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Abstract : This paper deals with an optimal stopping game in dynamic fuzzy
systems with fuzzy rewards. We give a fuzzy relational equation, whose unique
solution is the optimal discounted fuzzy reward. This paper estimates discounted
fuzzy rewards, by introducing a fuzzy expectation with a density given by fuzzy
goals. We show the existence of the value of the game, by giving a minimax theorem
for fuzzy expected values.
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1 Introduction

We, in the previous papers [8, 14, 15, 16], defined a dynamic fuzzy system using a fuzzy
relation and gave limit theorems for the transition of fuzzy states of the system under the
contractive and non-expansive properties of of the fuzzy relation. Recently, Kurano et
al. [9] also introduced fuzzy rewards for the system and discussed fuzzy decision processes
for total fuzzy rewards with respect to a partial order, which is called the fuzzy max
order. In [9], we defined fuzzy rewards by maps from fuzzy states to fuzzy numbers. The
definition is a natural extension of the classical rewards which are given by real valued
functions on a crisp state space (see [5]).

Non-cooperative two-person zero-sum fuzzy games was studied by [3, 12] in the fram-
work of fuzzy matrix games. This paper deals with a zero-sum stopping game in the
dynamic fuzzy system with fuzzy rewards. We estimate discounted fuzzy rewards by a
fuzzy expectation with a density given by fuzzy goals on the basis of the concept of deci-
sion making in Bellman and Zadeh [1]. In Section 3, this paper gives a minimax theorem
regarding fuzzy expected values in the game. In Section 2, we prove that the optimal
fuzzy reward is a unique solution of a fuzzy relational equation, and, in Section 4, we
give the both player’s optimal stopping time and show that it is a saddle point in the
class of finite stopping times. In Section 5, a numerical example is given to illustrate our
theoretical idea.

Let E be a metric space. Let F(E) be the set of all fuzzy sets §: £ ~— [0,1] which are
upper semi-continuous and satisfy sup,cp 8(z) = 1. Let §: £/ x £/ + [0,1] be a continuous
fuzzy relation satisfying ¢(z,-) € F(E) (¢ € E). Let § € F(F). In this paper, we deal
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with a sequence of fuzzy states {3,}52, defined by the following dynamic fuzzy system
(see Kurano et al. [8]) :

5:=5§ and $,41(y) :=supmin{s,(2), {(z,y)}, y€ L, n=0,1,2,---. (1.1)
z€ER
For simplicity, we define a map ¢: F(E) — F(E) as follows. For any § € F(E),
q(3)(y) = sup min{3(z), §(z,y)}, y€ L. (1.2)

Then, (1.1) is represented by

P(3):=5 and §(8):= ¢ '(3), n=12,--. (1.3)

Firstly, we describe fuzzy numbers in order to define fuzzy rewards. Let R be the set
of all real numbers. For a fuzzy set @ on R and « € [0, 1], the a-cut @, is defined by

i, :={z€R|a(z) > a} (e €(0,1]) and a:=cl{ze€R|a(z) >0},

where cl denotes the closure of a set (for the details, refer to Novak [10] and Zadeh [17]).
Then, a fuzzy set @ on R is called a fuzzy number if @ satisfies the following conditions

(N1) — (N3) :

(N1) The a-cut a, is a bounded closed subinterval of R for a € [0,1]. We represent it by

la, at].

(N2) Narca ot = do for o > 0.
(N3) dis normal, i.e., sup g (z) = 1.

We denote the set of all fuzzy numbers by F,,(R), and denote the set of all bounded closed
subintervals of R by C(R).

An addition and a scalar multiplication for nonnegative fuzzy numbers are defined as
follows (for example, see [6]) : For a,b € F,(R4) and A > 0, the addition a+ b of @ and
b and the scalar multiplication Ad of A and @ are fuzzy numbers given by

(a+b)o = [a5 + b, +5.), a€lo1],
(Ad)o = [Na;, Aat], € [0,1].
We define a partial order = on F,(Ry) : Let d,b € F (Ry).

> b means that d; >b, and a > b for all o € [0, 1].

<N

Then (F,.(R4), =) becomes a lattice ([2]), and > is called the fuzzy max order. Further,
for a,b € F,(R,), we define the maximum @V b of @and b with respect to the order >
by a fuzzy number such that

(@V b), = [max{az,b,}, max{a}, a}], a € [0,1].
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Next, we denote by F(E : R) the family of all maps f : F(E) — F,(R). This paper
calls f € F(E : R) a fuzzy-number-valued function on F(E). We introduce an addition,
a scalar multiplication and a maximum on F(E : R) as follows : For f,h € F(E : R)
and A > 0, the addition ]? + hof f and h, the scalar multiplication M of A and f, and the
maximum f V h of f and h are given by

(f+1)(3):=J(3) +h(3), §eF(EB);

(M)(3) = Af(3), A>0, 5e F(E);

(FVh)3):=F(3 VA3, §eF(E).

Let N := {0,1,2,---} be a time space. Let 3 be a constant satisfying 0 < # < 1, where
 means a discount rate. Let 7 &', ¢ € F(E : R) be bounded in the sense that ||7,
|I&*|| and ||é*|| are finite, where the norm || - || is given by (2.2) in Section 2. We assume
that ¢'(3) < &°(5) <X &*(3) for all § € F(E). For a sequence of fuzzy states {3,}°2, defined
by (1.1), #(8,) means a running fuzzy reward at a state 5, and 5i(§n) mean terminal fuzzy
rewards for player i(= 1, 2) respectively. Then, for player 1’s stopping times m' and player
2

2’s m?, we define discounted fuzzy rewards for player 1, which are losses for player 2, by

min{m!,m?}-1
WEmhm?) = Y BrHE) + R G mt m?) for 5€ F(E),  (1.4)

n=0
where &(3, m', m?) is defined by

& (1) if mbt < m?,
&3mt,m?) =1 &@Gu) if mt=m?, (1.5)
(3,2) if m! > m?,

we put the sum Y0_0 3%(3,) := Loy € Fa(R). Then, 4(-,m',m?) € F(E : R) is trivial
when m! or m? is finite, and further we can check it by Yoshida et al. [15, Theorem 3.2]
when m! = m? = co. This type of rewards in Markov chains are well-known and first
studied by Dynkin [5]. Kurano et al. [9] also studied this type of fuzzy rewards in fuzzy
decision processes. This paper discusses the optimal stopping game for (1.4) in dynamic
fuzzy systems (1.1). Put a fuzzy goal by a fuzzy number § : R + [0, 1] which is an upper
semi-continuous and nondecreasing function with §(0) = 0 and lim,_.« §(z) = 1. Then

we note that g, = [§,,00) for a € [0,1]. We define fuzzy expected values by

E (ﬁ(g, ml,m2)> = ]é{ a(3,m*, m?)(z) dP(z) = sup min{a(3, m*, m?)(z),§(z)} (1.6)
zeR

for m',m? € N U {oo}, where P is the possibility measure generated by the density ¢

and ][ dP denotes Sugeno integral ([11, 13]). In this paper, we consider the following

optimal stopping game.



Problem 1.1. Maximize (1.6) with respect to player 1’s stopping times m' and minimize
2

(1.6) with respect to player 2’s stopping times m?.

The fuzzy expectation implies the degree of satisfaction of discounted fuzzy rewards
for player 1, and the fuzzy goal §(z) means a kind of utility function for fuzzy payoffs =
in (1.6) (see Sakawa and Nishizaki [12]).

From (1.4), we can define an optimal fuzzy reward with respect to the fuzzy max order
> as follows :

(3, *,m*) = \/ a(5m',m?) forse F(E), (1.7)
ml1>0 .

a(5,m*, %) = A u(s,m',m?) for §€ F(E), (1.8)
m2>0

where V and A mean the supremum and the infimum with respect to the fuzzy max order

> respectively. Then, we note that (3, *,m?), u(3,m!,x) € F(E : R) for finite m!, m?.

Further we put

7(3) == A (3 m?) for e F(E), (1.9)
m2>0
5.(3) = \/ a(5,m',*) for i€ F(E). (1.10)
m1>0
Then, it is trivial that
¢3) 2 w(3) X T(3) 2 (9 (1.11)

2 Optimal fuzzy rewards

In this section, we give a fuzzy relational equation to characterize the optimal fuzzy

rewards 9, and 7.
Lemma 2.1. Let [a,,b,],[a,0] € C(R) (n=0,1,2,---). Then
()
Jé] (\/ [an,bn]) = \/ Blan, by] if sup b, < oo,

n>0 n20

B (/\ [anabn]) = /\ /B[anabn] if ig%an > —00;



8 (Z[an,m> =3 Blanb] i Y4, > —00 and b, < oo

(iii) |
\/ ([an, bn] + [a,b]) = (\/ [an,bn]) + [a, b] if sup b, < oo,

n>0 n>0 n20
N (lan, b2] + [a,0]) = | A lan, ] | + [a, b] if inf a, > —o0,
n>0 n>0 n20

where we define \/,,5o[an, bs] := [supn>0 Gy SUP ;0 brl, Ansoltn, ba] = [infr>0 an,inf,>0 b,]

and Zn>0[a’n7 n] = [Zn>0 Uy 2on>0 bn].

Proof. They are trivial. O

Lemma 2.2. Let f,,h€ F(E:R) (n=0,1,2,---). Then, for § € F(E),
(i)

A (\/ .fn(§)> =\ Bf.(3) if ig%.fn(é‘?)g < 00

n>0

g ( .mg)) = \ B3 if inf Fu(8)y > —oo;
n>0 n>0 -

5 (zfn@)) LSS i a3 > o and S < oo

n>0 n>0 n>0

n>0

\ (Fa(8) + h(3)) = (\/ fn(g)) +h(3) if sup [u(3)F < oo;

(/\ ) +h(3) if igffn(sjg > —oo.
>0 n>0

3
v
y=>
N
i
3
—~
w
SN—
v

Proof. They are trivial, by applying Lemma 2.1 for their a-cuts. O

Next, we introduce a distance between fuzzy-number-valued functions on F(FE). We

denote the Hausdorff metric on C(R) by é (see [7]):

§([a, b1, [az, ba]) := max{|as — az|, |b1 — be|} for [ay, b1], [az, b2] € C(R).



Then, we define a metric on F(E : R) as follows :

d(f,h) = sup  6(f(8)a h(3)s) for f.h e F(E:R). (2.1)

o€l0,1],3€F (E)

Further, we define a norm || - || on F(E : R) by

Ifll:=d(f, Iy) =  sup  6(f(3)a,{0}) for f € F(E:R), (2.2)

a€l0,1],5€ F(E)
where we put [0y € F(E : R) by
Ii0}(3) := 0 (the crisp number zero) for § € F(E).
Then the following elementary results can be easily checked (c.f. [4]).

Lemma 2.3. Let {(Zl, b1]7 [Cla dl]) [a~27 62]7 [027 d2] € C(R) Then

(i) 8([a1,b1] V [e1, di], [ag, ba] V [es, d5]) < max(8([ay, by], [az, ba]), 8([c1, du], [c2, da]));
[a1, b1] A [er, di], [az, b2] A [e2, d2]) < max(6([ar, ba], [az, ba]), 8([c1, di], [ea, da]));

(
(
(ii) 6([a1, br] + [e1, di], [ag, by] + [ea, da]) < 6([ag, b1, [az, ba]) + 6([er, du], [c2, da));
(ii1) 6(B[a, b1, Bler, di]) = Bé([ar, bi], [c1, du]).

>

Lemma 2.4. Let [, [, hy, hy € F(E: R). Then

(1) d(jfl Y h},]f-z V hy) < max(d(f;

(iii) d(ﬁfh ﬂ]%) = ﬁd(fhfz);
(IV) d(fl((j)u.f2((j)) S d(.fhf?)
Proof. (i) — (iii) are trivial from the definition (2.1) and Lemma 2.3. (iv) Let 5§ € F(E).

) —
Since ¢(8) € F(F), we have

AN o) < swp S oo fol)e)
a€[0,1],5 €F(E)
= d(fl?fZ) for all o € [()’ 1]’ = f(E)
This yields (iv). O
We obtain the following theorems for the optimal fuzzy rewards in (1.9) and (1.10).

Theorem 2.1. It holds that 4,7 € F(E : R).
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Proof. Let s € F(F). From Lemmas 2.1 and 2.3 and (1.5), for m’ < m” and a € [0, 1],

we have

) ( \/ ﬂ(g, m,*)a, \/ ﬁ(g’ 7n’*)a>

o<m<m! o<m<m/!

< 8 \/ ﬁ(g,m,*)a,ﬂ(g,m',*)a)
m’'<m<m?’

<  max 6( N wEm,m*)., A 12(§,m’,m2)a)

! "
mismsm m2>0 m?2 >0
< max max 6 (ﬁ(§, m,m?)y, (3, m',mQ)a)
m/<m<m!" 0<m2<m’+1
min{m,m?}-1 min{m’,m?}-1
< max max ¢ "Hq (s Z "Hq (s
< e, me 5l0Y EHPOL. Y BHPG),
: 2V vy n 2 H / 2V o/ a
+ max max ¢ (ﬂm‘“{m’m YE(5,m, m?),, ittt s, m',mz)a)
m!<m<m” 0<m2<m’ 41
<

min{m,m?}-1
) Ny sy 0
m’gi?é(m” qu’rglgn)-fu_}_l (n:mjn{zm’ m?) /6 7‘((] (5))a7 { }>

min{m,m?2} ~/ ~ 2 min{m’m?} xrx 7 2
g 088 (B 1) B Y )

< S BE(HT(E) (0)) 42 sup sup S5 m, m?),, {0})

n=m/! m2m' m?>m!
il 7
< 20 A+ 28 el
n=m’'
where ||&| := max{||&°||,]|¢"]|, |¢*]|}. By letting m” — oo, we obtain

) (f)*(g)a, \ ﬁ(§,m,*)a) <e(m') forallm'>1, o €l0,1],

0<m<m!

where

e(m') = i BRI+ 28™ ||| for m’ > 1.

n=m'

By Lemma 2.3(i), we have



Since €(m’) is independent of o and o and we have (3, m,*) € F,(R) for finite m, this
yields
lim 6(0(8)a, Ue(8)ar) < 2¢(m’) forallm’ > 1,a > 0.

a'Ta
Therefore
lim 8(9.(8) s, 9(8)ar) = 0.

a'Ta
Since 4(3)o C Bu(8)or holds trivially for o/ < «, we obtain #,(5) € F,(R) for all § € F(E),
using [8, Lemma 3]. Thus we get o, € F(E : R). Similarly we can check o € F(F : R).
Therefore we obtain this theorem. O

For @, by, by € F.(R) such that by < by, it is trivial that
Then, we write it simply by

by V @A by.

Theorem 2.2. [t holds that v, = v*. We write it by 0. Then, v is a unique solution of
the following fuzzy relational equation :

3(8) = & (3) V {7(8) + B3(§(8)} A E(5) for §€ F(E). (2.3)

Proof. Let s € F(F). From (1.1) and Lemma 2.2, we have

min{m?!,m?}-1 ' -
() =V A{ > S+ g ’m}é(iml»mz)}
mi>0m2>0 n=0

min{m!,m?}-1

= A #50,mH)v \/ /\{ 3 B”f(én)+ﬁ“ﬁ“{ml’m?}6(§,ml,m2)}

m2>0 mi>1m?2>0 n=0

min{m!,m?}—-1
- 2@V Y A{ > ﬁ”'f“(gn)+ﬂm’“{ml’m2}6(§,m1,m2)}

ml>1 m2>0 n=0

min{m?!,m?} -1
= d@Ev YV {/\ { 2 5”?*(«%)+ﬂmi“{ml’mz}(?(gamlvmz)}Aé(gvmlao)}

mi>1 {m2>1 n=0

min{m?!,m?}~1 )
= d@EVv VA { 2 5nf(§n)+ﬁm’n{ml’m2}5(5>ml,7n2)}/\52(5)

mi>1m2>1 n=0

n=0

min{m?!,m2}-1
= &3V {f’(g) +8V A { Y. BiE) + /J’mi"{ml’mz}é(é(-@,mlﬂ’ﬂ?)}} A E(3)

ml>0m?2>0

= &(3) V{#H(3) + Bu.(q(3)} A E(5) for 5e F(E).
Therefore o, satisfies (2.3). Similarly, we can check that * is a solution of (2.3).
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If o, w e F(E : R) are solutions of (2.2), then by Lemma 2.4 we have

d(%, o)

IACIA
S u

IA
= ™
A=
=
&

So we obtain v = w since 0 < 8 < 1. Thus (2.3) has a unique solution. Therefore we get

. = ¥, and it is a unique solution of (2.3). O

3 A Minmax Theorem

In this section, we discuss the fuzzy expectation of fuzzy rewards. From now on, we
fix an initial fuzzy state § € F(E). Define a level o by

o :=sup{a € [0,1]| g5 < 9(3)}. (3.1)
Then, from the definition (N2) of fuzzy numbers, we have

G < (3)t. (3.2)

We prove that o* equals to the optimal expected value.
Lemma 3.1. Let d € F,(R) and o € [0, 1].
(i) If E(d@) > a, then §3 < af.

(ii) If §5 < @, then E(d) > a.

Proof. (i) Let a satisfy E(d) > a. By the definition of the fuzzy expectation E(d), we

have
GoNay # 0.

Since ¢ is nondecreasing and @ € F,(R), it is equivalent to
gs <al.
(ii) Let
ga <3

This is equivalent to
5o 03 # 0.

Therefore E(d) > «. Thus we get this lemma. O




Theorem 3.1. It holds that
a* = E(1(3)). (3.3)

Proof. Let a satisfy 0 < oo < E(#(5)). By Lemma 3.1(i), we have
ga <37

Therefore o < o*. Thus, we get o™ > E(i(3)).
Next, let o < a*. Then we have

g5 < (35

By Lemma 3.1(ii), o < E(#(8)). Thus we get o* < E(#(3)). Therefore we obtain (3.3).
a

We obtain the following minmax theorem regrading fuzzy expected values.

Theorem 3.2. It holds that

E(5(3)) = sup inf E(i(5,m',m?) = inf sup E(i(35m' m?)). (3.4)
mlzomZZO m220m120
E(5(3)) = sup E(i(5,m',+)) = inf E(d(3,%,m?)). (3.5)
mi>0 m2>0

Proof. Firstly, we prove that

From Theorem 2.2, we have
a(3,m,*)t < 5,(3)F =937 forall ae0,1] and m > 0.

Since §is nondecreasing, by the definition of the fuzzy expectations E(#(8)) and E(i(8,m, x)),
we get

E(%(8)) > E(u(3,m,*)). for all m > 0. (3.7)

If o* = 0, then (3.6) is trivial from (3.7) and Theorem 3.1. We assume a* > 0. Let ¢ be
an arbitrary real number such that 0 < € < o*. Let a satisfy a* — ¢ < o < o*. From the
definition of .(8), there exists a subsequence {m'} such that

(5 m' %) 1T 5.5 =58 asm — 0.

Since

there exists my such that



From Lemma 3.1 (ii), we have
E(u(3,m), %)) > a>a" — ¢

Since € is arbitrary, we get

sup E(i(3,m,*)) > o™
m>0

Together with (3.7) and Theorem 3.1, we obtain (3.6). This implies the left equality in
(3.5).
Next we prove that

Prars 1 e P(ars 12V : Plsix 12 1
E(u(s,m", %)) = TiggoE(u(s,m ,m”)) = mz:OSl}ﬂl%I%ml+lE u(s,m",m*)) for finite m~ > 0.
(3.8)

Fix any m! > 0. We have

a(3,m', *)F < a(8,m',m)r. forall « €[0,1] and m > 0.

o

Since ¢ is nondecreasing, by the definition of the fuzzy expectation E(ﬁ(g, m', %)) and
E(a(3,m',m)), we get

E(u(3,m', %)) < E(ﬂ(§, m',m)). for all m > 0. (3.9)

If E(i(5,m", %)) = 1, then (3.8) is trivial. We assume E(d(3,m!, %)) < 1. Let ¢ be an
arbitrary real number such that 0 < ¢ < 1 — E(i(3,m!, %)). Let o satisty E((3,m', %)) <
a< E(ﬁ(§, m', %)) + ¢. From the definition of (s, m', ), there exists m’ such that

ﬁ(§7 ml) m/);- - ﬁ(gv mla *)I
Then we have
i(s,m',m )t =asmt . <g3

By Lemma 3.1(i),

Since € is arbitrary, we get

m:03172i§211+1 E(ﬂ(§7 mlv m)) < E(ﬁ(§, ml, *))

Together with (3.9) and Theorem 3.1, we obtain (3.8). From (3.6) and (3.8), we get the
left equalities in (3.4) and (3.5). We can also check the right equalities in (3.4) and (3.5)
similarly. Thus we get this theorem. O
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4 Optimal stopping times
In this section, we give optimal stopping times for Problem 1.1. The following lemma,

is trivial from the definitions.

Lemma 4.1. Let d,,d € F,(R) (n =0,1,2,---). Then, for a € [0,1],

n>0

(Z dn) =Dy

(i)

where a, , denotes the a-cut of a,.

We define times
= inf{m € N | #(3n)} = & ()i ), (4.1)

7% =1inf{m € N | #(3,,)}. = &(3.)1.}, (4.2)
where the infimum of the empty set is understood to be +oo. We check the following
proposition by the standard method in the theory of zero-sum sequential games.
Proposition 4.1. If ' and 72 are finite, then

5(8)F. = (37!

N O = a(s 7 #)E = (8 *, ). (4.3)

Proof. From Theorem 2.2 and Lemmas 2.2 and 4.1, for m > 0, we have

S B HTEE + 87 )

m—1

= L AHTE)) + BLE(T(3)) VART™(9) + Bu@ T (3)} A E(§(9) 12

= 3 HPE)E

+ min{max{B™ " (7" (3))%., {6"H 7" (3))X. + ™ o( T ()1}, B (77 (3) )

o

12



This yields

Y BT (E) 5 + BT (3))3

= ma{{ S i@+ e L e + o @)
> iﬂ“f@“@));+ﬁm+1ﬁ<ém“<§>>z:. for m < 72 (4.4
and -
O + )
- mn{{iﬁ P+ s @ b S e e
< S EHPENE + BT form <7 (45)

Therefore, for all m < min{r!, 72},

m—1

Z{)ﬁ”f(én@ B *—Zﬁ” 7 (3)3 + 8" (7 (3) e (4.6)

Therefore, we obtain

min{r!,72}-1

D = X FHTEN A )
n=0
min{r!,7?}-1

= X HTEE A )

n=0

= (3, . (4.7)

Next we consider the two cases 7! < 72 and 7! > 72
Case 7! < 72 : If m > 72, then, by (4.4) and (4.7) we have

min{r!,72}-1 ) ) )
a(s, )k = S G (E) D+ g (e (),
n=0
min{m,72}~1 )
Nl an min{m,72} ~/ ~min{m = ~
S BHG(I))E 4 gt (gt (g) E

n=0

Y,

min{m,72} -1

= X FHPE + A A @),

min{m,72}-1

> X FHTE)E TS m )

n=0

= (& m, %)t
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If m < 7%, then, by (4.4) and (4.7) we have

min{r!,72}-1
as, ) = S B HG G A A i (g,
n=0

min{m,72}-1

> Y BHTE)E + gt ()
n=0
min{m,72}-1
Sl min{m,72} x1/ ~»min{m,72} [ »
> X BHTE)L g T )
n=0
min{m,72}-1
— Z ﬁnT(WL(g)) ﬂmm{mr } (s m,TQ):*
n=0
= (3 m, 7).
Therefore we get
(8, A = a(5 x4 if < 2 (4.8)

Case 71 > 72 : Checking the case 7! > 77 similarly, we also have
a5 ) = a(E ) i > (4.9)
From (4.8) and (4.9), we obtain
a(5, 7, T = a5+, 7). (4.10)
Using (4.5) and (4.7), similarly we have
a(3, 7 ) h = (s ). (4.11)
Therefore, (4.6), (4.10) and (4.11) complete the proof. O

Theorem 4.1. If 7' and 72 are finite, then 7' is player 1’s optimal stopping time and
72 is player 2’s optimal stopping time for Problem 1.1. Further, (1!, 7%) is a saddle point
in the class of all pairs of finite stopping times :

S := {(m',m?) | m! are player 1’s stopping times and m? are player 2’s stopping times }.
Namely, it holds that

E(i(5,m*, %) < E(i(3 7', 72) = E(#(8)) < E(i(57",m?)) for all (m',m?) € S.
(4.12)

Proof. From Proposition 4.1 and (3.2), we have

o < (st %)t
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By Lemma 3.1(ii), we have

nggé(a(gﬁl,mm = E(u(3, 7', %)) = E(i(3)). (4.13)
Similarly, we obtain
:}foﬁ(a(g,ml,#)) = E(u(3, *,1%)) = E(i(3)). (4.14)

Thus, (4.13) and (4.14) imply (4.12). Therefore, 7! is player 1’s optimal stopping time
and 72 is player 2’s optimal stopping time for Problem 1.1. The proof is completed. O

5 A numerical example

We consider a numerical example with a one-dimensional state space. Take the state
space F := [—2,2] and the discount rate § := 0.5. Give a fuzzy relation by

§(z,y) = max{l — 3|y — 0.52],0}, z,y € E.
We take an initial fuzzy state by
S5(2z) = 8(z) = max{1l — 1.5]z|,0}, z € F,

and we give a sequence of the fuzzy states {5,}52, by (1.1). Further, in the same way as
[15, 8], we give fuzzy relations

1 olsz
f(%z):{llnax{l 2|2 11,0}, $€E,Zi()’
{z}> xe kK, z=0,

1
61(33,2):max{1—~2—|z—3:—1[,0}, reF, 2>0,
-0 1
& (z,z) = max 1—5[2——3:—1.1],0 , TEE, 2>0,

1
(2, 2) :max{l—-ilz—m—l.ﬂ,()}, zekE, z>0.

In a way similar to (1.2), we define a running fuzzy reward and a terminal fuzzy reward
by

7(3)(z) := ilég min{s(z), Hz,2)}, z2>0 forse F(E),
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'(3)(2) := supmin{(z), &(z,2)}, 2>0 forse F(E) i=0,1,2,
z€E

R

and a fuzzy goal by

Then we have
17l < sup /8)g = H(1o)f <20 < oo,
SEF(E)

where 1;_; 3 is the classical indicator function of [—2,2]. Similarly ||¢]] < 3.2 < oo.
Therefore, we can calculate fuzzy rewards (s, m',m?) (m!,m? > 0). From Fig. 5.1, in

this example we find that the optimal fuzzy expected value is given by
o* = E{#(3)} ~ 0.81613.

at an optimal payoff
z" 2 1.49033.

Then, players’ optimal stopping time are 7! = 72 = 0.

@

z

N e o o o - - o o - ]

-2 -1 0 1 * 2

Fig. 5.1. The fuzzy rewards (s, m',m*) (min{m?!,m?} < 1) and the fuzzy goal §.
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