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Abstract 

In order to capture the nature of inference, a philosopher Peirce classified inference 

into three fundamental kinds: deduction, induction, and abduction. In this classifica- 

tion, which based on the form of syllogisms, abduction is characterized as the inference 

of a case A from a rule A -+ C and a result C. Furthermore, he also placed these three 

kinds of inference at each stage of scientific inquiry. According to him, every scientific 

inquiry begins with an observation of a surprising fact. The first stage, abduction, of 

scientific inquiry proposes a hypothesis to explain why the fact arises. The second 

stage, deduction, derives new conclusions from the hypothesis. The third stage, in- 

duction, tests empirically or corroborates the hypothesis and the conclusions. Hence, 

abduction is not only a kind of inference, but also a method of scientific discovery. The 

inference schema of abduction as the first stage of scientific inquiry is described in the 

following three steps: 

1. A surprising fact C is observed. 

2. If A were true, then C would be a matter of course. 

3. Hence, there is reason to suspect that A is true. 

In computer science, the second stage, deduction, has been developed from view- 

points of automated theorem proving and logic programming. The third stage, induc- 

tion, has been studied from viewpoints of inductive inference and machine learning. 

For the first stage, abduction, there are also many researches in various fields. In order 

to systematically understand them and clearly discuss abduction, first we classify ab- 

duction into five types: rule-selecting abduction, rule-finding abduction, rule-generating 

abduction, theory-selecting abduction, and theory-generating abduction. In this thesis, 

we examine such various researches on abduction so far developed, and show that most 

of them can be placed in our classification. Furthermore, we investigate the first three 

types of abduction, which we call together rule-based abduction, for logic programming. 

The rule-selecting abduction for logic programming is abduction which selects a 

rule in a program and proposes a hypothesis to explain a surprising fact. From the 

philosophical viewpoint we mentioned above, we should consider the process of abduc- 

tion which terminates. Hence, it is a main purpose in this thesis to identify the class 



of logic programs for which the process of abduction terminates. We first introduce 

the concept of head-reducing programs. Then, we show that all the derivations for 

a head-reducing program and a surprising fact are finite. Hence, all the processes of 

rule-selecting abduction for a head-reducing program are finite. 

In general, abduction is closely related to nonmonotonic reasoning. Thus, in this 

thesis, we compare rule-selecting abduction with default logic. In order to formulate the 

rule-selecting abduction for default logic, we define a surprising fact and a hypothesis in 

the default logic. We show that, if there exists a hypothesis which explains a surprising 

fact, then there also exists an extension of a given default theory, which includes the 

surprising fact. This extension is corresponding to the least Herbrand model of the 

definite program obtaining from the default theory. 

Furthermore, we extend the concept of head-reducingness to that of breadth-first 

head-reducing programs, and the rule-selecting abduction to the breadth-first rule- 

selecting abduction. We also show that there exists a finite derivation for a breadth- 

first head-reducing program and a surprising fact. Hence, the process of breadth-first 

rule-selecting abduction for a breadth-first head-reducing program is finite. 

The rule-finding abduction for logic programming is abduction which finds a rule 

in a program in the set of programs and proposes a hypothesis to explain a surprising 

fact. In rule-finding abduction, we are interested in how to choose programs from 

the set of programs. Then, we pay our attention to choosing programs for which the 

process of rule-finding abduction terminates. 

We introduce two concepts of loop-pair and loop-elimination. The loop-pair syn- 

tactically determines whether or not there exists an infinite process of rule-finding 

abduction for the choice of programs. We show that, if a loop-pair appears in a deriva- 

tion, then the derivation becomes infinite. On the other hand, the loop-elimination is a 

transformation of programs. By using loop-elimination, we can choose the programs for 

which rule-finding abduction terminates. We also show that, for given two programs, 

if we transform one program by loop-elimination, then all the derivations for union of 

the transformed program and the rest are finite. In other words, by loop-elimination, 

we can choose the programs whose proof trees have no infinite branches. 

In this thesis, we also discuss analogical reasoning from the viewpoint of abduc- 

tion. In this thesis, we adopt the formulation of analogical reasoning by Haraguchi 



and Arikawa. In their formulation, the main problem is how to detect an analogy. In 

order to solve this problem, we also adopt the concept of partial isomorphic generaliza- 

tions. By using these concepts, we introduce the concept of deducible hypotheses, and 

formulate rule-finding abduction with analogy. We show that a deducible hypothesis is 

correct in the sense of analogical reasoning, and show that it is polynomial time com- 

putable with respect to the length of a surprising fact and the size of a proof tree. We 

design an algorithm of rule-finding abduction with analogy, and realize it as a Prolog 

program. 

The rule-generating abduction for logic programming is abduction which generates 

a rule and proposes a hypothesis to explain a surprising fact. In rule-generating ab- 

duction, only one surprising fact is given. In order to generate a rule and propose a 

hypothesis, we need to generalize the surprising fact. 

When we deal with generalizations, we should avoid overgeneralization. It should 

be determined whether or not a generalization is overgeneral by an intended model. 

However, it is hard to give in advance such an intended model in our rule-generating 

abduction. Hence, we introduce a syntactical generalization of one atom, called a 

safe generalization. In general, an atom is regarded as a relation between its argu- 

ments. Then, for safe generalizations, common ground terms are replaced by common 

variables. 

If the class of definite programs is not restricted to some subclass, there may be 

infinitely many meaningless hypotheses. Hence, we introduce the subclass of head- 

reducing programs, called weakly 2-reducing programs. However, without any heuris- 

tic, the number of weakly 2-reducing rules for rule-generating abduction also increases 

in exponential order with respect to the length of a surprising fact. On the other hand, 

safe generalizations in this class are characterized by only two types of substitutions. 

Hence, by using two types of safe generalizations, we design an efficient algorithm 

of rule-generating abduction for weakly 2-reducing programs. The number of rules and 

hypotheses obtained by this algorithm is at most the number of the arguments in a 

surprising fact. We show that this algorithm generates rules and proposes hypotheses 

in polynomial time with respect to the length of a surprising fact. Furthermore, we 

show that the selected common list in some argument of a surprising fact appears in 

the same argument of the hypothesis proposed by this algorithm. 
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Chapter 1 

Introduction 

'7 have already explained to you that what is out of the common is 

usually a guide rather than a hindrance. I n  solving a problem of this sort, 

the grand thing is to  be able to  reason backward." - "A Study in Scarlet" 

1.1 What Is Abduction? 

The notion of abduction was first introduced by Charles Sanders Peirce, who was a 

philosopher, scientist and logician. He held that there were three fundamental kinds of 

inference: deduction, induction, and abduction. He classified three kinds of inference 

by the forms of syllogisms ([Pei65]). 

(1)  Deduction is an inference of a result from a rule and a case. For example, by 

deduction, we infer the result "these beans are white" from the rule "all the beans 

from this bag are white" and the case "these beans are from this bag". Deduction is 

characterized as follows: 

rule All the beans from this bag are white. 
case These beans are from this bag. 
result These beans are white. 

By using logical formulas, the above syllogism is represented by the following one: 



rule V X  (from-this-bag(X) -+ whi t e (X) )  
case from-this-bag(these-beans) 
result white (these-beans) 

( 2 )  Induction is an inference of a rule from a case and a result. By induction, we 

infer the rule "all the beans from this bag are white" from the case "these beans are 

from this bag" and the result "these beans are white". Induction is characterized as 

follows: 

case These beans are from this bag. 
result These beans are white. 
rule All the beans from this bag are white. 

By using logical formulas, the above syllogism is represented by the following one: 

case from-this-bag ( these-beans) 
result white (these-beans) 
rule V X  (from-this-bag ( X )  -+ whi t e (X) )  

(3) Abduction is an inference of a case from a rule and a result. By abduction, we 

infer the case "these beans are from this bag" from the rule "all the beans from this 

bag are white" and the result "these beans are white". Abduction is characterized as 

follows: 

rule All the beans from this bag are white. 
result These beans are white. 
case These beans are from this bag. 

By using logical formulas, the above syllogism is represented by the following one: 

rule \Y'X (from-this-bag ( X )  -+ white ( X ) )  
result white (these-beans) 
case fromthis-bag ( these-beans) 

According to Peirce, deduction is called analytic inference, while induction and 

abduction are called synthetic inference. Analytic inference is merely an application 

of general rules to particular cases, which is logically valid. On the other hand, syn- 

thetic inference brings on an extension of our empirical knowledge, which is not always 

logically valid. 

Hence, we classify these three kinds of inference as follows (ibid.): 



( analytic inference - deduction 
inference induction 

synthetic inference 
abduction 

Peirce not only classified these three kinds of inference, but also placed them at 

each stage of scientific inquiry. He asserted that every scientific inquiry consists of the 

following three st ages. 

(1)  Every inquiry whatsoever takes its rise i n  the observation of some surprising 

phenomenon. A t  length a conjecture arises that furnishes a possible explanation (ibid.). 

Then, the first stage abduction is the process of forming an explanatory hypothe- 

sis (ibid.). 

(2) The second stage, deduction, is the process of collecting consequences of the 

hypothesis (ibid.). 

(3) The third stage, induction, is the process of ascertaining how far those con- 

sequents accord with experience, and of judging accordingly whether the hypothesis 

is sensibly correct, or requires some inessential modification, or must be entirely re- 

jected (ibid.). 

In other words, every scientific inquiry begins with an observation of a surprising 

fact. The first stage, abduction, of scientific inquiry proposes a hypothesis to explain 

why the fact arises. The second stage, deduction, derives new conclusions from the 

hypothesis. Finally, the third stage, induction, tests empirically or corroborates the 

hypothesis and the conclusions. 

Peirce claimed that abduction, although it is very little hampered by logical rules, 

nevertheless is logical inference (ibid.). Then, the inference schema of abduction as 

the first stage of scientific inquiry is described in the following three steps (ibid.). 

1. A surprising fact C is observed. 

2. If A were true, then C would be a matter of course. 

3. Hence, there is reason to suspect that A is true. 



In general, the above inference schema is depicted by the following syllogisms: 

1.2 Philosophy of Science and Mat hernat ics 

In the philosophy of science, many philosophers discussed whether there could be a 

logic of discovery, after Peirce has discussed the logic of abduction. 

Reichenbach [Reic38, Bro77, Cha79, That381 proposed a sharp distinction between 

the context of discovery and the context ofjustification. He claimed that the philosophy 

of science should be concerned only with questions of confirmation and acceptance that 

belong in the context of justification, and that the topic of discovery should be relegated 

to psychology and sociology. 

Furthermore, Popper [Popp59, Cha791 pointed deeply that the work of the scientist 

consists in putting forward and testing theories. He also distinguished sharply between 

the process of conceiving a new idea, and the methods and results of examining it 

logically. In the former, there is no such thing as a logical method of having new ideas, 

or a logical reconstruction of this process. Every discovery contains an irrational 

element. In the later, the scientific knowledge is never verified, and it is only falsified. 

In other words, the work of the scientist consists of the context of discovery and the 

context of falsification. 

Reichenbach and Popper adopted this sharp distinction in order to eliminate psy- 

chologism. However, some philosophers, for example Kuhn [Kuh7O] and Brown [Bro77], 

have resisted this restriction. Brown [Bro77] claimed that, in a scientific discovery, the 

context of justification is a part of the context of discovery, and we cannot draw a line 

clearly between the context of discovery and that of justification. In the philosophy of 

science, the relation between justification and discovery has left unclear. 

Peirce's philosophy of science in Section 1.1 is compatible with the above philos- 

ophy of Reichenbach or Popper. The first stage, abduction, of scientific inquiry is 

corresponding to the context of discovery. The second and the third stage, deduction 

and induction, are also corresponding to the context of justification or falsification. 



Note that the word "logical" in the above assertion of Popper can be interpreted as 

universal validity in formal logic. Then, Popper's assertion can be considered that the 

context of discovery is not necessarily universally valid. As mentioned in Section 1.1, 

abduction is not valid, and also causes a fallacy of afirming the consequent. Hence, 

we can regard abduction as the context of discovery, that is, the method of scientific 

discovery. Hanson [Han58] advanced the claim that abduction constitutes a logic of 

discovery. 

For the methodology of mathematics, it is also an important problem to investigate 

the way of discovery of mathematics. Polya [Po154a, Po154b, Po1571 pointed out that 

there exist no infallible rules of discovery leading to the solution of all possible math- 

ematical problems. Furthermore, he introduced the notion of heuristic reasoning or 

heuristic, which appears so baffling and elusive when approached from the viewpoint 

of purely demonstrative logic. 

According to Polya, heuristic is  reasoning not regarded as final and strict but as 

provisional and plausible only, whose purpose is to discover the solution of the present 

problem. W e  may need the provisional before we attain the final [Po157]. 

He characterized such heuristic as the following heuristic syllogism: 

If A is true, then B is also true, as we know. 
Now, it turns out that B true. 

Therefore, A becomes more credible. 

Still shorter: 

If A then B 
B true 

A more credible 

Furthermore, Lakatos [Lak76] developed the above Polya's mat hematical discovery by 

incorporating with Popper's logic of scientific discovery. 

It is obvious that Polya's heuristic reasoning is almost corresponding to Peirce's 

abduction. Hence, abduction is a suitable concept for discovery in not only the phi- 

losophy of science but also the methodology of mathematics. 



1.3 Computer Science 

In computer science, especially in computational logic and logic programming, many 

researchers have extensively studied the abduction from various viewpoints. 

Plotkin [Plo71] studied abduction together with inductive generalization. There 

are researches of Shapiro's model inference system [Sha81] and inductive logic pro- 

gramming [MB88, Mug92, Lin89, LU89] as the extensions of Plotkin's work. 

Muggleton [MB88] has introduced the method of inverting resolution to construct 

logic programming from finite examples. Such a methodology is called inductive logic 

programming. Inductive logic programming has been developed by Muggleton [Mug92]. 

Ling [Lin89, LU89] has paid his attention on the constructive method for inductive 

logic programming. These are also a kind of abduction, because they really propose 

hypotheses. 

Genest et al. [GMP9O] and Duval [Duv91] have suggested abduction for explanation- 

based generalization, which is an efficient technique for obtaining a general concept 

from examples and a background knowledge. Thagard [That381 has introduced analog- 

ical abduction, which is a kind of abduction incorporating with analogical reasoning. 

Pople [Pop173, Kun87, In0921 gave one direction for researches of abduction. There 

are researches of Poole's Theorist [Poo88], hypothesis-based reasoning [Kun87], and ab- 

ductive logic programming [Dungl, EK89, KM90, KKT921 as the extensions of Pople's 

work. 

Poole [Po0881 has discussed the relationship between Reiter's default logic [Reit801 

and abduction, and shown that abduction can be viewed as a default logic, and im- 

plemented the system Theorist. Kunifuji [Kun87] has developed Poole's Theorist as a 

hypot hesis-based reasoning system. 

Eshghi and Kowalski [EK89] discussed the relationship between negation as failure 

and abduction in logic programming. Kakas and Mancarella [KMSO], Dung [Dungl], 

and Kakas et al. [KKT92] have defined an abductive framework in nonmonotonic logic 

programming, and studied the semantics in that framework. Out of these studies there 



has emerged a new field of abductive logic programming. 

There are researches of abduction in terms of a model of belief, which is a kind of 

modal logic, by Levesque [Lev891 and Selman and Levesque [SL90]. These are regarded 

as general extensions of Poole's logic [Poo88]. Furthermore, they have claimed that 

different models of belief give rise to different forms of abductive reasoning, and have 

constructed a model of belief for abduction. They have also studied the relationship 

between the models of belief, default logic, and assumption-based truth-maintenance 

system. 

Concerning expert systems, Cox and Pietrzykowski [CP87] have investigated diag- 

nosis problems by abductive inference. Pirri and Pizzuti [PP90] have also combined 

the diagnosis problem with the stable model semantics which is one of the semantics of 

logic programming. Konolige [Kon92] has introduced a causal theory, and compared 

it with abduction. Bylander et al. [BATJgl] has formulated abduction in order to 

analyze the computational complexity of abduction for propositional logic and for the 

diagnosis problem. 

In computational linguistics, Hobbs et al. [HSME88] has introduced abduction in 

order to interpret natural language. Stickel [StiS 11 has also investigated abduction 

deeply, and suggested a Prolog-like inference system to interpret natural language. 

1.4 Classification of Abduction 

In order to systematically understand the above mentioned various researches of ab- 

duction in computer science and clearly discuss abduction, we classify abduction into 

five types: rule-selecting abduction, rule-finding abduction, rule-generating abduction, 

theory-selecting abduction, and theory-generating abduction. The first three types of 

abduction is called rule-based abduction, and the other two types of abduction theory- 

based abduction. This new classification is based on the interpretations of syllogism 

and the definitions of hypothesis. We examine such various researches on abduction 

so far developed, and show that most of them can be placed in our classification. 

Furthermore, we investigate rule-based abduction for logic programming. 



The rule-selecting abduction for logic programming is abduction which selects a 

rule in a program and proposes a hypothesis to explain a surprising fact. We can 

easily realize the rule-selecting abduction as a Prolog program, which is a variant of 

partial evaluation [vHB88] or meta interpreter [SS86, SS941. 

From the philosophical viewpoint we mentioned in Section 1.1, abduction is the first 

stage of scientific inquiry. Then, we should consider the process of abduction which 

terminates. Hence, in this thesis, we identify the class of logic programs for which the 

process of abduction terminates. In order to characterize such a class, we introduce 

two concepts of head-reducing and breadth-first head-reducing programs. The head- 

reducing program is a program for which all the processes of rule-selecting abduction 

terminate. On the other hand, the breadth-first head-reducing program is a program 

for which the process of breadth-first rule-selecting abduction terminates. 

In general, abduction is closely related to nonmonotonic reasoning, because both 

abduction and nonmonotonic reasoning are a kind of plausible inference. Thus, in this 

thesis, we compare rule-selecting abduction with Reiter's default logic [Reit80, Poo881. 

Poole [Po0881 has already developed the relationship between abduction and default 

logic. We extend the result in Poole [Po0881 in a sense. 

The rule-finding abduction for logic programming is abduction which finds a rule 

in a program in the set of programs and proposes a hypothesis to explain a surprising 

fact. Here, the set of programs is given in advance. In rule-finding abduction, we 

are interested in how to choose programs from the set of programs. Then, we pay 

our attention to choosing programs for which the process of rule-finding abduction 

terminates. It is our purpose to avoid an infinite process of rule-finding abduction 

when we choose the programs. Hence, we introduce two concepts of loop-pair and 

loop-elimination. The loop-pair syntactically determines whether or not there exists 

an infinite process of rule-finding abduction for the choice of programs. On the other 

hand, the loop-elimination is a transformation of programs. By using loop-elimination, 

we can choose the programs for which the process of rule-finding abduction terminates. 

In computer science, there exist various researches for analogical reasoning, which 



is an important tool for machine learning and knowledge acquisition. In this thesis, 

we also discuss analogical reasoning from the viewpoint of abduction, which is called 

rule-finding abduction with analogy. 

Thargad [Tha88] and Duval [Duvgl] have tried to discuss abduction and analogy 

into the same framework. However, even in such researches, the relationship between 

abduction and analogy are not clear, because the concepts of abduction and analogy 

they used are ambiguous. 

Hence, in this thesis, we adopt the formulation of analogical reasoning by Haraguchi 

and Arikawa [Har85, HaA86, HiA94bI. They have defined a formal analogy for definite 

programs as a relation between elements in Herbrand universes. In their formulation, 

the main problem is how to detect an analogy. In order to solve this problem, we 

adopt the concept of partial isomorphic generalizations, which has been introduced by 

Hirowatari and Arikawa [HiA94b]. By using these concepts, we introduce the concept 

of deducible hypotheses, and formulate rule-finding abduction with analogy, which is 

an extension of rule-finding abduction. We also design an algorithm for rule-finding 

abduction with analogy, and realize it as a Prolog program. 

The rule-generating abduction for logic programming is abduction which generates 

a rule and proposes a hypothesis to explain a surprising fact. In rule-generating ab- 

duction, only one surprising fact is given. In order to generate a rule and propose a 

hypothesis, we need to generalize a surprising fact. 

A generalization is an important tool for inductive logic programming, program 

synthesis, and machine learning. Plotkin introduced and developed the least gener- 

alization and the relative least generalization [Plo70, Plo711. Arimura et al. have 

developed Plotkin's least generalization as minimal multiple generalization [AS091]. 

Note that all of these researches are on the generalization of at  least two atoms. Thus, 

the following problem arises: Is the generalization of one atom worth or worthless? 

Hirowatari and Arikawa [HiA94b] have answered this problem affirmatively in the 

framework of analogical reasoning, by using the concept of partially isomorphic gen- 

eralizations. 



When we deal with generalizations, we should avoid overgeneralization. It should 

be determined whether or not a generalization is overgeneral by an intended model. 

However, it is hard to give in advance such an intended model in our rule-generating 

abduction. Hence, we introduce a syntactical generalization of one atom, called a 

safe generalization. In general, an atom is regarded as a relation between its argu- 

ments. Then, for safe generalizations, common ground terms are replaced by common 

variables. 

In rule-generating abduction, if the class of definite programs is not restricted to 

some subclass, there may be infinitely many meaningless hypotheses. Hence, we in- 

troduce the subclass of head-reducing programs, called weakly 2-reducing programs. 

Many typical Prolog programs are included in this class. However, without any heuris- 

tic, the number of weakly Zreducing rules for rule-generating abduction also increases 

in exponential order with respect to the length of a surprising fact. In order to ob- 

tain the hypotheses efficiently by using safe generalizations, we design an algorithm of 

rule-generating abduction for weakly 2-reducing programs. 

1.5 Outline of This Thesis 

This thesis is organized as follows: 

In Chapter 2, we prepare some notions to be necessary in the following chapters. 

In Chapter 3, we classify abduction into five types. We examine various researches 

of abduction in computer science, and show that most of them can be placed in our 

classification. 

In Chapter 4, we investigate rule-selecting abduction for logic programming. First, 

we prepare the notions of recursive definition and recursive program, which are valuable 

tools in order to analyze abduction for logic programming. By using these notions, 

we introduce the concept of head-reducing programs. Note that, in this thesis, we 

characterize the termination of abduction as the finiteness of derivations. Then, we 

show that all the derivations for a head-reducing program and a surprising fact are 

finite. 



Furthermore, we compare rule-selecting abduction with default logic. In order to 

formulate rule-selecting abduction for default logic, we define a surprising fact and a 

hypothesis in a default logic. We show that, if there exists a hypothesis which explains 

a surprising fact, then there also exists an extension of a given default theory, which 

includes the surprising fact. This extension of the default theory is corresponding to 

the least Herbrand model of the definite program obtained from the default theory. 

Since the class of head-reducing programs is not so large, we extend this concept 

to that of breadth-first head-reducing programs, and the rule-selecting abduction to 

the breadth-first rule-selecting abduction. Then, we also show that there exists a finite 

derivation for a breadth-first head-reducing program and a surprising fact. 

In Chapter 5, we investigate rule-finding abduction for logic programming. First, 

we introduce two concepts of loop-pair and loop-elimination. We show that, if a loop- 

pair appears in a derivation, then the derivation becomes infinite. We also show that, 

for given two programs, if we transform one program by loop-elimination, then all the 

derivations for union of the transformed program and the rest are finite. In other 

words, by loop-elimination, we can choose the programs whose proof trees have no 

infinite branches. 

Furthermore, we introduce the concept of deducible hypotheses, and formulate rule- 

finding abduction with analogy. In rule-finding abduction with analogy, the main prob- 

lem is how to detect an analogy while constructing a deducible hypothesis. Then, we 

adopt the concept of partially isomorphic generalizations. In this concept, an analogy 

is regarded as a function. We show that a deducible hypothesis is correct in the sense 

of analogical reasoning. Also we show that a deducible hypothesis is polynomial time 

computable with respect to the length of a surprising fact and the size of a proof tree. 

We design an algorithm of rule-finding abduction with analogy concretely, and realize 

it by a Prolog program. 

In Chapter 6, we investigate rule-generating abduction for logic programming. We 

formulate a safe generalization, which is based on the forms of atoms and substitutions 

instead of an intended model, and show some properties of safe generalizations. Also we 



introduce the subclass of head-reducing programs, called weakly 2-reducing programs. 

Unfortunately, we show that the number of hypotheses in this class also increases in 

exponential order with respect to the length of a surprising fact. 

On the other hand, in weakly 2-reducing programs, there are only two types of 

terms, constant symbols and lists. Then, safe generalizations in this class are charac- 

terized by only two types of substitutions, constant substitutions and list substitutions. 

A constant substitution 8, consists of bindings X := c, where c is a constant symbol, 

while a list substitution Bl consists of bindings X := I, where 1 is a list. For these 

substitutions, we investigate the condition under which the generalization is safe with 

respect to the composition %c%l of 0, and O l .  

Hence, by using such two types of safe generalizations, we design an algorithm of 

rule-generating abduction for weakly Zreducing programs. The number of rules and 

hypotheses obtained by this algorithm is a t  most the number of the arguments in a 

surprising fact. We show that this algorithm generates rules and proposes hypotheses 

in polynomial time with respect to the length of a surprising fact. Furthermore, we 

show that the selected common list in some argument of a surprising fact appears in 

the same argument of the hypothesis proposed by this algorithm. 



Chapter 2 

"The case," said Sherlock Holmes, ..., ''is one where, as i n  the investi- 

gations which you have chronicled under the names of the 'Study in Scarlet' 

and of the 'Sign of Four', we have been compelled to reason backward from 

eflects to causes." - 'The Adventure of the Cardboard Box' 

"The Memories of Sherlock Holmes" 

In this chapter, we give some basic notions and notational conventions needed in this 

thesis. We use fundamental concepts from first order logic and logic programming. 

More precise information on these concepts would be found in [CL73, Llo87, Men87, 

SS86, SS941. 

In Section 2.1, we give definitions concerned with logic programming. In Sec- 

tion 2.2, we introduce Reiter's default logic [Reit801 for the discussion in Section 4.2. 

In Section 2.3, we introduce the formal definition of analogical reasoning by Haraguchi 

and Arikawa [Har85, HaA86] for the discussion in Section 5.6. In Section 2.4, we dis- 

cuss the partially isomorphic generalization [HiA94b] for the discussion in Section 5.6 

and Section 6.4. 

2.1 Logic Programming 

2.1.1 Basic definitions 

A first order theory consists of an alphabet, a first order language, a set of axioms, and 

a set of inference rules. A first order language L consists of the well-formed formulas of 

the theory. The axioms are a designated subset of well-formed formulas. The axioms 



and rules of inference are used to derive the theorems of the theory. We now proceed 

to define the alphabet and the first order language. 

Definition 2.1 An alphabet consists of the following symbols: 

1. Variables, denoted by the letters X, Y, 2, W, U and V possibly subscripted. 

2. Function symbols, denoted by the letters f ,  g and h possibly subscripted. 

3. Constant symbols, which are 0-ary function symbols, denoted by the letters a,  b 

and c possibly su bscripted. 

4. Predicate symbols (or predicates, for short), denoted by the letters p,  q and r 

possibly subscripted. 

5. Logical symbols, which are 1, V, A, +,b' and 3. 

6. Punctuation symbols, which are "(",'i)n and ':". 

In logic programming, the symbol "+" of logical implication is represented by the 

symbol "+" with inverse direction. 

Definition 2.2 A term, denoted by the letters t, s, u, v, and w possibly subscripted, 

is defined inductively as follows: 

1. A variable is a term. 

2. A constant symbol is a term. 

3. If f is an n-ary function symbol and tl ,  . , t, are terms, then f (tl, . . , t,) is a 

term. 

For a term t, It( denotes the length of t,  that is, the number of all occurrences of 

symbols in t except punctuation symbols. For example, 1 a 1 is 1 and 1 f (f (a)) 1 is 3. 

Definition 2.3 A (well-formed) formula is defined inductively as follows: 



1. Ifp is an n-ary predicate symbol and tl, , t, are terms, then p(tl, , t,) is a 

formula, called an atomic formula or an atom, and is denoted by a,P,  and y. 

2. If F and G are formulas, then so are l F ,  F V G, F A G, F -+ G. 

3. If F is a formula and X is a variable, then 'dX(F) is a formula. 

For any atom a, we denote the predicate symbol of a by pred(a). 

The first order language C is given by an alphabet consists of the set of all formulas 

constructed from the symbols of the alphabet. 

The notions of t and represent the provability and the satisfiability as in the 

general first order logic [CL73, Llo87, Men871. The set G of formulas is consistent if 

there exists no formula a such that G t a and G If a. 

The scope of b'X in VX(F) is F .  A bound occurrence of a variable in a formula is 

an occurrence immediately following a quantifier or an occurrence within the scope of 

a quantifier, which has the same variable immediately after the quantifier. Any other 

occurrence of a variable is free . If F is a formula, then V(F) denotes the universal 

closure of F, which is the closed formula obtained by adding a universal quantifier for 

every variables having a free occurrence in F .  

A clause is a well-formed formula of the form: 

where Al, . , A,, B1 , Bn are atoms and n, m 2 0. We denote the above clause by 

the following forms: 

The clause with n = m = 0 is called a empty clause and denoted by El. 

A definite clause is a clause of the form: 

Here, A is called the head of C,  denoted by head(C), and B1, . . , Bn is called the 

bodg of C. A clause with an empty body, that is, in the case n = 0, is called a unit 



clause or a fact. In particular, the clause whose head has the predicate symbol p is 

called a definition clause of p. We identify a unit clause A +- with an atom A. A 

definite program (program, for short) is a finite set of definite clauses. We sometimes 

represents P = R U F for a definite program P, where F is a set of all unit clauses in 

P and R = P - F ,  that is the set of all definite clauses without unit clauses in P .  

A goal is the clause of the form: 

In Prolog programs, the symbol "+" of logical implication is represented by the 

symbol " : -)' . In particular, a goal + B1, + , Bn is represented by the following form: 

In this thesis, we use the typewriter font with the symbol ": -" for Prolog programs. 

A word is either a term or an atom. An expression is either a word, a clause, or a 

definite program. When no variable appears in an expression, we sometimes call it a 

ground expression to emphasis this fact. Thus, we may use a ground term, a ground 

atom, and a ground clause to mean that no variable occurs in the respective expression. 

A substitution 8 is a finite set of the form {XI := tl ,  . , Xn := t,), where each 

Xi is a variable, each ti is a term distinct from Xi, and the variables XI,  . , Xn are 

mutually distinct. Each element Xi := ti is called a binding for Xi. A substitution 

8 is called a ground substitution if all the terms ti are ground. The set of variables 

{XI, , Xn) is called the domain of the substitution 8 and denoted by dorn(0). For 

two substitutions 8 = {XI := tl ,  , Xn := tn) and a = {& := SI, , Y, := s,), the 

composition of 0 and a, denoted by %a, is defined as the substitution obtained from 

the set 

{XI := t la,  . . , Xn := tna, Yl := ~ 1 ,  , Ym := sm) 

by deleting any binding Xi := t ia  for which Xi = t ia and deleting any binding Y,  := sj 

for which Y ,  E dom(8). 

Let 8 = {XI := tl ,  , Xn := t,) be a substitution and E be an expression. Then 

EB, the instance of E by 8, is the expression obtained from E by simultaneously 



replacing each occurrence of the variable Xi by the term ti ( 1  I. i 5 n). If EO is 

ground, then EO is called a ground instance of E. 

Let S be a finite set {wl, , w,) of words. A substitution 0 is a unifier of S if 

wloI=: ... I=: wnO. If there exists a unifier for S, then S is said to be unifiable. Also, 

words wl and w2 are said to be unifiable if the set {wl, w2) is unifiable. For a unifiable 

set, a unifier 0 of S is called most general unifier (mgu,  for short) if, for every unifier 

o- of S, there exists a substitution X such that o- = OX. 

2.1.2 Herbrand model 

For a definite program P, K(P) ,  Fn(P), and IIn(P) denote all constant symbols in 

P, all n-ary function symbols in P, and all n-ary predicate symbols in P respectively. 

II(P) denotes all predicate symbols in P .  

For a definite program P, Hi(P) (i 2 0) is defined as follows: 

if K ( P )  # 54 
otherwise, 

Then, the Herbrand universe H(P) of P is: 

For a definite program P, the Herbrand base B(P)  of P is: 

The Herbrand interpretation .Ip of P is the interpretation given as follows: 

1. The domain of the interpretation is the Herbrand universe H ( P ) .  

2. For any a E Ho(P), Ip(a) = a. 

3. For any f E Fn(P) and tl, , tn E H(P) ,  



4. For any p E IIn(P), Ip(p) is a mapping from B(P) to {O,l). 

For a definite program P, the Herbrand model M(P)  of P is the Herbrand interpreta- 

tion Ip of P such that Ip /= P .  

Let P be a definite program and {Mi(P))iEr be a non-empty set of Herbrand models 

of P .  Then, the intersection n Mi(P) of Mi(P), called the least Herbrand model of P 
i E I  

and denoted by M(P),  is also an Herbrand model of P [Llo87]. Hence, we adopt this 

model as the model-theoretic semantics for logic programming. 

2.1.3 SLD-resolution, SLD-tree, and proof tree 

Let G' be a goal + Al, . , A,, , Ak and C be a definite clause A + B1, . , B,. 

Then, a goal GI is derived from G and C using mgu 0 if the following conditions hold: 

1. Am is an atom, called the selected atom, in G. 

2. 0 is an mgu of A, and A. 

3. GI is the goal +- (Al, . + , Am-1, B1, . . , B,, Am+l, . , Ak)0 

In resolution terminology, G' is called a resolvent of G and C.  

Let P be a definite program and G be a definite goal. An SLD-derivation, or 

derivation, of P U  {G) consists of a (finite or infinite) sequence G = Go, GI, . of goals, 

a sequence C1, C2, . . of variants of definite clauses of P, and a sequence 01, $2, + of 

mgu's such that each Gi+1 is derived from Gi and Ci+1 using Oi. Each definite clause 

C1, C2, . is called an input clause of the derivation. 

An SLD-derivation may be finite or infinite. A finite SLD-derivation may be suc- 

cessful or failed. A successful SLD-derivation is one that ends in the empty clause. A 

failed SLD-derivation is one that ends in a non-empty goal with the property that the 

selected atom in this goal does not unify with the head of any definite clause. 

For a program P and a goal G, an SLD-tree for P U {G) is a tree satisfying the 

following conditions: 

1. Each node if the tree is a (possible empty) definite goal. 



2. The root node is G. 

3. Let +- Al , A,, . , Ak (k 2 1) be a node in the tree and suppose that A, 

is the selected atom. Then, for each input clause A +- B1, . . , Bq such that A, 

and A are unifiable with mgu 8, the node has a child 

4. Nodes which are the empty clause have no children. 

Each branch of an SLD-tree is corresponding to an SLD-derivation of P u {GI. 

For a program P and a ground atom a, a proof tree of a on P is a tree which 

satisfies the following conditions: 

1. Each node of the tree is an atom. 

2. The root node is a. 

3. For each internal node A and its children B1, . . , Bn (n > I), A +- B1, . , Bn 

is an instance of a clause in P. 

Note that the condition 1 of proof tree is different from the following general definition 

of proof tree: 

1'. Each node of the tree is a ground atom. 

Under the above conditions l', 2, and 3, it is a problem whether or not the nodes 

of the proof tree are elements of an Herbrand model of P. On the other hand, in 

this thesis, since we are interested in the forms of the nodes of the proof tree, we 

adopt the condition 1 instead of the condition 1'. A proof tree is corresponding to an 

SLD-derivation, and a branch of an SLD-tree. 

2.2 Default Logic 

Default logic, introduced by Reiter [Reit80], is an important tool for nonmonotonic 

reasoning. Poole [Po0881 investigated the relationship between default logic and ab- 



ductive framework. This thesis deeply investigates this relationship in Section 4.2. In 

this section, we prepare the basic notions for default logic. 

A default is an expression of the following form: 

where a(ft), Pi(X), w (ft) are atoms whose free variables are among those of Z = 

XI, , X,. In particular, a default with the following form is called a normal default: 

a(X) : w (X) 

A default theory is a pair (D, W), where D is a set of defaults and W is a set of closed 

formulas. A normal default theory is a pair (D, W), where D is a set of normal defaults 

and W is a set of closed formulas. In this thesis, since we deal with a definite program, 

W is assumed a definite program. 

In default logic, it is a main problem to construct the set of formulas assumed true, 

which is called an extension. Then, we define the concept of an extension for default 

theory as follows. 

Definition 2.4 Let A = (D, W) be a default theory and 

For any set S of closed formulas, let I' (S) be the smallest set satisfying the following 

conditions: 

2. Th(r(S)) = r (S) ,  and 

3. if a(X) :  PI(^), . Pm(7) 

w(ft) 
E D, r(S) I- a, and S If 1Pj (1 5 j < rn), then 

In condition 2, Th(r(S)) means the set { a  I r(S) t- a) of theorems for r ( S ) .  Then, a 

set E of closed formulas is an extension for A if r(E) = E .  

Reiter [Reit801 has shown the following two theorems. 



Theorem 2.1 (Reiter [Reit80]) Let E be a set of closed formulas, and A = (D, W) 

be a default theory. Define 

and for any i 

Then, E is an extension for A if and only if E = .u E,. 
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Theorem 2.2 (Reiter [Reit80]) Every normal default theory has an extension. 

A default theory has an inconsistent extension if one of its extensions is the set of 

all closed formulas of L. As an immediate corollary of Theorem 2.1 we have: 

Corollary 2.1 (Reiter [Reit80]) A default theory ( D ,  W) has an inconsistent exten- 

sion if and only if W is inconsistent. 

A default theory is consistent if it has a consistent extension. By Corollary 2.1, if 

(D, W)  is consistent, then W is consistent. 

2.3 Analogical Reasoning 

In computer science, there are various researches for analogical reasoning. In Sec- 

tion 5.6, we discuss abduction and analogical reasoning in the same framework. In this 

thesis, we adopt the analogical reasoning introduced by Haraguchi and Arikawa [Har85, 

HaA86, HiA94bl. 

Haraguchi and Arikawa [Har85, HaA86, HiA94bl formulated analogical reasoning 

for logic programming, and defined a formal analogy as the relation between elements in 

Herbrand universes. In this section, we prepare some concepts on analogical reasoning 

necessary for the discussion in Section 5.6. 

Let Pb and Pt be programs. The program Pb is called a base program and Pt a 

target program. Then, a finite set cp U(Pb) x U(Pt) is called a pairing, where U(Pb) 

and U(Pt) are Herbrand universes for Pb and Pt, respectively. We assume implicitly 

that U(Pb) n U(Pt) f 4.  



Definition 2.5 Let cp c U(Pb) x U(Pt) be a pairing. The set cp+ C U(Pb) x U(Pt) is 

defined to be the smallest set that satisfies the following conditions: 

Definition 2.6 Let a and ,8 be ground atoms, and cp c U(Pb) x U(Pt) be a pairing. 

Then, a and /3 are identical by cp, denoted by olcpp, if a, P, and cp satisfy the following 

condition: 

a = ~ ( t l ,  ,tn), 

P = P ( s ~ , . . .  , sn), 

(ti, si) E cp+ (1 < i < n). 

Definition 2.7 Let cp 2 U(Pb) x U(Pt) be a pairing. Then, 9 is a partial identi ty  

between Pb and Pt if cp+ is a one-to-one relation. 

In order to discuss analogical reasoning from the viewpoint of abduction in Sec- 

tion 5.6, we introduce the following notations: Let cp c U(Pb) x U(Pt) be a partial 

identity between Pb and Pt. 

1. Let t and s be terms in Pb and Pt, respectively. Then, tcp is a term which is 

obtained by replacing any term t' in t such that (t', s') E cp with a term s'. 

Similarly, cps is a term which is obtained by replacing any term s' in s such that 

(t', s') E cp with a term t'. 

2. Let a = p(tl, . , tn) and ,8 = p(s17 . . , s,) be atoms in Pb and Pt7 respectively. 

Then, atoms acp and cpp are defined as follows: 

3. Let C = A  +- Al, . . . ,An and D = B +- B1, . . . ,Bm be clauses in Pb and in Pt, 

respectively. Then, clauses Cp and pD are defined as follows: 



4. Let Pb = {Cl, , Cn) and Pt = {Dl, , Dm). Then, programs Pbcp and cpPt 

are respectively defined as follows: 

2.4 Partially Isomorphic Generalization 

Hirowatari and Arikawa [HiA94b] introduced the concept of a partially isomorphic gen- 

eralization, which is a generalization of one atom and is the useful tool for analogical 

reasoning. In this section, we prepare the notions for partially isomorphic generaliza- 

tions to be necessary in Section 5.6 and 6.4. 

Let a be an atom. A term t is a replaceable term of a if t is a constant symbol or 

a term f (XI, . , Xn), where f is a function symbol and each Xi is a variable which 

does not appear in the other terms in a. For a replaceable term t of a,  let a[t] be an 

atom obtained by replacing each t in a by a new variable Z which does not appear in 

a. Then, we write a --+ ,O when a[t] is a variant of ,O. We define --+' as the reflexive 

and transitive closure of -+. 

Definition 2.8 (Hirowatari and Arikawa [HiA94b]) Let a and ,G' be atoms. Then, ,8 

is a partially isomorphic generalization of a if a -+* ,8. 

For a set of atoms S, let [S] denote the equivalence class of all atoms in S .  In particular, 

for any a E [S] and ,8 E [S], a is a variant of ,8. 

We can develop analogical reasoning [Har85, HaA861 by the notions of partially 

isomorphic generalizations. Hirowatari and Arikawa [HiA94b] have shown the following 

three theorems. 

Theorem 2.3 (Hirowatari and Arikawa [HiA94b]) Let a be an atom and S be the 

set of all partially isomorphic generalizations of a. Then, [S] is a lattice whose partial 



order is +*, meet operator is the greatest instantiation, and join operator is the least 

generalization. 

Theorem 2.4 (Hirowatari and Arikawa [HiA94b]) Let a be a ground atom p(tl, , tn) 

and k = Itl 1 + + Itn 1 .  Then, a partially isomorphic generalization of a can be com- 

puted in O(k2)  time. 

Theorem 2.5 (Hirowatari and Arikawa [HiA94b]) Let a and ,8 be ground atoms in 

Pb and Pt , respectively, and d be the greatest partially isomorphic generalization of 

a. If there exists a substitution 6 such that a' = PO, then there exists an analogy 

p  C U(Pb) x U(P,) such that a p p .  

Here, an analogy p  is regarded as a partial function from U(Pb) to U(Pt). By par- 

tially isomorphic generalizations, we can obtain the analogy which is guaranteed one 

direction of partial identity. 



Chapter 3 

Classification of Abduct ion 

"Deeply interested - yes. There is a thread here which we have not yet 

grasped, and which might lead us through the tangle." 

- 'The Adventure of the Devil's Foot' 

"His Last Bow" 

In Chapter 1, the inference schema of abduction has been depicted by the following 

syllogism: 

The following examples of A and C in the above inference schema are found in litera- 

ture: 

(a) C : 'these beans are white', 
A : 'these beans are from this bag' [Pei65, Ino921; 

(b) C : 'I heard somebody scream at midnight7, 
A : 'I thought she was attacked' [Uey79]; 

(c) C : 'I met a man upon horseback, 
surrounded by four horsemen holding a canopy over his head', 

A : 'I inferred that he was the personage' [Pei65, Yon821; 

(d) C : 'fossil shells are found, but far in the interior of the country', 
A : 'the sea once washed over this land' [Pei65, Yon821; 

(e) C : 'numberless documents and monuments refer to a conqueror 
called Napoleon Bonaparte' , 

A : 'Napoleon Bonaparte really existed' [Pei65, Yon821; 



(f)  C : 'the Atlantic coastline in Africa and America are similar', 
A : 'the continental drift theory' [Uey79]; 

(g) C : 'the evolutionary fact remaining of fossil', 
A : 'the theory of natural selection in biology' [Uey79] ; 

(h) C : 'the data of observations of planets by Tycho Brahe', 
A : 'an orbit of planets is an oval (Kepler's first law)' [Pei65, Uey79, Yon821. 

For the above examples, Peirce showed that there exist the following three types 

of explanatory hypotheses, which are proposed by abduction [Yon82]. 

(1) The first type is an explanatory hypothesis on the facts which can be confirmed, 

even if it is not confirmed at the abduction. The examples (a), (b), and (c) belong to 

this type. 

(2) The second type is an explanatory hypothesis on the facts which physically 

cannot be confirmed. The examples (d) and (e) belong to this type, because we cannot 

confirm that there used to be a sea and there existed Napoleon Bonaparte. 

(3) The third type is an explanatory hypothesis on the facts which in practice and 

in prznczple cannot be confirmed by our scientific knowledge. The examples (f),  (g), 

and (h) belong to this type, because each hypothesis A cannot be derived from the 

scientific knowledge they had at  that time. 

Peirce expressed these three types of abduction by just one syllogism. This is 

obviously unreasonable. These types of abduction should be expressed by different 

syllogisms, which is a point we want to make in this thesis. 

In this chapter, we apply these three types to the abduction in computer science. 

In Section 3.1, we introduce the new classification of abduction. In Section 3.2, we 

apply this classification to the researches of abduction in computer science. 

This chapter is based on the papers [Hir93a, Hir93bl. 



3.1 Five Types of Abduction 

Various researches about abduction in computer science and computational logic are 

also related to at least one type of explanatory hypotheses. Hence, in this section, we 

introduce the classification which is based on three types of explanatory hypotheses. 

Note that, in the researches of abduction in computer science, a background theory is 

assumed in order to explain a surprising fact. First, by the definition of a background 

theory, we classify abduction in computer science into two types, abduction of a rule 

and of a theory. Here, a rule means an element of a background theory, while a theory 

means a background theory itself. Abduction of a rule is called rule-based abduction, 

while that of a theory theory-based abduction. 

In rule-based abduction, a hypothesis A in a syllogism is a set of atoms. Then, for 

a surprising fact C and a hypothesis A, we denote rule-based abduction by A + C in 

a syllogism. Hence, rule-based abduction is depicted by the following syllogism: 

On the other hand, in theory-based abduction, a hypothesis A in a syllogism is 

a theory. Then, for a surprising fact C and a hypothesis A, we denote theory-based 

abduction by A l- C in a syllogism. Hence, theory-based abduction is also depicted by 

the following syllogism: 

For rule-based abduction, it is our purpose to obtain a rule A + C and a hypothesis 

A to explain a surprising fact C. In order to capture the properties of rule-based 

abduction, we apply three types of explanatory hypotheses to rule-based abduction. 

According to Peirce, abduction begins with an observation of a surprising fact [Pei65, 

Uey79, Yon821. Hence, in rule-based abduction, a surprising fact must be surprising 

with respect to the background theory given in advance. Let P be a background theory, 

A be a set of atoms A, and C be a surprising fact with respect to P. 



(1) The first type is an abduction that assumes existence of the rules in a given 

background theory. In this type, for a surprising fact C ,  we select a rule C +- A in 

a background theory P, and propose a hypothesis A in P such that C is explained 

by the selected rule C +- A and the hypothesis A. We call this type of abduction 

rule-selecting abduction. An inference schema of rule-selecting abduction is depicted 

by the following syllogism. 

C: surprising fact wrt P 
Select a rule C +- A in P 
Propose a hypothesis A in P 

(2) The second type is an abduction that assumes existence of the rules in a back- 

ground theory other than a given one. In this type, we assume that the set of back- 

ground theories is given in advance. Then, for a surprising fact C, we find a rule 

C +- A in a background theory PI, possibly not P, and propose a hypothesis A. We 

call this type rule-finding abduction. An inference schema of rule-finding abduction is 

depicted by the following syllogism. 

C: surprising fact wrt P 
Find a rule C +- A in PI (f P) 
Propose a hypothesis A in P 

(3) The third type is an abduction that cannot assume existence of the rules in 

any background theory. In this type, for a surprising fact C, we newly generate a rule 

C +- A in a background theory P, and propose a hypothesis A in P such that C is 

explained by the generated rule C +- A and the hypothesis A. We call this type rule- 

generating abduction. An inference schema of rule-generating abduction is depicted by 

the following syllogism. 

C: surprising fact wrt P 
Generate a rule C +- A in P 
Propose a hypothesis A in P 

If we apply the above three types to abduction for logic programming, then the 

syllogisms of rule-based abduction are illustrated as in Figure 3.1, where sf stands for 

a surprising fact. In rule-based abduction for logic programming, a surprising fact C 



Figure 3.1: Rule-based abduction for logic programming 

(1) rule-selecting 

(2) rule-finding 

(3) rule-generating 

with respect to a program P is regarded as a ground atom such that P Y C. In other 

words, C is explained by P if C is provable in P. Note that, in the syllogisms of rule- 

P y C  ( C :  sf wrt P )  C + A i n  P 
A (set o f  atoms) 

P y C ( C : s f  wrt P)  C + A i n  PI 
A (set of atoms) 

P y C ( C : s f  wr tP)  
C + A in P A (set of atoms) 

selecting and rule-generating abduction, P U A I- C holds for a proposed hypothesis A 

and a program P,  by regarding A as the set {A) of atoms. 

Far theory-based abduction, it is our purpose to obtain a theory A to explain a 

surprising fact C.  In order to capture the properties of theory-based abduction, we 

also apply three types of explanatory hypotheses to theory-based abduction. 

Let B be a background theory and C be a surprising fact with respect to B. 

(4) The first type is an abduction that assumes existence of the theory in a given 

set of background theories. Note here that the set of background theories are given in 

advance. In this type, we can select and propose a theory A which makes the surprising 

fact C true. We call this type of abduction theory-selecting abduction. An inference 

schema of theory-selecting abduction is depicted by the following syllogism. 

C: surprising fact wrt 3 
Select a theory A such that A makes C true 
Propose a hypothesis A 

(5) The second type of abduction which we could call theory-finding abduction is 

the same as the theory-selecting abduction above, because we must assume that there 

exists a set of background theories. 

(6) The third type is an abduction that cannot assume existence of the theory 

in the set of background theories. In this type, we generate and propose a theory A 

which makes the surprising fact C true. We call this type rule-generating abduction. An 



Figure 3.2: Theory-based abduction for logic programming 

(4) theory-selecting 

(6) theory-generating 

inference schema of theory-generating abduction is depicted by the following syllogism. 

B y C  (C:sf  wrt B) A t C  
A (theory) 

B y C ( C : s f  w r t B )  
A t C A (theory) 

C: surprising fact wrt B 
Generate a theory A such that A makes C true 
Propose a hypothesis A 

If we apply the above two types to abduction for logic programming, then the 

syllogisms of t heory-based abduction are illustrated as Figure 3.2. In theory-based 

abduction for logic programming, a surprising fact C with respect to a program B is 

also regarded as a ground atom such that B C. 

3.2 Application to Previous Researches 

Now we examine the various researches on abduction so far developed and show that 

all of them can be placed in our classification. 

(1) Rule-selecting abduction: Abductive logic programming [Dungl, EK89, KM90, 

KKT92] is a kind of rule-selecting abduction. It is different from Peirce's abduction 

in the following viewpoint: Peirce has asserted that abduction begins with an obser- 

vation of a surprising fact [Pei65, Uey79, Yon821. However, in their works on abduc- 

tive logic programming, Eshghi and Kowalski [EK89], Kakas and Mancarella [KMSO], 

Dung [Dungl], and Kakas et al. [KKT92] have asserted that a hypothesis to explain 

the observed fact can be formed in the abductive framework. Kakas and Mancar- 

ella [KM90] have also asserted that the abductive framework is vacuous and ill-defined 

if there exist no models to explain the observation. Therefore, they cannot deal with 

the surprising fact in the sense of Peirce's abduction. 

Abduction for explanation-based generalization by Genest et al. [GMPSO] is a kind 



of rule-selecting abduction. However, it depends on heuristics which makes the sur- 

prising fact surprising. 

Abduction for natural language interpretation by Hobbs et al. [HSME88] and 

Stickel [Stigl] is a kind of rule-selecting abduction. In the formulation of Hobbs et 

al. [HSME88], they have dealt with first order formulas with costs as the logical forms 

of abduction. On the other hand, Stickel [StiSl] has dealt with function-free definite 

programs as the logical forms of abduction. 

Concerning expert system, abduction for diagnosis problem by Cox and Pietrzykowski 

[CP87] is a kind of rule-selecting abduction. They have introduced the concept of a 

cause, and dealt with resolutions for computing fundamental causes. Furthermore, 

the research of Pirri and Pizzuti [PP9O] can be regarded as the diagnosis problem in 

abductive logic programming. 

(2) Rule-finding abduction: Duval's abduction [Duvgl] is a kind of rule-finding 

abduction. Duval [Duv91] has dealt with the following abduction for explanation- 

based generalization: Let D be a domain theory, A +--- B A C be a rule in D,  and C be 

a surprising fact with respect to D. Then, his system finds C' E D which is analogous 

to C, and adds a rule A +--- B r\ C' to D. He called such adding rule abduction. 

Thagard's analogical abduction [That381 is also a kind of rule-finding abduction. 

(3) Rule-generating abduction: The constructive operators such as V and W op- 

erators [Mug92, MB88, Lin89, LU89] in inductive logic programming are a kind of 

rule-generating abduction. Concretely, the constructive operators generate definite 

clauses from a finite surprising facts, called examples. Hence, examples are regarded 

as surprising facts in Peirce's sense. 

(4 )  Theory-selecting abduction: Poole's Theorist [Po0881 and hypothesis-based rea- 

soning [Kun87] are theory-selecting abduction, where the candidates of a hypothesis 

are given in advance. The main part of their researches is how to select a suitable 

hypothesis from the candidates. 

As the extensions of Poole's research, there exists the research of abduction for a 



model of belief by Levesque [Lev891 and Selman and Levesque [SL90]. Their frame- 

works of abduction depend on a model of belief, which is a kind of modal logic. It is 

their purpose to construct a model of belief for abduction, not to find an explanation. 

However, we can regard their abduction as the extension of Poole's abduction [Ino92]. 

Konolige [Kon92] has investigated the relationship between abduction and the di- 

agnosis problem by introducing a causal theory. We can regard it as the extension of 

Poole's abduction. 

Bylander et al. [BATJgl] have introduce the another framework of abduction for 

propositional logic. They have extended the symbol "4" of logical implication to 

the causal relation, and analyze the computational complexity of abduction and the 

diagnosis problem. We can also regard it as the extension of Poole's abduction for 

propositional logic. 

( 6 )  Theory-generating abduction: Shapiro's model inference system [Sha81] and in- 

ductive logic programming [Mug92, MB88, Lin89, LU89] are a kind of theory-generating 

abduction. Model inference system and inductive logic programming inductively make 

definite programs. By the above systems, the definite programs are constructed by 

surprising facts, if we regard examples as surprising facts. 

It is the main purpose of rule-selecting and theory-selecting abduction to find a 

hypothesis to explain a surprising fact. Then, they are related to nonmonotonic logic, 

the diagnosis problem in expert system, and knowledge representation. On the other 

hand, it is the main purpose of rule-generating and theory-generating abduction to ob- 

ta in  a hypothesis to explain a surprising fact. Then, they are related to inductive logic 

programming, machine learning, and knowledge acquisition. It is the main purpose 

of rule-finding abduction to find a hypothesis in the given set of background theories. 

Then, it is related to analogical reasoning. 

Theory-based abduction is considered as the extensions of rule-based abduction, 

and rule-based abduction is an essential abduction. Hence, in the following chapters, 

we investigate each types of rule-based abduction for logic programming. 



Chapter 4 

Rule- Selecting Abduct ion 

"It is not really dificult to construct a series of inferences, each depen- 

dent upon its predecessor and each simple in itself.'" 

- 'The  Adventure of the Dancing Men' 

"The Return of Sherlock Holmes" 

Let P be a definite program. Throughout this thesis, a surprising fact C with 

respect to P is regarded as a ground atom such that P Y C. Note here that P is given 

before C is given. The rule-selecting abduction is a type of abduction which selects 

a rule in P and proposes a hypothesis to explain the surprising fact C. An inference 

schema of rule-selecting abduction is described by the following three steps: 

1. A surprising fact C is observed. 

2. A rule C +- A is selected in P. 

3. A hypothesis A is proposed. 

For a surprising fact C, we regard the above inference schema as the following one by 

identifying a hypothesis A with the set {A) of atoms: 

1. A ground atom C such that P Y C is given. 

2. A rule C' +- A:, , A', is selected in P, where C'0 = C and A',0 = Ai (1 5 i 5 

4. 

3. A hypothesis {Al, . , A,) is proposed. Then, P U {Al, . . , An) t- C. 



Note that the above inference schema is similar to abductive framework [Dungl, 

EK89, KM90, Poo881. However, we are not interested in how semantics is suggested in 

the abductive framework, but we are interested in how a hypothesis is proposed. Also 

we are interested in abduction for definite program. 

In this chapter, we investigate rule-selecting abduction for logic programming. In 

Section 4.1, we discuss the termination of rule-selecting abduction. We introduce the 

head-reducing programs, and show that all the derivations for a head-reducing program 

and a surprising fact are finite. In Section 4.2, we formulate abduction for default logic. 

We show that if there exists a hypothesis which explains a surprising fact, then there 

also exists the extension of a given default theory, which includes the surprising fact. In 

Section 4.3, we extend the concept of head-reducingness to that of breadth-first head- 

reducing programs, and the rule-selecting abduction to the breadth-first rule-selecting 

abduction. We also show that there exists a finite derivation for a breadth-first head- 

reducing program and a surprising fact. In Section 4.4, we realize the above three 

types of rule-selecting abduction as Prolog programs. 

This chapter is based on the papers [Hir93a, Hir93bj. 

4.1 Rule-Select ing Abduct ion for Logic Program- 
ming 

Let us consider the following definite program PI: 

The least Herbrand model M(Pl) of PI is {r(a), r (f (a)), r( f (a)), -1. There exists 

no atom a with the predicate symbol p in M(Pl). Also a ground atom p(f (a), f2(b))  

is given as a surprising fact with respect to PI, that is, Pl Y p( f ( a ) ,  f (b)). Then, 

rule-selecting abduction for PI is the following process: 

1. If we select no rules, then we obtain the following hypothesis Hl by rule-selecting 

abduction for PI: 



2. If we select the rule Cl, then we obtain the following hypothesis H2 by rule- 

selecting abduction for PI: 

3. If we select the rules Cl and C3, then we obtain the following hypothesis H3 by 

rule-selecting abduction for PI : 

Note that, for each Hi (1 2 i 5 3), PI U Hi I- p(f(a), f2(b)). 

Hence, for a surprising fact a, rule-selecting abduction for P is the proposal of 

hypotheses H such that P U H I- a. 

The rule-selecting abduction can be realized in the following Prolog program rs-abd, 

which is a variant of partial evaluation in van Harmelen and Bundy [vHB88]. 

rs-abd(Goa1,Leaves) :- clause(Goal,Clause),rs~abd(Clause,Leaves). 
rs-abd((Goal1, Goal2) , (Leaf 1, Leaf 2)) : - 

! ,rs-abd(Goal1 ,Leaf 1) ,rs-abd(Goal2 ,Leaf 2). 
rs-abd(Leaf ,Leaf) : - ! . 

Since abduction is the first stage of scientific inquiry, we should consider the process 

of abduction which terminates. If abduction terminates, then we can automatically 

propose some hypotheses. Hence, in this section, we discuss the termination of rule- 

selecting abduction. It is our purpose to identify the class of definite programs for 

which all the processes of rule-selecting abduction terminate. 

First, we introduce the following definitions. 

Definition 4.1 Let P be a definite program and p be a predicate symbol. Then, 

a recursive definition of p for P ,  denoted by rec(P,p), is a definition clause of p 

constructed by the following procedure: 

1. Select a clause in P whose head has the predicate p, and let it be rec(P,p). 



2. For rec(P,p) = A + B1, . . . ,Bz; . . ,  Bn, if there exists a clause E -- Fl , - . . ,  F, 

such that BIO = EO for a substitution 0 ,  and pred(B1)(= pred(E))  # p, then 

eliminate the clause E + Fl, . , Fm from P, and put 

3. Repeat 2 until it  cannot be applied. 

A recursive program of p for P, denoted by RP(P, p ) ,  is a program consisting of a 

recursive definition rec(P, p )  and the applied clauses in constructing rec(P, p) .  

For a definite program P and a predicate symbol p, rec(P,p) and RP(P,p) are not 

unique in general. 

Example 4.1 Let P2, P3 and P4 be the following definite programs: 

p4 = { P ( f  ( X I )  + P(f2(X))7 q(X7 Y )  
q ( f  (x)7 f ( Y ) )  + q ( f  (X I ,  Y )  

Then, the recursive definitions rec(P,, p )  and the recursive programs RP(P,, P )  (2 5 

i 5 4) are as follows: 



On the other hand, let P5 be the following definite program: 

Then, there exist the following two recursive definitions rec(P5, p): 

There also exist the following two recursive programs RP(P5, p) corresponding to the 

above recursive definitions rec(P5,p): 

A clause p(tl, . . , tn) +- B1,. , B, is said to be p-reducing with respect to the 

i-th argument if lti%l > lsf%l for any substitution % and for any index I such that 

pred (B1) = p, where sf is the i-th argument's term of 3 1 .  A p-reducing clause with 

respect to some argument is called a p-reducing clause simply. These definitions are 

the extensions of reducing and weakly reducing programs by Yamarnoto [Yam92]. 

Example 4.2 in Example 4.1, the definition clause of p in P2 and P3 are p-reducing. 

The recursive programs rec(P2,p) and rec(P3,p) are also p-reducing. On the other 

hand, the definition clause of p in P4 and the recursive definition rec(P4,p) is not 

p-red u cing. 

For a p-reducing clause, the following lemma holds. 

Lemma 4.1 Let C be a p-reducing clause p(tl, . , t,) +- B1, . . , B, and p(sl, . . , s,) 

be a ground atom. Then, all the SLD-derivations of { C )  U {+ ~ ( s ~ ,  , s,)) are finite. 

Proof. Suppose that C  is p-reducing with respect to the i-th argument. 



If p(tl, , t,) and p(sl, . * , s,) are not unifiable, then the derivation of {C} U {+- 

p(sl, + , s,)) is finitely failed. 

Suppose that p(tl, . , tn) and p(sl, . . , s,) are unifiable. Since p(sl, . . , s,) is 

ground, there exists a unifier 6 for p(tl, . . . , t,) and p(sl, . , s,) such that p(tl, . , t,)% = 

p(sl, + , s,). If Bj6 is the selected atom of the goal +-- BIB, . + , Bm6, and Bj6 and 

p(tl, . . , tn) are not unifiable, then the derivation of {C) U {+- BIO, , Bm6) is finitely 

failed. Otherwise, suppose that B10 is the selected atom of the goal +- BIB, . . , BmO. 

Also suppose that B1O and p(tl , . , t,) are unifiable. Note that sf6 is ground, where 

sf is the i-th argument's term in Bl. By the definition of a p-reducing clause, 

Furthermore, if p(tl, . . , t,) and B16 are unifiable, then, for the derivation of {C) U {+- 

BlO}, there exists a unifier 0 for B16 and p(tl, , t,) such that BIBa = p(tl, , t , ) ~ .  

Then, 

Hence, the longest derivation of {C} U {+- B16, , Bm6} is constructed in the 

following way: Let Go be the initial goal + B16, . , Bm6, and Gi be the i-th resol- 

vent. Then, by selecting each atom B16 in the derivation, we can obtain the following 

resolvent G, of the derivation: 

For any BZBk(l 5 1, k 5 m), lsf Ok 1 < Isi 1 .  Furthermore, by selecting each atom BIOk in 

the derivation, we can also obtain the following resolvent Gm+,z of the derivation: 

For any B16;(l 5 1 5 m, 1 5 k 5 m2), Isf6;l < lsil - 1. 
Isi I 

Hence, the length of the derivation of {C) U {+- B1O, . , Bm6) is a t  most C mk, k=l 
Is4 

and the length of the derivation of {C) U {+- p(sl, . , s,)) is at most 1 + C mk. 1 k=l 



Whether or not the process of rule-selecting abduction for a definite program ter- 

minates is characterized as the following concept of head-reducing. 

Definition 4.2 Let rec(P, p )  be a recursive definition p ( t l ,  , t,) +- B1, . . , B, of 

p for P.  Then, a recursive program RP(P,p)  is called head-reducing i f  it satisfies the 

following conditions: 

1. I f  there exists an index k such that Bk = p(s:, , sk), then 

(a) there exists an index j such that ltjOl > Is,kOl for any such k and for any 

substitution 0,  and 

(b) any atom Bz such that Bl = ql(ui, . , ukl) ( p  # ql)  satisfies one of the 

following conditions: 

(b-i) there exists the i-th argument's term uf in Bl which is constructed by 

the variables appearing in t j ,  and the definition clause of ql is ql -reducing 

with respect to the i-th argument, or 

(b-ii) the definition clause of ql is not included in RP(P,  p)  . 

2. Otherwise, any Bl = ql (ui, - , u;,) satisfies one of the following conditions: 

(c) there exists the i-th argument's term ut in B1 which is constructed by the 

variables appearing in all arguments' terms tl , . , t, in p ( t l ,  , t,) , and 

the definition clause of ql is ql-reducing with respect to i-th argument, or 

(d) the definition clause of ql is not included in RP(P,  p) .  

Furthermore, P is head-reducing with respect to the predicate p i f  any recursive program 

RP(P,  p)  of p for P is head-red ucing. 

Example 4.3 in  Example 4.1, P3 is head-reducing with respect to p. On the other 

hand, P2 is not head-reducing with respect top, because the recursive program RP(P2, p )  

does not satisfy the condition (b-i) of Definition 4.2. Also P4 is not head-reducing, 

because the recursive program RP(P4, p )  does not satisfy the condition (a) of Defini- 

tion 4.2. 



For P5, the first recursive program is head-red ucing, but the second recursive pro- 

gram is not head-reducing, because i t  does not satisfy the condition (a) of Defini- 

tion 4.2. Then, P5 is not head-reducing with respect to p. 

Furthermore, the following typical Prolog programs [SS86, SS94] are head-red ucing 

with respect to the predicate of the head. 

On the termination of rule-selecting abduction, the following theorem holds. 

Theorem 4.1 Let P be a definite program and p be a predicate symbol. If P is 

head-reducing with respect to p, then all the SLD-derivations of P U {+- p(sl, . . , s,)) 

are finite. 

Proof. The result is proven by mathematical induction on the number of clauses in 

P. If the number is 1, then Lemma 4.1 implies the result. 

Next suppose that all the derivations of P U {+ p(sl, , s,)} are finite for P = 

{Cl, , Ck), and let PI be P U {Ck+l). Also suppose that any RP(P1, p) is head- 

reducing. Let Ck+l be the following clause: 

If the predicate symbol pk+l does not occur in P, then all the input clauses of the 

derivation of Pu{+ p(sl, , s,)) do not include the clause Ck+1. Thus, the derivation 

of PI U {+ p(sl, . . . , s,)) is equal to one of P U {+ p(sl, . . , s,)}. Consequently, the 

derivation of P' U {+- p(sl, . . + , s,)} is finite by the induction hypothesis. 

If the predicate symbol pk+l occurs in the clause Ci of P ,  then there exists a clause 

Ci in P, and one of the following cases holds: 

1. pk+l occurs in the body of Ci, or 

2. pk+l occurs in the head of Ci. 



If any RP(P,p)  does not include the clause Ci, then all the input clauses of the 

derivation of P U {+- p(sl, . , s,)) do not include Ci. Thus, the derivation of Pi U 

{t p(sl,. , s,)) is equal to one of P U {+- p(sl, , s,)). In both cases, which 

are corresponding to the condition (b-ii) or (d) of Definition 4.2, the derivation of 

P u {t p(sl, , s,)) is finite by the induction hypothesis. 

Thus, suppose that some RP(P,p)  includes Ci. 

1. Suppose that p,+, occurs in the body of Ci. Let Ci be the following clause: 

where pred(Dj) = pk+l. BY the induction hypothesis, if there exists an infinite 

derivation of Pi U {t p(sl, . , s,)), and DjX and pk+1 (tl , + . , tnk+l) are unifi- 

able, where X is a substitution, then the derivation of Pi u {+ DjX) is infinite. 

However, we can show that all the derivations of P' U {+- DjX) are finite by the 

following discussion. 

Suppose that the derivation of PI U {+ DjX) is infinite. Then, the deriva- 

tion of Pi U {+ Bla, , Bp) is also infinite, where a is a unifier of DjX and 

pk+l (tl, . , tnk+l). For any Big, consider the predicate symbol pred(Bi). 

(a) Suppose that for any i,  pred(Bi) does not occur in P or pred(Bi) is 

Then, all the input clauses of the derivation of Pi U {+ DjX) include only 

the clause Ck+1. Since RP(P,p) is head-reducing, then DjX has the argu- 

ment's term which is ground, and Ck+1 is pk+1-reducing with respect to this 

argument by the condition (b-i) or (c) of Definition 4.2. By Lemma 4.1, the 

derivation of P I  u {+ DjX) is finite. 

(b) Suppose that there exists an index i such that pred(Bi) occurs in P and 

pred(Bi) # pk+l. For any such i, one of the following two cases holds. 

i. Suppose that there exists a clause Cj such that pred(Bi) = pred(head(Cj)) 

and some RP(P,p) includes Cj. If head(Cj) and Bi are not unifiable, 

then the derivation of Pi U (t Big) is finite, because all the input 



clauses of the derivation of P' U {t Big) do not include Cj. Other- 

wise, suppose that head(Cj) and Bi are unifiable. Since any RP(P1, p) 

is head-reducing and includes Cj , Cj is pred (&)-reducing with respect 

to some argument. Note that this argument's term of Big is ground. 

By Lemma 4.1, the derivation of P' U {+- Big) is finite. 

ii. Suppose that there exists a clause Cj such that pred(Bi) = pred(head(Cj)) 

and any RP(P,  p) does not include Cj. Then, all the input clauses of the 

derivation of P' U {+ Big) do not include any clause of any RP(P,p). 

By the case (a), the SLD-derivation of P' U {+ Big) is finite. 

By the cases (a) and (b), there exist no infinite SLD-derivations of P' u {t 

B1g, * . .  , BmO). 

2. Suppose that p,+l occurs in the head of Ci. Let Ci be the following clause: 

where pred(A) = pk+l. Let t G1r, . , Gjr, , G1r be the resolvent whose 

input clause is A +- Dl, . , Dm in the SLD-derivation of P U {+ p(sl, , s,)). 

By the induction hypothesis, if there exists an infinite SLD-derivation of P' U 

{t p(sl, , s,)), and G ~ T  and A are unifiable, then the SLD-derivation of 

P' u {t Gjr)  is infinite. Then, the SLD-derivation of P' U {+ Bla, + + , Big) is 

infinite, where is a unifier of G j r  and A. However, by the same proof as the 

case 1, there exist no infinite SLD-derivations of P U {t B1o, . . , B p ) .  

Hence, all the derivations of PU{+ DjX) are finite. Therefore, all the SLD-derivations 

of P' U {+- p(sl, , s,)) are also finite. I 

4.2 Rule-Select ing Abduct ion for Default Logic 

In general, abduction is deeply related to nonmonotonic reasoning, because both ab- 

duction and nonmonotonic reasoning are a kind of plausible inference. There exist 

various researches for nonmonotonic logic; nonrnonotonic modal logic [McD82, MD80], 



autoepistemic logic [Moo85], belief logic [Lev89, SL90], default logic [Reit80, Poo881, 

and circumscription [McC80, McC86, Lif85, Hir92, Hir94al. In this section, we com- 

pare rule-selecting abduction with Reiter's default logic [Reit80]. 

Poole [Poo88, In0921 has defined an abductive framework and discussed the rela- 

tionship between it and Reiter's default logic [Reit80]. We can describe the result of 

Poole [Po0881 in term of our abduction in the following way: 

Theorem 4.2 (Poole [Poo88]) Suppose that P If a .  Then, there exists a hypothesis 

H such that P U H I- a if and only if there exists an extension E of default theory 

(DH7 P) such that a E E, where 

The above theorem means that there exists an extension which includes the explain- 

able fact a, while it does not mean how a hypothesis is constructed when a surprising 

fact is observed. In other words, Poole's abduction is an abduction for logic program- 

ming in term of default logic, but not an abduction for default logic itself. Hence, we 

study abduction for default logic. Here, we deal with function-free closed normal de- 

fault theories whose conclusions are positive atoms, because there exists an extension 

for such a default theory by Theorem 2.2. Also we deal with a definite program and 

an integrity constraint IC as negative information. The integrity constraint IC is of 
n 

the form IC = .V (+ Gi), where Gi = Gli A A G,,~ and Gji is an atom. 
2=1 

The following lemma is shown by the definition of integrity constraints and the 

monotonicity of definite programs. 

Lemma 4.2 Let P be a definite program and IC be an integrity constraint. If P U IC 

is consistent, then the least Herbrand model M(P)  of P is the model of P u IC under 

the closed-world assumption [Llo87]. 

In Section 4.1, a surprising fact is defined as a ground atom a such that P If a, and 

rule-selecting abduction is the proposal of a hypothesis H such that P U H I- a. In 

default logic, a surprising fact is considered as a ground atom a which is not included 



in any extension of a given default theory (D, P ) .  For the surprising fact a, it is our 

purpose to propose the new default theory (D, P U H), instead of (D, P ) ,  such that 

there exists an extension which includes a .  Then, we regard such an H as a hypothesis 

for rule-selecting abduction for default logic. 

In order to define a surprising fact and a hypothesis for default logic, first we 

introduce the transformation from the following set of default rules D 

D = {  a )  : w )  1 1 5 i 5 1 } ( X  : tuple of variables) 
wi (X) 

to the following definite program PD: 

wi(X) + ai (X) t ~ , i < i < l ) .  

For such PD, the following lemma holds. 

Lemma 4.3 Let (D, P )  be a closed default theory and a be a ground atom. IfPUPD Y 

a, then there exists no extension of (D, P) which includes a .  

Proof. Let E be an extension of (D, P) .  By Theorem 2.1, E is constructed in the 

following way: 

i n  P = { + 1 D } ,  E l  ( E )  U ( P )  for any i .  Then, 5 c 
M ( P  U PD). Hence, if P U PD y a, that is, a $ M ( P  U PD), then a 6 E .  I 

By the above lemma, we define a surprising fact for a default theory (D, P )  as a 

ground atom a such that P U PD a .  

Furthermore, a hypothesis for default logic is defined as follows: 

Definition 4.3 Let a be a surprising fact and ( D ,  P U I C )  be a closed normal default 

theory, where P is a definite program and I C  is an integrity constraint. Then, H is 

a hypothesis of a for a default theory (D, P U I C )  if i t  satisfies one of the following 

conditions: 



1. P U H t a and P U H U IC is consistent, or 

2. P U H I f  a, P U PD U H I- a, and P U PD U H U IC is consistent. 

Note that a hypothesis in a default logic is assumed to be minimal with respect to set 

inclusion. 

Example 4.4 Let ( D ,  P )  be the following closed normal default theory: 

bird ( X )  : f ly ( X )  jish(X) : swim(X) 
D = {  

%Y (XI  ' swim(X) 

swim(X) +- penguin(X) 
= { bird ( X )  +- penguin(X) 

Then, the transformed definite program PD from D is: 

Let IC1 be an integrity constraint +- f ly ( X ) ,  swim(X). 

1. For a ground atom &(john), P U  PD Iffly(john). Then, fly(john) is a surprising 

fact for ( D ,  P )  . The candidates for hypotheses are obtained as follows: 

For each Hi (1 5 i 5 3)) Hl satisfies the first condition, and Hz satisfies the 

second condition of Definition 4.3. However, H3 satisfies neither condition of 

Definition 4.3, because P U H3 U IC1 is inconsistent. Hence, HI and H2 are the 

hypotheses of fly(john) for ( D ,  P U E l ) .  

2. For a ground atom swirn(john), P U PD Y swim(john). Then, swirn(john) is a 

surprising fact for ( D ,  P ) .  The candidates for hypotheses are obtained as follows: 

For each Hi (4 5 i 5 6)) H4 and H6 satisfy the first condition, and H5 satisfies 

the second condition of Definition 4.3. Hence, all of H4, f& and H6 are the 

hypotheses of swim(john) for ( D ,  P U El). 



Let IC2 be an integrity constraint +- bird(X), swim(X). 

3. For a surprising fact fly (john), we obtain the same candidates HI, Hz, and H3 

of hypotheses just as the case 1. For each Hi (1 5 i 5 3)) HI satisfies the first 

condition, and H2 satisfies the second condition of Definition 4.3. However, H3 

satisfies neither condition of Definition 4.3, because P U H3 U IC2 is inconsistent. 

Hence, HI and H2 are the hypotheses of fly(john) for (D, P U IC2). 

4. For a surprising fact swim(john), we obtain the same candidates H4, H5, and H6 

of hypotheses just as the case 2. For each Hi (4 5 i 5 6)) Hq satisfies the first 

condition, and H5 satisfies the second condition of Definition 4.3. However, H6 

satisfies neither condition of Definition 4.3, because P U H6 U IC2 is inconsistent. 

Hence, H4 and H5 are the hypotheses of swim(john) for (D, P U ICz).  

For a definite program P and a transformed program PD from D ,  the following two 

lemmas hold: 

Lemma 4.4 Let (D, P )  be a default theory. Then, the least Herbrand model M ( P  u 

Po) of P U PD is an extension of (D, P ) .  

Proof. Suppose that E is constructed in the following way: 

Eo = { f  I f +€ P), 

a : w  
Since - E D is equivalent to w +- a E PD, M ( P  U PD) = E. By the closed-world 

W 

assumption, l w  $ E for any w. By Definition 2.4, E is an extension of (D, P ) .  I 

Lemma 4.5 Let (D, P )  be a default theory. If P U PD t a ,  then M ( P  U Po) is an 

extension of (D, P )  which includes a .  

Proof. Since P U PD t a ,  a E M ( P  u PD). By Lemma 4.4, M ( P  u PD) is an extension 

of ( D ,  P ) .  I 



For an integrity constraint IC and a default theory (D, P), the following lemma 

holds: 

Lemma 4.6 Let (D, P U IC) be a default theory, where P is a definite program and 

IC is an integrity constraint. If (D, P U IC)  satisfies one of the following conditions, 

then M (P U PD) is a consistent extension of (D, P U IC) which includes a. 

1. P t- a ,  and P U IC is consistent. 

2. P y a ,  P U PD t- a ,  and P U PD U IC is consistent. 

Proof. Suppose (D, P U I C )  satisfies the above condition 1. By Lemma 4.2 and the 

consistency of P U IC, M(P)  is the model of P u I C .  Since P t a, a E M(P). For 

any ,8, P I- ,8 if and only if P U IC t- ,8. Then, E is an extension of (D, P )  if and 

only if E is an extension of (D, P U IC) .  Since M ( P  U Po) is an extension of (D, P), 

M ( P  U PD) is also an extension of (D, P U IC) .  

Suppose (D, P U IC)  satisfies the above condition 2. By Lemma 4.2 and the con- 

sistency of P U PD U IC, M ( P  U PD) is the model of P U PD U IC .  Since P U PD t- a, 

a E M (P U PD). If P U IC is inconsistent, then P U PD U I C  is also inconsistent, which 

contradicts the condition 2. Then, P U  I C  is consistent. Hence, for any P,  P t- ,8 if and 

only if P U I C  t- ,8. Then, E is an extension of (D, P) if and only if E is an extension 

of (D, P U IC) .  By Lemma 4.5, E = M ( P  U Po), and a E E. By Lemma 4.4, E is an 

extension of (D, P ) .  Hence, M ( P  U PD) is an extension of (D, P U IC) .  

By Corollary 2.1, if P U IC is consistent, then an extension of (D, P u I C )  is also 

consistent. Hence, the extension of (D, P U IC)  which includes a is also consistent. 

For a closed normal default theory (D, P), the following theorem asserts that if 

there exists the hypothesis H satisfying one of the conditions of Definition 4.3, then 

there exists an extension of (D, P U H). Hence, we can propose a default theory in 

which we believe a surprising fact, when it is observed. 

Theorem 4.3 Let (D, P )  be a closed normal default theory and IC be an integrity 

constraint. Suppose that P U P D  If a .  If there exists a hypothesis H of a for ( D ,  PuIC) ,  

then M ( P  U PD U H )  is a consistent extension of ( D ,  P U H U IC) which includes a .  



Proof. By replacing P with P U H in the proof of Lemma 4.6, we can obtain the 

result. I 

Example 4.5 Consider the default theory (D, P) in Example 4.4. For the integrity 

constraint ICl , we obtain the following extensions Ei of (D  , PU Hi u ICl ) corresponding 

to the hypotheses Hi: 

El = {fly (john)}, E2 = {bird (john), fly (john)), 

E6 = {penguin(john) , swim (john), bird (john)}. 

On the other hand, for the integrity constraint ICz, we also obtain the following 

extensions Ei of ( D ,  P U Hi U IC2) corresponding to the hypotheses Hi: 

4.3 Breadt h-First Rule-Selecting Abduction 

In Section 4.1, we have introduced the subclass of definite programs, called head- 

reducing programs. In this class, all derivations are finite. However, this class is not 

so large. For example, let Pl be the following program defining reversal of list: 

1 = { reverse([WIX], Y )  +- reverse(X, Z), concat(W, Z, Y) 
concat (X, [W I Y] , [W I Z]) +- concat (X, Y, Z) 

The recursive program RP(Pl,  reverse) is not head-reducing, and Pl is not head- 

reducing with respect to the predicate reverse. Hence, for a surprising fact a with 

the predicate reverse, rule-selecting abduction does not terminate for the program P 

and the goal +- a. Then, in this section, we introduce new abduction, called breadth- 

first rule-selecting abduction for which termination is guaranteed in the above reverse 

programs. 

The breadth-first rule-selecting abduction is a rule-selecting abduction which ter- 

minates by a fail branch in proof trees. Here, a fail branch is found by breadth-first 

search. For the above program PI, suppose that a surprising fact reverse([a, b], [b, a]) 



is given. From the proof trees of PI U {+ reverse([a, b ] ,  [b, a ] ) }  with the depth 0, 1, 

and 2, we obtain the following hypotheses Ho, H I ,  and Hz: 

Ho = {reverse([a, bl, [b, a] ) I ,  
HI  = {reverse([b], X ) ,  concat (a ,  X ,  [b, a] )} ,  

H2 = {reverse([ 1, X ) ,  concat(b, X ,  [blY]), concat(a, Y, [a] ) ) .  

In the proof tree of PI U {+ reverse([a, b] ,  [b, a] )} ,  since there exists a branch with 

depth 2, breadth-first rule-selecting abduction for Pl terminates. 

The termination of breadth-first rule-selecting abduction is reduced to the problem 

whether or not there exists a finite derivation. In order to characterize the termination 

of breadth-first rule-selecting abduction, we introduce the following concept of breadth- 

first head-reducing programs: 

Definition 4.4 Let rec(P, p) be a recursive definition p(tl, . . , t,) +- B1, . . , 5, of p 

for P .  Then, the recursive program RP(P,  p) is breadth-first head-reducing if i t  satisfies 

one of the following conditions: 

1. there exist an atom Bi and an index 1 such that pred(Bi) = p and l t lOl  > lslOl 

for any substitution 0 and the 1-th argument's term sl ofBi,  or 

2. for the atom such that pred(Bi) # p, one of the following conditions holds: 

(a) the definition clause of pred (B i )  is not included in RP(P,  p) , or 

(b) there exist terms tl inp( t l ,  * * .  , tn) and SF in Bk such that l t lOl > IsF0l for any 

substitution 0, and the definition clause of pred ( B k )  is pred (Bk)  -reducing 

with respect to the j-th argument. 

Furthermore, P is breadth-first head-reducing with respect to the predicate p if any 

recursive program RP(P ,  p) of p for P is breadth- first head-red ucing. 

Example 4.6 For the above program Pl, a recursive definition rec(Pl, reverse) is 

obtained uniquely as follows: 



rec(Pl, reverse) = reverse([W 1x1, [V IY]) +- reverse(X, [V I Z ] ) ,  concat(W, Z ,  Y ) .  

Then, recursive program RP(Pl ,  reverse) is also obtained as follows: 

RP(Pl , reverse) = 
reverse([W 1x1, [V IY]) +- reverse(X, [V IZ]), concat(W, Z ,  Y )  
concat ( X ,  [W IY] , [W I Z ] )  +- concat ( X ,  Y, Z )  

It is clear that RP(Pl ,  reverse) satisfies the condition 1 of Definition 4.4. Hence, P 

is breadth-first head-reducing with respect to the predicate reverse. Furthermore, the 

following programs P2 and P3 are also bread th-first head-red ucing with respect to the 

predicates isort and qsort respectively, where s is a successor function: 

isort([XIXs], Y s )  +- isort(Xs, Zs ) ,  insert ( X ,  Zs ,  Y s )  
insert(X, [Y IYs], [Y IZs]) +- greater(X, Y ) ,  insert(X, Y s ,  Z s )  
insert(X, [Y IYs], [Y IZs]) +- less-or-eq(X, Y )  
greater ( s ( X ) ,  Y )  +- greater(X, Y )  
less-or-eq(X, s ( Y ) )  +- less-or-eq(X, Y )  

' qsort ( [ X I X s ] ,  Y s )  +- partition(Xs, X ,  Littles, Bigs), 
qsort (Littles, Ls) , 
qsort(Bigs, Bs ) ,  
append(Ls, [X IBs], Y s )  

partition([Xl X s ] ,  Y, [XI Ls],  Bs )  +- less-or-eq(X, Y ) ,  
partition(Xs, Y, Ls, Bs )  

partition([X I X s ] ,  Y, Ls, [XI Bs] )  +- greater(X, Y ) ,  
partition(Xs, Y, Ls, B s )  

append([WIX], Y, [WIZI) + append(X, Y, 2) 
greater(s(X), Y )  +- greater(X, Y )  

, less-or-eq(X, s ( Y ) )  + less-or-eq(X, Y )  

On the other hand, the following programs P4, P5, and P6 are not breadth-first 

head-reducing with respect to the predicate p: 

Lemma 4.7 Let C be a clause p(t1, . , tn) +- 3 1 ,  . , B, and p(s1, , sn) be a 

ground atom. If there exists an atom Bi which satisfies one of the following condition, 

then there exists a finitely failed SLD-derivation of {C) U {+ p(sl, . . , s,)): 

1. pred (B i )  f p, or 



2. pred(Bi) = p, and there exists an index j such that ltj81 > Is:8I for any substi- 

tution 8. 

Proof. If {C) U {+- p(sl, . . , s,)) holds the condition 1, then this derivation is finitely 

failed with a depth 1 by selecting an atom Bi. 

Suppose that the condition 1 does not hold. Then, for any k ,  pred(Bk) = p. If the 

condition 2 holds, then, by selecting an atom Bi which satisfies the condition 2, the 

resolvent 

is obtained from the goal + p(sl, , s,) and clause C. Since ltj81 > lsj81, 

Furthermore, by selecting an atom BiO, the length of the j-th argument's term is 

decrease by 1 step by step for this derivation of {C) U {+- p(sl, . , s,)). Hence, this 

derivation is finitely failed with at most the depth Isj 1 5 max{lsj 1 1 1 ( j 5 n). I 

Then, we can show the following theorem for the termination of breadth-first rule- 

selecting abduction. 

Theorem 4.4 Let P be a definite program and a be a ground atom with a predicate 

p. If P is breadth-first head-reducing with respect to p, then there exists a finitely 

failed SLD-derivation of P u {+ a).  

Proof. Let rec(P, p) be p(tl, . . , t,) + B1, . , B,. If P satisfies the condition 1 or 2 

of Definition 4.4, then Lemma 4.7 implies the result. 

Suppose that P does not satisfy the conditions 1 and 2, and satisfies the condition 3 

in Definition 4.4. Let Bk be an atom q(s:, . . , sk), and lt181 > Is,k0 1 for any substitution 

8. Let C be a definition clause q(ul, . , uh) +- Al, . , All of q in RP(P, p). Since C is 

q-reducing with respect to the j-th argument, then, for any i such that pred(Ai) = q, 

IujBI > Ivj81, where Ai = q(vl, , v h )  By the definition of rec(P, p), the following 

resolvent is obtained in the derivation of P U {+ a):  



where 8 is a unifier of a and p(tl, , t,). Since Is,kOI < Itl$ 1 = 1.1 1 ,  and sl is ground, 

s;8 is also ground. By selecting an atom Bk8, the resolvent 

is obtained from the above goal and the clause C. For the j-th argument vj in Aio, 

and vja is ground. Furthermore, we can select an atom Aia applied to C. Conse- 

quently, this derivation is finitely failed with at most the depth Isl 1 < max{lsj 1 I 1 5 

j l n). I 

4.4 Prolog Implementation 

As mentioned in Section 4.1, the rule-selecting abduction can be realized in the fol- 

lowing Prolog program rs-abd. 

rs-abd(Goa1 ,Leaves) : - clause(Goa1 ,Clause) ,rs-abd(C1ause ,Leaves) . 
rs-abd( (Goall, Goal2) , (Leaf 1, Leaf 2) ) : - 

! ,rs-abd(Goal1 ,Leaf 1) ,rs-abd(Goal2 ,Leaf 2) . 
rs-abd(Leaf ,Leaf) : - ! . 

Furthermore, we can improve the program rs-abd as the following program msrs-abd 

by using the concept of most specific abduction in Stickel [Stigl, Duv91, 1110921. 

msrs-abd(Goa1,Leaves) :- clause(Goal,Clause),msrs,abd(Clause,Leaves). 
msrs,abd((Goall,Goal2),(Leafl,Leaf2)) :- 

! ,msrs-abd(Goal1 ,Leaf I) ,msrs-abd(Goal2, Leaf 2) . 
msrs-abd(Leaf,Leaf) :- (not clause(Leaf,X) -> true). 

The program msrs-abd returns the combinations of the leaves for all proof trees as hy- 

potheses, while the rs-abd program returns the combinations of the nodes for all proof 

trees. Furthermore, for the above programs, the following corollary of Theorem 4.1 

holds: 



Corollary 4.1 Let P be a definite program and p be a predicate symbol. If P is 

head-reducing with respect to the predicate p, then the following goals 

?- rs-abd(p(sl, . , s,) , X ) ,  

?- msrs-abd(p(sl, - . , s,) , X ) ,  

terminate for any ground atom p(s1, , s,). 

The breadth-first rule-selecting abduction can also be realized in the following Pro- 

log program bfrs-abd. It returns the hypotheses as its second argument for a ground 

atom as its first argument and a depth as its third argument. 

bfrs-abd(Goal,Leaves,Depth) :- 
Depth > O,clause(Goal,Clause),Depthl is Depth-I, 
bfrs,abd(Clause, Leaves ,Depthl) . 

bfrs-abd((Goall,Goal2),(Leafl,Leaf2),Depth) :- 
! , bf rs-abd(Goal1, Leaf I ,Depth) , bf rs-abd(Goal2, Leaf 2, Depth) . 

bfrs-abd(Leaf,Leaf,O) :- ! .  

Note that, for the program bfrs-abd, we must give a natural number as the depth in 

its third argument. 

For example, for the following reverse program in Section 4.3 

reverse ( [W 1 X] , Y) : - reverse (X, Z) , concat (W, Z ,Y) . 
concat(X, [WIY], [WIZ]) :- concat(X,Y,Z). 

the results of the goal ?- bf rs-abd(reverse ( [a, b] , [b , a] ) , X ,  D) are as follows: 

: ?- bfrs-abd(reverse( [a,b] , [b,al) ,X,O) . o /,A/, o 0 depth = 0 
X = reverse([a,b], [b,al); 
no 
: ?- bfrs,abd(reverse( [a,bl, [b,a]) ,X, I). o / ,A / ,  o 0 depth = 1 
X = reverse ( Cb] , -260) , concat (a, -260, Cb, a] ) ; 
no 
: ?- bfrs-abd(reverse( [a,b], [b,a]) ,X,2). 0 0 0 /,/,/, depth = 2 
X = (reverse ( [I , -376) , concat (b, -376, [b 1-5141 ) ) , concat (a, -514, [a] ) ; 
no 
: ?- bfrs-abd(reverse( [a,b] , [b,al) ,X,3). O o O  I/,/, depth = 3 
no 

For the program bf rs-abd, the following corollary of Theorem 4.4 holds: 



hyp(Goal,Hyp,IC) :- 
rs-abd(Goa1, Hyp) , 
( (rep-assert (Hyp) , consistent (Goal ,Hyp, IC) , rep-retract (Hyp) ) 

->true; ! ,fail) . 
consistent(Goal,Hyp,IC) :- 

(call (Goal) -> 
(call(ic(1C))->(write() : consistent ') ,nl) ; 
(write(' : inconsistent') ,nl)) ; 

(write(': inconsistentJ),nl)). 
ic(1C) :- (call(1C)->fail;true). 
rep-assert((Atoml,Atom2)) :- 

(atom(Atom1)->assert(Atoml);rep~assert(Atoml)), 
(atom(Atom2) ->assert (Atom2) ; rep-assert (Atom21 ) . 

rep-assert (Atom) : - assert (Atom) . 
rep-retract ((Atom1 ,Atom2)) : - 

(atom(Atom1) ->retract (Atoml) ; rep-retract (Atom11 ) , 
(atom(Atom2) ->retract (Atom21 ; rep-retract (Atom21 ) . 

rep-retract(Atom1 :- retract(Atom1. 

Figure 4.1: Program hyp 

Corollary 4.2 Let a be a ground atom with predicate p. If P is breadth-first head- 

reducing with respect to the predicate p, then there exists a depth d such that the 

goal 

returns 'ho". 

For the above example, the depth in Corollary 4.2 is 3. 

The rule-selecting abduction for default logic is also realized as the Prolog program 

hyp in Figure 4.1. The program checks the consistency under an integrity constraint 

and outputs hypotheses. An integrity constraint is given as the form of disjunctions 

(expressed by ';') of conjunctions (expressed by ',') of atoms in the third argument of 

hyp. If there exists no refutation of a goal as conjunctions of the atoms in the integrity 

constraint, then the hypotheses are consistent with the given program and the integrity 

constraint. 

The predicate hyp in Figure 4.1 works as follows: The predicate rs-abd returns 

a hypothesis as its second argument for a surprising fact as its first argument. The 



predicate rep-assert  adds the hypothesis obtained by rs-abd to the original program. 

The predicate consis tent  checks consistency for the hypothesis and the integrity 

constraint, which is given as the third argument of hyp. The predicate r e p x e t r a c t  

removes the hypothesis added by rep-assert from the original program. The predicate 

i c  calls the integrity constraint, and returns ' t rue '  (resp., ' f a i l ' )  if the integrity 

constraint fails (resp., succeeds) on the original program. 

The termination of the program hyp is also guaranteed by the following corollary 

of Theorem 4.1: 

Corollary 4.3 Let P be a definite program, IC be an integrity constraint, and p be 

a predicate symbol. For any predicate symbol q in I C ,  if P is head-reducing with 

respect to the predicate p and q, then the goal 

terminates for any ground atom p(s1, . . , sn). 

In order to apply default logic to the above program, we transform the set of default 

rules D to the following definite program P;: 

jW (X) + a(X),  dejuu~t-w(T) 

Thus, we interpret default-w(3) appearing in a hypothesis as w(5). 

Example 4.7 Consider P U P; which consists of the following clauses: 

fly (X) : - bird (X) , def ault-f ly (X) . %%% default 
swim(X) :- fish(X),default,swim(X). %%% default 
swim(X) : - penguin(X) . 0 0 0  /,/,/, theory 
bird(X) : - penguin (X) . 0 0 0  /,/,/, theory 

Let ICl and ICz be integrity constraints t-- fly(Y), swirn(Y) and +- bird(Y), swirn(Y), 

respectively. Since the above P U P; and ICi (i = 1,2)  satisfy the conditions of 

Corollary 4.3, the hyp program terminates and outputs the following hypotheses: 

: ?- hyp(fly(john),X,(fly(Y),swim(Y))). %%% ICl %%% 
penguin(j0h.n) , default-fly(john): inconsistent 
bird( john) , def ault-f ly( john) : consistent 



fly(john): consistent 

: ?- hyp(swim( john) ,X, (f ly(Y) , swim(Y))) . %%% IC1 %%% 
fish( john) , def ault-swim( john) : consistent 
penguin(john): consistent 
swim( john) : consistent 

: ?- hyp(fly(john),X,(bird(Y),swim(Y))). %%% IC2 %%% 
penguin(john) , default-fly(john): inconsistent 
bird( j ohn) , def ault-f ly(j ohn) : consistent 
fly(john): consistent 

: ?- hyp(swim(john) ,X, (bird(Y) ,swim(Y))) . %%% IC2 %%% 
fish(john) , default-swim(john): consistent 
penguin (j ohn) : inconsistent 
swim( j ohn) : consistent 

The predicate hyp is also applied to explanation-based generalization. Explanation- 

based generalization (for short, E B G )  [DuvSl, GMPSO, HiA94a, MKKC86, vHB88] 

takes as inputs a domain theory, a training example, a goal concept and an operationally 

criterion. It constructs an explanation in term of the domain theory that proves how 

the training example satisfies the goal concept definition. Then, it determines a set 

of operationally sufficient conditions for the goal concept under which the explanation 

holds, and returns it as an output. 

When we realize EBG as a Prolog program, we regard the domain theory and the 

training example as a definite program. Then, we construct a proof tree, which is 

called an explanation tree [HiA94a], and generalize it to obtain the general definition 

of goal concept. On the other hand, rule-selecting abduction is an inference from rules 

to facts. Then, it is corresponding to obtaining a training example from a domain 

theory in EBG. 

Consider the safe-to-stack problem in Mitchell et al. [MKKC86]. A domain theory 

D of the safe-to-stack problem is the following definite program. 

safe-to-stack(X,Y) :- lighter(X,Y). 
lighter(X,Y) : - weight (X,W1) ,weight (Y,W2), less(W1 ,W2). 
weight (X,500) : - isa(X,table) . 
weight(X,Y) :- volume(~,V) ,density(X,D) ,times(V,D,Y) . 

For the domain theory D, the goal 



?- rs-abd(safe-to-stack(box1, tablel) ,X) 

terminates, because there exists exactly one recursive program RP(D,  safe-to -stack) 

of the predicate safe-to-stack for D, and it is head-reducing. Furthermore, since D 

and an integrity constraint ~zsa(box1, table) V 1 zsa(table1, box) satisfy the condition 

of Corollary 4.3, the following goal 

terminates. Hence, we obtain the following hypotheses as the second argument: 

isa(boxl,table),isa(tablel,table),less(500,500): inconsistent 

isa(box1, table), 
(volume(table1,-510) ,density(tablel, -5061, times(-510, -506, -310)), 
less (500, -310) 
: inconsistent 

isa(box1, table) ,weight (tablel, -3101, less 500,310) : inconsistent 

(volume(box1,~430),density(boxl,~426),times(~430,~426,~314)), 
isa(table1 ,table), less(-314,500) 
: consistent 

(volume(box1,~430),density(boxl,~426),times(~430,~426,~314)), 
(volume (tablei, -608) , density(table1, -6041, times (-608, -604, -310)) , 
less (-314, -310) 
: consistent 

(volume (box1 , -430) , density(box1, -426) ,times (-430, -426, -314)) , 
weight(table1,~310),less(~314,~310) 
: consistent 

weight (boxl, -314) , isa(table1, table), less 314,500) : consistent 

weight (boxl , -314) , 
(volume(table1, -456) ,density(tablel, -4521, times (-456, -452, -310)), 
less(-314,-310) 
: consistent 

weight(boxl,~314),weight(tablel,~3l0),less(314,310): consistent 

lighter (boxl , tablel) : consistent 

saf e-to-stack(box1 ,table11 : consistent 

Then, it is sufficient for EBG to give a training example as ground examples of a 

consistent hypotheses. Furthermore, if we consider that a hypothesis is the set of 



leaves in explanation tree, then, by replacing the predicate rs-abd with the predicate 

msrs-abd in the program hyp, we can obtain the first four outputs as hypotheses. 



Chapter 5 

Rule-Finding Abduct ion 

"How absurdly simple!" I cried. 

"Quite so!" said he, a little nettled. "Every problem becomes very child- 

ish when once it is explained to you." 

- 'The Adventure of the Dancing Men' 

"The Return of Sherlock Holmes" 

Let P and P' be definite programs and C be a surprising fact with respect to P. Note 

here that P and P' are given before a: is given. The rule-finding abduction is a type of 

abduction which finds a rule in P' and proposes a hypothesis to explain the surprising 

fact C.  An inference schema of rule-finding abduction is described by the following 

three steps: 

1. A surprising fact C is observed. 

2. A rule C +--- A is found in PI. 

3. A hypothesis A is proposed. 

For a surprising fact C ,  we regard the above inference schema as the following one by 

identifying A with the set { A )  of atoms: 

1. A ground atom C such that P l j  C is given. 

2. A rule C' +- A;, . , A; is found in PI, where C'0 = C and A:$ = Ai. 

3. A hypothesis {Al, . , A,) is proposed in P. 



In general, since we assume the set {PI, * ,  8) of definite programs in rule-finding 

abduction, the above P' is equal to some Pi (1 5 i 5 1). 

In this chapter, we investigate rule-finding abduction for logic programming. In 

Section 5.1, we give two examples, and explain what rule-finding abduction is. In 

Section 5.2, we investigate the concept of abducible in the abductive framework. In 

Section 5.3, we introduce the concept of loop-pair . It syntactically determines whether 

or not there exists an infinite process of rule-finding abduction. In Section 5.4, we also 

introduce the concept of loop-elimination, which is a transformation of programs for 

which rule-finding abduction terminates. In Section 5.5, we realize rule-finding abduc- 

tion and loop-elimination as Prolog programs. In Section 5.6, we discuss analogical 

reasoning from the viewpoint of rule-finding abduction. 

This chapter is based on the paper [Hir94d]. 

5.1 Rule-Finding Abduction for Logic Program- 
ming 

Consider the following fossil-shell example. Let P, (1 5 i 5 3) be the following sets of 

clauses: 

Pl = { find (X, fossil -shell, Y) +- sea(Y) ) , 

find (X, fossil-shell, Y) +- used-to-be(Y, sea) 
p 2  = { used-to-be(X, Y) + be(X, Y) 

find(X, fossil-shell, Y) +- move(fossi1-shell, sea, Y) 

p3 = { move(fossil~shell, X ,  Y) +- slow-rnove(fossi1 shell ,  X ,  Y) 
slow-rnove(X, Y, 2) +- has-not-leg(X) 
slow-move(X, Y, 2) +- has-not-wing(X) 

Let a! be a surprising fact f ind(i, fossil -shell, mountain). In rule-finding abduction, 

by selecting a program Pi from the set {PI, P2, P3) of programs, we find a rule and 

propose a hypothesis to explain the surprising fact a!. We call such a selected program 

an applied program of a! for {PI, P2, P3). Then, Figure 5.1 illustrates the applied 

programs and hypotheses Hi of a! for {PI, P2, P3). For the applied program PI, Pl U 

Hl I- a. For the applied program P2, P2 U H2 I- a! and P2 U H3 t a. For the applied 



applied programs hypotheses 

nothing Ho = {find ( i ,  fossil -shell, mountain)} 

PI Hl = {sea(mountain)) 

p2 Hz = {be(mountain, sea)) 
H3 = {used-to-be(mountain, sea)) 

p3 H4 = {has-not -leg(fossil -shell)} 

H5 = { h a ~ ~ n ~ t ~ w i n g ( f o ~ ~ i l _ s h e l l ) }  

H6 = {slow -move(fossil -shell, sea, mountain)} 

H7 = (move(fossi1-shell, sea, mountain)) 

Figure 5.1 : Applied programs and hypotheses Hi of a for {PI ,  Pz , P3} 

applied programs hypotheses 

nothing KO = { ~ ( f  3 (a) )}  

p4 Kl = { ~ ( f  ( a ) ) ,  q ( f  2(a))l- 

p4 7 p5 K2 = { ~ ( f  ( a)) ,  d a ) ,  r (a ,  f ( a ) ) , r ( f  (a ) ,  f ( a ) ) }  

K3 = { ~ ( f  ( a ) ) ,  q ( f  ( a ) ) , r ( f  (a) ,  f 2 (a ) ) }  

p4 p5 p6 K4 = { ~ ( f  ( a ) ) ,  q(a),r(a,  f (a ) ) , r (a ,  f ( a ) ) )  

K5 = { ~ ( f  (a ) ) ,  q ( f  (a ) ) , r (a ,  f (a)) }  

Figure 5.2: Applied programs and hypotheses Ki of p for {P4, P5, P6} 

program P3, P3 U Hi I- a (4 5 i 5 7). The hypothesis Ho is a trivial hypothesis, that 

is, Ho t a. 

Furthermore, we can give the example of programs with function symbols and 

recursion. Let Pi (4 5 i 5 6) be the following sets of clauses: 

For a surprising fact ,O = p( f3(a) ) ,  Figure 5.2 illustrates the applied programs and 

hypotheses of ,8 for {P4, P5, Ps}. For the applied program Pq, P4 U Kl I- p. For the 

applied programs P4 and P5, P4 U P5 U K2 I- ,O and P4 U P5 U K3 I- p. For the applied 

programs P4, P5> and P6, P4 U P5 U P6 U K4 I-- ,8 and P4 U P5 U Ps U Ks  I-- ,8. The 



hypothesis KO is a trivial hypothesis, that is, KO t P. 
Let Pi be a program for 1 5 i 5 n. If any program Pi is given before we apply 

to rule-finding abduction, then the termination of rule-finding abduction is reduced to 

one of rule-selecting abduction for the union PI U + U P, of programs, and we have 

already discussed it in Chapter 4. 

On the other hand, when we discuss the termination of abduction, we can adopt at 

least two strategies. One is the restriction of class of logic programs. The discussion 

in Chapter 4 gives an example of it. The other is the introduction of the criterion 

of termination. For example, in EBG, it is given as an operationality criterion. In 

the following sections, we discuss the later strategy for the termination of rule-finding 

abduction. 

In rule-finding abduction, we should choose the programs for which rule-finding 

abduction terminates. Hence, it is our purpose in the following sections how to choose 

the programs to avoid an infinite process of rule-finding abduction. 

5.2 Abducible Predicate 

An abducible predicate (abducible, for short) is defined in an abductive framework [Dungl, 

EK89, KM90, Poo881. First, we give the definition of the abductive framework as fol- 

lows: 

Definition 5.1 (Poole [Poo88]) An abductive framework is defined as the triple (P, I, A), 

where P is a set of Horn clause, I is an integrity constraint, and A is a set of predicate 

symbols called abducible. 

In this chapter, we only deal with an abductive framework of definite programs. Then, 

an abductive framework is defined as the pair (P, A) without an integrity constraint, 

where P is a definite program. Here, an abducible means the set of predicate symbols 

of atoms which are assumed true or are hypotheses. 

In an abductive framework, an ezplanation of or for (P, A) is defined as follows: 



Definition 5.2 Let a be a ground atom, and (P, A) be an abductive framework. 

Then, an explanation of a for (P,A) is a set H of atoms such that P U H t a and 

n ( H )  c A. 

Example 5.1 Let P be the following program and A = {q) . 

Then, for a ground atom a = p(a), the set H = {q(a)) is an explanation of a for 

(P, A). On the other hand, let A' = {r) .  Then, there exist no explanations of a for 

(P, A'). 

An abducible is similar to an operationality criterion, which is introduced in EBG. 

Note that the purpose of abductive framework is different from that of EBG. An ab- 

ductive framework is related to nonmonotonic reasoning or knowledge representation, 

while EBG is related to machine learning or knowledge acquisition. 

For a ground atom a,  the leaves of the proof tree of a given by EBG are elements 

of an operationality criterion, and we can regard them as abducible. Note that, in 

EBG, an operationality criterion is given before a proof tree is constructed. In other 

words, an operationality criterion is introduced in order to guarantee that the proof 

tree is finite. 

Then, which of atoms is an abducible? 

If a proof tree is finite, then the leaves of it are possible to be an abducible. Further- 

more, for the set H of nodes in the proof tree, if any branch of the proof tree includes 

at  least one element of H, then H can be regarded as an abducible. In Section 5.5, we 

realize the program whose outputs are such an H as Prolog program, if all proof trees 

are finite. 

However, if the class of programs is not restricted, we cannot determine before the 

proof tree is constructed whether or not the branch of a proof tree is finite. Hence, 

in the next section, we investigate the syntactical characterization of programs whose 

proof trees have an infinite branch. 



5.3 Loop-Pair 

When we debug a Prolog program, we search for the proof trees of it, and check whether 

or not it correctly works according as our intention. If there exists an infinite branch 

of the proof trees, then this program is not designed with our intention. Hence, it is 

an important view for Prolog debugging to determine whether or not the branch of 

a proof tree is infinite. In order to solve this problem, we introduce the concept of a 

loop-pair. We deal with the loop-pair to syntactically characterize the termination of 

rule-finding abduction. 

Definition 5.3 Let s and t be terms. Then, a loop-pair ((s, t)) is inductively defined 

as follows: 

1. If s is a constant symbol a, then t is a term which includes the constant symbol 

a or a variable X as subterm. 

2. If s is a variable X, then t is either a term which includes the variable X as 

su bterm, or a variable Y. 

3. ~f s is a term f (sl, . . . , s,), t is a term f (tl, , t,), and ((si, ti)) is a loop-pair 

for any i (1 5 i 5 rn), then so is ((s, t)). 

Example 5.2 The following pairs are looppairs: 

Definition 5.4 Let a and P be atoms p(sl, + . , s,) and p(tl, * + . , t,), respectively. 

Then, ((a, P)) is a loop-pair if ((s~, ti)) is a loop-pair for any i (1 5 i 5 n). 

Lemma 5.1 Let a and ,8 be atoms p(sl, . . , s,) and /? = p(tl, , t,), respectively. 

Let C be the following clause: 



If ((a, p)) is a loop-pair, a 0  = p(ul, . , un)O, and /3 = p(vl, , vn)O, then there exists 

an atom y such that 

1. ((P, 7)) is a loop-pair, 

2. there exists a substitution 0 such that PO. = p(ul, . . , un)o, and 

Proof. Let y be an atom p(wl, , wn). The result is proven by mathematical in- 

duction on the structure of ti. Note that different capital letters represent different 

variables. 

1. If ti is a constant symbol a,  then si = a and ui = vi = X .  Hence, wi = a. 

2. If ti is a variable X ,  then the following three cases hold: 

(a) If si is a constant symbol a, then ui = U and vi = V. Hence, wi = W. 

(b) If si is the variable X ,  then ui = vi = U. Hence, wi = X. 

(c) If si is a variable Y different from X ,  then ui = U and vi = V. Hence, 

wi = W. 

3. If ti is the form of f (ti, + , t;), then the following two cases hold: 

(a) If si is a subterm of ti, then ui is also a subterm of vi. Hence, ti is a subterm 

(b) Otherwise, si is the form of f (si, , s;) and suppose that ((si, ti)) is a 

loop-pair for any i (1 5 i 5 n). Then, si0 = ui0, ti = v:O, tia = uio, and 

V: = V ~ O .  Hence, sia = ui0 and wi = vie 

Hence, in each case, ((ti, wi)) is a loop-pair, and wi = via for some substitution a .  

Therefore, ((P, y)) is a loop-pair, pa = p(ul, . , un)a, and y = p(v1, , v,)a. I 

Theorem 5.1 Let P be a definite program, a and ,8 be atoms, and C1, . , C, E P 

be the applied clauses in the derivation from the goal +- a to the goal +- ,8 in P. If 

((a, p)) is a looppair, then there exists an atom y such that 



1. ((P, y )) is a loop-pair, and 

2. the goal + y is derived from + ,G' by applying the clauses Cl, ,C, E P .  

Proof. For any Ci, by applying the selected atoms in the derivation from + a to +-- P, 

there exists an atom y which satisfies the above condition 2. Then, we can reduce the 

result to Lemma 5.1. I 

Let P be a definite program. If all predicate symbols in the heads of clauses in P 

are mutually distinct, then the input clauses in a derivation are determined uniquely 

for a goal. Hence, the following corollary holds: 

Corollary 5.1 Let P be a definite program and a be an atom. Suppose that all 

predicate symbols in the heads of clauses in P are mutually distinct. If a loop-pair 

appears in the branch of the proof tree of ol on P,  then this branch is infinite. 

By Corollary 5.1, we can select the programs which do not include such a branch, in 

order to avoid infinite branches of the proof tree. 

5.4 Loop-Eliminat ion 

In rule-finding abduction, we can deal with the several programs given in advance. 

Then, in this section, we discuss the termination of rule-finding abduction by choosing 

programs. 

It is a useful method for Prolog debugging to obtain and to analyze the transformed 

program whose termination is guaranteed, and to debug the original one. In this 

section, we discuss the termination of rule-finding abduction from this viewpoint. In 

Chapter 4, we have already captured the termination of rule-selecting abduction as 

head-reducing programs. Hence, this section also begins with head-reducing programs. 

For a program P I ,  if a program P is head-reducing with respect to the predicate p, 

is the union P U PI head-reducing with respect to the predicate p? 



Example 5.3 Let Pl and P2 be programs {p(X) +- q(X)) and {q(X) +- p(X)). 

Clearly PI and P2 are head-reducing with respect to the predicate p. Then, the union 

PI U P2 is the following program: 

Obviously, PI U P2 is not head-reducing with respect to the predicate p. 

In general, even if P and PI are head-reducing with respect to the some predicate, 

P U P' is not always head-reducing with respect to the same predicate. Then, is 

there the choice of programs whose union is head-reducing? In particular, for a clause 

C and a head-reducing program P with respect to the predicate p, we consider the 

condition under which P U {C) is head-reducing with respect to p. First, we define 

reducing programs, which are more restricted than head-reducing programs, introduced 

by Yamamoto [Yam92]. 

Definition 5.5 (Yamamoto [Yam92]) A clause A +- B1, . . , 3, is reducing if lA$l > 

IBiO 1 (1 5 i 5 n) for any substitution 0. A program P is a reducing program if all 

clauses in P are reducing. 

By Definition 5.5, any reducing program is also head-reducing with respect to any 

predicate. Furthermore, if P is a reducing program and C is reducing, then P U {C) is 

also a reducing program. Then, PU {C) is head-reducing with respect to any predicate. 

However, the following cases 1 and 2 hold: 

1. Let P3 be a program {p( f 2(X)) +- p(X), q( f (X))), and C3 be a clause q(X) +- 

p(f 3(X)). Then, P3 U {C3) is not head-reducing with respect to the predicate p. 

Hence, even if P is a reducing program and C is p-reducing with respect to all 

arguments, P U {C) is not always head-reducing with respect to p. 

2. Let P4 be a program {p(X) +- q(Y)) and C4 be a clause q(f (X)) +- p(X). Then, 

P4 u {C4) is not head-reducing with respect to the predicate p. Hence, even if P 

is head-reducing with respect to the predicate p and C is reducing, P U {C) is 

not always head-reducing with respect to p. 



Hence, if we extend a reducing program P to a head-reducing program with respect to 

the predicate p, or extend a reducing clause C to a p-reducing clause with respect to 

all arguments, then P U {C) is not always head-reducing with respect to the predicate 

P 

Let P be a head-reducing program with respect to the predicate p and C be a 

preducing clause with respect to all arguments. In the remainder of this section, we 

consider the method to combine P with C. Then, it is our purpose to eliminate the 

infinite branches of proof trees of P u {C). 

First, we introduce the following transformation of a clause C for a program P .  

Definition 5.6 Let P be a program and C be a clause A +- B1, . , Bl. Then, loop- 

elimination of C for P ,  denoted by le(C, P ) ,  is a clause which is replaced the predicate 

symbol q in Bi (1 5 i 5 2) appearing in some head of P by the predicate true-q. 

Then, the following lemma holds. 

Lemma 5.2 Let P be a program {p(tl, . . , t,) +- Dl, . , Dm) and C be a clause. If 

P is head-reducing with respect to the predicate p and C is pred(head(C))-reducing 

with respect to all arguments, then P U {le(C, P)) is head-reducing with respect to 

the predicate symbol p. 

Proof. Suppose that C is a clause A +- B1, . . , Bi. 

If any Dj  and A are not unifiable, then the result trivially holds. Suppose DjB = 

AB. Let le(C, P) be loop-elimination A +- B; , . , Bi of C for P. Then, rec(P U 

{le(C, P)), p) is constructed in the following way: 

Then, R P ( P  U {le(C, P)) ,  p) = {rec(P U {le(C, P)), p), le(C, P)). By Definition 5.6, 

the predicate p appearing in the bodies of le(C, P) is replaced by true-p. Then, 

the predicate p does not appear in the part (BiB,. . , BiB) in the body of rec(P U 

{le(C, P)}, p) . Furthermore, since C is pred(A)-reducing with respect to all arguments, 



for Bi such that pred(A) = pred(B,'), ltkOl > IskOl for any argument's term tk and s k  

(1 5 k 5 n) of A and B,'. For B,' such that pred(A) # pred(B,'), any definition clauses 

of pred(B,') does not appear in R P ( P  U {le(C, P)), p). Hence, R P ( P  U {le(C, P) ) ,  p) 

is head-reducing with respect to p. I 

If a clause C is not pred(A)-reducing with respect to all arguments, then there 

exists the following counterexample of Lemma 5.2. 

Let P5 be a program {p( f (X)) +- q(X, Y)) and C5 be a clause q(X, f (Y)) +- 

q(f (X), Y). Then, P5 is head-reducing with respect to the predicate p, but C5 is not 

q-reducing with respect to the first argument. Note that 1e(C5, P5) is equal to C5 itself. 

Then, for the goal +-- p( f 2(a)), the derivations of P5 U {C5) U {+ ~ ( f  2(a))) are infinite. 

The next theorem claims that, by loop-elimination, we can choose the several 

programs whose union is head-reducing. In other words, rule-finding abduction for 

P U {le(C, P ) )  terminates. 

Theorem 5.2 Let P be a program and C be a clause. If P is head-reducing with 

respect to the predicate p, P includes the definition clause of p, and C is pred (head (C))- 

reducing with respect to all arguments, then P U {le(C, P)) is also head-reducing with 

respect to the predicate symbol p. 

Proof. The result is proven by mathematical induction on the number JPI of clauses 

in P .  If the number is 1, that is, lPl = 1, then Lemma 5.2 implies the result. 

Suppose that the result is true for IPI = n, and consider the result for IPI = n + 1. 

Let P be a program {Cl, , Cn) and PI be a program P U {Cn+l). Let C, le(C, P )  

and le(C, PI) be the following clauses: 

By the induction hypothesis, all of programs P, P U {le(C, P)), and P' are head- 

reducing with respect to p. If is not applied to the constructian of rec(P1,p), 



then rec(P1,p) = rec(P,p), and the result holds by the induction hypothesis. 

Suppose that Cn+1 is applied to the construction of rec(P1,p). Then, there exists 

an index i such that head(Cn+l) is unifiable with an atom in the body of Ci. Let Ci 

and Cn+1 be the following clauses: 

Then, the recursive definition rec(P1 U {le(C, PI)), p) is constructed in the following 

way: Suppose that the following clause is an intermediate clause in constructing the 

recursive definition: 

Since Cn+l is applied to the construction of rec(P1, p), suppose that D1a = Do.  Then, 

by application of Ci, we obtain the following clause: 

Since he~d(C,+~)  is unifiable with an atom in the body of Ci, suppose that EjoO = FO. 

Then, by application of Cn+l, we also obtain the following clause: 

For any index k (1 5 k 5 f ) ,  if GkO and A are not unifiable, then, by the induction 

hypothesis, P U {le(C, P)) is head-reducing with respect to p. Hence, PI U {le(C, PI)) 

is also head-reducing with respect to p. 

Otherwise, suppose that there exists a unifier X for GkO and A. Then, GkOX = AX. 

The recursive definition rec(P1 U {le(C, P1)),p) is also constructed in the following 

way: 



By the definition of le(C, PI) and by the construction of rec(P1 U {le(C, P1)),p), B," 

and any head of the clauses in PI are not unifiable. Consequently, for some substitution 

p, the recursive definition rec(P1 U {le(C, PI)), p) is constructed as follows: 

Since PI is head-reducing with respect to p by the induction hypothesis, an atom 

H . p  except B:p (1 5 i 5 1) satisfies the conditions that RP(P1 U {le(C, P1)),p) is 

head-reducing with respect to p. Furthermore, for any atom B,"p (1 5 i 5 I), the 

definition clause of pred(B,") does not appear in PI by the definition of le(C, PI1). 

On the other hand, C, so le(C, P"), is pred(.A)-reducing with respect to all arguments. 

Hence, RP(P1u  {l e(C, P')), p), which includes rec(P1u {le(C, PI)}, p), is head-reducing 

with respect to p. 

Therefore, PI U {le(C, PI)) is head-reducing with respect to p. I 

The loop-elimination of PI for P, denoted by le(P1, P ) ,  is the set of le(C, P ) ,  where 

C is a clause in PI. In other words, 

By Theorem 5.2, when the programs P and PI are given, rule-finding abduction for 

P u le(P1, P )  also terminates. 

Example 5.4 Let P6 and P7 be the following programs: 

Since the union P6 U P7 is not head-reducing with respect to the predicate p nor q, this 

program falls in to an infinite loop for any ground goal with the predicates p and q. 

On the other hand, after transforming P7 to loop-elimination le(P7, P6) of P7 for 

P6, then we obtain the following set of clauses: 



Furthermore, after transforming P6 to loop-elimination le(P6, P7) of P6 for P7, we 

also obtain the following set of clauses: 

By Theorem 5.2, rule-finding abduction for both le(P7, P6) and le(P6, P7) terminate 

for any ground goal. 

5.5 Prolog Implementation 

In rule-finding abduction, since we consider the several programs, the clause is given 

in the following form: 

fact (World, clause (Head, Bodies) ) , 

where the first argument World represents a program. Here, we give the programs 

on wl , w2, a. A Prolog clause fact (wi , clause (Head, Body) ) means that the clause 

Head-Body is an element of Pi. 

The rule-finding abduction is realized by improving rule-selecting abduction as the 

following rf -abd program. Note that the third argument of rf -abd represents the set 

of programs and is returned as a list. 

rf ,abd(Goal, Leaves, World) : - 
fact(AnyWorld,clause(Goal,Clause)),member(AnyWorld,World), 
rf ,abd(Clause , Leaves, World) . 

rf ,abd( (Goall, Goal21 , (Leaf 1, Leaf 2) ,World) : - 
! , rf -abd(Goal1, Leaf 1, World) , rf -abd(Goal2, Leaf 2, World) . 

rf,abd(Leaf,Leaf,World) :- ! .  

member(X,[XIY]) :- ! .  
member (X, [Y I Z1) : - member (X, Z) : - ! . 

We can apply the above program to examples in Section 5.1. For the first example, 

each clause of Pi (1 < i 5 3) is given in the following forms: 



fact(wl,clause(find(X,fossil~shell,Y),sea(Y))). 
fact(w2,clause(find(X,fossil~shell,Y),used~to~be(Y,sea))). 
fact (w2, clause (used-to-be (X, Y) ,be (X, Y) ) ) . 
fact (w3, clause(f ind(X,f ossil-shell ,Y) ,move(f ossil-shell, sea,Y))) . 
fact(w3,clause(move(fossil~shell,X,Y),slow~move(fossil~shell,X,Y))). 
fact (w3, clause (slow-move (X, Y, Z) , has-not-leg(X) ) ) . 
fact (w3, clause (slow-move (X,Y, Z) , has-not-wing(X) ) ) . 

Then, for the surprising fact find(2, fossil~shell,mountain), the results of rule-finding 

abduction are obtained as follows: 

: ?- rf-abd(f ind(i,f ossil~shell,mountain) ,X,W) . 
X = sea(mountain1 , %%% H1 %%% 
W = [wll-2521 ; 
X = be (mountain, sea) , %%% H2 %%% 
W = [w2 1-2541 ; 
X = used-to-be (mountain, sea), %%% H3 %%% 
W = [w21-2541 ; 
X = has-not-leg(fossi1-shell), %%% H4 %%% 
W = [w31-2561 ; 
X = has-not,wing(fossil~shell), %%% H5 %%% 
W = [w31-2561 ; 
X = slow-move(f ossil-shell, sea,mountain) , %%% H6 %%% 
W = [w3/ -2561 ; 
X = move (f ossil-shell, sea,mountain) , %%% H7 %%% 
W = [w3 1-2561 ; 
X = find(i,fossil-shell,mountain), %%% HO %%% 
W = W ;  
no 

For the second example in Section 5.1, each clause of Pi (4 5 i 5 6) is also given 

in the following forms: 

fact (w4, clause (p (f (f (XI ) , (p (XI , q(f (XI 1) 1 . 
fact(ws,clause(q(f (XI), (q(X) ,r(X,f (X))))). 
fact(w6,clause(r(f (XI ,f (Y)) ,r(X,Y))). 

Then, for the surprising fact p( f (a)), the results of rule-finding abduction are obtained 

as follows: 

: ?- rf-abd(p(f(f(f(a>)>),X,W). 
x = p(f (a)), (q(a> ,r(a,f(a))) ,r(a,f (a)), %%% K4 %%% 
W = [w4,w5,w6 1-5661 ; 
x = p(f (a)), (q(a) ,r(a,f (a))) ,r(f (a) ,f (f (a))), %%% K2 %%% 
W = [w4,w5 1-3861 ; 
X = p(f (a>> ,q(f(a>> ,r(a$f(a>>, %%% K5 %%% 



Furthermore, we can realize breadth-first rule-finding abduction in the following 

program bf r f  -abd just as in Section 4.3: 

bfrf-abd(Goal,Leaves,World,Depth) :- 

Depth > 0, 
fact(AnyWorld,clause(Goal,Clause)), 
member(AnyWorld,World), 
Depth1 is Depth-1, 
bfrf-abd(Clause,Leaves,World,Depthl). 

bfrf-abd((Goall,Goal2),(Leafl,Leaf2),World,Depth) :- 

I ,  
bf rf -abd(Goall ,Leaf 1, World, Depth) , 
bf rf -abd (Goal2, Leaf 2, World, Depth) . 

bf rf -abd(Leaf ,Leaf, World, 0) . 

In Section 5.2, we discuss an abducible, which is similar to an operationality crite- 

rion. We can realize the abducible in the following program r f  -abd-prd. The predicate 

r f  -abd-prd returns the choice of programs as the third argument and the abducible 

as the fourth argument, if all the proof trees of a program for a goal are finite. 

rf-abd-prd(Goal,Leaves,World,OC) :- 

fact(AnyWorld,clause(Goal,Clause)), 
member(AnyWorld,World), 
rf -abd-prd(Clause , Leaves, World, OC) . 

rf -abd-prd((Goal1, Goal2) , (Leaf 1, Leaf 2) ,World, OC) : - 
!, 
rf ,abd,prd(Goall , Leaf world, OC) , 
rf -abd_prd(Goal2, Leaf 2, World, OC) . 

rf-abd-prd(Goal,Goal,World,OC) :- 
functor(Goal,Pred,-), 
Pred \= ( , I ,  
member (Pred, 0C) . 

We can also realize the loop-elimination in the following programs. The predicate 

l e ~ a i n  returns a loop-eliminated clause for a given program as the second argument. 

(Full Prolog version will be described in Appendix of this thesis.) 



le-main (f act  (World, clause (Head, Bodies) ) , f ac t  (World, clause ( ~ e a d ,  ~ e w ~ o d y )  ) ) : - 
setof (Y, l e  (f ac t  (World, clause (~ead,Bodies))  ,Y) ,L i s t ) ,  
i s o r t  (List ,List21 , 
List2 = [MaxFact 1 List31 , 
MaxFact = f a c t  (world, clause (Head, NewBody) ) . 

By Theorem 5.2, the program r f  -abd terminates for any surprising fact of p and q. 

Incorporating loop-elimination with rule-finding abduction, we can give the following 

results. 

Let PI and C be the following program and clause: 

Then, Pl u {Cl) is not head-reducing with respect to the predicate p nor q. On the 

other hand, we obtain the following loop-elimination le(Cl, PI) of Cl in PI: 

Here, Pl U {le(C1, PI)) is head-reducing with respect to the predicate p. 

In order to apply the program lemain  to the above PI and Cl, let Pl be the 

following clauses: 

f a c t  (wl , clause (p (f (X) ) , q(X) ) ) . 
f a c t  (wl , clause (q(f (XI 1 ,p(f (XI 1 1 . 

When we give the clause f a c t  (w2, clause (p(X) , (q(X) , q(g(X) 1) ) in the first argu- 

ment in the predicate lemain ,  then the predicate l ema in  returns a loop-elimination 

of the first argument's clause as the second argument. By the predicate a s se r t ,  we add 

it to the program PI. Finally, we obtain the hypothesis of a surprising fact p(f3(a)) 

as follows: 



x = f (-5941, 
Y = f a c t  (w2, clause (p(f (-59411, ( t rue(q,f  (-594) ,q(g(f (-594)) ) ) ) ) , 
H = t rue(q , f  (a ) )  ,q(g(f ( a ) ) ) ,  
W = [wl,w21-14941 ; 
x = f (-5941, 
Y = f a c t  (w2, clause (p(f (-594) , ( t rue  (q,f (-594) 1, q(g(f (-594)) 1)) ) , 
H = p(f (a)), 
W = [wll-13001 ; 
x = f (-5941, 
Y = f a c t  (w2, clause (p(f (-594)) , ( t rue  (q,f (-594) , q(g(f (-594)) 1)) ) , 
H = q(f ( a ) ) ,  
W = [wll-13001 ; 
x = f (-5941, 
Y = f a c t  (w2, clause(p(f (-59411, ( t rue(q , f  (-594) ,q(g(f (-594))) I)), 
H = true(q,f(f(a))),q(g(f(f(a)))), 
W = [wl,w21-14221 ; 
x = f (-5941, 
Y = f a c t  (w2, clause(p(f (-59411, ( t rue(q,f  (-594) ,q(g(f (-594) I ) ) ) ) ,  
H = p(f ( f  ( a ) ) ) ,  
W = [wll-13001 ; 
x = f (-5941, 
Y = f a c t  (w2, clause (p(f (-594) ) , ( t rue  (q, f (-594) 1, q(g(f (-594) 1) 1) , 
H = q ( f ( f ( a ) ) ) ,  
W = [wll-13001 ; 
x = f (-5941, 
Y = f a c t  (w2, clause (p(f (-594) , ( t rue  (q, f (-594) 1, q(g(f (-594) ) ) ) ) ) , 
H = true(q,f(f(f(a)))),q(g(f ( f ( f ( a ) ) ) ) ) ,  
W = [w21-13241 ; 
x = f (-5941, 
Y = f a c t  (w2, clause (p(f (-59411, ( t rue  (q,f (-594) ,q(g(f (-594) ) ) I )  ) , 
H = p(f (f (f ( a ) ) ) ) ,  
W = W ;  

Note that, by loop-elimination, we obtain the atoms t r u e  (q ,  a ) ,  t r u e  (q,  f ( a )  ) , and 

t r u e  (q ,  f (f ( (a)  ) ) ) in the above hypotheses. Then, we can interpret them as q(a), 

q( f (a)), and q( f (a)) respectively. 

5.6 Rule-Finding Abduction with Analogy 

In the previous sections, we have discussed rule-finding abduction. In these discussions, 

we assumed that the found rules are not ground. If all of the rules in programs are 

ground, then we cannot apply rule-finding abduction to them, because the application 

of rule-finding abduction is based on the unification. Consider the following example. 



Example 5.5 Let p(a) be a surprising fact, and PI and P2 be the followingprograms: 

By rule-finding abduction for PI U P2, we can propose only a trivial hypothesis 

{p(a)) of p(a). 

In Example 5.5, if we introduce the analogy such that a is analogous to b, then we 

can obtain a hypothesis {q(a)). Hence, in this section, we discuss analogical reasoning 

from the viewpoint of rule-finding abduction. 

Thargad [That381 and Duval [Duvgl] have tried to discuss abduction and anal- 

ogy in the same framework. Thagard [That381 has applied Kuhn's philosophy of sci- 

ence [Kuh70] to computer science, and dealt with analogical abduction, which is one of 

the methods of discovery. On the other hand, Duval [Duvgl] has also dealt with ab- 

duction and analogy in the framework of explanation-based generalization. However, 

in such researches, the relationship between abduction and analogy are not clear, since 

their concepts of abduction and analogy are ambiguous. 

In this thesis, we adopt the formulation of analogical reasoning by Haraguchi and 

Arikawa [Har85, HaA86, HiA94a, HiA94bl. It is based on the analogy between Her- 

brand universes of a base program Pb and that of a target program Pt. 

Let Pb be a base program, Pt be a target program, and cu be a ground atom. Then, 

a proof tree of a for Pb (resp., Pt) is denoted by T,b (resp., TA). The leaves of T,b (resp., 

T;) is denoted by leaves(T,b) (resp., leaves(TA)). 

In the formulation of analogical reasoning [Har85, HaA86, HiA94a, HiA94b1, it is 

natural to consider that a surprising fact is given in a target program Pt, not in a base 

program Pb. Hence, in the definitions in this section, a surprising fact is also given in 

a target program Pt. 

In this section, it is our purpose to formulate rule-finding abduction incorporating 

with analogical reasoning. In other words, we deal with the concept of analogy in order 

to extend rule-finding abduction. Such the abduction is called rule-finding abduction 



Pt : target program 

a : surprising fact 
Pb : base program A 

\(J' 

deducible hypothesis H=(fi- { ~ ) U H I  P, 

Figure 5.3: Deducible hypothesis, where Pb I- cp,O 

with analogy. 

First, we formulate a simple hypothesis of rule-finding abduction with analogy as 

follows : 

Definition 5.7 Let Pb = Rb U Fb and Pt be programs, and a be a surprising fact with 

respect to Pt. Let cp C U(Pb) x U(Pt U { a ) )  be a partial identity. Then, a set H 

of atoms is a simple hypothesis of a for Pb and Pt with analogy cp if H satisfies the 

following condition: 

However, for the simple hypothesis, the variables in Pb or Pt are substituted by 

ground terms in %UPt. In order to solve this problem, we introduce another hypothesis 

of rule-finding abduction with analogy, called a deducible hypothesis, as follows: 

Definition 5.8 Let a be a surprising fact, that is, Pt If a,  and cp C U(Pb) x U(Ptu{a))  

be a partial identity. Suppose that Pt u Ho I- a. For any ,8 E Ho, if Pb I- p,O, then 

H = (Ho - { P ) )  u Hip, where HI is the set of nodes in T:~ .  Then, H is called a 

deducible hypothesis ~f a for Pb and 8 with analogy cp. 



deducible hypothesis Hieaves /* based on the leaves of the proof tree */ 
input Pb, Pt : programs, 

ol : a ground atom, 

p U(Pb) x U(Pt U (0)) : a partial identity 
output Hleaves : a deducible hypothesis 

H := leaves(TA); 
while there exists a ground atom ,8 E H such that Pb t pP do 

HI := leaves(T&); 
HI := H1p; 
HI' := 4; 
while HI = q5 do 

choose y E H'; 
H" := HI1 U leaves(T;); 
HI := HI - {y); 

end 
Hieaves := (H - {P)) u H"; 

end 
output H~eaves 

end 

Figure 5.4: Algorithm to construct a deducible hypothesis Hleaves 

Figure 5.3 illustrates the formulation of deducible hypotheses. It is clear that, if H 

is a deducible hypothesis, then it is a simple hypothesis. Furthermore, the variables in 

Pb (resp., Pt) are substituted by only ground terms in Pb (resp., Pt). 

It arises a problem how to choose the deducible hypothesis H .  For a proof tree, if we 

choose any combination of nodes in T:~, then it is very difficult to obtain all deducible 

hypotheses. Even if we choose two sets of nodes in Tip, after the above procedure to 

obtain deducible hypotheses in n times, the number of deducible hypotheses is at most 

2n. Hence, for a proof tree, we adopt the choice of only one hypothesis in T:p. 

In order to construct a deducible hypothesis concretely, we introduce a deducible 

hypothesis Hleaves which is based on the leaves of a proof tree. A deducible hypothesis 

Hleaves is obtained by the algorithm in Figure 5.4. In this algorithm, Ho and HI in 

Figure 5.3 are the leaves of TA and T;@, respectively. 



Let Pb and Pt be programs, and a be a ground atom. By PA (resp., PA), we denote 

the set of clauses which are applied to a proof tree Ti (resp., Tk) of a in Pb (resp., Pi). 

Then, the following t heorem holds: 

Theorem 5.3 Let Pb and Pt be programs, and a be a ground atom. Let p U(Pb) x 

U(Pt U {a)) be a partial identity and leaves(Tk) be a set {Pj 1 1 5 j 5 k) of leaves in 
k 

TA. Suppose that Pt Y a. If Pb t pPj (1 5 j < k), then {U P : ~ ~ ~ )  U PL t a. 
3=1 

Proof. For Pj, H[ea,es denotes the deducible hypothesis of Pj. Then, Gave, C P $ ~ ~  cp, 

and the clauses in P$pjcp are applied to Pt. Hence, 

By applying the above consideration to Pj for 1 < j 5 k, we can obtain the result. 8 

k 
Since a deducible hypothesis is included in { U ~i~~cp), Theorem 5.3 means that a 

3=1 

deducible hypothesis is correct in the sense of analogical reasoning. 

In this formulation, we assume that a partial identity p is given in advance. This 

assumption is unreasonable. In analogical reasoning, an analogy p is not given in 

advance, and it is a main problem to detect the p.  Then, in order to obtain an 

analogy cp while constructing Hlea,,,, we adopt the concept of partially isomorphic 

generalizations, which has been introduced by Hirowatari and Arikawa [HiA94b]. They 

have regarded an analogy as a partial function from U(Pb) to U(Pt U {a)), not a partial 

identity. They have also reduced the problem of the detection of partial identity to 

the unification of partially isomorphic generalization as Theorem 2.5. In rule-finding 

abduction with analogy, we also follow this consideration. 

Consider the following examples. 

Example 5.6 Let P3 be the following base program: 

Let a be a surprising fact p( f (c ) ,  f (d)) with respect to an empty target program. 



1. The partially isomorphic generalization PCl of Cl is as follows: 

PCl : p(X, Y ) .  

Since head(PC1) and a are unifiable, and p(a, b)  is provable in Pb, we obtain the 

following deducible hypothesis Hl : 

There exist substitutions O1 = {X  := a,Y := b )  and O2 = { X  := f2(c),Y := 

f (d ) )  such that head (PC1)O1 = p(a, b) ,  and head (PC1)02 = a. Then, by Theo- 

rem 2.5, there exists the analogy cpl U(P3) x U({a) )  which is obtained by: 

Hence, the analogy cpl for HI is a set {(a,  f2 (c ) ) ,  (b,  f2(d))) .  

2. The partially isomorphic generalization PC2 of C2 is as follows: 

Since head(PC2) and a are unifiable, we obtain the following candidate Kl of 

deducible hypotheses: 

For an element p( f ( c )  , f ( d ) )  of Kl , we also continue the above discussion 1 and 2. 

Then, from Kl,  we obtain the following deducible hypothesis H2 and the analogy 

cp2 c u(p3) x U({a)):  

Also we obtain the following candidate K2 of deducible hypotheses: 



Figure 5.5: Deducible hypotheses H I ,  Hz,  and H3, and proof trees 

For an element p(c, f ( d ) )  o f  f i ,  head (PCl )  and p(c, f ( d ) )  are unifiable, while head (PC2)  

and p(c, f2 (d) )  are not. Furthermore, p(a, b)  is provable in f i .  Then, from K2,  we ob- 

tain the following deducible hypothesis H3 and the analogy 9 3  U(P3)  x U({a} ) :  

Figure 5.5 illustrates three deducible hypotheses H I ,  H2, and H3, and proof trees 

which are corresponding to Hi. For each proof tree, the root node is analogous to a 

surprising fact a under the analogy cpi, and the atom which is analogous to leaf node 

under 9i is corresponding to a deducible hypothesis Hi. 

Example 5.7 For P3, i f  a surprising fact is a ground atom p( f2(c ) ,  c) ,  then we obtain 

the following deducible hypotheses Hj  and analogies cpj (4 < j < 6): 

f f 4  = {p(a, b)) ,  (P4 = { (a ,  f2(c))7 (b, c ) ) ,  

H5 = {P(f  ( a ) ,  b)) ,  (P5 = { (a ,  f ( e l ) ,  (b ,  c)},  

H6 = { ~ ( f  b ) ) ,  (P6 = { (a ,  c) (b ,  c ) ) .  

Note that cpj (4 5 j < 6 )  is a function from U(P3) to U ( { a ) ) .  

On the other hand, let P4 be the following base program: 



If either p( f 2 ( ~ ) ,  f (d)) or p( f 2 ( ~ ) ,  d) is given as a surprising fact ,8, then there exist no 

deducible hypotheses. Because we regard an analogy (o as a function from U(P4) to 

U({,8)),  and, for the above surprising facts and the base program Pq, there exist no 

such the analogies. On the other hand, let p ( f  2(c), c) be a surprising fact. Then, we 

obtain the following deducible hypothesis H7 and the analogy cp i  : 

H7 = {P(c, c)), ( ~ 7  = { ( a ,  c)). 

We can realize rule-finding abduction with analogy as the Prolog program in Fig- 

ure 5.6. The program ab-ana computes a deducible hypothesis Hie,,,, and an analogy. 

Note that, this program assumes that a target program is empty, that is, only the first 

while-loop in Figure 5.4 is realized. (Full Prolog version will be described in Appendix 

of this thesis. ) 

The predicate ab-ana in Figure 5.6 is given a surprising fact as its first argument. 

Then, it returns a deducible hypothesis as its second argument, a pairing as its third 

argument, and a world as its fourth argument. The predicate analogy returns the 

pairing as the third argument between the base rule given as the second argument and 

the target rule given as the first argument. The predicate provable checks provability 

in a base program Pb, and, if so, then it proposes a deducible hypothesis as the third 

argument. The predicate pig-rule returns the partially isomorphic generalization 

PG: -PGs of the rule BG : -BGs as the second argument. 

For a clause C ,  by pzg(C), we denote the partially isomorphic generalization of 

C.  For a program P, by pig(P), we denote the set {pig(C) ( C E P) .  The termi- 

nation of the Prolog program ab-ana, which is rule-finding abduction with analogy, is 

characterized in the following theorem as the corollary of Theorem 4.1. 

Corollary 5.2 Let Pb = Rb U Fb and Pt be programs and p be a predicate symbol. If 

pig(Rb) U Pt is head-reducing with respect to the predicate p, then all the derivations 

of pig(&) U Pt U {+ p(sl, . . , s,)) are finite for any ground atom p(sl, . , s,). 

In the program ab-ana, a target program Pt is assumed an empty set. Hence, by 

Corollary 5.2 and Theorem 2.5, if pig (Ra) is head-reducing with respect to the predicate 
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ab-ana(T~,TG,Pair,World~arget):- 
functor (TG, Pred, Arity) ,functor (BG, Pred, Arity) , 
world (WorldBase , WorldTarget) , 
fact(~orldBase,(BG:-true)), 
analogy((TG:-true),(~G:-true),Pair). 

ab-ana(T~,~Gs,Pair,WorldTarget):- 
functor (TG,Pred, Arity) ,functor(BG, Pred, Arity) , 
provable(~G,BG,~Gs,BGs,World~arget), 
not TG==TGs, 
analogy((TG:-TGs),(BG:-BGs),~air). 

provable(~G,BG,TL,BL,WorldTarget) :- 
rule (TG ,BG, TGs ,BGs , WorldTarget) , 
provable(TGs,BGs,TL,BL,WorldTarget). 

provable ( (TG, TGs) , (BG ,BGs) , (TL, TLs) , (BL, BLs) WorldTarget) : - 
provable(TG,BG,TL,BL,WorldTarget), 
provable(TGs,BGs,TLs,BLs,WorldTarget). 

rule(~G,B~,TGs,BGs,WorldTarget) :- 
world(WorldBase,WorldTarget), 
fact(~orldBase,(BG:-BGs)), 
not BGs=true, 
pig-rule ( (BG : -BGs) , (PG : -PGs) ) , 
copy((PG:-PGs),(TG:-TGs)). 

Figure 5.6: Program ab-ana 



p, then, for any surprising fact p(sl, . , s,), the goal 

terminates, and returns the deducible hypotheses as its second argument and the 

pairings as its third argument. 

For the program in Figure 5.6, if the proof tree of a base program is obtained, then 

the computational complexity to obtain the deducible hypothesis is characterized as 

the following theorem: 

Theorem 5.4 Let Pb be a base program and a be a ground atom. For a given proof 

tree in Pb, a ground atom a' is a root and H' is the set of leaves. Suppose that la1 = k 

and IH'I = 1. Then, a deducible hypothesis is computed in O(k31) time. 

Proof. By Theorem 2.4, for a root a', the partially isomorphic generalization ,8 of 

a' is computed in O(k3). Since a is ground, whether or not ,8 and a are unifiable is 

determined in O(k). If ,8 and a are unifiable, then, by Theorem 2.5, an analogy cp 

can be computed simultaneously. The time complexity to apply this cp to H' is O(1). 

Hence, a deducible hypothesis H'cp is computed in O(k31) time. I 

The base program in Example 5.6 is represented as follows: 

f a c t  (wl, (p(a,b) : - t rue ) ) .  
fact(w1, (p(f (XI ,b> :-p(X,b))). 
world(wl,w2). 

Here, the atom world(w1, w2) represents that w l  is a base program and w2 is a target 

program. In this program, a target program w2 is empty. Then, we obtain the following 

results: 



Note that the solution [a--f (f ( c ) )  ,b--f (f (d))]  of the third argument for the pro- 

gram ab-ana means the pairing { (a ,  f (c)) , (b ,  f (d ) )  ). 

On the other hand, the base program in Example 5.7 is represented as follows: 

f a c t  (wl, (p(a,  a)  : - t rue) )  . 
fact(w1, (p(f (XI , a>  :-p(X,a))). 
world(w1, w2) . 

Then, we obtain the following results: 

Since we regard an analogy as a function, for the first two goals, we obtain no analogies. 

Then, we also obtain no deducible hypotheses. 



Chapter 6 

Rule-Generat ing Abduct ion 

"The ideal reasoner", he remarked, "would, when he has once been 

shown a single fact in all its bearings, deduce from it not only all the chain 

of events which led up to  it, but also all the results which would follow from 

it. " -- 'The Five Orange Pips' 

"The Adventures of Sherlock Holmes" 

Let P be a definite program and C be a surprising fact. The rule-generating abduction 

is a type of abduction which generates a rule in P and proposes a hypothesis to explain 

the surprising fact C. An inference schema of rule-generating abduction is described 

by the following three steps: 

1. A surprising fact C is observed. 

2. A rule C +- A is generated in P .  

3. A hypothesis A is proposed. 

For a surprising fact C, we regard the above inference schema as the following one by 

identifying A with the set {A) of atoms: 

1. A ground atom C such that P Y C is given. 

2. A rule C' +- A:, . , A; is generated in P, where C'0 = C and A33 = Ai. 

3. A hypothesis {Al, . , A,) is proposed. Then, P U {A1, , A,) I- C. 



For the above inference schema, even in propositional logic, there exist infinitely 

many hypotheses and rules. In definite programs, if the class of programs is not 

restricted to some subclass, then there are also infinitely many meaningless hypotheses. 

Hence, we introduce the subclass of definite programs for rule-generating abduction. 

Furthermore, in rule-generating abduction, a surprising fact is given only once. Hence, 

we also need to generalize one ground atom. 

In this chapter, we investigate rule-generating abduction for logic programming. 

In Section 6.1, we introduce the subclass of head-reducing programs in Chapter 4. In 

Section 6.2, we introduce the concept of a safe generalization, and discuss the properties 

of it. In Section 6.3, we investigate the number of hypotheses by rule-generating 

abduction. In Section 6.4, we design an efficient algorithm of rule-generating abduction 

for the introduced class by using safe generalization. In Section 6.6, we realize this 

algorithm as a Prolog program, and consider several examples. 

This chapter is based on the papers [Hir94b, Hir94cl. 

6.1 Weakly 2-Reducing Programs 

In this chapter, we deal with the following class of programs: 

In Chapter 4, we have introduced the class of head-reducing programs. As mentioned 

in Chapter 4, for a head-reducing program P and a ground atom a, all the derivations 

of P U {t a )  are finite. In this section, in order to characterize such programs as we 

mentioned above, we give the definitions as the special case of head-reducing programs. 

In this chapter, we deal with lists as terms. Then, we assume that a list constructor 

[ I ] and an empty list [ ] are included in first order language L. For a term t, It1 denotes 

the length of t. In particular, for a list 1, the length 111 of 1 is defined as follows: Ill = 1, 

if 1 is an empty list [ I .  Otherwise 111 = n + 1, if t is a list [allist] and Jlistl = n. 

For rule-generating abduction, we introduce some classes of definite programs. Let 

C be a definite clause p(tl, , tn) +-- p(sl, . . , sn). Suppose that a definite program 



has the form of {C).  By the discussion in Chapter 4, { C )  is head-reducing with respect 

to the predicate p if and only if C is p-reducing with respect to some argument. In 

this section, a clause C is called head-reducing if there exists an argument i such 

that lti61 > lsi61 for any substitution 8. Furthermore, we also introduce the following 

definitions: 

Definition 6.1 (Hirata [Hir93a, Hir93b1, Yamamoto [Yam92]) Let C be a definite 

clause p(tl, ,t,) +- p(s1, . * . ,  s,). 

1. C is weakly reducing if lti61 2 lsi61 for any substitution B and for any i. 

2. C is weakly head-reducing if it is head-red ucing and weakly reducing. 

In other words, a clause p(tl, * . , t,) +- p(sl, . . , s,) is weakly head-reducing if ltiOl 2 

lsi61 for any i,  and ltk61 > lsle61 for at least one argument k and for any ground 

substitution 6. 

There are many Prolog clauses for list processing such that any argument of the 

head has the form of either X or [WIX], and the body has the form of Y. Then, 

we restrict the form of clause as follows: A clause p(tl, . , t,) +- p(sl, . , s,) is 2- 

reducing, if it is head-reducing, and ti has the form of either Xi or [Wi IXi] and si has 

the form of Y,  for any i. In 2-reducing programs, Y,  is not necessarily equal to Xi. A 

clause p(tl, . . . , t,) +- p(sl, . , s,) is weakly 2-reducing if it is weakly reducing and 

2-reducing. In other words, a clause p(tl, , t,) +- p(sl, , s,) is weakly 2-reducing 

if ti has the form of either Xi or [WiIXi] and si has the form of Xi for any i. 

Example 6.1 The following Prolog clauses in Sterling and Shapiro [SS86, SS94] are 

weakly 2 -reducing: 

rnernber(X, [W IY]) +- rnernber(X, Y), 

prefi.([WlXI, [WIYl) +- preJ;x(X, Y), 

sufix(X, [WIYl) +- sufix(X, Y), 

append([WIXI, Y, [WIZl) +- append(X, Y, Z),  

concat ( X ,  [W IY] , [W IZ]) +- concat (X, Y, 2). 



Note that the clauses of member and sufix have the same forms. The first argument 

of member is a constant symbol, while that of sufix is a list. 

For the above clauses, the following corollary of Theorem 4.1 holds. 

Corollary 6.1 (Hirata [Hir93a, Hir93b], Yamamoto [Yam92]) Let p be a predicate 

symbol, a be a ground atom with p, and C be a clause p(tl, .  . , t,) +-- p(s1, . , s,). 

1. I f C  is head-reducing, in particular 2-reducing, then all the derivation of {C)U{+ 

a) are finite. 

2. If C is weakly head-reducing, in particular weakly 2-red ucing, then all the deriva- 

tion of { C )  u {+- a) are finite, and all the nodes of the derivation are ground. 

6.2 Safe Generalization 

It is an important problem to avoid overgeneralization when we deal with generaliza- 

tions. In general, whether or not a generalization ,8 of a is overgeneral is determined by 

an intended model. For an atom a, suppose that p0 = a and M is an intended model. 

Then, ,8 is an overgeneralization of a if there exists a ground atom y such that '(8 I- y 

and M 7 for M. However, the decision problem of whether or not there exists such 

the ground atom y is undecidable. On the other hand, in rule-generating abduction, 

only one surprising fact is given, and it is hard to give in advance an intended model. 

To overcome these difficulties, in this section, we introduce the following syntactical 

generalization of one atom. 

Let 0 be a ground substitution, that is, 0 = u ~ = ~ { X ~  := ti) and every term ti is 

ground. Let a be a ground atom and ,8 be an atom such that PO = a. Note that, 

throughout this chapter, if ,80 = a, then a variable Xi E dom(0) appears in ,8 and 

ti f- [ 1. A substitution 0 is well-defined if, for any ti, there exists no term t j  which is 

a subterm of ti. 

Example 6.2 Let a be a ground atom p([a, b], [b]). Let P, be the following atoms 

(I 5 2 5 5): 



For any pi, there exist the following substitutions 0, such that ,Bidi = a (1 5 i 5 5): 

dl = {X := b), $2 = {X := [b]), 03 = {X := a,  Y := [b]), 

0, = {X := [b], Y := b), O5 = {X := [b], Y := [b]). 

Then, 01, 02, and 03 are well-defined, while Bq and O5 are not. 

Let a be a ground atom and ,8 be an atom such that P0 = a. If a substitution 

0 = u;="=,Xi := ti) is well-defined, then we can define a reversal 0-I = ~ ? = ~ { t ~  := Xi). 

Note that, if 0 is well-defined, then, for any ti and Xi, there exists no term t j  such that 

tj is a subterm of ti and no variable Xi such that Xi = Xj( j  # i ) .  However, even if 0 

is well-defined, ,G' is not always a0-l. 

Example 6.3 For a and P2 in Example 6.2, 

ole;' = p([a,bI, [bl){b := X )  = p([a,XI, [XI) # PI, 

~ 0 , '  = p(i.7 bl, [bl){[bl := X )  = p([alXI, X )  # P2. 

On the other hand, 

a0;' = p([a, b], [b]){a := X,  [b] := Y) = p([X IY], Y) = p3. 

For the reversal 0-l, the following lemma holds. 

Lemma 6.1 Let a be a ground atom and P be an atom such that P0 = a .  Suppose 

that a substitution 0 = u;=~{X~ := ti) is well-defined. Then, ,LI = a0-I if and only if 

no term ti appears in P. 

Proof. Suppose that ,O = a&'. By the definition of 0-l, a0-' is an atom which 

replaces all the terms ti in a with the variable Xi. Then, no term ti appears in 

a$-' = p. 



For simplicity, suppose that 0 = {X := t). If a term t appears once in a, that is, 

a has the form of p ( - * t o o - ) ,  then a0-I = p(-t -){t := X )  = p( . -X -.a). Since a 

is ground and PO = a, a0-I = P. 

If a term t appears at least twice in a, that is, a has the form of p(. . . t . t . . a), 

then ,O has t h e f o r m o f p ( . - X * * - Y - . . ) .  I f X  # Y, then, b y @  = a, 0 has the form of 

{X := t ,  Y := t). This 0 is not well-defined. Hence, it is contradiction. Then, X = Y, 

6 = {X := t), and /3 has the form of p (  + O X  + . X .  0 ) .  Hence, ,8 = a0-l. I 

A ground term t (# [ I) is a common term in a if t appears at least twice in a .  

In particular, if a common term is a ground list, it is called a common list. Then, we 

formulate a safe generalization which is based on the syntax of one ground atom as 

follows: 

Definition 6.2 Let a be a ground atom, 0 be a substitution U ~ = ~ { X ,  := ti), and ,8 be 

an atom such that p0 = a .  An atom ,8 is a safe generalization of a if (P, 0) satisfies 

the following safeness conditions: 

1. 0 is well-defined, 

2. ,8 = and 

3. if there exist common terms in a, then there exists a ground term t j  E ~ y = ~ { t ~ )  

such that tj is a common term in a .  

Let a be a ground atom and ,8 be an atom such that P0 = a. Let t be some 

common term in a .  If 0 is well-defined and 0-I has the form of {t := X),  then ,8 is 

safe on a .  

Example 6.4 Let a be a ground atom p([a, b], [b]) and Pi be an atom such that = 

a (6 5 i 5 8). Then, the common terms in a are [b] and b. 

1. Let p6 be an atom p(X, Y) and 06 be a substitution {X := [a, b], Y := [b]). By 

the safeness condition 1, P6 is not safe on a .  



2. Let ,07 be an atom p([X, b], [Y]) and Q7 be a substitution {X := a,  Y := b). By 

the safeness condition 2, ,07 is not safe on a .  

3. Let p8 be an atom p(X, [b]) and 88 be a substitution {X := [a, b]). By the 

safeness condition 3, p8 is not safe on a .  

For the above a ,  atoms p([alXI, X) ,  p([a, XI, [XI), P([Y, XI, [XI), and p([YIXI, 4 are 

safe on a. 

In general, an atom is regarded as a relation between its arguments. Thus, the 

syntactical generalization of one atom should be obtained by replacing common terms 

with common variables. The safe generalization is an example of such generalizations. 

On the other hand, in weakly 2-reducing programs, it suffices to consider only two 

types of terms, constant symbols and lists. Then, we also define the following two 

types of substitutions. 

Let 8 be a substitution u;='=,{Xi := ti). Then, 8 is a constant substitution (resp., 

a list substitution) if every ti is a constant symbol (resp., a ground list) without an 

empty list [ 1. 
In particular, a constant substitution is related to partially isomorphic generaliza- 

tions which have been introduced by Hirowatari and Arikawa [HiA94b]. Note that, 

though a replaceable term includes an empty list [ 1,  the definition of a replaceable 

term is independent of the proof of Theorem 2.3. Let RT  be the set of all replaceable 

terms of a and T C RT. Then, we can re-formulate a partially isomorphic general- 

ization by using T instead of RT, and show that Theorem 2.3 also holds for the set 

T of replaceable terms. Let a be a ground atom, 8, be a constant substitution, and 

,O be an atom such that PO, = a .  Thus, we assume that ,O is a partially isomorphic 

generalization of a, whose replaceable terms are all constant symbols in a except an 

empty list [ 1. 
In Section 6.4, we apply rule-generating abduction to a list substitution and a 

constant substitution 8, in the following way: Let a be a ground atom, that is, a 

surprising fact. First, by using a list substitution, we obtain an atom ,O such that 



= a and ,8 is safe on a .  Secondly, by using a constant substitution, we obtain an 

atom y such that 70, = ,8 and y is safe on P. By the above assumption, y is also a 

partially isomorphic generalization of P. 

Unfortunately, 0,01 is not always well-defined, and y is not always safe on a .  For 

example, let a be a ground atom p([a, b, c], [b, c], [a, b, c]). Then, there exist the following 

atoms Pi such that PiOi = a and 0, is a well-defined list substitution (9 5 i < 11): 

P9 = p([a, blX1, [blXl, [a, 61x1) 0, = {X := [c]}, 

Plo = p([alY],Y, [sly]) OlO = {Y := [b, c]}, 

Pll = P(Z, [b, 4, Z) ell = {Z := [a, b, c]}. 

Then, there exist no generalization y of P and substitution o(f E )  such that yo  = Al 

and Olio is well-defined. Note that there does not exist the greatest list generalization 

of a .  

Let a be a ground atom. Let ,O and y be atoms such that POl = a and y0, = P. 

Suppose that both (P, 01) and (y,0,) satisfy the safeness conditions. Then, the following 

two theorems hold. 

Theorem 6.1 I f  0,01 is well-defined, then y is a safe generalization of a. 

Proof. Suppose that 0,01 is well-defined. Then, (y, 0,01) satisfies the safeness condi- 

tion I. 

Since both (P, 81) and (y, 0,) satisfy the safeness conditions, (y, 0,BZ) satisfies the 

safeness condition 3. 

By the supposition, ,O = aOcl and y = PO;'. The list substitution 81 replaces 

the common lists in a by variables. The constant substitution 8, replaces the same 

constant symbols in ,8 by the same variables and other constant symbols by other 

variables. Hence, the composition 8,01 replaces the common lists in a by variables, 

the same constant symbols in a except common lists by the same variables, and other 

constant symbols by other variables. By Lemma 6.1 and since O,B1 is well-defined, then 

(y , O,B1) satisfies the safeness condition 2. I 



Theorem 6.2 Suppose that any constant symbol appearing in common lists in a does 

not appear elsewhere in a except in the lists. If ,8 = a$;' and y = ,88;', then 8,Bl is 

well-defined. Hence, y is a safe generalization of a .  

Proof. Suppose that Ol = UY=,{X, := li), where 1, is a common list in a .  For any j-th 
. * 

argument's term t j  of a, if tj includes li, then tj = [a:, a;, , a i j  lli], and no constant 

symbols a!, a;, . , a i j  appear in 1,. Then, 8, does not include the binding X := c such 

that c appears in 1,. Hence, 8,01 is well-defined. By Theorem 6.1, (y, OCOl) satisfies the 

safeness conditions. Then, for y such that yO,B1 = a, y is a safe generalization of a. 4 

6.3 Number of Hypotheses 

In Chapter 4, we have discussed the head-reducing programs for which all the deriva- 

tions are finite. For a given ground atom p(tl, . . , t,), the head-reducing rule 

is generated and the hypothesis p(sl, . , s,) is proposed by rule-generating abduction, 

where 

An inference schema is depicted by the following syllogism: 

Unfortunately, even if the generated rule is 2-reducing or weakly 2-reducing, the 

number of hypotheses increases in exponential order with respect to the length of an 

atom as follows: 

Theorem 6.3 Let p(tl, . . , tn) be a surprising fact. 

1. The number of 2-reducing rule which satisfies the above syllogism is a t  most 6n. 



2. The number of weakly 2-reducing rule which satisfies the above syllogism is a t  

most 3n. 

Proof. Suppose that the generated rule is the form p(ul, , u,) +- p(vl, . , vn). 

First, we show the case 1. Suppose that the generated rule is 2-reducing. The 

number of combinations such that ui has the form of [WiIXi] for j arguments in n 

arguments is at  most nCj. In such j arguments, the number of combinations such that 

at least one vi has the form of Xi is at  most 

where 1C2 is assumed to be 1. In such j arguments, the number of combinations such 

that at  least two Wl and Wk ( I  # k )  are the same is also at most 

In the remained (n - j )  arguments, the number of combinations for the variables of 

body is at most 2"-3. 

Then, the total number of hypotheses is at  most 

Hence, we obtain the following formulas: 

Here, we have used the following formula: 



Now, we also show the case 2. Suppose that the generated rule is weakly 2-reducing. 

The number of combinations such that ui has the form of [WiIXi] for j arguments in 

n arguments is at most ,Cj. In such j arguments, the number of combinations such 

that a t  least one vi has the form of Xi is at most 

where 1C2 is assumed to be 1. 

Then, the total number of hypotheses is at most 

Hence, we obtain the following formulas: 

On the other hand, by using safe generalizations in Section 6.2, we design an 

algorithm to generate weakly 2-reducing rules as follows: Suppose that a ground atom 

a is given. First, by generalizing a with a list substitution dl, we obtain an atom 

,G' such that PO1 = a and ,B is safe on a .  We call such a ,8 a list generalization of 

a. Secondly, by generalizing ,O with a constant substitution 0,, we obtain an atom y 

such that 70, = ,8 and y is safe on p. We call such a y a constant generalization of 

p. Note that y is also assumed to be a partially isomorphic generalization of P. For 

this algorithm, the number of rules is at most the number of generalizations. Then, 

we investigate the number of generalizations, in particular, the number of maximal 

generalizations. 

Let a be a ground atom p(tl, .  , tn). For all common lists in a, we can classify 

them by the sublist relation. For example, let a be the following ground atom: 

and ti be the i-th argument's term of a .  Then, t2, t4, and t5 are common lists in a. 

By the sublist relation, we classify them into i ta ,  ts )  and it4). 



The number of maximal generalizations is characterized as the following theorem. 

Theorem 6.4 Let I be the number ofclasses by the sublist relation. Then, the number 

of the maximal generalizations is a t  most 

Even in case 1 = 1, the number of the maximal list generalizations of a is a t  most 

Proof. Let a be a ground atom p( t l ,  . , t,) and K, be the number of the maximal 

list generalizations of a. If 1 = 1, then we can find the upper bound of Kn in the 

following way. 

For simplicity, suppose that the common lists in a are t l ,  t2, . - , t n -1 ,  and Itl 1 > 

It2 1 > . . . > Itnml 1 .  We denote the generalization a{tjl := X j l ,  , t j ,  := Xj ,  ) by 

P( j1 , . . . , j f )  Note that tji+, is not a common list in P ( j i ) .  Furthermore, for P ( j i  ji+a ji+a+b) 

(a, b = 2 or 3),  there exist substitutions 6ji+a+b7 Oji+a, and Oji such that 

Hence, P ( j ,  ,ji+a), P ( j i  ,ji+a+b), and P(ji+a7 ji+a+b) are not maximal list generalizations. 

By using the indices of P ,  Kn is equal to the number of the sequences ( j l ,  +.  , j f )  

which satisfy the following conditions: 

2. j f  = n - 1 or n, and 

3. the adjacent number of ji is either ji + 2 or ji + 3. 

For example, if n = 8,  then the following seven sequences 



satisfy the above conditions. For the sequence (jl, . , jf) which satisfies the above 

conditions, the number of sequences such that jl = 1 is greater than jl = 2. Let A, 

be the set of the sequences (jl, , jf) which satisfy the above conditions and jl = 1. 

Then, Kn 5 21AnI. Furthermore, for n > 6, we can construct the set A, in the 

following way: 

1. if (jl,... , jf) E An-2, then ( j l , . -  , j f , n )  E A,, and 

2. if (j:,... ,j;) E An-3, then ( j ; , . . . ,  j;,n - 1) E A,. 

Hence, I A, 1 satisfies the following equations: 

By mathematical induction on n, we obtain the following formula: 

Hence, the number K,  of the maximal list generalizations is characterized by the 

following formula: 

Note that this formula also holds for any n > 1. 

Let 1 be the number of classes by the sublist relation and Cj be such a class for 

1 < j < I .  For any Cj, the number of the sequences which satisfy the above conditions 

is a t  most (fi)lc''. Then, the number Kn of the maximal generalizations is at most 

Hence, Kn is also characterized as the following formula: 

By Theorem 6.4, the number of weakly 2-reducing rules, even if we adopt the 

maximal list generalizations, increases exponentially with respect to n. Hence, in the 

next section, we restrict the forms of generalizations, and design the algorithm for 

rule-generating abductisn whose numbex of hypotheses is at most n,, 



6.4 Algorithm PROPOSE 

In this section, we design an efficient algorithm for rule-generating abduction, which 

is called PROPOSE. In the algorithm PROPOSE illustrated in Figure 6.1, we restrict 

the reversal for list generalizations to the form of {t := X), where t is both a common 

list in n and some argument's term of a. Obviously, the list generalization n{X := t) 

is safe on a. Then, the following lemma holds. 

Lemma 6.2 The number of weakly 2-reducing rules generated by the algorithm PRO- 

POSE is a t  most n. 

Proof. The number of terms that are both a common term and some argument's term 

is at most n. Then, the number of elements of L is at most n. Hence, the number of 

hypotheses is also at  most n. I 

An important basis on the algorithm PROPOSE is that, if the i-th argument's term 

is some common list in a, then the i-th argument's term of the head of the generated 

rule is a variable; otherwise, it is a list. Furthermore, by the algorithm PROPOSE, 

the clauses in Example 6.1 are constructed from one ground atom. 

In Figure 6.1, rs-abd(fact, head +- body, hyp), which is rule-selecting abduction, is 

a procedure to propose a hypothesis hyp such that   head)^ = fact and (body)a = hyp 

for some substitution a .  

For the algorithm PROPOSE, the following two theorems hold. 

Theorem 6.5 Let a be a ground atom p(tl, . . , t,) and k = Itl 1 + . + It, 1 .  Then, 

the algorithm PROPOSE computes the rules and hypotheses in O(k3) time. 

Proof. For any ti, it can be determined whether or not ti is a sublist of t j  in O(ltil). 

Then, for any i,  it can be determined whether or not ti is a sublist of any t j ( j  f i )  

in O((n - l)ltil). Hence, the set L in the algorithm PROPOSE can be constructed in 

O((n - 1)k). 



Algorithm PROPOSE(a, head +- body, hyp) 
input a = p ( t l ,  , t,) : a fact, i.e., a ground atom 
output head +- body : a rule 

6 : a hypothesis 

L := {,8 I ,8 = a{ti := V,) ,  ti is a common list in a )  U { a ) ;  
/* ,8 : safe on a */ 

while L f 4 do 
select ,G' E L; 
y := the greatest constant generalitation p(sl, . , s,) of P; 
for i = 1 to n 

if si = [ I  then /* base step */ 
output y +- true /* a rule */ 
output true /* a hypothesis */ 
halt; 

else if si is a variable then /* induction step */ 
head-argi := Xi; /* Xi is a new variable */ 
body-arg, := Xi; 

else /* si = [W,", o w  -1 */ 
head -argi : = [ W," 1 Xi] ; /* Xi is a new variable */ 

end 
end 
head := p(head-arg,, . . , head-arg,); /* head-argi = [ w ~ I x ~ ]  or Xi */ 
body := p(X1, . . , Xn); 
output head +- body /* a rule */ 
rs-abd (a ,  head +- bodg, 6 ) ;  /* rule-selecting abduction */ 
output 6 /* a hypothesis */ 
L := L -  { P ) ;  

end 

Figure 6.1 : Algorithm PROPOSE 



For the selected ,8 in L, the greatest constant generalization of ,8 is also a partially 

isomorphic generalization of ,8. By Theorem 2.4, a partially isomorphic generalization 

y of ,8 can be computed in O(k2). Since the procedures in the for-loop can be computed 

in O(n), the for-loop terminates in O(n2). Then, the procedures in while-loop can be 

computed in O(k2 + n2). Since the number of elements in L is at most n by Lemma 6.2, 

the while-loop terminates in 0 (k2 n + n3). Hence, the algorithm PROPOSE terminates 

in O((n - 1) k + k2n + n3). 

Since n 5 k, the algorithm PROPOSE computes rules and hypotheses in O(k3) 

time. I 

Theorem 6.6 Let a be a ground atom p(tl, . . , t,) and 6 be the proposed hypoth- 

esis p(sl, , s,) by PROPOSE. If there exists a selected common list 1 in a by the 

algorithm PROPOSE and 1 appears in ti, then 1 also appears in si. 

Proof. Let 1 be the selected common list in a by PROPOSE. If the i-th argument's 

term ti of a is 1 itself, then the i-th argument's terms of both the head and the body 

of the generated rules are variables Xi. Then, the i-th argument's term si of 6 is also 

1. 

Suppose that 1 appears in another argument's term of a, and ti has the form of 

[a:, a;, , ahi I I]. By the algorithm PROPOSE, the i-th argument's term of the head 

of the generated rule is a list [k;21Xi], where Y,Z is a variable corresponding to a:, while 

one of the body is a variable Xi. Then, for the hypothesis 6, the i-th argument's term 

si of 6 has the form of [a;, . - , ahill]. 

Hence, the selected common list 1 also appears in the i-th argument's term si of 6. 

Theorem 6.6 claims that, if a given ground atom satisfies the relation on common 

lists, then the proposed hypothesis by the algorithm PROPOSE also satisfies it. 

6.5 Examples 

In this section, we discuss the several examples for the algorithm PROPOSE. 



Example 6.5 Let a be a ground atom p([a, b] ,  [c, d l ,  [a, b, c, dl). The list [c, d] is both a 

common list in a and the second argument's term o f a .  By the construction ofL, ,8 = 

~ ( [ a ,  b], V j ,  [a, b l h ] )  is a safe list generalization of a ,  and y = p([X,  Y ] ,  &, [ X ,  YIVj]) is 

the greatest constant generalization of ,8. The first argument's term of y is a list which 

begins with X ,  the second argument's term is a variable V2, and the third argument's 

term is also a list which begins with X .  By the for-loop in PROPOSE, we obtain a 

head p([XIX1],  X2 ,  [XIX3])  and a body p(X1, X2 ,  X3) .  Hence, PROPOSE generates a 

rule 

and proposes a hypothesis p([b], [c, dl, [b, c, dl). Note that the predicate p means the 

append in Example 6.1. 

Since L includes a ,  then ,8 = a ,  and y = p([X,  Y ] ,  [Z ,  W ] ,  [ X ,  Y ,  Z ,  W ] ) .  The first 

argument's term of y is a list which begins with X ,  the second argument's term is a 

list which begins with Z ,  and the third argument's term is also a list which begins with 

X .  By the for-loop in PROPOSE, we obtain a head p([XIXl] ,  [ZIXz] ,  [XIX3])  and a 

body p(X1, X2 ,  X3) .  Hence, PROPOSE generates a rule 

and proposes a hypothesis p ( [b] , [dl , [b, c, d l ) .  

Furthermore, each of the rules and hypotheses by PROPOSE respectively satisfies 

the following syllogisms: 

P( [a, bl , [c, dl 7 [a, b, c, dl 
p([XIXl],[ZIX2],[Xlx3])~~(x1,~2,~3) 

Example 6.6 Let a be a ground atom p(a, [a, b]) .  Since there exist no common lists 

in a ,  then ,8 = p(a, [a, b ] ) ,  and y = p(X,  [ X , Y ] ) .  The first argument's term o f y  is a 

variable X ,  and the second argument's term is a list which begins with X .  By the 

for-loop in PROPOSE, we obtain a head p(X1, [XIX2])  and a bodyp(X1,  X2). Hence, 

PROPOSE generates a rule 



and proposes a hypothesis p(a, [b]) .  Note that the predicate p means the member in 

Example 6.1. 

Let a be a ground atom p([a], [a, b ] ) .  Since there exist no common lists in a ,  

,8 = p([a],  [a, b ] )  and y = P ( [ X ] ,  [ X ,  Y ] ) .  The first argument's term of y is a list which 

begins with X ,  and the second argument's term is also a list which begins with X .  By 

the for-loop in PROPOSE, we obtain a head p([XIXl] ,  [XIX2]) and a body p(X1, X2). 

Hence, PROPOSE generates a rule 

and proposes a hypothesis P ( [  1 ,  [b] ) .  Note that the predicate p means the prefix in 

Example 6.1. 

Let a be a ground atom p([b], [a, b ] ) .  The list [b] is both a common list in cu and the 

first argument's term of a. Then, ,8 = p(K ,  [all/l]) and y = p(K ,  [ X I K ] ) .  The first 

argument's term of y is a variable Vl ,  and the second argument's term is a list which 

begins with X .  By the for-loop in PROPOSE, we obtain a head p(X1, [XIX2] )  and a 

body p(X1, X 2 )  Hence, PROPOSE generates a rule 

and proposes a hypothesis p([b] ,  [b]). Note that the predicate p means the sufix in 

Example 6.1. On the other hand, since L includes a = p([b], [a, b ] ) ,  then ,O = a ,  

and y = p( [X] ,  [ Y , X ] ) .  The first argument's term of y is a list which begins with 

X ,  and the second argument's term is a list which begins with Y. By the for-loop 

in PROPOSE, we obtain a head p([XIX1] , [YIX2])  and a body p(X1,Xz) .  Hence, 

PROPOSE generates a rule 

and proposes a hypothesis p([ 1, [b]). Note that the predicate p means the defining lists, 

that is, all arguments' terms are lists. 



If a = p([a, b], [c, dl, [a, b, c, dl), then PROPOSE generates a rule 

and proposes a hypothesis p([b], [c, dl, [b, c, dl). If a = p([a, b], [a, b, c, dl, [c, dl), then 

PROPOSE also generates a rule 

and proposes a hypothesis p([b], [b, c, dl, [c, dl). Hence, the algorithm PROPOSE is 

independent of the order of arguments. 

Furthermore, by the construction of member and sufix  in Example 6.6, the al- 

gorithm PROPOSE is also independent of the types of argument. In other words, 

PROPOSE needs no types of arguments. 

6.6 Prolog Implement at ion 

We can realize the algorithm PROPOSE in a Prolog program as in Figure 6.2. The 

predicate propose returns a generated rule as the third argument. It also returns 

a hypothesis proposed by the generated rule as the second argument. (Full Prolog 

version will be described in Appendix of this thesis.) 

The predicate propose in Figure 6.2 returns a proposed hypothesis as its second 

argument and a generated rule as its third argument for a surprising fact as its first ar- 

gument. The predicate while-loop means the while-loop in the algorithm PROPOSE. 

The remainder which follows the predicate while-loop in the predicate propose means 

the construction of base step in the algorithm PROPOSE. The predicate l i s t - g e n  and 

cons t -gen mean list and constant generalizations, respectively. 

For the following five surprising facts 

p([a,b], [c, dl, [a, b, c, dl), p(a, [a,bl), p([a], [a, bl), 

~ ( [b l ,  [a, bl), p([a, b, cl, [b, el, [a, b, el), 



propose(Fact,Atoms,(NewHead:-NewBody)) :- 

! , 
while-loop(Fact,(NewHead:-TmpNewBody)), 
(NewHead == TmpNewBody -> 

NewBody = true, 
const-gen(Fact , TmpHead1) , 
list-gen,main(TmpHead1,TmpHead2), 
replace-term(TmpHead2,list,-,NewHead),!; 
NewBody = TmpNewBody, 
assert((NewHead:-NewBody)), 
rs,abd(Fact,Atoms), 
retract((NewHead:-NewBody))). 

while-loop (x, (NewHead : -NewBody) ) : - 
list-gen(X,List) , 
member-of (W, List) , 
comon,list-var(W,NW), 
const-gen(NW, Head) , 
create (Head, Body) , 
create2 (~ead ,Body ,NewHead ,NewBody) . 

Figure 6.2: Program propose 

the results of propose are as follows: 



Note that, in the last example, two atoms ,& = p([alh], h, [alh])  and p2 = p(l/l, [b, c], l/l) 

are the safe list generalizations of p([a, b, c] , [b, c], [a, b, c]) obtaining by the algorithm 

PROPOSE. Hence, for a ground atom p([a, b, c] , [b, c] , [a, b, c]), there are three hypothe- 

ses and rules. The first rule obtained by PROPOSE means that all arguments' terms 

are lists, and the first and the third arguments' terms begin with the same constant 

symbols. The second rule means that the second argument's term is the sublist of the 

first and the third arguments' terms. The third rule means that the first argument's 

term is equal to the third argument. 

On the other hand, for a ground atom p([a, b, c], [d, el, [a, b, c]), the predicate propose 

returns the following two rules and hypotheses: 

From this surprising fact, the rule whose second argument's term is the sublist of the 

first and the third arguments' terms is not generated by PROPOSE. 

By the algorithm PROPOSE, we can obtain a rule. If an intended model M is 

given, and an oracle to determine whether or not M' 2 M is also given, then we can 

design the algorithm as Figure 6.3. 

Consider Example 6.5. Let p([a, b], [c, dl, [a, b, c, dl) be a surprising fact. we obtain 

the following two rules Ri and hypotheses Hi by PROPOSE: 



input a = p(tl, . , t,) : a fact, i.e., a ground atom 
M: the least Herbrand model of P 

output P' : a Zreducing program 

select a E M; 
PROPOSE(a, rule, hyp); 
MI := the least Herbrand model of {rule, hyp); 
if MI C M then /* oracle */ 

output P := {rule, hyp) 
halt 

Figure 6.3: PROPOSE and oracle 

R2 : p([XIX1], [ZIXz], [XIJhI) +- P ( ~ I ,  X27 X3) 
H2 : ~ ( [ b ] ,  [dl, [by c, dl) 1- 

Suppose that an intended model is given as the least Herbrand model Ml of the 

following program append: 

Then, the least Herbrand model of {R1, HI) is a subset of MI, while one of {R2, Hz) 

is not a subset of MI. Hence, the program {R1, HI) is obtained by the algorithm in 

Figure 6.3. The program append means that the third argument's list is the result of 

concatenating the first and the second arguments' lists. 

On the other hand, suppose that an intended model is given as the least Herbrand 

model M2 of the following program list: 

Then, both the least Herbrand models of {R1, HI) and of {R2, H2) are subsets of 

M2. Hence, the programs {R1, HI) and {R2, H2} are obtained by the algorithm in 

Figure 6.3. The program list means that all arguments' terms are lists. 



Chapter 7 

Conclusion 

"The case has been an interesting one," remarked Holmes, when our 

visitors had left, "because it serves to show very clearly how simple the 

explanation may  be of an aflair which at first sight seems to  be almost 

inexplicable. " - 'The Adventure of the Noble Bachelor' 

"The Adventures of Sherlock Holmes" 

This thesis has discussed abduction for logic programming. 

In Chapter 3, we have classified abduction in computer science into five types: rule- 

selecting abduction, rule-finding abduction, rule-generating abduction, theory-selecting 

abduction, and theory-generating abduction. This classification is based on the inter- 

pretation of syllogism and the definition of hypothesis. Furthermore, we have examined 

various researches on abduction in computer science so far developed, and shown that 

most of them can be placed in our classification. 

In Chapter 4, we have investigated rule-selecting abduction for logic programming. 

From the philosophical viewpoint, abduction is the first stage of scientific inquiry. 

Then, we should consider the process of abduction which terminates. In order to char- 

acterize the termination, we have introduced the concept of head-reducing programs. 

We have shown that all the derivations for a head-reducing program and a surprising 

fact are finite. Hence, all the processes of rule-selecting abduction for a head-reducing 

program are finite. 

Furthermore, we have compared rule-selecting abduction with default logic. We 

have formulated a surprising fact and a hypothesis for default logic, and shown that, 



if there exists a hypothesis which explains a surprising fact, then there also exists an 

extension of a given default theory, which includes the surprising fact. This extension 

is corresponding to the least Herbrand model of the definite program obtaining from 

the default theory. This result is an extension of Poole's theory [Poo88]. 

Since the class of head-reducing programs is not so large, we have extended the 

concept of head-reducingness to that of breadth-first head-reducing programs, and the 

rule-selecting abduction to the breadth-first rule-selecting abduction. We have shown 

that there exists a finite derivation for a breadth-first head-reducing program and 

a surprising fact. Hence, the process of breadth-first rule-selecting abduction for a 

breadth-first head-reducing program is finite. 

Finally, rule-selecting abduction for logic programming and for default logic, and 

breadth-first rule-selecting abduction have been implemented by Prolog programs. 

In Chapter 5, we have investigated rule-finding abduction for logic programming. 

We have introduced two concepts of loop-pair and loop-elimination. The loop-pair 

syntactically determines whether or not there exists an infinite process of rule-finding 

abduction. On the other hand, the loop-elimination is a transformation of programs. 

By using loop-elimination, we can choose the programs for which the process of rule- 

finding abduction terminates. We have shown that if a loop-pair appears in a deriva- 

tion, then the derivation becomes infinite. We have also shown that, for given two 

programs, if we transform one program by loop-elimination, then all the derivations 

for union of the transformed program and the rest are finite. 

Furthermore, we have formulated rule-finding abduction with analogy, which is an 

extension of rule-finding abduction. We have introduced the concept of deducible hy- 

potheses, which are hypotheses for rule-finding abduction and are guaranteed correct 

in the sense of analogical reasoning. In this formulation, in order to obtain an analogy 

while constructing a deducible hypothesis, we have adopted partiaEly isomorphic gen- 

eralizations. By using these concepts, we have designed an algorithm of rule-finding 

abduction with analogy, and implemented it by a Prolog program. 

In Chapter 6, we have investigated rule-generating abduction for logic program- 



ming. We have introduced weakly 2-reducing programs for rule-generating abduction. 

We have also discussed a safe generalization, which is a generalization of one atom 

whose common terms are replaced by common variables. We have given some proper- 

ties of safe generalizations. 

In rule-generating abduction for weakly 2-reducing programs, we have shown that 

the number of hypotheses increases in exponential order with respect to the length of a 

surprising fact. On the other hand, by using safe generalizations, we have designed an 

algorithm PROPOSE to construct weakly 2-reducing rules. The number of hypotheses 

by PROPOSE is a t  most the length of a surprising fact. We have shown that the 

algorithm PROPOSE generates rules and proposes hypotheses in polynomial time 

with respect to the length of a surprising fact. Also we have shown that the selected 

common list in some argument of a surprising fact appears in the same argument of 

the hypothesis proposed by PROPOSE. 

We have left several problems as future works. 

In this thesis, a surprising fact has been defined by a ground atom or such that P If or 

for a background theory P. However, the definition of a surprising fact may possibly 

be extended by introducing probability, cost [HSME88, Stigl], modality [Lev89, SL90], 

or causal weight [BATJSl]. It is a future work to investigate what a surprising fact is 

in these new settings. 

In this thesis, we have dealt with rule-based abduction, but not theory-based abduc- 

tion. Many systems which are related to theory-based abduction have already designed 

and realized. For example, there are Shapiro's model inference system [Sha81], induc- 

tive logic programming [Mug92, MB88, Lin89, LU89], Poole's Theorist [Poo88], and 

hypothesis-based reasoning [Kun87]. Concerning these systems, we have left the prob- 

lems to find the abduction, to characterize the class of objects, and to investigate the 

theoretical properties such as termination and computational complexity. 

We have discussed abduction for definite programs. On the other hand, rule- 

selecting abduction is related to nonmonotonic logic. When we discuss the relationship 

between nonmonotonic logic and logic programming, we can also deal with such ex- 



tensions of definite programs as normal program, general program, and disjunctive 

program [Dungl, EK89, KM90, KKT92, Llo871. Abductive logic programming is a 

kind of rule-selecting abduction for such programs, while the surprising fact in this 

setting is not surprising in our sense. Hence, we need to extend the class of programs 

for abduction and investigate the property of their abduction in our sense. 

This thesis has also discussed rule-finding abduction and analogical reasoning in 

the same framework. This is a certain step toward acquiring the knowledge from 

abductive and analogical viewpoints, although we have just shown a few theoretical 

results. We need to formulate so called analogy by abduction other than abduction with 

analogy. We also need to solve the problem of incorporating rule-finding abduction 

with rule-generating abduction by using analogy. 

Abduction is an inference to propose hypotheses which should be used before de- 

duction and induction are applied. We have left the problem to combine abduction, in 

particular rule-generating abduction, and inductive logic programming. Ling [Lin89, 

LU89] has introduced the constructive inductive logic programming. There may exist 

a relationship between such works and ours. 

Furthermore, as to the inductive logic programming, we have left the problem 

of predicate invention. In general, the number of rules and hypotheses proposed in 

predicate invention becomes exponentially large. Hence, we need to introduce some 

heuristics such as on the number of local variables, invented predicate symbols and 

rules, a distinction between necessary and useful intermediate terms, and so on. 

All researches on abduction in computer science are based on computational logic, 

and the abduction beyond the scope of computational logic such as abduction for formal 

language or numerical data has not yet been studied. On the other hand, abduction 

begins with a surprising fact. In machine learning, a surprising fact is considered as 

a good example. Hence, abduction is regarded as learning from good examples. We 

need to study the abduction for various frameworks together with machine learning. 

This should be one of the most important future works. 
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Chapter 8 

Appendix: Prolog I entation 

"You really are a n  automaton - a calculating machine," I cried. 

- ((The Sign of Four* 

In this appendix, we express the three Prolog programs, loop- elimination, rule-finding 

abduction with analogy, and PROPOSE. All of them have been realized by K-Prolog 

Compiler version 3.10. 

8.1 Loop-Eliminat ion 

We describe our realization of the loop-elimination for rule-finding abduction as the 

following Prolog programs. 

0 0 0 0 0  k k k k k  loop-elimination of Fact 
0 0 0 0 0  k k k k k  le,main(Fact,NewFact) :- 
0 0 0 0 0  k k k k k  NewFact is loop-elimination of Fact. 
0  0  0  0  0  k k k k k  le (PFact ,Fact ,NewFact) : - 
0 0 0 0 0  k k k k k  PFact is a priori fact, Fact is a clause to eliminate loop, 
0 0 0 0 0  k k k k k  as a result. Then, we can obtain NewFact as loop-elimination. 

le-main(f act (world, clause (Head,Bodies)) ,fact (world, clause (~ead, ~ew~ody) ) ) : - 
setof (Y, le (f act (World, clause (~ead,~odies)) ,Y) ,~ist) , 
isort (List ,List2), 
List2 = [~axFact 1 List31 , 
MaxFact = fact (World, clause (Head, ~ewBody) ) . 

le (f act (World, clause (Head, Bodies) ) ,fact (World, clause (Head, ~ew~ody) ) ) : - 
fact (PW, clause (PH, PB) ) , 
PW \= World, 
le(Bodies,PH,NewBody). 



PH = SingleBody -> 
(fact (PW, clause (PH, PB)) , 
functor (PH,F1 ,Arg) , 
functor(SingleBody,F2,Arg), 

(F1 = F2 -> 
Argl is Arg+l, 
functor (TrueBody , true, Argl) , 
arg(1, TrueBody , F2) , 
(between(2, N, Argl) , 

M is N-1, 
arg(M,SingleBody,Var), 
arg (N , TrueBody , Var) ) , 

replace-tem(SingleBody,SingleBody,TrueBody,NewBody) ; 
fail), ! )  . 

le ( (Bodyl , Body21 , PH, (NewBodyl , NewBody2) ) : - 
! ,  
(fact (PW, clause (PH, -) ) , le (Bodyl , PH, NewBodyl) ) , 
(fact (PW, clause (PH2, -) ) , le (Body:!, PH2, NewBody2) ) . 

le (Body, PH, Body) : - fact (PW, clause (PH, PB) ) , ! . 

insert (E, [ I ,  [El). 
insert(E,[XIY],[XIZ]) :- E @< X,insert(E,Y,Z). 
insert(E, [XIY], [E,XIY]) :- E @>= X. 

between(Low, Low, Up) . 
between(Low,I,Up) :- between(Low,Old,Up),I is Old+l,((I > Up,!,fail);true). 

Rule-Finding Abduction with Analogy 

The rule-finding abduction with analogy in Section 5.6 is realized as the following 

Prolog program. In this program, the least generalization i g  refers to Flach's Prolog 

text [Fla94], and the partially isomorphic generalizations p ig-ru le  and p i g  Hirowatari 

and Arikawa [HiA94b]. 

0 0 0 0 0 0 0 0 0 0  k k k k k k k k k k  Rule-Finding Abduction with Analogy 0 0 0 0 0 0 0 0 0 0  k u o k k k k k k k  
0 0 0 0 0 0 0 0 0 0  k k k k k k k k k k  using Partially Isomorphic Generalization %%%%%%%%%% 

ab-ana(~G,~~,Pair,WorldTarget) :- 
functor(TG,Pred,Arity) ,functor(BG,~red,~rity) , 
world(~orld~ase,WorldTarget), 
fact (WorldBase , (BG : -true) ) , 
analogy((T~:-true),(BG:-true),Pair). 



ab-ana(~~,~~s,~air,WorldTarget) :- 
functor (TG, Pred, Arity) , functor(BG, Pred, Arity) , 
provable (TG, BG , TGs , BGs , WorldTarget ) , 
not TG==TGs, 
analogy ( (TG : -TGs) , (BG : -BGs) , pair) . 

provable(~G,~G,TL,B~,~orld~arget) :- 
rule (TG, BG , TGs , BGs , WorldTarget) , 
provable(~Gs,~Gs,~L,~~,~orldTarget). 

provable((TG,TGs),(BG,BGs),(TL,TLs),(BL,BLs),WorldTarget) :- 
provable (TG, BG ,TL, BL, WorldTarget) , 
provable(TGs,BGs,TLs,BLs,WorldTarget). 

rule(TG,~G,TGs,BGs,WorldTarget) :- 
world(Wor1dBase , WorldTarget) , 
fact(WorldBase,(BG:-BGs)), 
not BGs=true , 
pig-rule ( (BG : -BGs) , (PG : -PGs) ) , 
copy((PG: -PGs) , (TG: -TGs)) . 

copy(Old, New) : - 
(retract ( ' $makerJ (-1 ) ,fail; 
as~ert(~$maker~(Old)>,retract(~$maker~(New))),!. 

analogy ( (TG: -true) , (BG : -true) ,pairing) : - 
pig(~~,~~),analogy(TG,GG,BG,Pairing),!. 

analogy((TG:-TL),(BG:-BL),Pairing) :- 
pig-rule ( (BG : -BL) , (GG : -GL) ) , 
analogy ( (TG : -TL) , (GG : -GL) , (BG : -BL) , Pairing) . 

analogy( (TL~ , TL2) , (GLI , GL2) , (BL~ ,BL2) ,Pairing) : - 
analogy(TLl,GLl,BLl,Pairingl), 
analogy (TL2, GL2, BL2, Pairing2) , ! , 
append(PairingI,~airing2,Pairing). 

analogy (TA , GA , BA , P) : - 
lg(TA,GA,LGG, C1 3 1 ,  C1 ,S2), 
lg(BA,GA,LGG, C1 $3, C1,S4), 
pairingl(P,Si,S2,S3,S4). 

0 0 0 0 0 0 0 0 0 0  hhhhhhhhhh least generalization by Flach %%%%%%%%%% 



lg(Terml,Terrn2,Terml,Sl,S1,S2,S2) :- 

Terml == Term2,!. 
lg(TermI,Term2,V,Sl,Sl,S2,S2) :- 

subs,lookup(Sl,S2,Terrnl,Term2,V),!. 
lg(Term1,Term2,Term,S10,S1,S20,S2) :- 

nonvar (Terml) , nonvar (Term2) , 
functor(Terml,F,N),functor(Term2,FaN),!, 
functor(Term,F,N), 
lg~args(N,Terml,Term2,Term,S10JS1,S20,S2). 

lg(Term1 ,Term2 ,V, SlO, [V<-Terml l S101, S20, [V<-Term2 I S201) . 

Ig-args(O,Term1,Term2,Term,S1,S1,S2,S2). 
lg-args(N,Terml,Term2,Term,S1O,S1,S2O,S2) :- 

N>O,N1 is N-1, 
arg (N , Term1 , Argl) , 
arg (N , Term2, Arg2) , 
arg (N , Term, Arg) , 
lg(Argl,Arg2,Arg,S1O,Sll,S20,S21), 
lg-args(N1,Terml,Term2,Term,S11,S1,S21,S2). 

subs-lookup( [V<-TI I Subsl] , [V<-T2 1 Subs21 ,Terml, Term2 ,V) : - 
TI == Terml,T2 == Terms,!. 

subs-lookup ( [Sl I Subs11 , [S2 I Subs21 , Term1 , Term2, V) : - 
subs-lookup(Subsl,Subs2,Terml,Term2,V). 

0 0 0 0 0 0 0 0 0  k l . l .kkkkkk Partially Isomorphic Generalization %rk%%rk%%X 
0 0 0 0 0 0 0 0 0  k k k k k M k k  by Hirowatari and Arikawa 0 0 0 0 0 0 0 0 0 0  LLkkkkkk kL  

pig(O,-,-,-) :-! 
pig(N,Atoml,Atom,Cntl) :- 

Cnt 1=O , 
arg(N, Atom1 , Argl) , 
search(Argl,Arg,Atom1,Cntl,Cnt), 
(nonvar (Arg) -> pig-A(N, Arg, Atoml ,Atom, Cnt) ; 

pig-B(N,Argl,Atoml,Atom)),!. 
pig(N,Atomi,Atom,Cnt1) :- 

arg(N,Atoml,Argl) , 
search1 (Argi , Arg2, Atoml , Cnt 1, Cnt2) , 
search(Arg2, Arg, Atom1 a Cnt 1, Cnt) , 
(nonvar (Arg) -> pig-A(N, Arg , Atoml , Atom, Cnt) ; 

pig-B(N,Argi,Atoml,Atom)),!. 



search2 (N, Terml ,Term, Atom, Cnt I , Cnt) : - 
arg(N , Terml , Argl) , 
searchl(Argl,Term,Atom,Cntl,Cnt2), 
(Cnt2=O,Term is Argl ; 

M is N-l,search2(M,Terml,Term,Atom,Cnt2,Cnt)). 

search,B(O,-,-,-,Cnt,Cnt) :- ! .  
search~B(N,Terml,Term,Atom,Cnt1,Cnt) :- 

arg(N, Terml , Argl) , search(Arg1 ,Term, Atom, Cnt I, Cnt2) , 
(nonvar(Term) ; 

M is N-1,search-B(M,Terml,Term,Atom,Cnt2,Cnt)). 

check(Term,Term,Atom,Cnt,Cnt) :- atomic(Term),!. 
check(Term,Term,Atom,Cnt,Cnt) :- 

nonvar(Term),functor(Term,F,N), 
check2(N,Term, [I ,Listl) , 
replace-term(Atom,Term,Var,Atoml), 
var-set (Atom1 , List2) , 
intersection(List1 ,List2 ,List3) ,List3=[] . 

check2(0,-,List,List) :-!. 
check2(N,Term,Listl,List) :- 

arg (N ,Term, Arg) , var (Arg) , ! , 
union(Arg,Listl,List2), 

M is N-l,check2(M,Term,List2,List). 

var-set (Atom,List) :- functor(Atom,F,N) ,var-set (N,Atom, [I ,List). 

var-set(0,-,List,List) :- ! .  
var-set (~,Atom,Listl ,List) : - 

arg(N,Atom,Arg) , 



var-check(Arg , List 1, List2), 
M is N-1, 
var-set(MjAtom,List2,List). 

var-check(Term,List,List) :- atomic(Term),!. 
var-check(Term,Listl,List) :- var(Term),!,union(Term,Listl,List). 
var-check(Term,Listl,List) :- 

functor(Term,F,N) , 
arg (N , Term, Arg) , 
var-check(Arg,Listl,List2), 
M is N-1, 
var-set(M,TermjList2,List). 

member(X,[YJ-1) :- X==Y,!. 
member (X, [- I Y] ) : - member (X , Y) . 

0 0 0 0 0 0 0 0 0 0  k k k k k k k k k k  Partially Isomorphic Generalization of Rule %%%%%%%%%% 

pig-rule (Rule, PigRule) : - 
functor(Rule,:-,2), 
arg(1 ,Rule ,Head), 
arg (2, Rule, Body) , ! , 
pig-atoms ((Head,Body) , (PigHead,PigBody) 1, ! , 
functor(PigRule, : - ,2) , 
arg(l,PigRule,PigHead), 
arg(2,PigR~le~PigBody). 

pig-atoms (Atoms, PigAtoms) : - 
list(Atoms,Pred,Num,List), 
append( [newatom] ,List ,Lists), 
NewAtom =.. Lists, 
pig(NewAtom, PigNewAtom) , ! , 
PigNewAtom =. . NewList s , 
append ( [newatom] , NewList , New~ist s) , 
list(PigAtoms,Pred,Num,NewList). 

list ((Atom,Atoms) , [Predl (Pred21, [Numl I N u m  s t  : - 
list (Atom,Predl ,Nun1 ,Listl) , 
list(AtomsjPred2,Num2,List2), 
append(Listl,List2,List). 

list(Atom,F,N,List) :- 
functor(Atom,F,N), 
Atom =.. Listl, 
append( [FI ,List ,List I) . 



PROPOSE 

We also describe our realization of the algorithm PROPOSE in Section 6.4 as the 

following Prolog program. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  XXXXXI.6 XLI,kk/ok~!, Algorithm PROPOSE %%%%%YX%%%%%%"X% 

propose  act ,Atoms, (NewHead: -NewBody) ) : - 
! , 
while-loop (Fact, (NewHead : -TmpNewBody) ) , 
(NewHead == TmpNewBody -> 

NewBody = true, 
const-gen(Fact ,TmpHeadl) , 
list-gen-main (TmpHeadl , TmpHead2) , 
replace-term(TmpHead2,list,-,NewHead),!; 
NewBody = TmpNewBody, 
assert ( (NewHead: -NewBody) ) , 
rs-abd(Fact,Atoms), 
retract((NewHead:-NewBody))). 

while-loop (X, (~ew~ead : -NewBody) ) : - 
list-gen(X,List), 
member-of (W, List) , 
common-list-var(W,NW), 
const-gen(NW, Head) , 
create(Head,Body), 
create2(~ead,~ody,~ew~ead,~ew~ody). 

0 0 0 0 0  / . / . / . / . / .  rule-selecting abduction %'/."/.%% 

rs-abd(Goa1,Leaves) :- clause(Goa1,Leaves). %%./,./, one step hypothesis 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  X X X A X X X X X X X X A A X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X  
0 0 0 0 0  X X X X X  construction of recursive program %%%%%%%%%%%%YX%%%"X%%%%% 
0 0 0 0 0  k k h X h  create (Head,Body) : - 
o o O o o  construct pred(Head)-reducing clause clause(Head,Body) 

0 0 0 0 0  / . / . / . / . / ,  create a recursive part with reducing_rec/2 
create (Head,Body) : - 

functor (Head, Pred, Arg) , 
functor (Body, Pred, Arg) , 
reducing(Head,Body,Arg). 



reducing(Head,Body,Arg) :- 

arg(Arg,Head,Terml) , 
(var(Term1) -> arg(Arg,Body,Termi) ; 

proper-~ubterm(Terml,Term2),arg(Arg,Body,Term2)), 
Argl is Arg-1, 
reducing(Head, Body, Argl) . 

0 0 0 0 0  k k k k k  proper-subterm(Terml,Term2) 
0 0 0 0 0  k k  :- find all proper subterm Term2 of Term1 
proper,subterm( [X I Y] , Y) . 
proper-subterm( [I , [I ) : - ! . 

0 0 0 0 0  /,/././.!. create a recursive part with reducing_rec/2 
create2 (~ead, Body, NewHead, NewBody) : - 

functor (Head, Pred, Arg) , 
functor (Body, Pred, Arg) , 
functor (NewHead, Pred, Arg) , 
functor (NewBody , Pred, Arg) , 
create2 (Head, Body, NewHead, NewBody , Arg) . 

create2(Head,Body,NewHead,NewBody,O) :- ! .  
create2(~ead,Body,NewHead,NewBody,Arg) :- 

arg (Arg , Head, TermHead) , 
arg(Arg , Body, TermBody) , 
replace-term(TermBody,TermBody,X,TermNewBody), 
replace-term(TermHead,TermBody,X,TermNewHead), 
arg (Arg , NewHead, TermNewHead) , 
arg (Arg , NewBody , TermNewBody) , 
Argl is Arg-I, 
create2(Head,Body,NewHead,NewBody,Argl). 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k  
0 0 0 0 0  k k k k k  list-gen(Term1,GenTerm) 
0 0 0 0 0  k k k k k  common (sub)term -> one variable 

list-gen(Formula,List) :- 

setof(GenForm,list~gen~main(Formula,GenForm),TmpList), 
set (TmpList ,List) . 

list-gen-main(Formula,GenForm) :- 

functor(Formula,Pred,Arg), 
between(1, I ,Arg) , 
between(1, J,Arg) , 
I \= J, 
arg(I,Formula,Listl), 
arg(J,Formula,List2), 
(sublist (List1 ,List2) ,List1 \== [I , 
replace~term(Formula,Listl,list,GenForm)) ; GenForm=Formula ,!. 

sublist (X, X) : - list (X) . 
sublist (X, [W I Y] ) : - sublist (X, Y) . 



set(X,Y) :- set(X,CI,Y). 
set ( [Element I TmpList] ,X,List) : - 

(NewElement = Element -> set(TmpList,[NewElementIX],List) ; 
set(TmpList,X,List)). 

set([] ,x,x). 

member-of (X, CX 1-1 ) . 
member-of (X, [Y I ZI : - member-of (X, Z) . 

common-list-var (A, B) : - 
functor(A,F,N), 
functor(B,F,N), 
common-list-var(A,B,N). 

common-list-var(A,B,O) :- ! .  
common-list-var(A,B,N) :- 

arg(N,A,Terml), 
replace-term(Terml,list,-,Term2), 
arg (N , B , Term21 , 
M is N-1, 
common,list-var(A,B,M). 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  LLLLL LLLLL LLLLLLL LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLkk 
0 0 0 0 0  LLL/. / ,  const-gen(Term1 ,Term21 : - 
0 0 0 0 0  L L  Term2 is a term which the constant symbols in Terml 
0 0 0 0 0  h k k k  is replaced by variable, in particular, same constant 
0 0 0 0 0  L L  symbol is replaced by same variable. 

const-gen(Term1, Term2) : - 
clear, 
assert (constlist ( [I ) ) , 
assert (data(1)) , 
gen (Terml , Term21 , ! . 

replace (Term1 , Term2) : - 
constlist (List), 
length(List ,N) , 
replace(N,Terml,Term2). 

replace([] ,[I) :- ! .  
replace (Terml , Terml) : - ! . 

replace (0, Terml , Terml) : - ! . 
replace (N, Term1 , Term2) : - 



constlist (List), 
(N > 0 -> 

(pop(Const,List,NewList), 
retract(constlist(List)), 
replace,term(Terml,Const,Var,Term), 
assert (constlist (NewList) ) , 
M is N-I, 
replace (M , Term, Term2) ) ) . 

search-const (Term) : - 
functor (Term, F, Arg) , 
data(N) , 
(Arg >= N -> search-const(N,Term)), 
M is N+l, 
retract (data(N) ) , 
assert (data(M) ) , 
search-const (Term) . 

search-const (N, Term) : - (var (~erm) ; ~erm= [I ) , ! . 
search-const (N ,Term) : - 

functor(Term,F,M) , 
(between(l,L,M),arg(L,Term,Subterm),search-const(L,Subterm)). 

search-const (N ,Term) : - 
functor(Term,F,O), 
constlist(OldList), 
(\+member-cut(Term,OldList) -> push(Term,OldList,NewList)), 
retract (constlist (Oldlist)), 
assert (constlist (NewList)) . 

member-cut (X , [X I Y] ) : - ! . 
member-cut(X,[YIZ]) :- member-cut(X,Z),!. 

clear :- retractall(data(-)),retractall(constlist(-)). 
retractall (X) : - retract (X) ,fail, ! . 
retractall(-) . 


