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Abstract : This paper analyses a recurrent behavior of dynamic fuzzy systems
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1. Introduction and notations

Limit theorems of a sequence of fuzzy sets defined successively by fuzzy relations are
first studied by Bellman and Zadeh [1]. Kurano et al. [3], under a contraction condition,
studied the limiting behavior of fuzzy states defined by the dynamic fuzzy system with
a compact space. A notion of recurrent sets for the dynamic fuzzy system is given by
Yoshida [7]. This paper analyses the cyclic behavior of the dynamic fuzzy system.

In Section 2, we show the existence of cyclic classes, which are nested with respect to
levels, for recurrent sets in the dynamic fuzzy system, using the methods of Chung [2]. In
Section 3, we show a correspondence between a period of the cyclic classes and a limiting
possibility of the fuzzy transition. By the use of the result, we give an ergodic theorem
which is different from the ergodicity in the classical Markov chains. In the dynamic
fuzzy system, the limit of the fuzzy transition equals to one of a finite/countable number
of levels, and the states are classified into cyclic classes nested with respect to the levels.
In Section 4, a numerical example is given to illustrate our idea.

2. Cyclic classes for dynamic fuzzy systems

Let a state space E be a complete metric space. Let a time space by N := {0,1,2,---}.
Let ¢ be an upper semi-continuous fuzzy relation on £ x E satisfying the following no1-
mality condition :

sup §(z,y) =1 (y € ) and supg(z,y) =1 (z € E).
el yeEE

We denote a fuzzy set on E by its membership function §: £ +— [0,1] ([3]). Kurano et
al. [3], under a contractive condition, studied the limiting behavior of a sequence of fuzzy



states {3,}52, given as follows : An initial fuzzy state & is a given fuzzy set on E, and
we define
,§n+1(y) = sgg{gn(a’)/\g(r’y)}’ yGEv n=0,1,2,---. (21)
o

This is called a dynamic fuzzy system (see (3, 6, 8, 9]). We define a sequence of fuzzy
relations, {7"}5%,, on £ x E as follows : For z,y € F,

-0 ) L ifz=y, =1 T .
§(z,y) = { 0 ifzty 1 (@Y)=dwy), and
~n+1

q (.’c,y)::sgg{r}"(m,z)/\é(z,y)} n=123,---, (2.2)

where the operation A means that a A b = min{a, b} for real numbers a and b. Then,
7*(7,y) means the possibility to transit from a point = to a point y at the nth step. The
sequence of fuzzy state {§,}52, in (2.1) can be written as

gn(y) = S‘lg{go(x) A (jn(m)y>}a y € E) n= 0) 172a T (23)
€

In this paper, we discuss the cyclic property of the fuzzy relations {7*(z,y)}22,.
Let z,y € E. For a € (0, 1], we write

g~y if there exists a positive integer n such that 7*(z,y) > a.
(24
We also write

Ty if there exists a positive integer n such that 7*(z,y) > 0.

Definition 2.1. For a € [0, 1], we call a non-empty set A(C E) a-essential if

Ty and Yy for all z,y € A.

We define A,(z) := {y € E | z~qy and y~qz} for z € E and o € [0,1]. Ag(z) is
clearly a-essential if it is not empty. Next we define

{ positive integers n | *(z,2) > a} forz € E, a > 0,
| 7 ( (2.4)
b

{ positive integers n | ¢*(z,2) >0} forz € E, a =0.

Then we put d, o := gcdI(z,a) (z € E,a € [0,1]), where gcd means the greatest common
divisor of a set of positive integers. We call d; , a period of a state z with a level a. The
following lemmas hold for a € [0,1] and & € E such that I(z, o) # 0.

I(e,0) = {

Lemma 2.1.

(i) If m,n € I(z,a), then m + n € I(z, a).



(i) If m € I(z,a), then mn € I(z, «) for all positive integers n.

Proof. (i) Let @ > 0 and m,n € I(z,«). Then
(e, ) = sup{q"(z,y) A Ty, 2)} 2 7 (z,2) AT (2,2) 2
ve

Therefore m+n € I(z, ) and so (i) holds. We can easily check the case of o = 0 similarly.
(i1) is trivial from (i). O
Lemma 2.2. A family of periods, {d, | « € [0,1]}, has the following properties :

(1) dpo dividesd, o If 0 < o' <a<l,

(i1) the map a(€ (0,1]) — d. (€ {1,2,3,---}) is a non-decreasing left-continuous piece-

wise constant function.
Proof. (i) Let o, satisfy 0 < o’ < a < 1. Since I(z, o) D I(z, o), we have
{d | d is a common devisor of I(z,a’)} C {d | d is a common devisor of I(z, a)}.

Therefore d; o+ < d; 4, and so d; o divides d; 4.
(ii) From the definition of I(z, ), we have

li,lrn I(z,0') = () I(z,0) =1z, a).
o’ o al<0‘

Therefore limyiiq dp ot = dio. We obtain the assertion (ii) since the map a +— d,, takes

discrete values. O

We prepare several lemmas, referring [2, Theorems 1.3.2 and 1.3.3], to show the exis-
tence of cyclic classes for the dynamic fuzzy system.

Lemma 2.3. Ifz~,y and y~, 2, then dy o = dy 6.

Proof. Let a > 0. Since z~,y and y~, z, there exist positive integers m and n such
that §*(z,y) > e and §*(y,z) > . If | € I(z, @), then

T (y,9) 2 T(Y,2) A (2,2) A T (,y) 2 o

Therefore n + | + m € I(y,a). Since §®(z,z) > §(z,z) A §(z,z) > @, we also have
n+2l+m € I{y,a). So weobtainl = (n+2l+m)—(n+[+m) =0 (mod dyq) for
all I € I(z, ). Therefore d,, divides d; o. Similarly we can prove that d, . divides d, ,.
Thus we obtain d; o = d, . We can check the case of @ = 0 similarly. 0O

Lemma 2.4. Let a« > 0 and y € A,(z). Then there exists a unique integer n,, »
(0 < ngyo < dyp) satisfying the following (i) :
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(i) if 7*(z,y) > a, thenm =n,,, (mod dg4).

(ii) Further, there exists a positive integer Ny, o such that §**==*"=v=(z,y) > a for all
n 2> Npyoa-

Proof. (i) Let positive integers m and n satisfy ¢"(z,y) > a and §"*(z,y) > a. Let a
positive integer [ satisfy ¢(y,z) > a. Then " (z,2) > 7 (z,y) A §(y,2) > c. Similarly
7z, 2) > (z,9) A §(y,z) > a. Therefore m = n (mod d, ). Thus we obtain (i).

(ii) Let n; € I(z,) (¢ = 1,2,---,k). From an elementary result of number theory,
there exists N.  such that for each positive integer n (n > N, ) there exist positive

integers ¢; (¢ = 1,2, -, k) satisfying

k
ndy o = Z cin;.
=1

Then, from Lemma 2.1,

From (i), there exists a positive integer [ such that Flzatrzve (g 4) > a. Put Nyyo =
N, .+ 1 Forall n > Ny, we obtain

q‘ndx,a'i‘nz,y,a (.'1:, y) Z é’n’dx,a(x,m) A flﬂldx,a“f‘nx,y,a (:L.,y) 2 a,
where n' :=n — [ > N/ ,. Thus we get (ii). 0O

We also have similar results for the case of a = 0, which can be checked in the same
way as Lemma 2.4.

Corollary 2.1. Let y € Ao(x). Then there exists a unique integer nzyo (0 < ngyo <
d. o) satisfying the following (i) :

(i) if @*(z,y) > 0, then m = ny 40 (mod dyp).
(ii) Further there exists a positive integer Ny o such that F=otn=o(g ) > 0 for all
n 2 Neyo.
Let € [0,1] and = € E satisfy I(z, @) # 0. For a positive integer d, we put subsets
of A,(z) by
Dy () = { {y € Au(2) | T(x,y) > « for some n satisfying n = m (mod d)} if a >0,
a,m\t) - én

{y € Ao(z) | T*(z,y) > 0 for some n satisfying n = m (mod d)} if a =0,
(2.5)



for m =0,1,2---,d — 1. If {Dyn(2)}n=012-4-1 are disjoint and their union equals to
A,(z), then they are called subclasses of A,(z) with the period d (c.f. [2, Section 1.3]).
For convenience, for n € N, we put

Don(z) := Dam(z) if n =m (mod d).
Now we define subsets of A,(z) by

Com(z) = { {y € A.(z) | i]’:(a:,y) > a for some n saﬁis{f}fing n_E m (mod d, )} %f a >0,
: {y € Ao(2) | "*(,y) > 0 for some n satisfying n = m (mod d, )} if o =0,
(2.6)
form =0,1,2---,d; o—1. From Lemma 2.4(i) and Corollary 2.1(i), {Can(2) }n=01,2-ds a1
are subclasses of A,(z) with the period d, ,.

We investigate a cyclic property for the dynamic fuzzy system (c.f. [2, Theorem 1.3.4]).
We use the following notations (see [3]) :

g () :={y € E| §(z,y) > a} forxz € E and o € (0,1].
For a € (0,1] and z € E, we define a sequence of {¢(z)}2, by

éé(’l)) = éoz(a:) and (}Z_’_l(w) = U ga(y) for n = 07 1) 27 .
veq.(z)

Definition 2.2 (c.f. [2]). For a € (0,1}, we call a non-empty set A(C E) a-closed if
G,(z) C A for all z € A.

Definition 2.3 (c.f. [2, 4]). Subclasses Dy (m =0,1,2,---,d — 1) with a period d are
called cyclic classes if

gg(y)CDa,m-!“n for allm:07172"'yd~1; 71:172)3"'; yeDa,m~

Theorem 2.1.
(i) Ify € Ax(2), then Ax(y) = Au(z) and dy o = dy o
(ii) Let m,n € N. If y € Com(z), then Con(y) = Congm ().

(1i1) If Ax(z) is a-closed, then Cyn(x) (m =0,1,2---,dy; o — 1) are cyclic classes.

Proof. (i) Let y € A,(z). Let z € A,(y). Since
Ty~ 2 and 2oy~ T,

we obtain z € A,(z). Thus A,(y) C Ax(z). We obtain A,(y) = A,(z) since the reverse
inclusion can be checked similarly. We get (i) together with Lemma 2.3.
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(i1) Let y € Cy m(x). Then we have
y € Ag(z) and  §™(z,y) > o for some m’ satisfying m’ = m (mod d,..). (2.7)
For any z € C, ,(y), we have
2 € Au(y) and  §(y,z) > a for some n’ satisfying n’ = n (mod d, ).
By (i), this yields
2 € Au(z), §(y,2)>ca and n'=n (mod d,,). (2.8)
Put [:=m' 4+ m'. Then [ =n +m (mod d,,). From (2.7) and (2.8),
d2,2) = 3 (2,2) 2 7 (2,9) AT (y,2) 2
We obtain z € C, n4m(2). Thus we get C, ,(y) C Cy npm(2). Further, since

U Canly)=4ay)=A4Au@)= | Comsm(z),

n=0,1,2+,dy,a—1 n=0,1,2-,dz o—1

we get (ii). We can prove the case of a = 0 similarly.
(i) Let m = 0,1,2---,d—1, n=1,2,3--- and y € Cpn(a). Let z € @(y). Tt is
sufficient to check z € Cy myn(2). Since y € A,(2) and A, (z) is a-closed,

z € (y) C Aal2). (2.9)
Since ¢"*(y,z) > « from z € §(y), (2.9) and (ii) yield
2 € Can(y) = Camym(2).
Therefore we get (iii). O

From Theorem 2.1, {Cy n()}1=0,1,2-ds a—1 does not depend on the choice of z. There-
fore we denote it by {Can}r=012.do-1-

Lemma 2.5. Let ¢ € E. If {Dym}m=01,2,,a-1 be subclasses of A,(z) with a period d,
then d divides d,.

Proof. Let o € (0,1] and let m € I(z,a). Then §*(z,2) > . Since {Dym}m=012,d-1
are subclasses of A,(z),

Dyo={y € As(z) | *(2,y) > « for some n satisfying n = 0 (mod d)}.

By renumbering {Da m}m=0,12,4-1 if necessary, we may assume that C,o N D,o # 0.

1y

For y € Cuo N Dy, there exists n such that
{(z,y) >« and n =0 (mod d). (2.10)
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Therefore ¢**"(z,y) > 7*(z,z) A §*(z,y) > a. We have m + n = 0 (mod d) since
{Dai}i=01,2,..4-1 are disjoint. Together with (2.10), we obtain m = 0 (mod d). Namely
d divides all m € I(z,a). Thus d divides d,. We can check the case of o = 0 similarly.
|

Theorem 2.2. Let A,(z) be a-closed. Let {Dym}m=01,2,-4-1 be subclasses of A,(x)
with a period d. If {Dgm}m=012,4-1 are cyclic classes, then each D, ., is the union of
do/d sets from {Copn}n=012,do—1-

yhys,

Proof. With no loss of generality, we may assume that @ € Cyo N Dyo. Then {C,, N
Dym}¥n=012da—1:m=012,d-1 are subclasses of A,(x) with a period d,d. Suppose that
Coam'NDgmr # Com for some m’. Let y € Com \(Com'NDamr). Sincey & (Co N Dy mr),
we have

(g y) <a foralll=1,2,---.

This contradicts y € Cy mr. Therefore we obtain Cy .y C Doy for all m=0,1,--+,d — 1.
Using the cyclic assumption for {Dum}m=0,12,d-1, We have Capm C Dam = Dy, if
0 <n <d, and n =m (mod d). Therefore Ui—p1,2,...n—1 Cajaym C Da,m, Where we put
a positive integer n’ := d,/d from Lemma 2.5. Since

U U Ca,ld+m = AO! = U -Da,ma

m=0,1,2,---,d-11=0,1,2,---,n'—~1 m=0,1,2,--,d-1

we obtain Do m = Ui=012,n—-1 Cajatm for m=0,1,2,---, d—1. O

3. An ergodic theorem

In this section, we consider the periodic limit of the sequence of the fuzzy transitions,
{7 (x,y)}520, and discuss the ergodic property (c.f [2, Theorems 1.6.1 and 1.6.4]). Define

a(z) :=sup {*(z,z) forz e E. (3.1)
n>1

We put

n>1

A*:={z € E|alz) >0} = {m € E|sup §*(z,z) > 0} ={z e E|z € Ayz)}. (3.2)

Then, A* equals to the union of all positive recurrent sets (see [7, Theorem 3.1]). By the
results of Section 2, we have the following limit theorem on A* for the dynamic fuzzy
system.

Theorem 3.1. Let z € A*. Put

d(z) == lim ged{n > 1] ¢ (z,z) > a}.

ala(z)

If d(z) < oo, then we have
lim §4®)

n—00

(z,2) = afz).



Proof. Let a satisfy 0 < a < a(z). Then z € A,(z). Therefore, there exists a period d,

of Ay(x). Let A, :=1lim, . Qnd"(:c,a;) and Ay := [iMy 0o 7% (2, 2). From Lemma 2.4(ii),
we have
a <A, £ X <sup §F(z, @) = ale).
n>1
Therefore
a(z) = lim A, = lim A,. 3.3
( ) ala(z) ala(z) ( )

From Lemma 2.2(i), there exists a limit

d(z) = lTir?‘) dy = lrir?q gcd{n > 1| *(z,2) > a}.

Suppose that d(z) < co. From (3.3) and Lemma 2.2(ii), we obtain

a(z) = lim A, = lim_ lim §ée(z,2) = lim lim 7% (z,2) = lim 74

ata(z) ala(zr) n—oo n—oo ala(z) n—o0

~nd(z)

Similarly we also have a(z) = lim,_e §7“*)(z,z). Therefore we get theorem. O

Further, we need some notations in Yoshida [6, p.42] to describe the ergodic property.
Put a path space by  := [[22, £ and write a path by w = (w(0),w(1),w(2),---) € 1. M
denotes the o-field generated by all Borel subsets of Q. We define a map X, (w) := w(n)
forn € N and w = (w(0),w(1),w(2),---) € Q. Then X, (w) means a point at time n when
the system transits along the path w. For y € E, the first hitting time of the point y is
defined by

oy(w) :=inf{n > 1| Xp(w) =y} we,

where the infimum of the empty set is understood to be +oco. For an initial state z € £
and an M-measurable fuzzy set h € F(Q), we define a fuzzy expectation by

E.(h) = ][{ h(w) dP(w)

weQ:w(0)=z}
where P is the following possibility measure :

P(A):==sup N\ §(Xpw, Xpnp1w) Ae M
weA L eN

and f d P denotes Sugeno integral (Sugeno [5]). We also put P, (A) := E;(14) for A € M
and ¢ € E. The fuzzy expectation is an extension of the fuzzy transition {¢"};2, and
admits stopping times depending on paths. We note that a possibility of transition from
z(€ E) to y(€ E) at the nth step becomes P (X, = y) = §*(z,y). Define the following
possibilities :

7 (z,y) 1= Pu(oy = m) m=1,2,---; 2,y € E, (3.4)



and

v(x,y) = sup 7 (2,y) = Pu(og)y <o0) a,y € L. (3.5)
m2>1

Then, by [7, Proposition 2.1(ii)], we obtain

v(z,y) = sup §"(,y).
m2>1

Theorem 3.2. Lety € A* and y € Ao(z) such that d(y) < co. Then there exists a
positive integer d(z,y), which divides d(y), and an Integer n(z,y) (0 < n(x,y) < d(z,y))
such that

lim PEED (2, y) = y(z,y) A aly).

n-—+od

Proof. Foralln=1,2,---, we have

7*(z,y) = max n{Fm(a;,y) A (}("_m)(y,y)}

m=1,2,--,

< sup 7™(z,y) Asup ¢ (y,y) (3.6)
m>1 . i>1

= 7(2,y) A afy).

Let a satisfy 0 < a < y(z,y) A a(y). Then y € Ay(z). From Lemma 2.4, there exists a
positive integer N, o such that

Flvetnzve (g y) > o foralln > Ny ya.
Together with (3.6), we have

v(z,y) Aaly) > lim F4etreve(z,y) > a. (3.7)

n—+00

We define

dz,y) = lim d,, and n(z,y):= lim g4
(2.9) at(eg)naly) (2:9) alrlea)naty)

Then d(z,y) divides d(y) from Lemma 2.2(i) since < a(y). Letting o T v(z,y) A a(y)
in (3.7), in the same reason as the proof of Theorem 3.1, we obtain

lim ;vad(z,y)+n(x,y)($,y) = v(z,y) A ay).
n—+00

Similarly, we also have
im @D (g y) = y(z,y) A aly).

n—oo

Therefore we get this theorem. O

Finally, we give an ergodic theorem regarding {7"(x,y)}%°_, for the dynamic fuzzy

m=1

system. By Lemma 2.2, for y € A* and y € Ao(2) = Ussg Aa(2) such that d(y) < oo,
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there exists a finite number of levels {a; | ¢ = 0,1,2,-- -, k} satisfying the following (3.8)
and (3.9) :

0= <o <a; < <o =afy), (3.8)
dyoiyy oy <a<ag fori(=0,1,2,--k—2)
d o = Yy xXig1 ] 1 = 41 y Ly 4y ) ) s
v { d(y) foar<a< Q. (3 ‘))
Further, there exists a positive integer &' (k' < k) satisfying (3.10) and (3.11) :
apZy < (2, y) A aly) < ap, (3.10)
dyo =d(z,y) ifap_ <a<ap. (3.11)
Then, by replacing oy by v(z,y) A a(y) A oy, from Lemma 2.4(i) we have
. . i ; < o c 7 pecnied “e e L/ —_
Py = nl,lf,o,'+1 ¥f a; < a < ajp fore (=0,1,2,-- -k - 2), (3.12)
n(m,y) if apro1 < a < oy,
For simplicity, we write d; := dyq, and n; := ng 4, fori = 1,2,--- k' — 1 and we also

write dir := d(z,y) and ng = n(z,y).
Theorem 3.3 (ergodic theorem). Let z,y € E satisfy y € Aq(x) and d(y) < oo.

(i) Ify & A*, then |
(z,y) =0 forallm=1,2,---.

(il) If y € A*, then we have the following three cases :
(a) Case of m = n(z,y) (mod d(z,y)) :

lim éﬂd(w,y)+n(w,y)

=300

(2,9) = v(,y) A a(y).

(b) Let i =1,2,---,k — 1. Case of m # n;yy (mod d;y1) and m = n; (mod d;) :
There exists a positive integer N; such that

7" (z,y) = a; for all m € J(7) satisfying m > N,
where J (i) := {m | m is a positive integer satisfyingm % n;;;(mod diy,) and m =
n;(mod d;)}.
(c) Case of m # n; (mod dy) :
¢"(z,y) = 0.
Proof. (i) If y & A*, then a(y) = 0. By (3.6), we get §*(z,y) =0 forallm=1,2,---.
(ii.a) is from Theorem 3.2.

(ii.b) Let ¢ satisfy 1 <1 < k’. Let a satisfy o; < @ < ajy;. From Lemmas 2.2(ii) and
2.4, we have

dyo = dy,a;+1 =diyp and ngy. = Noy,aipr = Tit1- (3.11)

10



From (3.11) and Lemma 2.4(i)(ii), there exists a positive integer N; such that

(3.12)

a; < " (z,y) < a forall m € J(7) satisfying m > V.

Since N; depends only on z,y and o4y, letting o | «; in (3.12),

(3.13)

for all m € J(7) satisfying m > NV;.

:ai

(z,y)

7"

(ii.b), for 7 = 0, we get

(ii.c) Similarly to the proof of

Therefore we get (ii.b).

0 for all m satisfying m # nq(mod dy).

= Qg =

(z,y)

7"

O

Thus we obtain this theorem.

4. Numerical examples

We consider a one-dimensional numerical example with a one-dimensional state space

E=R

Then, §,(z) are bounded closed

where R denotes the set of all real numbers.

bl

[min g, (x), max ,(z)], where

and is written by q,(z) =

)

€ER

a€(0,1],2
max F') denotes the minimum (maximum resp.) point of a interval F* C R. We

(

intervals of R
(

min F'

give a fuzzy relation, which is not monotone in the sense of [7], by

(4.1)

z,y € R.

Then ¢(z,y) satisfies the conditions in Section 2 (see Figure 4.1).

i
P e R
SVORDA oA <t
NG

Fig. 4.1 : The fuzzy relation §(a,y).
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In this paper, we call a set {z € R | §(z,z) = a} a-slice for each a € [0,1]. Figures 4.2
and 4.3 show its 0.7-slice and 0.5-slice respectively.

2. Yy =1

: : . — X
-2 2

y = max gy 7()

-2t Yy =-—-

Fig. 4.2. The 0.7-slice {(z,y) | ¢(z,y) = 0.7}.

— X
2

Yy = max g 5()

-2t Yy = —x
Fig. 4.3. The 0.5-slice {(z,y) | ¢(z,y) = 0.5}.
First, we consider the cyclic property in Section 2. In this example, we have

Fo = {y €R[supo T0,9) 2 o} = Y ER | ilyp) V Plyv) 20} (o)
= {2z € R|min ¢,(z) < —2z < max ¢,(z)} for a € (0,1]. '

Then Fy 5 is a closed interval. However, Fy 7 becomes a union of three closed intervals (see
Figures 4.2 and 4.3). Therefore we write it by Fo7 = Fo70 U Fo71 U Fo72. Calculating
them, we have

Fore ~ [—1.1254,-0.7865],
Foz1 = [—0.3389,0.3389],
f’j().';,z ~ [07865, 11254],
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and
Fos ~[—1.1915,1.1915].

For a = 0.7, Fy 7, and Fy70 U Fy 74 are 0.7-essential, which is 0.7-recurrent sets in the
sense of Yoshida [7]. Fg7; is not 0.7-closed. Fy70 U Fozz is 0.7-closed, and [g70 and
Fy72 are cyclic classes of Fy79U Fp7,. The periods are

_J 1 itye Fo.7,1,‘
dyor = { 2 ity e Fy70U Foqp, (43)

For a = 0.5, Fus is 0.5-essential and 0.5-closed. We also have the period d, o5 = 1 for
y € Fos.
Next, we consider the ergodic property in Section 3. In this example, we have

a(y) = i(v,y) vV E(yy) =1 —|-y+y°) V0 foryeR. (4.4)

Figure 4.4 shows the graph.

a=1-]-y+y*)Vvo

] i
h i i
i i i
; ; ; a ~ 1.3247
; i 5 b~ 1.1547
; | 5 ¢~ 0.5774
E E i v = 0.6151
L L oy
-2 —a—b-1 —c 0 c 1ba 2
Fig. 4.4. The graph of o = a(y).
Then we put the union of all positive recurrent sets by
(—a,a) = A" = | J Fa = {y € R | a(y) > 0} ~ (—1.3247,1.3247). (4.5)
a>0
We also put
b’——%—~11547 C'——~1—-N05774 vi=1 2——"’06151
- — 3 ~ . P o — \[3- ~ . Y - 3‘\/5 ~~ . .

From Figure 4.4, we obtain the following three cases (C.1), (C.2) and (C.3) :
(C.1) If y ¢ [—a, a], then

7 (y,y) =0 forallm=1,2,---.

13



(C.2) Ify € (—b,—c) U (¢, b), we may take
ap=0, o=, aZ:(l__I"y_{-yal)vou (46)

i = di=1 if g < a<ay,
v d2=2 ifal<01<0’2.

Then we have the period d(y) = 2. By Theorem 3.3, we get the following cases :

(4.7)

(a) Case of m =0 (mod 2) :
lm 7 (y,y) = =1~ |~y +y°) VO (4.8)
(b) Case of m =1 (mod 2) : There exists a positive integer N; such that
™ (y,y) =a; =v for all odd m satisfying m > N;. (4.9)

(C.3) lfy € [—a,—bJU[~c,c] U[b,a], we may take

a=0, ax=(1~[-y+y’|)V0, (4.10)
and dy o = dy =1 if ag < a < . Then we have the period d(y) = 1. By Theorem
3.3, we get ‘
lim ™(y,y) =1 =1~ |-y +y’|) V0. (4.11)
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