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1. Introduction and l~otations 

Limit theorems of a sequence of fuzzy sets defined successively by f~izzy I-ela,tions are 

first studied by Belllnan and Zacleh [I]. Icurano et al. [3], under a colltraction condition, 

studied the limiting behavior of fuzzy states defined by the dynamic fuzzy systeln with 

a compact space. A notion of recurrent sets for the dyl~anric fuzzy system is given by 

Yoshida [7]. This paper analyses the cyclic behavior of the dyilalnic fuzzy systeln. 

In Section 2, we show the existence of cyclic classes, which are ilested with respect to 
levels, for recurrent sets in the dynanlic fuzzy system, using the methods of Chung 121. In 
Section 3, we show a correspondence between a period of the cyclic classes a.nd a li~liiti~lg 

possibility of the fuzzy transition. By the use of the result, we give an ergoclic theorem 
which is different from the ergodicity in the classical Marltov chains. In the dynaniic 

fuzzy system, the limit of the fuzzy transition equals to one of a finite/counta.ble number 

of levels, and the states are classified into cyclic classes nested with respect to the levels. 

In Section 4, a numerical example is given to illustrate our idea. 

2. Cyclic classes for dynamic fuzzy systems 

Let a state space E be a colnplete lnetric space. Let a time space by N := {O, 1 ,2,  . -1. 
Let ij be an upper semi-continuous fuzzy relation 011 E x E satisfying the following nor- 
mality condition : 

sup ~ ( x , Y )  = 1 ( Y  E E )  and s u p l j ( s , y ) =  1 ( x E E ) .  
X E E  Y€E 

We denote a fuzzy set on E by its membership fullctio~l S : E H [O, 11 ([3]). I<urano et 

al. [3], under a contractive condition, studied the lilniting behavior of a sequence of fuzzy 



states {Sn}F=P=, given as follows : An initial fuzzy state go is a given fuzzy set 011 E, and 
we define 

This is called a dynamic fuzzy system (see [3, 6, 8, 91). We define a sequence of fuzzy 
relations, {r)r.o, on E x E as follows : F'or x, y E E ,  

1 if x = y, 
@ ' ( x , ~ )  := i j ( ~ , ~ ) ,  and 

-n+ 1 
q ( m ,  y) := s u p { r ( z , z )  A i j ( t , y ) }  12 = 1, 2 , 3 , .  . , 

~ E E  
(2 .2)  

where the operation A means that a A b = min{a, b) for real iluinbers a aild b. Then, 
q"(x, y) means the possibility to transit fro111 a point x to a point y at tile nth step. The 
sequence of fuzzy state {S,)T=o in (2.1) call be written as 

In this paper, we discuss the cyclic property of the fuzzy rela,tions { r ( x ,  y ) } ~ = o .  
Let x, y E E. For cu E (0,1], we write 

x y if there exists a, positive integer n such tha0t T ( x ,  y) 2 a. 

We also write 

x y  y 
if there exists a positive integer 72 such that r ( x ,  y) > 0. 

Definition 2.1. F'or a E [0, 11, we call a non-empty set A(c E) a-essential if 

x w y  and y + x  f o r a l l x , y ~ A .  
a a 

We define A&) := {y E E I x w ,  y and y x} for x E E and cu E [O, I]. A&) is 
clearly a-essential if it is not empty. Next we define 

{ positive integers n I p ( x ,  x) 2 a )  for x E E, a > 0, 
I(x,  a )  := 

{positiveintegersn I T ( x , x )  > 0 }  for x E E, a = O .  (2.4) 

Then we put d,,, := gcdI(z,  a) (z E E ,  a E [0, I]), where gcd lneans the greatest coinlnon 
divisor of a set of positive integers. We call d,,, a period of a state m with a level a. The 
following leminass hold for a E [O, 11 and z E E such thak I(N, a )  # 0. 

(i) If m,n E I(x,cu), then n 2  + n E I(x,cu). 



(ii) If m E I(r, a ) ,  then rn?a E I(x,  a) for all positive integeis n .  

Proof. ( i )  Let a > 0 and m, n E I (x ,  a ) .  Then 

4"+"(.) x) = sup{qm(x,y) A T ( y )  s ) }  2 pm(x,x) A 4n(x) x)  2 a.  
Y E E  

Therefore m+n E I(s, a )  and so (i) holds. We can easily check the case of a = 0 sitnilarly. 
(ii) is trivial from (i). 

Lemma 2 -2. A family of periods, {d,,, I a E [O, 111, has the followii~g properties : 

(i) dr1,f divides dxl, if 0 2 a' < a 5 1, 

(ii) the map a ( €  (0) 11) dlla(€ { I ,  2,3,  . . .})  is a non-decreasing left-continuous piece- 
wise cons t a,nt function. 

Proof. (i) Let a, a' satisfy 0 5 a' < a 2 1. Since I (%,  a') > I ( x ,  a), we have 

{d I d is a common devisor of I(x,  a') )  c {d I d is a common devisor of I(N, a ) } .  

Therefore dxl,l 5 dxl,, and so dxl,t divides dxl,. 
(ii) From the definition of I($, a), we have 

liln I(I, a ')  = n I(, , a ')  = I(,, a ) .  
a' TO( 

, I < a  

Therefore lim,lr, d,,,~ = d,?,. We obtain the assertion ( i i )  since the lnap a H dXl, taltes 
discretevalues. 

We prepaxe several lemmas, referring 12, Theorems 1.3.2 and 1.3.31, to show the exis- 
tence of cyclic classes for the dynamic fuzzy system. 

Lemma 2.3. I f x - + , y  and y-,I, then dxl, = d,,. 

Proof. Let a > 0. Since x-, y and y-, x, there exist positive integers m and n such 
that q"(x,y) 2 a and F ( y , x )  2 a .  If 1 E I ( x , a ) ,  then 

Therefore n + I + m E I(y, a ) .  Since P i (z ,  x)  > j l ( x ,  x) A $(z, s )  > a ,  we also have 
92 + 21 + nt E I ( y , a ) .  So we obtain 1 = (92 + 21 + nz) - (n + 1 + m) r 0 (mod dyl,) for 
all I E I (x ,  a ) .  Therefore dyl, divides dzl,. Similarly we call prove that divides dyl,. 
Thus we obtain dxl, = dyl,. We can check the case of u = 0 similarly. 

Lemma 2.4. Let a > 0 and y E A,(x). Then there exists a unique integei 72,1,1, 

(0 5 nzlYl, < dxl,) sa.tisfying the following (i) : 



(i) i f  p ( x ,  y) 2 a, then rn E nxlyl, (mod dxl,). 

(ii) Further, there exists a positive integer Nxlvl, such that , i n d x 1 a + 7 2 x 1 ~ ~ a ( m ,  y) > a for a.ll 

72 2 NXlY1,. 

Proof. ( i )  Let positive integers n a  and n satisfy T ( s , y )  2 cu and r ( . z . ,y )  2 a. Let a 

positive integer I satisfy $(y, 2) 2 a. The11 @m;mf'(z, 2) 2 (x, y ) A m )  2 a. Similarly 

r t ' ( x ,  x )  2 r ( x ,  y) l\ x) 2 a. Therefore 77% 72 (mod d,),). Thus we obtain (i). 

(ii)  Let 72; 6 I($, a )  (i = 1,2,  . , k). Froin an ele~neiltary result of liunlber theory, 

there exists such that for each positive integer n (n 2 Njl,) there exist positive 

integers ci (i = 1,2 ,  - . . , k )  satisfying 

Then, from Lemma 2.1, 

From (i) ,  there exists a positive integer 1 such that ~ d x ~ a ; m f n z ~ ~ ~ a  (2, y )  2 a. Put Nxlyla := 

Ni,, + I. For all 72 2 Nxlyl,, we obtain 

*ndx,a+nz,y,a 
Q (x,  y )  2 !pd'." (2) 2) A p d x ~ a + n x ~ y ~ "  (5.  > J  1 ) > - 01) 

where n' := n - 1 2 N;,,. Thus we get (ii). 

We also have sirnilax results for the case of a  = 0, which can be checked in the salne 
way as Lern~na 2.4. 

Corollary 2.1. Let y 6 Ao(x). Then there exists a unique integer nxlYlo (0 5 nxlylo < 
dZjo)  satisfying the followilig (i) : 

(i) i f  p"(s,y) > 0 ,  then m r nzlY,o (mod dXyo). 

(ii) Further there exists a positive integer Nx,,lo such that ~ d x ~ O + n x ~ y ~ O ( s . ,  y) > 0 for a.11 

2 N,l,lo. 

Let a E [O, 11 and N E E satisfy I(N, a )  f 0. For a positive integer cl, we put subsets 

of A,(x) by 

{y E A,(x) I p ( x ,  y) 2 a for some n satisfying 72. G rn (mod d)} if cu > 0, 
D,,,(x) := 

{y E Ao(z)  1 r ( x ,  y) > 0 for some n satisfying n ~n (mod d ) )  i f  a = 0, 

(2.5) 



for m = 0 ,1 ,2  . . , d - 1. If {D,ln(x)},=o,112 ..., dq1 are disjoint and their union equals to 
A,(x), then they are called subcla~sses of A,(x) with the period d (c.f. [2, Section 1.31). 
For convenience, for 7% E N, we put 

D a n  : ( x )  if n = m (mod d ) .  

Now we define subsets of A&) by 

{Y E A,(x) 1 p ( x , y )  2 a for some 72 satisfying n G na (mod d,,,)} i f  cu > 0,  
Calm(.) := {y E Ao(x) I p(2, y)  > O for soine n ~a~tisfying 12 = m (~nocl d,,o)} i f  cu = 0, 

(2.6) 
for rn = 0, 1 , 2  . - , d,,,-1. From Leil~illa 2.4(i) and Corollary 2.1 (i), {Ca,n(x)}n=0,1,2 ..., d,,,-1 

are subclasses of A,(x) with the period dZl,. 

We investigate a cyclic property for the dynamic fuzzy system (c.f. [2, Theorem 1.3 4). 
We use the followiilg notations (see [3]) : 

For a E (0,1] and x E E, we define a sequence of {C(X)}?=~ by 

Definition 2.2 (c.f. [2]). For cu E (0,1], we call a non-empty set A(c E) a-closed i f  
ij,(x) c A for all x E A. 

Definition 2.3 (c.f. 12, 41). Subclasses Da1, (m = 0,1 ,2 ,  . . . , d - 1) wit11 a period d are 
called cyclic classes if 

Theorem 2.1. 

(i) If y E A&), then A,(y) = A,@) d,,, = dxl,. 

(ii) Let m,n E Jfy E Calm(z),  then COln(y) = Ca,n+nl(~) .  

(iii) If A, (x) is a-closed, then Calm (s) (rn = 0,1 ,2  . . . , d,,, - 1) are cyclic classes. 

Proof. (i) Let y E A,($). Let z E A&). Since 

x y y y z  and z*y-x, 
a a 

we obtain 2 E A,(x). Thus A,(y) c A&). We obtain A,(y) = A,(N) since the reverse 
inclusion can be checked similarly. We get (i) together with Lemma 2.3. 



(ii) Let y E C,,,,(x). Then we 11a~ve 

y E A,(n:) and ij""(x, y) 2 a for soille 772' satisfying nz' E na (inod d,.,). (2.7) 

For a.ny z E C,,,(y), we have 

z E A,(y) a4nd ~ ' ( y ,  z) > cu for soine n' satisfying 72' e n (mod d,,, ) .  

By (i), this yields 

2 E A&), ?'(y,z) 2 a and n f = n  (mod ~l,~,). (2.5) 

Put  1 := rn' + mi. Then I = n + rn (mod d,,,). Froin (2.7) a$ild (2.8), 

We obtain z E C u , n + m ( ~ ) .  Thus we get C,,,(y) c Caln+,(x). Furtl-ler, since 

we get (ii). We call prove the case of cu = O similarly. 
(iii) Let m = 0 , 1 , 2 . . - , d  - 1, 72 = 1 , 2 , 3 . . .  a,ild y E C,,,(z). Let 2 E qa(y).  I t  is 

sufficient t.o check z E C,,,+,(x). Since I/ E A,(x) a.nd A,(n:) is a-closet-I, 

Since T ( y ,  z)  > a from z E ijz(y), (2.9) and (ii) yield 

Therefore we get (iii). 

From Theorem 2.1, {Caln(z)},= olllz. . . l~.T,aO1l does not depend on the choice of z. There- 
fore we denote it by {C,,,,},=~,~,2...,~,-~. 

Lenlilla 2.5. Let x E E. If {D,l,),=oll,~ ,..., d-1 be subclasses of A,(x) with a period d, 
then d divides d,. 

Proof. Let a E (0, I] and let m E I (x ,  a ) .  Then ij9"(x, x) 2 a. Since {D,l,}m=0,1,21 ..., d-l 

are subclasses of A&), 

Dale = {y  E A,(x) I T(x, y) > a for solile n sa.tisfying n O ( i~~oc l  d)}. 

By renurnberillg {D,l,}n,=oll,21...l~ if necessary, we inay assume thatt C,lIl n D,,o # 0. 
For y E n Ll,lo, there exists 72 such that 

ijn(x,y) > cu and 72 = O (mod d). (2.10) 



Therefore p+n(z ,  y) 2 p ( x ,  z) A r ( x ,  y) 2 a. We have rn + n EE 0 (mod d) since 

{Dalr)r=oll12,...,~-~ are disjoint. Together with (2.10), we obtain m EE 0 (nlod d) .  Natlnely 
d divides all n2 E I(z, a ) .  Thus d divides d,. We can check the case of a = O similarly. 

Theorem 2.2. Let A,@) be a-closed. Let {Dalm}nl=ol~l~l. . . ,d-~ be su bchsses of A, ( m )  

with a period d .  I f  {D,lm}m=o11,2,...ld-1 are cyclic classes, then each D,,,, is the union of 

da /'d sets from {Caln)n=ol~121. . - ld~.  

Proof. With no loss of generality, we may assume that z E Calo n Dale. Then {Gal, n 
Dalm}n=011121 ..., d,-l;m=011121 ..., d-1 are subclasses of A,(x) with a period dad. Suppose tha,t 

C,,,InD,,,l f Caln,l for some m'. Let y E C,ln,l\(C,ln,lnD,ln,l). Since y @ (Cal,,lnD ,,,,, I ) ,  

we have 

!fdadfnX' (x ,y)  < a for all 1 = 1 , 2 , - - . .  

This contradicts y E Calm,. Therefore we obtain Calm c D,,, for all 77% = 0,1,  , d - 1. 
Using the cyclic a.ssumption for {D~,ni}m=01~,21 ..., d-1, we have C,,,,, c Do,,, = D,,, if 

0 5 n < d, and 1% = In (mod d). Therefore U1=011121 c , , ~ d + ~  C Dalm,  where we put  
a positive integer n' := d,/d from Le~nnla 2.5. Since 

we obtain Dalm = Ul=o, l12 ,..., n,-l CaIld+rn for n2 = 0,1 ,2 ,  . . . , d - 1. 

3. An ergodic theorem 

In this section, we consider the periodic limit of the sequence of tlie fuzzy transitions, 
{ r ( x ,  y j}:?,, and discuss the ergo tlic property (c.f 12, Theorems 1.6.1 ancl 1.6.11). Define 

We put 

a(z) := sup q"(z, x) for z E E. 
n > l  

Then, A* equals to the unioil of all positive recurrent sets (see [7, Theorem 3.11). By the 

results of Section 2, we have the followii~g limit theorem on A* for the dynamic fuzzy 

system. 

Tl~eoren~ 3.1. Let z E A*. Put 

d(x) := lirn gcd{n 2 l 1 p ( z , r )  2 a ) .  
aTff(x) 

I f  d(x) < oo, then we ha.ve 
lirn ~ ~ ( " ) ( z ,  5) = a($) .  

n-+m 



Proof. Let a satisfy 0 < a < cu(z). Then z E A&). Therefore, there exists a period d, - 
of Aa(z). Let & := lh,,, rda(m, m )  and A, := E,,,, T" ( 2 ; )  x).  From Leluinn 2.4(ii),  
we have 

a A, 5 1, 5 sup T ( z , x )  = a ( z ) .  
rill 

Therefore 

From Lemma 2.2(i), there exists a liniit 

d(z)  := lim d, = liili gcd{n 2 1 I r ( x , x )  2 a).  
C Y T ~ ~ )  f 4 x 1  

Suppose thak d ( s )  < oo. Froin (3.3) and Lemma 2.2(ii), we obtain 

a(z) = lirn = lirn rda ( z ,  z )  = liin lirn rda (x, z) = (7id(x)(x, x) .  
aT,(x) a fa (x )  n+ca n= ,fa(,) n+oo 

- 
yzd(su) Similarly we also have a ( z )  = limn,, q (z ,  x). Therefore we get theoreill. 

Further, we need solne notatio~ls in Yoshida 16, p.421 to describe the ergodic property. 
Put  a path space by 0 := JJr=O E and write a path by w = (w(O), w( l ) ,  w(2), . . - )  E a. iM 
denotes the o-field generated by all Bore1 subsets of a. We define a map Xn(w) := w(72) 
for n E N and w = ( ~ ( 0 ) )  w( l ) ,  w(2), . .) E 0 .  Then Xn(w) means a, point at time n wlreii 
the system transits along the path w. I?or y E E, the first hitting tiiile of the point y is 
defined by 

olu1(w) :=inf{n 2 1 I X,(w) = y}  w E 0, 

where the infimum of the empty set is understood to be +co. For an initial state x E E 
and an M-measurable fuzzy set h E F(0), we define a fuzzy expectation by 

where P is the following possibility measure : 

d P  denotes Sugeno integral (Sugeno [5]). We also put P,(A) := E,(lA) for A E M 
and z E E. The fuzzy expectation is an extension of the fuzzy trailsition {b}r=O and 
admits stopping times depending on paths. We note thak a possibility of transition from 
x ( ~  E) to y ( ~  E) at  the nth step becomes P,(Xn = y) = r ( x ,  y) .  Define the following 
possibilities : 

P(s) y)  := P,(qy) = m) rn = 1,2,  . ; z ,  y E E, (3.4) 



and 

Then, by [?, Proposition 2 . l ( i i ) ] ,  we obtain 

Theorem 3.2. Let y  E A* a412d y  E Ao(z)  such that d(y) < W .  Then there exists a, 
positive integer d ( x ,  y ) ,  which divides d ( y ) ,  and a?n integer ~ z ( z ,  y )  (0 5 l a ( % ,  y )  < d ( x ,  y ) )  

such tha.t 

Proof. For all 72 = 1 , 2 , . - - ,  we have 

- lnax { T i ( m ,  y )  A G ( " - ~ ' ) ( ~ ,  Y ) }  
'("7 Y )  - nl=1121...1n 

< sup T ( m ,  y )  A sup $ ( Y ,  y) - 
n z l l  . 121 

= y ( z ,  Y )  A 4 ~ ) .  
Let a sa.tisfy 0 < ol < y ( z ,  y )  A a ( y ) .  Then y  E A,(%). From Leliilna 2.4, there exists a. 

positive integer Nxlyl,  such that 

~ n d y , a  +nxfY,a (x, y )  2 a for all 71 2 lVxlyla. 

Together with ( 3 . 6 ) ,  we have 

( z ,  y )  A a ( y )  > - -  liin F ~ ~ ~ ~ + ~ ~ * Y J ~  

n--+oo 
(.,?/I l a. 

We define 

d ( s ,  y )  := lim d l  and n( z ,  y )  := lim nx,vla. 
~ T Y  ( X ~ Y ) A Q ( Y )  f f T y ( x 1 y ) ~ a ( y )  

Then d ( x ,  y )  divides d ( y )  from Lemma 2.2( i )  since a < a ( y ) .  Letting a T y ( m , y )  A a ( y )  
in (3.?), in the salne reason as the proof of Theorem 3.1, we obtain 

Similarly, we also have 

Therefore we get this theorem. CI 

Finally, we give an ergodic theorem regarding { T ( z ,  y ) }E=,  for the dynamic fuzzy 
system. By Lernnla 2.2, for y  E A* and y E A&) = U,,o A,(%) such t11a.t d ( y )  < m, 



there exists a finite number of levels {a; I i = 0,1 ,2 , .  . . , k} satisfying the followi~lg (3.8) 
and (3.9) : 

0 = a0 < a1 < a 2  < . . .  < aI; = cu(y), (3 -8 ) 

Further, there exists a positive integer k' (k' 5 k) satisfying (3.10) and (3.11) : 

Then, by replacing by y(z ,  y) A a ( y )  A a k l ,  fro111 Lemi~la. 2.4(i) we llave 

- nz.,v,ai+, if a; < a < a;+l for i (= 0 , 1 , 2 , . . - , k t -  2 ) )  
?2z.ly,a - 

n(x ,y )  if a~ ; t -~  < cu < akl. 
(3.12) 

For simplicity, we write d; := d,!,, and ni := nZalai for i = 1 , 2 , .  . . , k' - 1 alld we a,lso 
write dkt := d(z ,  y) and nI;) := n(x, y). 

Theorem 3.3 (ergodic theorem). Let z ,  y E E satisfy y E A o ( x )  and d(y)  < m. 

( i )  If y @ A*, then 

T(x, y) = 0 for all 772 = 1 ,2 ,  . - .  . 

(ii) If y E A*, then we have the following three cases : 

(a)  Case of 712 E 72(x, y ) (ll~od d(z, y)) : 

(b)  Let i = 1 , 2 , .  . . , k' - 1. Case of rn $ ni+l (mod C Z ; + ~ )  and m E ni (111od d ; )  : 
There exists a positive integer Ni such that 

(x, y ) = ai for all rn E J ( i)  sa tisfying ?n 2 Ni , 

where J ( i )  : = In2 I rn is a positive integer satisfying n2 $ n;+l (mod di+l) and rn 

n;(mod d i )  1. 
( c )  Case of rn $ 7x1 (mod d l )  : 

@"yx) y) = 0. 

Proof. (i) If y $ A*, then ~ ( y )  = 0. By (3.6), we get r ( m ,  y )  = 0 for aJl rn = 1 , 2 , .  . a .  

(ii.a) is from Theorem 3.2. 
(ii.b) Let i satisfy 1 5 i < k'. Let a satisfy ai < cu < ai+l. From Leinluas 2.2(ii) and 

2.4, we have 
- dy,a = dy,ai+l = di+l alld ? ~ x l y l a  = nx,ylai+l - ni+le (3.11) 



From (3.11) and Leinma 2.4(i)(ii), there exists a positive integer ATi such that 

a; 5 P ( x ,  y )  < a for all m E J(i) satisfying rn 2 ATi. 

Since Ni depends only on z ,  y and a;+l, letting or j, C Y ~  in (3.12)) 

q"(z, y) = a; for all rn E J ( i )  satisfying 772 2 ATi. 

Therefore we get (ii. b) . 
(ii.c) Similarly to the proof of (ii.b), for i = 0, we get 

T(X, y)  = oro = O for all rn satisfying na $ nl(mod dl) .  

Thus we obtain this theorem. 

4. Numerical examples 

We consider a one-dimensional numerical example with a one- dimensional st ate space 

E = R, where R denotes the set of all real numbers. Then, i j , (x)  are bounded closed 

intervals of R ( a  E ( O , l ] ,  N E R) and is written by ijff (z)  = [min ri,(x), max i, (x)],  where 
mill F (max F) denotes the minimuin (maximuin resp.) poillt, of a interval F c R. We 

give a fuzzy relation, which is not inonoto~le in the sense of [7], by 

Then i j (x,  ZJ) satisfies the conditions in Section 2 (see Figure 4.1). 

Y 

Fig. 4.1 : The fuzzy rela.tion i ( z ,  y). 
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I11 this paper, we call a, set {x E R I i (x ,  x) = a} a-slice for eacli cu E [O,l]. Figures 4.2 
and 4.3 show its 0.7-slice and 0.5-slice respectively. 

Fig. 4.2. The 0.7-slice {(x,  y) ( @(x, y)  = 0.7). 

Y 

Fig. 4.3. The 0.5-slice {(x, y)  I g(x, Y) = 0.5). 

First, we consider the cyclic property in Section 2. I11 this example, we have 

Then FOa5 is a closed interval. However, FOv7 becomes a union of three closed iliterva,ls (see 
Figures 4.2 and 4.3). Therefore we write it by FO.7 = F0.7,0 U F0.7,1 U F0.7 ,2 .  C;alculating 
them, we have 

F0.7,0 x [-1.1254,-0.78651, 
F0.711 N [-0.3389,0.3389], 
F0.712 N [0.7865, 1.12541, 



and 
F0.5 N [-1.1915,1.1915]. 

For a = 0.7, Fo.7,1 and F0.710 U FOe7,2 are 0.7-essential, which is 0.7-recurrent sets in the 
sense of Yoshida [7]. F0.7,1 is not 0.7-closed. F0.7,0 U F0.7,2 is 0.7-closed, and i~o.7,0 and 
F0.7,~ are cyclic classes of FO.-i10 U F0.712. The periods are 

For (Y = 0.5, is 0.5-essential and 0.5-closed. We also have the period dy,0.5 = 1 for 

y E F0.5- 
Next, we consider the ergodic property in Section 3. In this example, we have 

Figure 4.4 shows the graph. 

Fig. 4.4. The graph of ol = ( ~ ( y ) .  

Then we put the union of all positive recurrent sets by 

We also put 

From Figure 4.4, we obtain the following three cases ((2.1)) ((2.2) and (C.3) : 

(C.l)  If y $ [-a+], then 

q"(y,y)  = O  for a l l m  = 1 . , 2 , . - . .  



(C.2) If y E (- b, -c) U ( c ,  b), we may take 

Then we have the period d(y) = 2. By Theorem 3.3, we get the following cases : 

(a) Case of rn = 0 (mod 2) : 

liln r x 2 ( y ,  y) = a2 = (1 - I - y + 2131) V 0. 
n-400 (4.8 ) 

(b) Case of rn r 1 (mod 2) : There exists a positive integer Nl such that  

im(y,  y) = al = v for all odd rn satisfying rn 2 N,. (4.9) 

( C . 3 )  If y E [-a,  -b] U [-c, c] U [b, a], we may take 

and d,,, = dl = 1 if a0 < a < a l .  Then we have the period d ( y )  = 1. By Theorem 
3.3, we get 

lim q"(y,y)  = a l  = (1 - 1  - y + y 3 1 ) V 0 .  
m--+m 

(4.11) 
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