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Abstract : This paper deals with an optiiiial stopping gaine in dylzanlic fuzzy 
systems with fuzzy rewards. We give a, fuzzy rela,tionavl equation, whose unique 
solution is the optinla1 discounted fuzzy reward. This paper estiinates discounted 
fuzzy rewards, by introducing a fuzzy expectation with a density given by fuzzy 
goals. We show the existence of the value of the game, by giving a ininiinax theorein 
for fuzzy expected values. 
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1 Introduction 

We, in the previous papers [8, 14, 15, 161, defined a dyliainic fuzzy systein using a, fuzzy 

relatioii and gave liillit theoreins for tlie transitioil of fuzzy states of the systein under the 

co~ltractive and non-expansive properties of of the fuzzy relation. Recently, ICurano et 

al. [9] also introduced fuzzy rewards for tlie systeiil and discussed fuzzy decision processes 

for total fuzzy rewards with respect to a partial order, which is called the fuzzy max 

order. In [9], we defined fuzzy rewards by iiiaps from fuzzy states to fuzzy iiui~ibers. The 

definition is a iiartural extension of tlie classical rewards which are giveii by real valued 

functions on a crisp state space (see [ 5 ] ) .  
Noii-cooperative two-person zero-sum fuzzy games was studied by [3, 121 in tlie fram- 

work of fuzzy matrix gaiiles. This paper deals with a zero-sum stopping gapme i11 tlie 

dynamic fuzzy systern with fuzzy rewards. We estimate discoulited fuzzy rewards by a 

fuzzy expectatioil with a deiisity giveii by fuzzy goals on the basis of tlie coiicept of deci- 

sion inakiilg ill Bellmail and Zadeli [I]. In Section 3, this paper gives a iniiiiinax tlieorei~i 

regarding fuzzy expected values in the game. I11 Section 2, we prove that tlie optimal 

fuzzy reward is a unique solution of a fuzzy relational equation, and, in Sectioii 4, we 

give the both player's optimal stopping tiilie and show that it is a, saddle poilit in the 

class of finite stopping times. In Section 5, a nuiiierica.1 example is given to illustrate our 

tlieoretical idea*. 

Let E be a metric space. Let F(E) be tlie set of all. fuzzy sets S : E H [O, 11 whicl~ are 

upper semi-coiitiiiuous and satisfy SUPxEE S"(x) = 1. Let ij : E x E H [O, 11 be a coiitilluous 

fuzzy relatioii satisfying i ( z ,  .) E F(E) ( z  E E). Let 9 E F ( E ) .  In this paper, we deal 



witli a sequence of fuzzy states {Sn)7=0 defined by the followiiig dyiialliic fuzzy system 

(see Iiurano et al. [$I) : 

go:=: and S n + l ( y ) : = ~ u p m i n { S n ( ~ ) , @ ( ~ , y ) ) ,  y ~ E , n = 0 , 1 , 2 , . . .  . (1.1) 
x E E  

For simplicity, we define a iiiap ij : F(E) H F(E) a,s follows. For any 5 E .F(E), 

Then, (1.1) is represeiited by 

Firstly, we describe fuzzy nunibers in order to define fuzzy rewards. Let R be the set 

of all real numbers. For a fuzzy set ci on R aiid a E [ O , l ] ,  tlie a-cut ci, is defined by 

where cl deiiotes tlie closure of a set (for tlie details, refer to Nov&k [lo] and Zadeh [17]). 

Then, a fuzzy set i on R is called a fuzzy nuinber if ci satisfies the following coilditions 

( N l )  - (N3) : 

( N l )  The a-cut ci, is a bouilded closed subinterval of R for a E [O,l]. We represent it by 

(N2) cia/ = ci, for a > 0. 

(N3) ci is normal, i.e., S U p z E ~  G(z) = 1. 

We denote the set of all fuzzy numbers by Fn(R), and deilote the set of all bouilded closed 

subintervals of R by C(R). 

An addition and a scalar n~ultiplication for ilon~legative fuzzy liuinbers are defined as 

follows (for example, see [6]) : For ci, b E Fn(R+) and X 2 0, the addition ci + G of ci and 

b and tlie scalar multiplication X i  of X and ci axe fuzzy numbers given by 

( X i ) ,  = [ X i , ,  Xi;], u E [0, 11. 

We define a partial order 5 on Fn(R+) : Let 6, GE F n ( R + ) .  
-- -+ 

5 6 nieails that i, 2 b, and 6; 2 b, for all a E [0, 11. 

Then (.Fn(R+), >) becoiiies a lattice ([2]), and > is ca,lled the fuzzy inax order. Further, 

for ti, E Fn(R+), we define the i~iaxin~um ci V of ci and i witli respect to the order 

by a fuzzy nuinber such that 



Next, we denote by F(E : R) tlie family of all rllaps f : F(E) I+ F n ( R ) .  Tliis paper 

calls 7 E F(E : R) a fuzzy-number-valued function on F ( E ) .  We introduce an addition, 
a scalar i~iultiplicatioii aiid a illaxiliium on F(E : R) as follows : For f ,  h" E F(E : R) 
and X 2 0, the addition f + I; off  and I;, tlie scalax iiiultiplica.tioii X j  of X  and 7, and the 
niaximum f V h" of f aiid h" are given by 

( f ) )  : = ( ) + ( )  BEF(E); 

Let N := {0,1,2, .  . 6 )  be a time space. Let /3 be a colistaiit satisfying 0 < /3 < 1, wliere 

/3 means a discount rate. Let ?, E l ,  P, E2 E F(E : R) be bounded in tlie sense that IlFlI, 
1 1  E' 1 1  and 1 1  E2 1 1  are finite, wliere the norm 1 1  1 1  is given by (2.2) in Section 2. We assuilie 

tliat E1(5) 5 zo(i) 3 E2(5) for all 5 E F(E). For a sequence of fuzzy states {Zn);==, defined 

by (1. I),  ?(in) means a runni~ig fuzzy reward at a, state 5, and ?(in) nleali terminal fuzzy 

rewards for player i(= 1,2)  respectively. Then, for player 1's stopping times rnl aiid player 

2's m2, we define discouiited fuzzy rewa4rds for player 1, which are losses for player 2, by 

min{ml ,n12 ) - 1 
1 2  i ~ ( i ~ r n , m ) : =  x /3nq~n)+,8min{m1~m2~ ~ ( i ,  m l ,  m2) for S E F(E), (1.4) 

wliere E(S, rnl, m2) is defined by 

we put the sum c O , , ~  Pnqgn) := I{=,) E Fn(R)  Then, iL(., m', rn2) E F(E : R) is trivial 

when rnl or rn2 is finite, a.nd further we can check it by Yoshida et al. 115, Theorein 3.21 

wlieli m1 = rn2 = oo. Tliis type of rewards i11 Ma,rkov chains are well-known and first 

studied by Dyiikin [5]. I<uraiio et a.1. [9] also studied tliis type of fuzzy rewards in fuzzy 
decisioli processes. Tliis paper discusses the optimal stopping game for (1.4) in dyiiamic 

fuzzy systems (1.1). Put a fuzzy goal by a fuzzy iiulliber j : R H [0,1] wliicli is an upper 

semi-contiiiuous aiid iioiidecreasiiig fulictioli with j (0) = 0 and lii~i~,, j (2) = 1. Tlieii 

we note tliat j ,  = [ij,, co) for n E [O,l]. We define fuzzy expected values by 

8 ( (  r n  , m ) )  := { ( r n  m 2 ) ( )  ( 2 )  = sup i { (  m , r n 2 ) ( )  , ij ( z ) }  (1 -6) 
R z€R 

for ml ,  rn2 E N U {oo}, wliere P is tlie possibility ineasure gelierated by tlie density ij 

and f di'  deiiotes Sugeno iiitegrill (Ill, 131). In tliis paper, we consider the followi~ig 

optiinal stoppiiig ga,iiie. 



Problem 1.1. Maximize (1.6) with respect to player 1's stopping times m1 and lniiliinize 
(1.6) with respect to player 2's stopping times m2. 

The fuzzy expectatioil inlplies the degree of satisfactioil of discou~lted fuzzy rewards 
for player 1, and the fuzzy goal jj ( z )  means a kind of utility fuilctioil for fuzzy payoffs z 
in (1.6) (see Sakawa and Nishizaki [12]). 

From (1.4), we can clefine a,n optimal fuzzy reward with respect to the fuzzy max order 
)- as follows : 

G(9, *, m2) := V G(9, ml,  m2) for 9 E .F(E), 
nzl 2 0  

(1.7) 

( 9  7 , ) := 6 ,  m n 2 )  for S E F(E) , 
nz2 >O 

(1.8) 

where V and A mean the supremuin and the infiinurn with respect to the fuzzy lnax order 
t respectively. Then, we note that G(s", *, m2), 6(S, m', *) E F(E : R) for finite ml, m2. 
f ir t l ler  we put 

G*(S) := A G(9, *, m2) for 3F E .F(E) , (1 -9) 
nx2 >O 

G*(S) := V G(9,m1,*) for i~ .F(E). (1.10) 
77x1 >0 

Then, it is trivial thak 

Z1(9) 5 ,G*(S) 5 6*(9) 5 ~ ~ ( 9 )  (1.11) 

since, by taking m2 = 0 in (1.9) and m1 = 0 in (1.10) , we have 

2 Optimal fuzzy rewards 

In this section, we give a fuzzy relational equation to characterize the optimal fuzzy 
rewards G, and G*. 

Lemma 2.1. Let [a,, b,], [a,b] E C(R) (n = 0 , 1 , 2 , . - - ) .  The11 



(ii) 

(iii ) 

if C a n  > -m and Cb, < oo; 
n>0 n>O 

A ([an, bn] + [a, b]) = +[a ,b]  i f i n f a n > - m ,  n>o 
n>O 

where we define Vn>o [an7 bn] := [supn>, an, supn20 bn], An>O[an, bnI := [illfn?~ an ,  infnko bnI - 

Cn>o[an, - bn] := [ C n > o  an, C n > o  bnI. 

Proof. Tliey are trivial. 

Lemma 2.2. Let In, 1; E F(E : R) (n = 0 ,1 ,2 ,  . . .). Then, for 9 E F(E), 

(ii) 

(iii) 

Proof. Tliey are trivial, by applyiiig Leiniiia 2.1 for their a-cuts. 

Next, we introduce a distance between fuzzy-nuiliber-va,lued functions on F(E). We 

denote the Hausdorff metric on C(R) by 6 (see [7]): 



Then, we define a metric on F(E : R) as follows : 

( f ) :  sup 6(f(g),li(g)a) f o r j , k + ( E : R ) .  
~ E [ O , ~ ] , S E ~ ( E )  

(2.1 

Further, we define a norin I/ . / I  on F(E : R) by 

f 1 1  = ( 7 ,  I )  = s u .  ~ ( f  (S), , {O)) for f E +(E : R ) ,  
~ E [ O , ~ ] , - S E ~ ( E )  

(2.2) 

where we put I{,) E F ( E  : R) by 

Ijo1(5) := 0 (the crisp number zero) for 5 E +(E). 

Then the followiilg elerneiltaory results call be easily checked (c.f. [4]). 

Lemma 2.3. Let [a1, b,] , [el, dl], [a2, b2] , [c2, d2] E C (R) . Then 

( )  6([a1, b l ]  V [el, dl], [a21 b21 V [ ~ 2 ,  d21) i lllax(6([a1, b l l ,  [a21 b21), 6([cll dl11 [c21 d21)); 
6([a1, b l ]  A [clldl], [az, 621 A [ ~ 2 1  d2I) i l l ~ a x ( ~ ( [ ~ l , b l I ,  [ a2 ,~21)15( [c~ ,~ l I ,  [c2, d2l)); 

( 1  &([a17 bll + [s1 dl11 [a21b21 + [c2,d21) I S(Ia1, b l l ,  [a2,b2l) + q c 1 ,  41,  [s, 41); 

Lemma 2.4. Let fl,f2,1;1,62 E F(E : R). Then 

(i) d(fl V 1i1, f 2  V &) 2 m a x ( d ( f l l ~ 2 ) , d ( ~ ~ ,  I&)); 
d(f1 A h; , f 2  A 1;2) 1 111a~x(d(.f~, f 2 ) ,  d(& , &)); 

Proof. (i) - (iii) are trivia.1 from the definition (2.1) and Lemma. 2.3. (iv) Let +? E F ( E ) .  
Since i(5) E +(E), we have 

This yields (iv). 

We obtain the following theorems for the optimal fuzzy rewa.rds in (1.9) and (1 .lo).  

Theorem 2.1. It holds that ,j,, 3 E F(E : R). 



Proof. Let S E F ( E ) .  From Lemmas 2.1 and 2.3 and ( 1 . 5 ) ,  for m' < m" and a E [0 ,  11, 
we liave 

i V ( n )  V ,C(g,m,*) ,  
O<nz<nzll O<nz<nzl 

V ii(S, rn ,  *),, ii(9, m', *), 
ml<m<m" 

< ~ n a ~ x  rnax 2 6 ( ~ ( 5 ,  m,  m ),, ~ ( 9 ,  m', m2),) 
nzl<nz<nzI1 O < m 2  <ml1+l 

+ ~ n a ~ x  111ax & ( @  (2 7 ~ ( 5 ,  mi, m2),) rnin{m,nz2} ~ ( g ,  7n, 7n2 ) pmin{m11nz2 1 
ml<m<m" 0<nz2 <nzU+l 

+ nlla,x ~l ia~x 6 (p"'n{nz.nz2} q g ,  m, m2) 0 7 pm'n1m1.m~ 1 ~ ( g ,  m', rn2),)  
nzl<nz<m" 0<m2 <nzU+l 

I X ,  

5 C pns (q in(;)),, { a } )  + 2 sup sup p""{nz~nz2)6 ( ~ ( 5 7  m, m2)a7 { o } )  
n=nzl nz>_m' nz2>_m' 

where 1 1  Ell := rnax{ / l  pll, 1 1  E' 1 1 ,  1 1  F2 111. B y  letting m" + co, we obtain 

i G )  V ( m )  < t(m1) for all rn' 2 1 ,  or E [O,1] ,  
O<nz<nzl 

where 
OC1 

t(n2') := C pnlli.il +2,6'"'1li.ll for r n 9 >  1. 
n=nzl 

By Lenlma 2 .3 ( i ) ,  we liave 

5 2 c ( m J )  + inax 6 ( i i (2 ,  m, *),, ii(S", m, * ) , I )  for m' 2 1 ,  a' < a. 
O<nz<nzl 



Since t(m') is iildepeildeilt of a a i d  a' and we have ,ii(.G7 m, *) E Fn(R) for finite m, this 

yields 

lim6(6,(9),,6,(S),t) < 2 t ( m f )  for all nz' 2 l,a > 0. 
a' la 

Therefore 

li1n 6(6*(9)a ,  6*(5)aI) = 0" 
a'ta 

Since 6,(S), c 6,(5),1 holds trivially for a' < a, we obtaiil 6.45) E Fn(R) for all 5 E F ( E ) ,  
using [8, Leillina 31. Thus we get 6, E F ( E  : R). Siinilarly we can check 6' E F ( E  : R). 
Therefore we obtain this theorei~i. 

For 6, b;, i2 E .En (R)  such that b; 5 i2, it is trivial that 

Then, we write it simply by 

a;v 6 A  i 2 .  

Theorem 2.2. It holds that i& = 3. We write it by (6. T12e11, 6 is a unique solution of  
the following fuzz-y relationa.1 equation : 

6(Z) = F ' ( ~ ) V  {?(,i ')+pG(ij(Z))} A ~ ~ ( ~ $ 1  for SE F ( E ) .  

Proof. Let 9 E .F(E). Fro111 (1.1) a8ild Leillil~a 2.2, we have 

= ~ ' ( 9 )  V if(.!?) + /36,(@(5))} A c2(9)  for 9 E  F ( E ) .  

Therefore 6, satisfies (2 .3) .  Siiliilarly, we can check that 6" is a solution of (2 .3 ) .  



If G, 6 E F(E : R) are solutioils of (2.2), then by Lemnla 2.4 we have 

d(ii,iu) = d(E1 V {?+ Pii(')} A E2, E' V {?+ Piu(Q)} A z2) 
5 d(? + PC(@), : + Pr&(i)) 
5 d(Pii(G),PG(G)) 

= Pd(G(G),G(G)) 

5 pd(u, iu). 

So we obtain F = 6 since 0 < /? < 1. Thus (2.3) has a unique solution. Therefore we get 

ii, = ii*, and it is a uniclue solutioii of (2.3). 

3 A Minrnax Theorem 

I11 this section, we discuss the fuzzy expectation of fuzzy rewards. From iiow on, we 

fix ail initial fuzzy state s" E F ( E ) .  Defiiie a level a* by 

Then, fro111 the defiilitioil (N2) of fuzzy numbers, we have 

We prove that a* equals to the optimal expected va,lue. 

Lemma 3.1. Let 6~ Fn(R) and a E [ O , l ] .  

(i) 1f @(&) > a ,  then ij; 5 &:. 

(ii) Iftj; 5 6;; then E(6) > a. 

Proof. (i) Let a satisfy I!?(&) > a. By the definition of the fuzzy expectation @(&), we 

have 

j Q n  zo # 0. 

Since j is ~loildecrea~siilg and 6 E Fn(R), it is ecluivaleiit to 

(ii) Let 

This is equivalent to 

Therefore &(ti) 2 a. Thus we get this lemma. 



Theorem 3.1, It holds that 
a* = E(fi(5)). 

Proof. Let a satisfy 0 5 a < &(G(S)). By Lemina 3.1(i), we have 

Therefore a 5 a*.  Thus, we get a* 2 E ( ~ ( 5 ) ) .  
Next, let a < a*.  Theii we liave 

By Leinina 3.l(ii), a 5 E(G(S)). Thus we get a* 5 E(i?(5)). Therefore we obtain (3.3). 

We obtain the following iniiii~iax tl~eorem regrading fuzzy expected values. 

Tl~eorem 3.2. It holds that 

J(fi(5)) = sup inf E(i i( ,+n1' ,m2) = inf sup E ( i i ( ~ ,  m', rn2)). 
m1>0m220 - nx2 20 ml20 

E(fi(5)) = sup E(ii(.?, m', *)) = inf E(c(.G', *, m2)).  
m1 20 nz2 20 

Proof. Firstly, we prove thak 

E(G(s)) = sup E(G(s, m', *)I. 
m120 

From Theorem 2.2, we liave 

G(sl,m,*): 5 &(S): = G(S):. for all a E [ O , l ]  and rn > 0. 

Since ij is nondecreasing, by the definition of the fuzzy expectations E(i?(S)) and E(G(s, m, *)), 
we get 

E ) )  ( ( m * ) ) .  for all m 2 0. 

If a* = 0, then (3.6) is trivial from (3.7) and Theorem 3.1. We assume a* > 0. Let t be 
an arbitrary real number such tliat 0 < t < a*.  Let a satisfy a* - t < a < a*.  Froin the 
definition of G*(.?), there exists a subseclueiice {m') such that 

Since 

there exists mb such tliat 



Froin Leinma 3.1 (ii), we have 

Since t is arbitrary, we get 
sup &(ii(S, m, *)) 2 a*. 
nz>O 

Together with (3.7) and Theorein 3.1, we obtain (3.6). This iiliplies the left equality in 
(3.5). 

Next we prove that 

E(ii(5, ml,  *)) = i f  ( ( s  m nlin ( ( S  m m2)) for finite m1 ) 0. 
m2>0 1) = m2:0<m2<ml+l 

(3.8) 
Fix any m1 2 0. We have 

ii(S,ml,*): 5 ii(S,ml,m):. for all a E [ O , l ]  and rn 2 0. 

Since is nondecreasing, by the definition of the fuzzy expectatioil E(ii(S, m', *)) and 
E(G(S, rnl, m)) ,  we get 

E(G(s, ml,  *)) 5 E(~L(s, ml,  m)).  for all rn 2 O. (3.9) 

If ,!?(ii(S, ml, *)) = 1, then (3.8) is trivial. We assuine &(ii(S, ml, *)) < 1. Let t be an 
arbitrary real nuiilber s11c11 thak 0 < t < 1 - ,!?(ii(S, ml, *)). Let a satisfy E ( i i ( ~ ,  ml, *)) < 
n < E(ii(S, ml, *)) + t. From the definition of ii(S, ml,  *), there exists m' such that 

Then we have 
G(S, ml, m'): = C(S, ml,  *): < ij,. 

By Lenllna 3.1 (i), 
E ( i i ( ~ ,  ml, m')) 5 a < &(i i (~ ,ml ,  *)) + t. 

Since 6 is arbitrary, we get 

min &'(ii(S, ml,  m)) 5 E(ii(S, rn' , *)). 
nz:OLnzLml+l 

Together with (3.9) and Theorem 3.1, we obta.in (3.8). Fro111 (3.6) and (3.8), we get the 
left equalities in (3.4) sad (3.5). We can also check the right equalities in (3.4) and (3.5) 
similarly. Thus we get this theorem. 



4 Optimal stopping times 

In this section, we give optilnal stopping times for Problem 1 .I.  The following leinrna 
is trivial fro111 the definitions. 

Lemma 4.1. Let ci,, ii E Fn(R) (n = 0,1 ,2 , . . . ) .  Then; for 0 E [0,1], 

(i) 

(ii) 

(iii ) 
(@&I,+ = B6,+, 

where &,, denotes the a-cut of iin. 

We define times 
r1 := inf{m E N 1 6(grn);* = E'(S~):*}, 

r2 := inf{m E N I 6(gnz);. = E2(i?,);.}, 

where the infimum of the empty set is uilderstood to be +m. We check the following 
proposition by the standard 111ethoc1 in the theory of zero-sum sequelltial games. 

Proposition 4.1. If T' a.nd r2 anre finite; then 

Proof. From Theorem 2.2 and Lei11rna.s 2.2 arnd 4.1, for m 2 0, we have 



This yields 

m 

> CPni.(ijn(s")):* +Pm+'fi(~+'($)):* f o r m  < r2, 
n=O 

and 

nz 

5 C Pni(ijn(g)):. +,8mf1fi(T+1(g)):* for m < rl. 
n=O 

Therefore, for all m < lnin{rl, r2), 

Therefore, we obtain 

Next we consider the two cases r1 < r2 and r1 2 r 2 .  
Case r1 < r2 : If m 2 r2, then, by (4.4) and (4.7) we have 



If rn < T ~ ,  then, by (4.4) and (4.7) we have 

Therefore we get 
G(9, T~):* = ~ ( 5 ,  *, T~):* if T' < T - ~ ~  

Case T' 2 T~ : Checking the case T' 2 T~ similarly, we also have 

Froiii (4.8) and (4.9), we obtain 

2 + C ( S ,  T1, T2);* = G(S, *, 7 )@*.  

Using (4.5) and (4.7), similarly we have 

Therefore, (4.6), (4.10) and (4.11) complete the proof. CI 

Theorem 4.1. If a.nd r2 are finite, then r1 is player 1's optimal stopping time and 
T~ is player 2's optimal stopping time for Problem 1.1. Further, (T  l ,  T ~ )  is a saddle point 

in the class of all pairs of finite stopping times : 

S := ( (ml ,  m2) I m1 are player 1 's stopping times and rn2 are pla-yer 2's stopping times } . 

Namely, it holds that 

( (  m T ) )  ( (  T T ) )  = ( 6 ) )  ( (  T I ) )  for all (ml, m2)  E S. 
(4.12) 

Proof. Froln Proposition 4.1 and (3.2), we have 



By Lemina 3.1 (ii) , we have 
&(ii(.?, r17 *)) > a*. 

By Theorem 3.1 and (3.5), we get 

&(G(s, rl ,  *)) = E(G(S)) = a*. 

inf &(ii(S, rl, m2)) = k(ii(S, r l ,  *)) = & ( ( S ) ) .  
m2 20 

Similarly, we obtain 

sup fi(ii(9, ml ,  ?)) = &(ii(S, *, r2)) = ~ ( G ( s ) ) .  (4.14) 
m1 >0 

Thus, (4.13) and (4.14) imply (4.12). Therefore, r1 is player 1's optimal stopping time 
and r2 is player 2's optimal stopping time for Problem 1.1. The proof is completed. 

5 A numerical example 

We consider a nuinerical exainple with a one-dimensional st ate space. Take the st ate 
space E := [-2,2] and the discount rate ,8 := 0.5. Give a fuzzy relation by 

We take an initial fuzzy state by 

and we give a sequence of the fuzzy states {Sn)g0 by (1.1). Further, in the same way as 
[15, 81, we give fuzzy rela0tions 

E ~ ( x , z )  = max , z E E, z > 0, 

In a way siinilar to (1.2), we define a runlling fuzzy reward and a terminal fuzzy reward 

by 
F(q (2) := sup min{s"(z), F(x, z ) } ,  z > 0 for .? E .F(E), 

xEE 



and a fuzzy goal by 
1 

IIFII 1 sup q5); = ~(1[-2,2]); 1 20 < m9 
;CF(E) 

where 1[-2,21 is the classical indicator functioil of [-2,2]. Si~nilarly 1 1  Ell 5 3.2 < 00. 

Therefore, we can calculate fuzzy rewards G(S,  ml,  m2)  (ml, rn2 2 0). Froni Fig. 5.1, in 
this example we find that the opti~nal fuzzy expected value is given by 

at an optimal payoff 
x* = 1.49033. 

Then, players' optimal stopping time are r' = r2 = 0. 

I 
I 
I 
I 
I 
I 
D 
I 
I 
I 
I 
I 
1 

0 1 
z 

-2 -1 z* 2 

Fig. 5.1. The fuzzy rewards G(5, ml,  m2)  (inin{ml, m2 j 5 1) and the fuzzy goal 6. 
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