theory-generating abduction.
Then, we have shown that the program of the class WR4 is constructed correctly by this
algorithm from finite good examples. We have also shown that this algorithm also determines
which of arguments’ terms are described by concatenations.

The class given in this paper is based on logic programs for list processing. Introducing
functions will be applied to other classes of logic programs. Also the class given in this paper
is based on single recursion of logic programs. It is a future work to extend the class and to
improve algorithms in order to apply to other data structures and recursions. Furthermore, in
this paper, we have assumed that only good examples are given in theory-generating abduction.
It is also an important future work how to select good examples from all examples.

References

[ALLM94] Aha, D. W., Lapointe, S., Ling, X. C. and Matwin, S.: Inverting implication
with small training sets, Proceedings of European Conference on Machine
Learning (1994), Lecture Notes in Artificial Intelligence 784, 31-43, 1994.

[ASOI94] Arimura, H., Shinohara, S., Otsuki, S. and Ishizaka, I.: A generalization of the
least general generalization, Machine Intelligence 13, 1994.

[FKW93] Freivalds, R., Kinber, E. B. and Wiehagen, R.: On the power of inductive
inference from good eramples, Theoretical Computer Science 110, 131-144,
1993.

[Hir93) Hirata, K.: A classification of abduction: abduction for logic programming,
Machine Intelligence 14 (to appear).

[Hir94] Hirata, K.: Rule-generating abduction for recursive Prolog, Proceedings of the
4th International Workshop on Analogical and Inductive Inference, Lecture
Notes in Artificial Intelligence 872, 121-136, 1994.

[LNW94] Lange, S., Nessel, J. and Wiehagen, R.: Language learning from good exam-
ples, Proceedings of the 5th International Workshop on Algorithmic Learning
Theory, Lecture Notes in Artificial Intelligence 872, 423-437, 1994.

[Lin91] Ling, C. X.: Inductive learning from good examples, Proceedings of the 12th
International Joint Conference on Artificial Intelligence, 751-756, 1991; revised
version in [Mug92].

[L1087] Lloyd, J. W.: Foundations of logic programming (second extended edition),
Springer-Verlag, 1987.

[Mug92] Muggleton, S. (ed.): Inductive logic programming, Academic Press, 1992.

17

[Muk92]

[Pei65]

[P1o70]

[Shi90]

Mukouchi, Y.: Characterization of finite identification, Proceedings of the 3rd
International Workshop on Analogical and Inductive Inference, Lecture Notes
in Artificial Intelligence 642, 260 — 267, 1992.

Peirce, C. S.: Collected papers of Charles Sanders Peirce (1839-1914),
Hartshone, C. S., Weiss, P.(eds.), The Belknap Press, 1965.

Plotkin, G. D.: A note on inductive generalization, Machine Intelligence 5,
153-163, 1970.

Shinohara, T.: Inductive inference of monotonic formal systems from positive
data, Proceedings of the 1st International Workshop on Algorithmic Learning
Theory, 339-351, 1990.

18

