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An elementary formal system (EFS, for short) was first introduced by Smullyan [9] to
develop his recursive function theory. Arikawa et al. [3, 5] showed that various classes
of languages in Chomsky hierarchy can be defined by the EFS’s. Furthermore, since an
EFS is a kind of logic program [11], we can easily define various classes of relations over
strings. Since a translation can be considered as a binary relation over strings, we can
define translations by EFS’s. Irons [6] introduced a Syntax Directed Translation (SDT, for
short), which is an extension of CFG, as translation grammar. Many researcher discussed
properties of translations by SDT’s [1, 2, 6, 7).

are equivalent to the SDT’s. Furthermore, EFS’s can define larger classes of translations.
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Abstract

We show some properties of elementary formal systems (EFS’s, for short) as
translation grammars. A translation is a binary relation over strings. Since the
EFS’s are logic programs over strings, they can easily define translations.

In this paper, we consider the problem for deciding whether the number of tar-
get sentences, which correspond to output strings, is finite or not for any source
sentence, which corresponds to an input string. When we need all target sentences,
the finiteness of the given translation is important. However, the finiteness problem
is unsolvable in general. Therefore, we give a class of translations in which the
problem is solvable. On the other hand, for some integer k, a k-bounded translation
is defined as the translation in which the number of target sentences is less than
or equal to k for any source sentence. Furthermore, we give a class of EFS’s which
define 1-bounded translations.
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We can obtain restricted EFS’s which



Essentially, a SDT defines a translation over context-free languages, because a SDT is an
extension of a CFG . On the other hand, since EFS’s can define recursively enumerable
languages, we are possible to obtain more rich classes of translations.

In this paper, we investigate some properties of translations defined by EFS’s. Es-
pecially, we focus on the finiteness of translations. That is, we consider the problem for
deciding whether the number of target sentences, which correspond to output strings, is
finite or not for any source sentence, which corresponds to input strings, in the translation.
When we need all target sentences, it is important whether the given translation is finite
or not. On the other hand, we consider translations by compilers, we wish the number
of target sentences is at most one. Hence, we formalize the finiteness of translations. In
general, for given translation 7', the problem for deciding whether 7' is finite or not is
unsolvable. However, we show that we can easily obtain the class of translations in which
the problem is solvable by EFS’s. Furthermore, in this paper, for some non-negative
integer k, a k-bounded translation is defined as the translation in which the number of
target sentences is less than or equal to k for any source sentence. In general, for given
translation 7', the problem for deciding whether 7" is 1-bounded or not is unsolvable. In

this paper, we give conditions under which the number of target sentences is at most one.

2 Elementary formal systems

In this section, we present basic definitions for EFS’s according to [3, 4, 5].

Let ¥, X and II be mutually disjoint sets. We assume that ¥ and II are finite. We
refer to each element of ¥ as a constant symbol, to each element of X as a wvariable, and
to each element of II as a predicate symbol. In particular, ¥ is called alphabet. Each
predicate symbol is associated with a non-negative integer called its arity. For a set A,
we denote the set of all finite strings of symbols from A by A*, and the set A* — {¢} by
A*T, where ¢ is a string whose length is 0. A term is an element of (X U X)*. A term
is said to be ground if it is an element of ¥*. An atomic formula (atom, for short) is
of the form p(my, ma,...,7,), where p is a predicate symbol with arity n and each 7; is a
term (1 < i < n). An atom p(my, s, ...,7,) is said to be ground if all 7,7, ..., T, are
ground. A definite clause (clause, for short) is of the form A « By,..., B, (n > 0), where

A,By,...,B, are atoms. The atom A is called the head and the sequence By, ..., B, of



atoms is called the body of the clause. A goal clause (goal, for short) is of the form
— Bi,...,B, (n>0)and the goal with n = 0 is called the empty goal. A substitution is
a finite set of the form {x1/7,...,2,/7n}, where 21, ..., z, are distinct variables and each
7; is a term distinct from x; (0 < i < n). We refer to either a term, an atom or a clause as
an expression. Let E be an expression. Then, for a substitution 8 = {x1/71,...,2,/7n},
E6 is the expression obtained from £ by simultaneously replacing each occurrence of the
variable x; in E by the term 7; (1 < i < n). We say that Ef is an instance of E. If there
is no variable occurring in Ff, the instance E6 of F is said to be ground. Let E; and Ej
be a pair of expressions and € be a substitution. If £160 = E50 then we say that 4 is a
unifier of Ey and Fs. For an expression FE, the set of variables occurring in F is denoted
by v(E). The length of a term 7 is denoted by |x|.

An elementary formal system (EFS, for short) S is a triplet (X,I1,T), where T is a
finite set of clauses [9]. Each clause in T' is called an aziom of S. For an EFS S and
a ground atom «, a derivation tree of o on S is a finite tree that satisfies the following

conditions.
1. Each node of the tree is a ground atom.
2. The root node is a.
3. For each internal node 3 and its children 8y,...,0, (n > 1), f «— [1,..., [, is a

ground instance of an axiom of S.

A proof tree of o on S is a derivation tree of o on S such that each leaf of the tree is a
ground instance of an axiom of S with empty body.

Let I be a set of ground atoms. We define the function T as follows:

Ts(I) = {«a | there exists a ground instance a « {1, ..., 3, of an axiom of S
such that 3; € I for any i(1 < i < n)}.

The set Tslw is defined as follows:

1. T§i0 = 0,

2. Tn = Te(Tsl(n — 1)) for n > 1,

3. Tslw = Uy>o Teln.

We define SS(.S) as the set of all ground atoms « such that there exists a proof tree of a

on S. Yamamoto [11] showed that Tslw = SS(S) for every EFS S.



3 The finiteness problem for translations

In this section, we formalize the finiteness problem for translations. A translation over an
alphabet ¥ is a subset of £ x ¥*. For example, {(0, 0), (1, 1), (10, 2), (11, 3), (100, 4),
(101, 5), ...} is a translation over {0,1,...,9}. For each element (wy,ws) of the trans-
lation T', w; is called the source sentence and w is called the target sentence. In what
follows, we will often omit indicating the alphabet ¥ over which the translations defined.
Let T be a translation, and w € X%. Then, we define
dom(T) = {w, | (wi,w2) € T}, range(T) = {wz | (wi,ws) € T},

T(w)={u|(w,u) € T}, TR(w) = {v|(v,w) € T}.
That is, T'(w) denotes the set of all target sentences into which the source sentence w is

translated by T. Conversely, T%(w) denotes the set of all source sentences which should
be translated into w by T.

A translation T is said to be finite if the set T'(w) is finite for every w € dom(T).
Furthermore, T' is said to be bidirectionally finite if both T'(w,) and TE(w,) are finite for
every wy € dom(T') and every ws € range(T'). For some non-negative integer k, T is said

to be k-bounded if |T'(w)| < k for every w € dom(T).

Example 1 Let T be a translation by which a binary number translated into the corre-
sponding decimal number. Then, for any binary number ¢, |T(i)| = 1. Therefore, T is
finite and 1-bounded.

Example 2 Let T = {(="A,=""?"A) | n,m > 0} U {(="4,-""?™A) | n > 2m > 0} be
a translation. We can regard T as the logically equivalent transformation with respect
to negation. When ——=A is given, it translates into A, ==—=A, =—~==A,... . Thus,

clearly, T is not finite.

The finiteness problem for translations is, for given translation 7', the problem for
deciding whether 7 is finite or not. Next, we show that, in general, the finiteness problem
is unsolvable. For any non-negative integer i, we define

T; = {(w1,ws) € B x TF | gi((w1, ws)) = 1},
where (w1, ws) is a code of the string (wy,w,), and ¢; is a partial recursive function
computed by the Turing machine M whose Godel number is 7. It is obvious that 7}
defines a translation. Then, we get the following theorem.

Theorem 3 For arbitrary non-negative integer i, the problem for deciding whether T; is



finite or not is unsolvable.
Proof: Let P be the set of all partial recursive functions with arity 1. We define

G = {z | T, is a finite translation}, C ={y, |z € G}.
Since there exists a finite translation as shown in Example 1, C' # (). On the other hand,
since there exists a translation which is not finite as shown in Example 2, C' # P. Thus,
G is not a recursive set by Rice’s theorem [8]. For any non-negative integer x, T, is finite
if and only if 2 € G. Therefore, the problem for deciding whether 7, is finite or not is

unsolvable. ]

Similarly, for an arbitrary non-negative integer ¢, the problem for deciding whether T;

is k-bounded for some fixed k or not is unsolvable.

4 Classes of translations defined by EFS’s

In this section, we introduce some classes of translations defined by EFS’s and give some
conditions under which the translation is finite and 1-bounded.

We define a translation EFS (TEFS, for short) as a EFS with at least one predicate
symbol with arity 2. Let S = (X,II,T') be a TEFS, and p € II be a predicate symbol with
arity 2. Then, we define

T(S,p) = {(wy,ws) € ¥T x XT | there exists a proof tree of p(wy,ws) on S}.
A translation 7 is said to be defined by a TEFS S and a predicate symbol p if 7' = T'(.S, p).
For a translation 7', if there exists a TEFS S such that 7' = T'(S,p) for some predicate
symbol p, then T is said to be definable by TEFS’s.

Arikawa et al. [5] introduced some classes of restricted EFS’s: variable-bounded EFS’s,
length-bounded EFS’s, regular EFS’s and one-sided linear EFS’s, and show that recur-
sively enumerable, context-sensitive, context-free, regular languages in Chomsky hierar-
chy are definable by them, respectively. Furthermore, they introduced an important class
which is called simple EFS. We can define various subclasses of TEFS’s which correspond
to these subclasses of EFS’s. However, in this paper, we focus on the subclasses of TEFS’s
which correspond to simple EFS’s and- one-sided linear EFS’s.

A TEFS S = (X,I1,T) is simple if the arity of each predicate symbol in IT is 2 and each
axiom of S is of the form p(m1,72) — (1, y1), -, @u(Tn, Yn ), where 21, ..., Tn, Y1, - -, Yn

are mutually distinct variables, and v(m) = {21,...,z,} and v(m2) = {1, ..., yn}. Ifeach



axiom satisfies that for any variable x, 2 occurs in the head of the axiom at most once,

then the restricted simple TEFS’s are equivalent to SDT’s.

Proposition 4 LetT be a translation defined by a simple TEFS S = (£,11,T") and p € I1.
If S has no aziom of the form ¢(x, ) « r(x,y), then T is finite, where x,y are variables
and 7 is a term. Furthermore, S also has no aziom of the form q(xw,y) — r(z,y), then T
is bidirectionally finite.

Proof: First, we show that for any integer | > 1, if g(w,w’) € Ts\]l — T] (I — 1) then
|w| > I, by the induction on . If ¢(w,w") € Ts[1 — T10 then g(w,w') «€ T from the
definition of Tin. From the definition of simple TEFS’s, the length of w is more then or
equal to 1. If g(w,w') € Ty (k + 1) — Tk then there exists a ground instance g(w,w’) «
P1(u1,01); - - s T (Um, V) Of an axiom of S and {ri(uy,v1), ..., To(Um,vm)} € TsTk. On
the other hand, there exists i (1 < ¢ < m) such that r;(u;,v;) € Tk — TS (k — 1). If all
ri(uj,v;) (1 < j < m) arein TJ(k — 1) then g(w,w") € TTk. This contradicts with the
assumption. Then, there exists ¢ such that. The length of u; is more than or equal to &k
by the inductions assumption. Since I' has no axiom of the form ¢/(z,7) « r(x,y), the
length of w is more than or equal to k + 1.

Next, we prove that for any non-negative integer [, the set 7,7 is finite by the induction
on /. From the definition, T,j0 is finite. For any k& > 1, Tk is the set of all ground atoms
q(w,w") such that g(w,w’) « ri(u1,v1), ..., "m(Un, vy) is a ground instance of an axiom
and {r1(u1,v1), .« Tm(Um,vm)} C Tsl(k — 1). Note that, for any axiom C' = ¢(7,7") <
r1(7m1, 7)), - oy T(Tm, 7, ) of a simple TEFS, if ground atoms 71(u1,v1), ..., 7p (U, V)
are given, then the instance of the head of C' is ground and uniquely determined, because
each variable which occurs in the head of C' must be occur in the body of C. Since
T (k — 1) is finite by the inductions assumption, the number of all ground instances of
axioms such that all ground atoms in their bodies are in T](k — 1) is finite. Thus, Tk
is finite.

Since, for any w € It if there exists a proof tree of p(w,w’) on S then p(w,w') is an
element of T,|w| and TJ|w| is finite, T(w) is finite.

The latter part of the statement can be proved similarly. (]

A simple TEFS is right linear if each axiom of the TEFS is of one of the following

forms:



1. p(u,v) <,

2. pluz,vy) « q(z,y),
where u,v € 7.

Similarly, we can define left linear TEFS’s by replacing the second condition with
p(au,yv) — g(z,y). We refer to a right linear TEFS or a left linear TEFS as a one-sided
linear TEFS.

If a TEF'S is one-sided linear then the TEFS is simple. Hence, we obtain the following
proposition.

Proposition 5 A translation which is definable by one-sided linear TEFS’s is bidirec-
tionally finite.

Proof: A one-sided linear TEFS satisfies the both conditions in Proposition 4. ]

A one-sided linear TEFS S = (X,I1,T') is deterministic if, for each p € I and each
a € 2, T includes at most one clause whose head is of the form p(ar,7) (p(7a, 7)), where

7 and 7 are terms. The following proposition is directly obtained from the definition.

Proposition 6 A translation which is definable by deterministic one-sided linear TEFS’s

is 1-bounded.

5 The finiteness problem for simple TEFS’s

In previous section, we showed that, for an arbitrary translation, the finiteness of the
translation is undecidable. In contrast, in this section, we show that the problem is solv-
able in the class of translations which is definable by simple TEFS’s. First, we introduce
a reduced form of a simple TEFS w.r.t. a translation which is defined by the TEFS. We
show that the finiteness problem for translations which are definable by reduced simple
TEFS’s is solvable. Furthermore, any simple TEFS can be shown to be transformed into
a reduced form w.r.t. a translation defined by the original TEFS. In consequence, we
can obtain the result that the finiteness of a translation defined by a simple TEFS is
decidable.

Let T" be a translation defined by a TEFS S = (X,II,T") and a predicate symbol
p € II. We say that a predicate symbol ¢ € II is useless w.r.t. T if, there exists no
element (wy,ws) of T such that ¢ occurs in the proof tree of p(wy,ws) on S. We say that

q is useful w.r.t. T if ¢ is not useless.



Example 7 Let T = {(a",b") | n > 1} be a translation and S = ({a,b}, {p,r1,72},T") be
a TEFS, where

plaz, by) < p(z,y)
plaz, by) — ri(w,y)
ra(ax, cy) — p(z,y)

| p(a,b) «
Then, r; and 79 are useless w.r.t. 7T'.

Since useless predicates are not necessary to define the translation, we can remove the
useless predicates from the simple TEFS.

Let T be a translation defined by a simple TEFS S = (X,II,T"). We say that S is
reduced w.r.t. T if S satisfies the following conditions:

1. IT has no useless predicate symbol w.r.t. 7T

2. There is no axiom whose head is of the form ¢(z,y), where z and y are variables.

We can prove the following proposition [10]. |
Proposition 8 Any simple TEFS S = (X,IL,T") can be transformed into the reduced
TEFS S" w.r.t. T(S,p) such that T(S',p) =T(S,p). and p € II. We can

We show that the finiteness problem for translations which are definable by reduced
simple TEFS’s is solvable. For a simple TEFS S = (X,1I,T"), a level mapping of S is a
total function from II to the set of integers.
Lemma 9 Let T be a translation defined by a reduced simple TEFS S = (X,11,T") w.r.t.
T. LetT" be the set of all the clauses C € T' such that the head of C is of the form ¢(x, 7).
If T is finite then there exists a level mapping f such that f(q) > f(r) for any clause
gz, 7) — r(z,y) e T
Proof: We prove the contraposition of the statement in this lemma. We assume that
there exists no level mapping f such that f(¢) > f(r) for any q(z,7) « r(z,y) € I'".

Then, there exist clauses

Pz, 01t 51) < pa@1, 1),
p2(m9, 2y f2) — p3(T2,%2),

vz, cauify) — p(e,y)
in I" such that either a; or 3; is not € for each 7 (1 < i < [). By the definition of re-

duced TEFS’s, there exist ground terms u and v such that p;(u,v) occurs in the proof

8



tree of p(wi,ws) for some wy,wy € Et. Note that, from the definition of simple TEFS’s,
for any derivation tree of p(wy,ws) on S, if a ground atom ¢(u,v) occurs in the deriva-
tion tree, then w,v are substrings of wi, ws, respectively. Since pi(u,v) is in TsTw, all
pi(u, ), ..., pa(u,an ... oqufy ... fBa) are in Tglw, from the definition of Tsfw. Further-
more, for any non-negative integer k, all p;(u, a*v3*) is in Tslw, where a = ;... q; and
B=0...0.

Let P be a proof tree of p(ws,ws) on S in which py(u,v) occurs. In above discussion,
we showed that such a proof tree exists. Now we construct a proof tree of p(wy,wh) on
S in which pi(u, a®vB*) occurs, for each k. Let ro(ug, vo),- -, F'm(Um, Um) be ancestors
of p1(u,v) such that r;(u;,v;) is a parent of riy1(uit1,viq1) for each ¢ > 0. Let 9,11 be

o*vf*, and v,4q be v.

For each i (¢ = m,...,0), we construct 9; from 0,41 as follows. Let 6; be a substitu-
tion and 7;(my, m2) — s1(21,Y1),- -+, 5u(Tn, yn) be an axiom of S which satisfy following
conditions.

1. 0; is an unifier of 7;(my, m2) and r;(u;, v;).

2. In the proof tree P, the children of 7;(u;, v;) are s1(z1,91)0:,- -, Sn(@n, Yn )b
Since there exists j (1 < j < n) such that s;(x;,y;)0; = Tiy1(Uis1, vig1), let 0, = 0, —
{y;/vie1} U {yj/Bi01} and §; = mo0);.

Let P be the tree such that

1. The subtree of P whose root node is p; (u, v) is replaced by a proof tree of p;(u, a*v3*)

on S, and

2. Nodes ro(uo, o), - -+, Tm(Um, Um) in P replaced by ri(u1, 91), .., "m(Um, Om).
Then, P is a proof tree of p(w;,wk). For any non-negative integers j; and jo, if j; # Jo
then wj # w, because either a; or f; is not & for each i. Since all w§ (k > 0) are target

sentences of wy, T is not finite. ]

Lemma 10 Let T be a translation defined by a simple TEFS S = (X,11,T") and T” be the
set of all the clauses C € T' such that the head of C is of the form q(x, 7). If there exists
a level mapping f such that f(q) > f(r) for any clause q(z,7) < r(z,y) € I then T is
finite.

Proof: Without loss of generality, we can assume that f is a mapping from II to

{1,2,...,m}, where m = |II|. For any integer { > 1, if a ground atom p(w,w’) is an

9



element of (1 - m + 1) — TJ(l - m) then |w| > [ + 1. Hence, for any w,w’ € T, if there
exists a proof tree of p(w,w’) on S then p(w,w’) is an element of TiT|w| - m. Moreover,

for any non-negative integer [, T¢[{ is finite. Therefore, 7" is finite. []

Let T be a translation defined by a simple TEFS S = (X, II,T") which is reduced w.r.t.
T. Let I” be the set of all the clauses C' € T such that the head of C is of the form ¢(x, 7).
From above two lemmas, T is finite if and only if there exists a level mapping f such that

f(q) > f(r) for any clause g{x,n) < r(z,y) € I'". Then, we can obtain following theorem.

Theorem 11 The finiteness problem for the translations which is definable by simple

TEFS’s is solvable.

Proof: Let T be a translation defined by a simple TEFS S = (X,II,T") and p € II.
Suppose that S = (3,I1,T) is a reduced TEFS of S w.r.t. T. Let I be the set of
all clauses C' € I such that the head of C is of the form ¢(x, ), and the number of all
predicate symbols occurring in T be m. The number of patterns of assignment 1,...,m
to each predicate symbol is finite. If, there exists a level mapping f such that f(q) > f(r)
for any axiom ¢(z,7) < r(z,y), then T is finite, and if there is not such a level mapping
then 7" is not finite. The time for constructing S’ and I'” is finite. Therefore, the finiteness

problem is solvable. ]

6 Conclusion

We showed that an EFS has good properties as a translation grammar. Especially, we
focused on the finiteness of translations. We formalized the finiteness problem for trans-
lations, and show that the problem is solvable in the class of translations ‘deﬁned by
restricted EFS’s called simple TEFS’s. A simple TEFS is so rich that it can define over
languages in larger class than that of context free languages. Furthermore, we give the
class of translations in which the number of target sentence is at most one.

We can determine whether a pair of strings is an element of a translation defined by
a simple TEFS, by the derivation procedure [11]. It is future work that we formalize a
procedure to produce the target sentence from a source sentence. On the other hand,
Arikawa et al. [3, 5] showed that EFS is a good framework for language learning. We will

discuss learning translations in various classes by EFS’s.
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