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Abstract 
We show soiiie properties of elementary formal systems (EFS's, for short) as 

translatioii grammars. A translatioii is a binary relation over strings. Since the 
EFS's are logic prograins over strings, they can easily define translations. 

In this paper, we consider the probleni for deciding whether the iiumber of tar- 
get sentences, which correspond to output strings, is finite or not for any source 
sentence, which corresponds to an input string. When we need all target sentences, 
the finiteness of the given translation is iniportaiit. However, the finiteness problem 
is uiisolvable in general. Therefore, we give a class of translations in which the 
problem is solvable. On the other hand, for some integer k ,  a k-bounded translation 
is defined as the translation in which the nuniber of target sentelices is less than 
or equal to k for any source sentence. Furtherinore, we give a class of EFS's which 
define 1-bounded translations. 

KEY WORDS : eleineiit ary formal systein, translation, fornial language 

C.R. CATEGORIES: F.4, 1.6 

Introduction 

A11 elementary forinal system (EFS, for short) was first introduced by Srnullyan [9] to 

develop his recursive function theory. Ariliawa et  al. [3, 51 showed that various classes 

of languages in Chomsliy hierarchy can be defined by the EFS's. Furthermore, since an 

EFS is a Bind of logic prograin [ll], we can easily define various classes of relations over 

strings. Since a translation can be considered as a binary relation over strings, we can 

define translations by EFS's. Irons [6] introduced a Syntax Directed Translation (SDT, for 

short), which is an extension of CFG, as translation grammar. Many researcher discussed 

properties of translations by SDT's [I, 2, 6, 71. We can obtain restricted EFS's which 

are equivalent to the SDTis. Furthermore, EFS 's can clefine larger classes of translat ions. 



Essentially, a SDT defines a translation over context-free languages, because a SDT is an 

extension of a CFG . On the other hand, since EFS's can define recursively enumerable 

languages, we are possible to obtain more rich classes of translations. 

In tlhis paper, we investigate some properties of translations defined by EFS's. Es- 

pecially, we focus on the finiteness of translations. That is, we consider the problem for 

deciding whether the number of t arget sentences, which correspond to out put strings, is 

finite or not for any source sentence, which corresponds to  input strings, in the translation. 

When we need all target sentences, it is important whether the given translation is finite 

or not. On the other hand, we consider translations by compilers, we wish the n~unber 

of target sentences is at  most one. Hence, we formalize the finiteness of translations. In 

general, for given translation T, the problem for deciding whether T is finite or not is 

unsolvable. However, we show that we can easily obtain the class of translations in which 

the problem is solvable by EFS's. Furthermore, in this paper, for some non-negative 

integer k, a k-bounded translation is defined as the translation in which the number of 

target sentences is less than or equal to k for ally source sentence. In general, for given 

translation T ,  the problem for deciding whether T is 1-bounded or not is unsolvable. In 

this paper, we give conditions under which the number of target sentences is at most one. 

2 Elementary formal systems 

In this section, we present basic definitions for EFS's according to [3, 4, 51. 

Let C, X and I2 be mutually disjoint sets. We a'ssulne that C and I2 are finite. We 

refer to  each element of C as a constant symbol, to each element of X as a variable, and 

to  each element of I2 as a predicate synlbol. In particular, C is called a.lphabet. Each 

predicate syinbol is associated with a non-negative integer called its aritg. For a set A, 

we denote the set of all finite strings of sylnbols from A by A*, and the set A* - { E )  by 

A+, where E is a string whose length is 0. A term is an element of (C U X)+.  A term 

is said to be ground if it is an element of C t .  An atomic formz~la (atom, for short) is 

of the form p ( q ,  ~ 2 ,  . . . , 7in); where p is a predicate symbol with arity n and each ni is a 

term (1 5 i 5 n). An aton1 p(al ,  n2, . . . , T,) is said to  be g ~ o z ~ n d  if all nl,  71-2,. . . , T, are 

ground. A definite clause (clause, for short) is of the form A +- B1, . . . , B, (n 2 O), where 

A, B1, . . . , B, are atoms. The atom A is called the head and the sequence B1, . . . , B, of 



atoms is called the bodg of the clause. A goal clarise (goal, for short) is of the form 

+ l 3  . . . , l 3  ( n  2 0) and the goal with n = 0 is called the ernptg goal. A substitution is 

a finite set of the form { x l / a l ,  . . . , xn/a,), where xi ,  . . . , zn are distinct variables and each 

.rri is a term clistillct from xi (0 5 i 5 12). We refer to either a term, an atom or a clause as 

an expression. Let E be an expression. Then, for a substitution 6' = { x l / a l ,  . . . , x,,/an), 

EB is the expression obtained from E by simult aneously replacing each occurrence of the 

variable xi in E by the term .iri ( 1  5 i 5 n )  . We say that EB is an instance of E.  If there 

is no variable occurring in Ed, the instance EB of E is said to be ground. Let El and E2 

be a pair of expressions and 0 be a substitution. If EIB = E2B then we say that B is a 

unifier of El and E2. For an expression E ,  the set of variables occurring in E is denoted 

by v (E ) .  The length of a term a is denoted by lal. 

An elernentar9 formal sgstern ( E F S ,  for short) S is a triplet (C, II, I?), where I' is a 

finite set of clauses [9]. Each clause in I? is called an axiom of S .  For an EFS S and 

a ground atom a ,  a derivation tree of a on S is a finite tree that satisfies the following 

conditions. 

1. Each node of the tree is a ground atom. 

2. The root node is a. 

3. For each internal node /3 and its children D l , .  . . , Pn ( n  2 I ) ,  P +-- P I , .  . . , Pn is a 

groulld instance of an a,xionl of S.  

A proof tree of a on S is a derivation tree of a on S such that each leaf of the tree is a 

ground instance of an axiom of S with empty body. 

Let I be a set of ground atoms. We define the function Ts as follows: 

T s ( I )  = { a  I there exists a ground instance a +- D l ,  . . . , ,On of an axiom of S 

such that pi E I for any i ( l  5 i 5 n ) ) .  

The set TsTw is defined as follows: 

1. TsTO = 0, 

2. TsTn = Ts(TsT(n - I)) for n 2 1 ,  

3. TsTw = Un20TsTn. 

Tie define S S ( S )  as the set of all grouncl atoms a such that there exists a proof tree of a 

on S. Yalnamoto [ l l]  showed that TsTw = S S ( S )  for every EFS S. 



3 The finiteness problem for translations 

In this section, we formalize the finiteness problem for translations. A translation over an 

alphabet C is a subset of C+ x C+. For example, {(O, 0)) (1, I ) ,  (10, 2)) (11, 3), (100, 4)) 

(101, 51, . . .) is a translation over {0,1, .  . . , 9 ) .  For each element (wl, w2) of the trans- 

lation T, Z L I ~  is called the source sentence and wl is called the target sentence. In what 

follows, we will often omit indicating the alphabet C over which the translatioils defined. 

Let T be a translation, and w E C+. Then, we define 

dorn(T) = {wl 1 (wl, 202) E T), range(T) = { Z U ~  1 ( w ~ , z u ~ )  E T),  

T(w) = {u I (w, a )  E T), TR(zi~) = {v / (v, w) E T).  
That is, T(w) denotes the set of all target seiltences into which the source sentence w is 

trai~slated by T .  Conversely, TR(w) denotes the set of all source sentences which should 

be trailslated into w by T .  

A translation T is said t o  be finite if the set T(w) is finite for every w E don~(T) .  

Furthermore, T is said to be bidirectionally finite if both T(wl)  and TR(zu2) are finite for 

every wl E dorn(T) and every w2 E range(T). For some non-negative integer k, T is said 

to be k-bounded if IT(zu)l 5 k for every w E dom(T). 

Example 1 Let T be a trmlslatioil by which a binary number translated illto the corre- 

spondiilg decimal number. Then, for any binary number i ,  IT(i)l = 1. Therefore, T is 

fillit e and 1-bounded. 

Example 2 Let T = { ( i n A ,  T"+~"A) I n ,  n2 2 0) U {(+A, + - 2 m ~ )  I n 2 272 2 0) be 

a translation. We can regard T as the logically equivalent transformation with respect 

to negation. When 1 7 4  is given, it translates into + I ,  l l l A ,  l l l l l A , .  . . . Thus, 

clearly, T is not finite. 

The finiteness problem for trailslations is, for given trailslation T, the problem for 

deciding whether T is finite or not. Next, we show that,  in general, the finiteness problem 

is unsolvable. For any non-negative integer i ,  we define 

Ti = { ( z u ~ ,  wz) E C+ x C+ I pi((w1, ~ 2 ) )  = I ) ,  

where (wl, w2) is a code of the string (wlr w2), and pi is a partial recursive function 

computed by the Turing machine M whose Godel number is i. It is obvious that T, 

defines a translation. Then, we get the following theorem. 

Theorem 3 For arbitrary non-negative integer i ,  the problem for deciding whether T, is 



finite or  no t  i s  nnsolvable. 

Proof: Let P be the set of all partial recursive functions with arity 1. We define 

G = {x I T, is a finite translation), C = {p, I x E G). 

Since there exists a finite translation as shown in Example 1, C f 0. On the other hand, 

since there exists a translation which is not finite as shown in Example 2, C f P. Thus, 

G is not a recursive set by Rice's theorem [8]. For any non-negative integer 2 ,  T', is finite 

if and only if x E G. Therefore, the problem for deciding whether T, is finite or not is 

unsolvable. 

Similarly, for an arbitrary non-negative integer i ,  the problem for deciding whether ?: 

is k-bounded for some fixed k or not is unsolvable. 

4 Classes of translations defined by EFS's 

In this section, we introduce some classes of translations defined by EFS's ancl give sonie 

conditions under which the translation is finite and 1- bounded. 

We define a translation EFS (TEFS, for short) as a EFS with at least one predicate 

symbol with arity 2. Let S = (C, II, I?) he a TEFS, and p E II be a predicate symbol with 

arity 2. Then, we define 

T(S ,p )  = {(wl, we) E Ct x C+ I there exists a proof tree of p(wl, we) on S).  

A translation T is said to be defined by a TEFS S and a predicate symbol p if T = T(S ,  p). 

For a translation T, if there exists a TEFS S such that T = T(S,p)  for some predicate 

symbol p, then T is said to  be definable by TEFS's. 

Ariliawa e t  ul. [5] introduced some classes of restricted EFS 's: variable- bounded EFS 's, 

length-bounded EFS 's, regular EFS's and one-sided linea'r EFS's, and show that recur- 

sively enumerable, cont ext-sensitive, cont ext-free, regular languages in Choinsky hierar- 

chy are definable by them, respectively. Furthermore, they introduced an import ant class 

which is called simple EFS. We can define various subclasses of TEFS's which correspond 

to these subclasses of EFS's. However, in this paper, we focus on the subclasses of TEFS's 

which correspond to simple EFS's and one-sided linear EFS's. 

A TEFS S = (C, II, I?) is simple if the arity of each predicate symbol in II is 2 and each 

axiom of S is of the form p ( ~ 1 ,  r e )  + ql(x1, 2~1)'. . . , qn(xn, pn)' where xl ,  . . . , zn ,  yl, . . . , p, 

are mutually distinct variables, and u(r l )  = {xl , . . . , x,) and v(r2)  = { yl . . . , y,). If each 



axiom satisfies that for any variable x i  x occurs in the head of the axiom at most once, 

then the restricted simple TEFS's are equivalent to SDTis. 

Proposition 4 Let T be a translation defined by a simple TEFS S = (C, II, r )  and p E II. 

If S has no axiom of the form q(z, a )  +- r (x, y), then T is finite, where x, y are variables 

and a is a term. Furthermore, S also has no axiom of the form q(a, y) +- r (x ,  y), then T 

is bidirectionally finite. 

Proof: First, we show that for any integer 1 2 1, if q(w, w') E TsT 1 - TsT (1 - 1) then 

I w I  2 I ,  by the induction on I. If q(w, w') E TsT1 - T'TO then q(w, w') +-E I' froin the 

definition of TsJ'n. From the definition of simple TEFS's, the length of w is more then or 

equal to 1. If q(w, w') E T,l'(k + 1) - TsTk then there exists a ground instance q (w, w') +- 

r1(u1, vl), . . . , r , (u , ,  v,) of an axiom of S and {rl(ul ,  vl), . . . , r,(u,, v,)} TsTk. On 

the other hand, there exists i (1 5 i 5 n2) such that ri(ui, ui) E T,l'k - TsJ'(k - 1). If all 

r j (uj i  vj) (1  5 j 5 m)  are in T'T(k - 1) then q(w, w') E T'Tk. This contradicts with the 

assumption. Then, there exists i such that. The length of 211 is more tllan or equal to k 

by the inductions assumption. Since has no axiom of the form ql(x, T )  +- r (x ,  y), the 

lengtl~ of zu is inore than or equal to  k + 1. 

Next, we prove that for ally non-negative integer 1, the set TJ1 is finite by the induction 

on 1. From the definition, T'TO is finite. For any k 2 1, TsTk is the set of all ground atoms 

q(w, w') such that q(w , w') +- r l  (ul ,  vl), . . . , r, (u,, v,) is a grouild instance of an axiom 

and {rl(ul ,  vl), . . . , r,(u,, u,)) c T d ( k  - 1). Note that ,  for any axiom C = q ( ~ ,  T ' )  +- 

r l(al ,  a;), . . . , r,,(am, a;) of a simple TEFS, if ground atoms 1.1 (ul,  ul), . . . , r, (urni unZ) 

are given, then the instance of the head of C is ground and uniquely determined, because 

each variable which occurs in the head of C must be occur in the body of C .  Since 

KT@ - 1) is finite by the inductions assumption, the number of all ground instai~ces of 

axioms such that all ground atoms in their bodies are in TsT(k - 1) is finite. Thus, T'Tk 

is finite. 

Since, for any w E C+, if there exists a proof tree of p(w, w') on S then p(w, w') is an 

element of T'J'l wl and TsTl wl is finite, T(w) is finite. 

The latter part of the statemeilt call be proved similarly. 

A siinple TEFS is right linear if each axiom of the TEFS is of one of the following 

forms: 



2. p(ux, VY) + q(x, Y), 

where u ,  v E C+. 

Similarly, we can define left linear TEFS's by replacing the secoild condition with 

p(xu, yv) +- q(x, y )  We refer to a right linear TEFS or a left linear TEFS ass a one-sided 

linear TEFS. 

If a TEFS is one-sided linear then the TEFS is simple. Hence, we obtain the following 

pro posit ion. 

Proposition 5 A translation which is defin,able bg one-sided linear TEFS's is bidirec- 

tionallg finite. 

Proof: A one-sided linea'r TEFS satisfies the both conditions in Proposition 4. 

A one-sided linear TEFS S = (C, II, r) is deternainistic if, for each p E II and easch 

u E C, I' includes at  most one clause whose head is of the form p(aa,  r )  (p(na, T ) ) ,  where 

a and r  are terms. The following proposition is directly obtaiiled from the definition. 

Proposition 6 A translation which is definable bg deterministic one-sided linear TEFS's  

is 1 -bounded. 

5 The finiteness problem for simple TEFS's 

In previous section, we showed that,  for an arbitrary translation, the finiteness of the 

translation is undecidable. In contrast, in this section, we show that the problem is solv- 

able in the class of translations which is definable by siinple TEFS's. First, we introduce 

a reduced form of a simple TEFS w.r.t. a translation which is defined by the TEFS. We 

show that the finiteness problem for translations which are defiilahle by reduced simple 

TEFS's is solvable. Furt herinore, any simple TEFS can be shown to be t ransformed into 

a reduced form w.r.t. a trai~slation defined by the original TEFS. In consequence, we 

cazn obtain the result that the finiteness of a trailslation defined by a simple TEFS is 

decidable. 

Let T be a translation defined by a TEFS S = (C, II, I?) aiid a predicate symbol 

p E II. We say that a predicate symbol q E II is useless 2o.r.t. T if, there exists no 

element (wl, w2) of T such that q occurs in tlie proof tree of p(wl, w2) on S. We say that 

q is useful w.r. t. T if q is not useless. 



Example 7 Let T = {(an, bn) I n 2 1) be a translation and S = ( { a ,  b) , {p, r l  ,r2), I?) be 

a TEFS, where 

p(ax, by) + P(X, 9) 

p(ax,bv) + rl(x7y) 
I? = 

435 ,  cy) + y) 

p(a, b) +- 

Then, r1 and r2 are useless w.r.t. T .  

Since useless predicates are not necessary to define the translation, we can remove the 

useless predicates from the simple TEFS. 

Let T be a translation defined by a simple TEFS S = (C, II, I?). We say that S is 

reduced w.r. t. T if S satisfies the following conditions: 

1. II has no useless predicate symbol w.r.t. T .  

2. There is no axiom whose head is of the form q(x, y), where x and y are variables. 

We can prove the following proposition [lo]. 

Proposition 8 Any simple TEFS S = (C, II, I?) can be transformed into the reduced 

TEFS S' w.r.t. T(S,  p) such that T(S1,p) = T(S, p).  and p E II. We can 

We show that the finiteness probleln for translations which are definable by reduced 

simple TEFS's is solvable. For a simple TEFS S = (C, II, I?), a level mapping of S is a 

total function from IT to  the set of integers. 

Lemma 9 Let T be a transla tion defined by a reduced simple TEFS S = (C, II, I?) w. r. t. 

T. Let I?' be the set of all the clauses C E I? such that the head of C is of the form q(a, n-) . 

If T is finite then there exists a level mapping f such that f (q) > f ( r )  for anv clause 

ProoE We prove the contraposition of the statement in this lemma. We a,ssume that 

there exists no level mapping f such that f (q) > f ( r )  for any q(x, a) +- r (x ,  y) E I?'. 

Then, there exist clauses 

p l ( x l , ~ l ~ P z )  + pl (x1 ,~ l )  

in I?' such that either ai or Pi is not E for each i (1 < i 5 I). By the definition of re- 

duced TEFS's, there exist ground terms u and v such that pl(u, v )  occurs in the proof 



tree of p(wl, w2) for some wl, w2 E C+. Note that,  from the definition of simple TEFS's, 

for any derivation tree of p(wl, w2) on S, if a ground atom q(u, v) occurs in the deriva- 

tion tree, then u, v are substrings of w1, 202, respectively. Since pl (u, v) is in TsTw, all 

p1 (21, alvPl), . . . , p2(u, a 2  . . . aZv,Ol . . . P2) are in TsTw, from the definition of TsTw. Further- 

more, for ally non-negative integer k ,  all p1 (u,  a"..vP" is in TsTw, where a = a1 . . . al and 

P = P z . . . P l .  

Let P be a proof tree of p(wl, 202) on S in which pl(u, v) occurs. In above discussion, 

we showed that such a proof tree exists. Now we coilstruct a proof tree of p(tul, wi)  on 

S in which pl(u, a k v @ )  occurs, for each k .  Let ro(uo, vO), . . . , T,(zL,, v,) be ancestors 

of pl(u, v) such that ri(2hi, Vi) is a parent of ri+1 (ui+l, vitl) for each 2 2 0. Let ,6,+1 be 

akvPk,  and v,+l be v. 

For each i ( i  = m,  . . . , O) ,  we coilstruct fii from 6;+1 as follows. Let Qi be a substitu- 

tion and r i(al ,  a2)  +- sl (xl , gl), . . . , s, (x, , g,) 11e an axiom of S which satisfy following 

conditiolls. 

1. Qi is an unifier of ri  (al, ?iZ) and ri (ui, vi). 

2. I11 the proof tree P, the children of ri(ui, t1i) are S ~ ( X I ,  gl)oir . . . , sn(xn,  g,)Oi 

Since there exists j (1 < j < 72) such that sj(xj, gj)Oi = ri+1(ui+l, vi+l), let Bi = Oi - 

{1~j/vi+~) U {yj/cii+l) and fii = n26i. 

Let Ph be the tree such that 

1. The subtree of P whose root node is pl(u, v) is replaced by a proof tree of pl(u, a '~1,8~) 

on S, and 

2. Nodes ro(uo, vo), . . . , rm(um, vm) in P replaced by r l (u l ,  fil), . . . , T,(u,, 6,). 

Then, Pk is a proof tree of p(wl, wi) . For any non-negative integers jl and j2, if jl # j2 

then w$ + wp,  because either ai or pi is not E for each i. Since all u$ (k 2 0) are target 

sentences of wl, T is not finite. 

Lemma 10 Let T be a translation defined by a simple TEFS S = (C,  II, I?) and I?' be the 

set of all the clauses C E I? such that the head of C is of the form q(x ,  n-). If there exists 

a level mapping f such that f ( q )  > f ( r )  for any clause q(x, a) +- r (x ,  g) E I?' then T is 

finite. 

Proof: Without loss of generality, we can assume that f is a mapping froni II to 

{1,2, . . . , m )  , where m = I Ill. For any integer 1 2 1, if a ground atom p(zu, w') is an 



element of TJ(1  m + 1) - T ' (1 .  rn) then 1 w 1 2 1 + 1. Hence, for any 10, ZLI' E z+, if there 

exists a proof tree of p(ru, tu') on S then p(zu, wl) is an element of TsT 1 w I . m. Moreover, 

for any non-negative integer I ,  TJ1 is finite. Therefore, T is finite. 

Let T be a translation defined by a simple TEFS S = (C, IT, I?) which is reduced w.r.t . 

T. Let I" be the set of all the clauses C E I' such that the head of C is of the form y (x, T ) .  

From above two lemmas, T is finite if and only if there exists a level mapping f such tliat 

f (q) > f (r  ) for any clause q(x, a) +- r (x, y) E I". Then, we can oobt ain following theorem. 

Theorem 11 The finiteness problem for the translutions which is definable by  simple 

TEPS's is solvable. 

Proof: Let T be a translation defined by a simple TEFS S = (Z ,  IT,r) and p E II. 

Suppose that s = (C, II', rl) is a reduced TEFS of S w.r.t. T. Let I?" be the set of 

all clauses C E I?' such that the head of C is of the form q(a, r), and the number of all 

predicate symbols occurring in I"' be m. The number of patterns of assignment 1,. . . , m 

t o  each predicate symbol is finite. If, there exists a level mapping f such that f (q) > f ( r ) 

for any axiom q(x, a) + r ( x i  g)  , then T is finite, and if there is not such a level mapping 

then T is not finite. The time for constructing S' and r" is finite. Therefore, the finiteness 

problem is solvable. 

6 Conclusion 

We showed that an EFS has good properties a s  a translation grammar. Especially, we 

focused on the finiteness of translations. We formalized the finiteness problem for trans- 

lations, and show that the problem is solvable in the class of translations defined by 

restricted EFS's called simple TEFS's. A simple TEFS is so rich that it can define over 

lailguages in larger class than that of context free languages. Furtllermore, we give the 

class of tra~nslatioi~s in which the number of target sentence is at most one. 

We can determine whether a pair of strings is an element of a trax~slation defined by 

a simple TEFS, by the derivatioll procedure [ll]. It is future worli that we formalize a 

procedure to produce the target sentence from a source sentence. 011 the other hand, 

Arika~va et al. [3, 51 showed that EFS is a good frameworli for language learning. We will 

discuss learning translatioils in various classes by EFS's. 
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