
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Language Learning with Characteristic Examples
and Membership Queries

Sakamoto, Hiroshi
Research Institute of Fundamental Information Science Kyushu University

https://hdl.handle.net/2324/3197

出版情報：RIFIS Technical Report. 108, 1995-04-04. Research Institute of Fundamental
Information Science, Kyushu University
バージョン：
権利関係：

Language Learning with

Characteristic Examples and Membership Queries

Hiroshi Sakamoto

April 4, 1995

Research Institute of Fundamental Information Science

Kyushu University 33

Fukuoka 81 2-81, Japan
E-rnail:hiroshi@rifis.kyushu-u.ac.jp Phone:092-641-1101 Ext.4459

Language Learning with
Characteristic Examples and Membership Queries

Hiroshi Sakamoto
Research Institute of Fundament a1 Inforrnat ion Science

Kyushu University 33, Fukuoka 812-81, Japan
E-mail: hiroshi@rifis. kyushu-u.ac .jp

Abstract

This paper introduces the notion of characteristic examples for languages and shows
that the notion contributes to language learning in polynomial time. A characteristic
example of a language L is a string of L which includes, in a sense, sufficient information
to represent the language L. We show that any context-free language can be divided into
a finite set of languages each of which has a characteristic example. We prove that it
is solvable whether or not a context-free language has a characteristic example. Then,
we propose a learning model with membership queries and characteristic examples for
the class of parenthesis languages. We prove that, for this class, our learning algorithm
runs in a polynomial time in the size of a minimal parenthesis grammar which generates
the target language and in the length of a longest characteristic example given to the
algorithm.

1 Introduction

An algorithm which learns a language with queries receives yes/no answers according to criteria

of the queries. Angluin [Ang87a] introduced a learning model with two types of queries, a

membership query and an equivalence query. For a membership query of a string, the oracle

returns 'yes' if the string is an element of the target language; otherwise it returns 'no'. For

an equivalence query of a language, the oracle returns 'yes' if the language is equivalent to the

target language; otherwise it returns a counterexample.

After her work, many researchers [SakSO, Ang87b, BR87, Tak88] have developed language

learning with queries. Most of their methods are based on the notion of observation tables

introduced by Angluin [Ang87b]. Ishizaka [IshSO] proposed another method based on the

theory of model inference [Sha83] and showed that the class of simple deterministic languages

can be learned in a polynomial time.

Sakakibara [SakSO] showed that the class of context-free grammars can be learned by a

model using membership queries, equivalence queries and structural strings. However, there

is a big open problem whether or not the class can be learned by more restricted model such

as a model using only membership queries and equivalence queries. In this paper, we restrict

ability of oracles and propose a new model for learning formal languages, which assumes two

types of oracles. One is an oracle to answer membership queries of a target language, and the

other is an oracle to select examples from a target language.

In general, examples are arbitrarily given to a learning algorithm. Hence, some of them do

not contribute to learning of the target language. In fact, in case a target language is divided

into some disjoint sub-languages, and no example is given from one of such sub-languages,

the algorithm can never identify the whole language. If we can always select elements which

contribute to language learning, an algorithm will efficiently learn a target language using

such elements. Hence, in this paper, we assume our oracle with this ability, that is, the oracle

divides a target language into a finite number of sub-languages each of which has a kind

of representative elements of the sub-language, and gives such elements to the algorithm as

examples. Such sub-languages and representative elements are said to be complete languages

and characteristic examples, respectively.

We apply our learning model to the class of parenthesis languages which was introduced by

McNaughton [McN67], and show that the class can be learned by our algorithm in a polynomial

time. In Section 3, we define characteristic examples for formal languages. We prove that it

is solvable whether or not a context-free grammar has a characteristic example. In Section

4, we present a learning algorithm for parenthesis languages with membership queries and

characteristic examples. In Section 5, we show the correctness of our algorithm for parenthesis

languages. Furthermore, we show that our algorithm runs in a polynomial time in the size of

a minimal parenthesis grammar and in the length of a longest characteristic example.

2 Preliminaries

An alphabet is a finite non-empty set of distinct symbols. For an alphabet C, C* denotes the

set of all finite string of symbols from C. For a finite set S, IS1 denotes the cardinality of S.

A language L over C is a subset of C*.

A context-free grammar is a 4-tuple G = (N, C, P, S), where N and C are alphabets such

that N n C = 4, S E N, P is a finite set of rules of the form A -+ w (A E N, w E (N U C)*).

N, C, P and S are said to be a set of nonterminals, a set of terminals, a set of rules, and a

start symbol, respectively.

For strings a, ,8 E (N U C)*, a binary relation +- is defined as follows: a +- ,6 if and only

if there exist strings y1,72 E (N U C)* and a rule A -+ w E P such that a: = ylAy, and

,8 = ylwy2. The relation +* is the reflexive and transitive closure of +-. L(G) denotes the set

of terminal strings derived from the start symbol of the grammar G.

Let r be a rule of a grammar. The size 1 lrll of r denotes the length of right side of r . Let P

be the set of rules of a grammar. The size 1 1 PI 1 of P denotes CrEPI I T I I. Let G = (N, C, P, S)

be a grammar. The size IlGll of G denotes IN1 +- 1x1 + IIPII.

A derivation tree of G = (N, C, P, S) is a tree such that each internal node is labeled by

an element of N , each terminal node is labeled by an element of C and, for each internal node

labeled by A E N , there exists a rule A --+ W(E P), where w E (N LJ C)* is the concatenation

of labels of its children in left-to-right order.

A grammar G is said to be unambiguous if, for any terminal string w E L(G), there exists

exactly one derivation of w from G. A grammar is said to be backwards-deterministic if no

two rules of the grammar have the same right side. A string ,8 is said to be a context if /3 has

one blank symbol. For a context P, P[w] denotes the string replaced its blank by a string w.

Two nonterminals Al and A2 of a grammar G are said to be equivalent if, for any context ,8,

either both ,8[A1] and ,8[A2] are derived from G or neither are. A nonterminal A of a grammar

G is useless if there exists no context ,8 such that P[A] is derived from G or no terminal string

is derived from A. A grammar is said to be reduced, if no two distinct nonterminals of it are

equivalent and it has no useless nonterminal.

A parenthesis grammar is a context-free grammar all of whose rules are of the from A -+ (w),

where w contains no occurrence of (or of). We note that the following properties hold for

parenthesis grammars [McN67].

1. Every parenthesis grammar is unambiguous.

2. For any parenthesis grammar G, there exists a reduced backwards-deterministic paren-

thesis grammar G' such that L(G) = L(GJ).

In this paper, by a parenthesis grammar we mean a reduced backwards-deterministic paren-

thesis grammar.

3 Characteristic Example

3.1 Definition and proposition

Definition 1 A terminal string w is said to be a characteristic example of a grammar G if

there exists a derivation tree of G for w in which all rules of G are used. A grammar G is

said to be complete if G has a characteristic example.

There exists a grammar G which is not complete. In fact, for any grammars G1 =

(Nl, El, Pl, S) and G2 = (N2, C2, P2, S), let G = (N, C, P, S) a grammar with N = Nl U N;,

C = C1 u C2 and P = PI U Pi, where N;I is obtained from N2 as follows: if A E Nl n N2,

then replace A of N2 by A' (A1 $! Nl U N2), and Pi is obtained from P2 by this replacement.

Clearly, the grammar G is not complete.

For grammars GI, G2, , Gi (Gj = (Nj , Cj, Pj , S) ,1 < j 5 i) , let u jSiGj denote a gram-

mar G' = (N', C', P I , S) such that N' = UjSiNj, C' = Uj<iCj and P' = Uj5iPj*

For grammars G1 = (Nl, C1, PI, S) and G2 = (N2, C2, P 2 , S), GI G2 denotes that Nl

N2, C1 C C2 and Pl C P2.

Proposition 1 Let G be a context-free grammar and n be the number of rules of G. There

exists a set SG = {GI, G2, , Gk) of complete grammars such that L(SG) = L(ui<kGi) =

L(G) and k 5 n.

Proof. Let n be the number of rules of a context-free grammar G = (N, C, P, S). There exists

a set SG of complete grammars such that L(SG) = L(G) and lSGl 5 2" - 1.

Remove a set {Gil, Gi,, . , Gi,) from SG if there exists a grammar GI E SG such that

Uk5,-Gi, c GI, and remove a grammar G' from SG if there exists a set {Gc , G, , . . , Gij) SG

such that GI C Uk<jGi,. - Then, for any grammar Gi E SG, there exists a rule r of Gi such that

no grammar Gj :j SG - {Gi) has r. Thus, lSGl < n.

For a grammar G, a set SG of grammars which satisfies the condition in Proposition 1 is

said to be a set of complete grammars with respect to G.

Proposition 2 Let G be a parenthesis grammar and S = {GI, G2, . . , G,) be a set of com-

plete grammars with respect to G. Let Wi and Wj be sets of characteristic examples from Gi

and Gj (1 < i, j 5 m), respectively. Wi and Wj are disjoint if and only if Gi is not equal to

Gj .

Proof. If Gi = Gj, then Wi = Wj. Let Gi f Gj. Then, there exists a rule r of Gi such that

r is not a rule of Gj. Each wi E Wi is derived using r at least once. Since G is unambiguous,

Wi and Wj are disjoint.

3.2 Decision problem

Definition 2 Let G be a grammar and A be a nonterminal of G. An occurrence of A is said

to be bounded if there exists a constant k such that, in any derivation tree of G, A occurs at

most k.

Definition 3 Let G be a grammar and r be a rule of G. An occurrence of r is bounded if

there exists a constant k such that, in any derivation tree of G, r is used at most k.

For nonterminals A, B and C of a grammar, A +> B denotes that C occurs in a derivation

from A to B. For nonterminals A, B and a rule r of a grammar, A +: B denotes that r is

used in a derivation from A to B.

For a derivation tree d , let Id1 denote the depth of d. For a set N of nonterminals, let d N

denote a derivation tree in which every A E N occurs. For a set P of rules, let d p denote a

derivation tree in which every r E P is used.

Lemma 1 Let G be a context-free grammar and A be a nonterminal of G. It is solvable

whether or not the occurrence of A is bounded.

Proof. The occurrence of A E N is not bounded if and only if there exists B E N such that

B B. For a context free grammar G = (N, C, P, S) and any a, ,O E (N U C)+, it is solvable

whether or not a J* ,8. Hence, for A E N, it is solvable whether or not there exists B E N

such that B +-2 B.

Lemma 2 Let G be a context-free grammar and r be a rule of G. It is solvable whether or

not the occurrence of r is bounded.

Proof. Let G = (N, C, P, S) be a context-free grammar. The occurrence of a rule r of G is

not bounded if and only if there exists B E N such that B =+-f B.

If r is of the form A --+ w (A E N, w E C+), there exists B E N such that B =+-: B if and

only if there exists B E N such that B =+-2 B.

If r is of the form A -+ uCp (C E N, a,,O E (N U C)*), there exists B E N such that

B +-F B if and only if there exists B E N such that B =+-2 B and B =+-; B. Thus, from

Lemma 1, Lemma 2 holds.

Lemma 3 Let G = (N, C, P, S) be a context-free grammar. Let P & P be such that any

r E P' is not bounded. It is solvable whether or not there exists a derivation tree of G in which

every rule in P' is used.

Proof. Let N' N be such that B E N' if and only if there exists r E P' such that B =+-: B.

There exists dp1 if and only if there exists dNt. For any A, B E N, if A +' B, then A =+-"

(k 5 INI). Then, there exists dNt if and only if there exists dN1 at most depth INI2. Thus, it

is solvable whether or not there exists dpt of G. C1

4

Theorem 1 It is solvable whether or not a context-free grammar is complete. If a context-

free grammar is complete, then a characteristic example of the grammar is effectively obtained

from it.

Proof. Let G = (N , C, P, S) be a context-free grammar. Let P' = {r E PI r is bounded).

From Lemma 2, there exists dpl if and only if there exists dp1 such that Idpll 5 INI. From

Lemma 3, there exists dp-pr if and only if there exists dp-p1 such that Idp-pII 5 INI2. Thus,

there exists d p if and only if there exists d p such that ldPl 5 1 ~ 1 ~ .

Hence, we conclude Theorem 1. C3

4 Learning Algorit hrn

First, we outline the learning algorithm for parenthesis languages. An input to our algorithm

is a set of characteristic examples of the target language. For a characteristic example, our

algorithm determine the derivation tree. For a derivation tree, our algorithm computes a

grammar and outputs the union of such grammars as a parenthesis grammar for the target

language.

To determine a derivation tree, our algorithm uses membership queries. In this section, we

define a membership query for 'yield' and describe the procedure M to determine derivation

trees for characteristic examples. The procedure M is a main part our algorithm.

4.1 Membership query for yield

Definition 4 A yield of a tree is the concatenation of all labels of leaves of the tree in left-to-

right order.

Definition 5 Let k be the number of internal nodes of a tree. A skeleton s for the tree is

uniquely obtained by replacing all labels of internal nodes of the tree by labels ol,oz, . . , o k

from root to leaves and from left to right.

Let s be a tree and a be an internal node of s. Let s(a) be a subtree of s whose root is a.

Let a be an internal node of a tree s and let s' be a tree. s(a, s') denotes the tree obtained by

replacing s(a) of s by s'.

Definition 6 Let s and s' be skeletons for derivation trees of a grammar G. Let a, a' be

internal nodes of s, s', respectively. The relation is defined as follows:

a a' if and only if yields of s(a, sl(a')) and s'(al, s (a)) are in L(G) .
G(si7s.j)

Definition 7 Let G be a parenthesis grammar and s be a skeleton. Then, the answer to the

membership query for the yield of s is defined as follows: if the yield is in L(G), then the

answer yes is returned; otherwise the answer no is returned.

a b a b b a a b a b b

Figure 1: A skeleton and its replacement

Example 1 For a string ((((a)(b)))(((a)(b))(b))), Figure 1 depicts the skeleton s and its re-

placement. ai (1 5 i 5 9) of s denotes a label of node i. The tree s(5, s(6)) is obtained by

replacing s(5) of s by s(6). The yield of s(5, s(6)) is the string (((a) ((a) (b))) (((a) (b)) (b))).

4.2 Procedure M for skeletons

In Figure 2, we give the procedure M that determines derivation trees of characteristic ex-

amples with membership queries. An input is a set of skeletons for characteristic examples

of complete grammars with respect to a target parenthesis grammar. An output is a set of

derivation trees for given characteristic examples.

Let = {sl, sz, . . , s,) be a set of skeletons for m characteristic examples of a target

language Lu. First, for any two nodes i and j of a skeleton sk (1 5 k 5 m), M uses a

membership query. For such nodes i and j of a skeleton st, a membership query proposes two

yields of trees sk(i, sk (j)) and sk (j, sk (i)). If these two yields are both in LU, then the answer

yes is returned; otherwise the answer no is returned. If the answer yes is returned, then M
renames aj by oi if i < j or renames a, by aj if j < i.

Then, for any node i' of a skeleton si and any node j' of other skeleton sj (1 5 i 5 m- 1, i <
j), M uses a membership query. For such nodes i' and j', a membership query proposes the

two yields of trees si(il, sj(jl)) and sj(jf, si(il)). If the two yields are both in LU, then the

answer yes is returned; otherwise the answer no is returned. If the answer yes is returned,

then M renames ajl of sj by ail of si if i' < j' or renames ail of si by a j ~ of sj if j' < if. If the

answer no is returned and i' = j', then M renames ajl of sj by okt, where no skeleton sk E 5

has a label okl.

Finally, M outputs a refined as the set of derivation trees of a grammar for the target

Procedure M
Input: a set i? = {sl, s 2 , , s,) of skeletons for m characteristic examples
Output: derivation trees for given characteristic examples
begin

foreach si E j. (1 5 i < rn) /* First loop */
foreach nodes j, k of si do

make membership queries;
if j = G ~ (~ ~ , ~ ~) k , then

rename a k by gj (j < k) or oj by a h (k < j);
else;

foreach si, sj E 5 (1 5 i < m - 1, i < j)
foreach nodes i' of si and j' of sj do

/* Second loop */

make membership queries; . .
~f 2' = G ~ (~ ~ , ~ ~) j', then

rename by ail (it < j') or rename ail by ajl (j' < 2');
if i' $Gu(si,sj) j' and i' = j', then

rename a j ~ by a new label ap
else;

output i?;
end

Table 1: The procedure M to decide derivation trees

parenthesis language Lu. Our algorithm computes a parenthesis grammar G = (N, C, P, S)

using such a refined i? = isl, s2, . . , s,). Since each si (1 5 i 5 m) is a skeleton for a

characteristic example, each symbol in C occurs in a skeleton. Hence, C is computable. For

any two labels of internal nodes of skeletons, it is decidable whether or not they are equal.

Hence, N is also computable. For a skeleton, if there exists an internal node whose label is a

such that it has children whose labels are ~ 0 2 , . . , am (m 2 1) in left-to-right order, then

our algorithm makes a rule a --+ (olo2 am) of G.

In the next section, we prove that, for any parenthesis language, our algorithm outputs a

correct parenthesis grammar.

5 Correctness and Complexity

Lemma 4 Let a and b be internal nodes of a derivation tree d of a parenthesis grammar G.

Two labels of a and b are equal if and only if a z ~ (d , d) b.

Proof. Clearly, if two labels of a and b are equal, then a = ~ (d , d) b. We assume a = ~ (d , d) b. Let

a,, a b denote labels of a, b, respectively. Since G is backwards-deterministic, if two yields of

d(a) and d(b) are equal, then a, and a b are equal.

Let two yields of d(a) and d(b) are not equal. G has two rules of the form a --+ (wla,w2)

and 8' --+ (w;obw;) fox nonterminals o and o', strings wl, 2 ~ 2 ~ w; and w;. G also has two rules

7

of the form a --+ (wlabw2) and d --+ (w:o~w~). Then, any P[aa] and ,8[ob] derived from G

are of the form Wl(wla"w2)W2 or Wi(w:a"w~) Wi for a nonterminal a" E {aa, ab), strings

Wl, W2, Wi and W;. Thus, P[aa] is derived from G if and only if @[ab] is derived from G. Since

G is reduced, no two distinct nonterminals of G are equivalent. Hence, a, and a b are equal.

Lemma 5 Let a, a' be internal nodes of derivation trees d, d' of a parenthesis grammar G,

respectively. Two labels of a and a' are equal if and only if a = ~ (d , d ,) a'.

Proof. Since G is unambiguous, for any w E L(G), there exists exactly one derivation tree of

G. Then, similarly to Lemma 4, we can prove Lemma 5.

From Lemma 4 and Lemma 5, we conclude that, for a target parenthesis language, our

algorithm eventually terminates and outputs a parenthesis grammar which generates the target

parenthesis language.

We now analyze the time complexity for our algorithm.

Lemma 6 The time required for M is bounded by a polynomial in the number of character-

istic examples and in the length of a longest characteristic example.

Proof. It is sufficient to show that the number of membership queries is bounded by a poly-

nomial. Let k be the number of internal nodes of a skeleton for a characteristic example w.
1

The number of membership queries for w is at most i k (k - 1).
2

Let m be the number of characteristic examples and n be the number of internal nodes

of a skeleton for a longest characteristic example. The number of membership queries in the
1 1

first loop and in the second loop of M are at most i m n (n - 1) and at most im(m - l)n2,
2 2

respectively. Thus, the number of membership queries is in O(m2n2).

Lemma 7 The number of characteristic examples given to M is bounded by a polynomial in

the size of a minimal parenthesis grammar.

Proof. Let G = (N, C, P, S) be a parenthesis grammar. From Proposition 1, the number of

characteristic examples to learn L(G) can be bounded by I IPI I (< I IGI I).

From these lemmas, we have the following theorem.

Theorem 2 There exists an algorithm that learns a parenthesis language with membership

queries and characteristic examples, and runs in a polynomial time in the size of a minimal

grammar for the target parenthesis language and in the length of a longest characteristic

example given to the algorithm.

6 Concluding Remarks

We have introduced the notion of characteristic examples for languages. We have discussed

properties of characteristic examples and proved that it is solvable whether or not a context-free

grammar has a characteristic example.

We have presented an algorithm that learns parenthesis languages. We also have shown

that the time required for our algorithm is bounded by a polynomial in the size of a minimal

parenthesis grammar and in the length of a longest characteristic example.

One open problem we have not answered is whether or not any other interesting sub-

classes of contex-free grammars can be learned by our learning model. Since every context-

free grammar has an equivalent reduced backwards-deterministic grammar and the decision

problem in Section 3 is solvable, it seems that the definition of characteristic examples can be

applied to such sub-classes. However, in general, context-free grammars are ambiguous. Hence,

for a string derived from a context-free grammar, there may exist two or more derivation trees.

In order to overcome this difficulty, we need a new method to determine derivation trees.

References

[Ang88] Angluin, D. Queries and concept learning. Machine Learning, 2:319-342, 1988.

[Ang87a] Angluin, D. Learning k- bounded context- free grammars. Technical Report

YALEU/DCS/RR-557, Department of Computer Science, Yale University, 1987.

[Ang87b] Angluin, D. Learning regular set from queries and counter-examples. Information

and Computation, 45:117-135, 1987.

[BR87] Berman, P. & Roos, R. Learning one-counter language i n polynomial time. In
Proceedings of 28th IEEE Symposium on Foundations of Computer Science, pages

61-67. IEEE Computer Society Press, 1987.

[Har78] Harrison, M.A. Introduction to Formal Language Theory. Addison-Wesley, 1978.

[IshSO] Ishizaka, H. Polynomial time learnability of simple deterministic languages. Ma-

chine Learning, 5:151-164, 1990.

[McN67] McNaughton, R. Parenthesis Grammars. Journal of the ACM, 14:490-500, 1967.

[SakgO] Sakakibara, Y. Learning context-free grammars from structural data in polynomial
time. Theoretical Computer Science, 76:223-242, 1990.

[Sha83] Shapiro, E.Y. Algorithmic program debugging. Cambridge, MA: MIT Press, 1983.

[Tak88] Takada, Y. Grammatical inference for even linear languages based on control sets.
Information Processing Letters, 28: 193-199, 1988.

