
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Superharmonic Fuzzy Sets on Recurrent Sets in
Dynamic Fuzzy Systems

Yoshida, Yuji
Faculty of Economics and Business Administration, Kitakyushu University

https://hdl.handle.net/2324/3190

出版情報：RIFIS Technical Report. 100, 1995-02. Research Institute of Fundamental Information
Science, Kyushu University
バージョン：
権利関係：



RIFIS Technical Report 

Superharmonic Fuzzy Sets 

on Recurrent Sets in Dynamic Fuzzy Systems 

Yuji Yoshida 

February , I  995 

Research Institute of Fundamental Information Science 

Kyushu University 33 

Fukuoka 81  2, Japan 
E-mail: Phone: 



Superharmonic fuzzy sets 
on recurrent sets in dynamic fuzzy systems 

Yuji YOSHIDA 

Fa>culty of Econosiiics and Business Adsilinistration, Kitakyushu Usiiversity 
4-2- 1, Kit ajgaata,, E<okuraminasni, Kitakyushu 802, Japan 
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1. INTRODUCTION 

Bellliiaii axid Zadeh [I],  Esogbue axid Bellillail [2] and some a.ut1iors studied fuzzy 

decisiosl processes aiid fuzzy dysiamic programming. In the dyiiasiiic fuzzy systems, a 

sequence of fuzzy states are successively defined by fuzzy relations. Kurano et al. [3] 
discussed tlie liiiiitiiig behavior of tlie secluence, and Yoshida [4] studied tlie recurrence 

for the systems. Yoshida [5] discussed Snell's optimal stoppiiig problein for tlie systems, 

whicli is fouiid in the classical probability theory (Neveu [6, Sect-VI-2]), ajnd showed that 
tlie problem is solved by a finite-step fuzzy dynamic progra.111 under a tra.iisieiit coiidition 

([5, Conditioii (II)]). 

The optiiiial value for Snell's probleiii is gives1 by a fuzzy set which satisfies a fuzzy 

relatiolial equa,tioii ([5, (4.3)]), in wliicli the solutions are not unique in general. To obtain 

the optimal va,lue, we need to ailalyse it iiot only on tra,nsient sets but also on recurrent 

sets. While, the optimal value has a &-superharmonic property of [5]. This paper derives 

a simple estiiiiatioli for &-superlia~rmonic fuzzy sets 011 recurrent sets aiid gives a iiietliod 

to calculate the opti~na~l value for Ssiell's problem. 

In Section 2 we describe notatioiis asid definitiolis of dynamic fuzzy systeiiis and 

a recurrence of the system in [4]. In Sectioii 3 we show iliaill theorenis rega.rding P- 
superharmonic fuzzy sets on a-recurrent sets. I11 Sectioii 4, we give a iiuiiierical exaniple 

with a one-diinensioiia,l state spajce to comprehend our idea in this paper, and we calculate 

the optiliial value for Snell's problem, using the results in Sectioii 3. 

2. DYNAMIC FUZZY SYSTEMS AND RECURRENCE 



For a imetric space ,S, we write a fuzzy set 011 S by its inembership function .!i : ,S k- [O, 11 
and a crisp set A(c S) by its indicakor function lA : .S H {0, I}. The a-cut .i, is defined 

by 
.5, := {x E .S / S(m) > a) (a E (0, 11) aiid So := cl{x E S / g(x) > O ) ,  

where cl denotes the closure of a set. .F(,S) denotes the set of all fuzzy sets .!i on S satisfying 

the following conditions (i) and (ii) : 

(i) S, E £(S) for a E [ O , l ] ;  

(ii) nnl<, .?,I = 2, for Q E (0~11, 

where we put N := {0, 1 ,2 ,3 , .  - }  and 

00 

C,, C, are closed subsets of S (n E N) 

The11 we define 

( 1  := { z z y  sets 2 1 1  , 

where VnEN C!71 (x) := S U ~ , ~ N  .5 , (~ ) ,  N E S. 

We describe clynainic fuzzy systeins in [3, 51. N denotes a time space. Let a state 

space E be a complete metric space. Let ij be an upper semi-continuous fuzzy relation on 

E x E satisfying the following norinality condition : 

Let C be a, continuous fuzzy set on E, which denotes a fuzzy constraint 011 E .  Define rnaps 

P aiid Q : G(E) k- G(E) by 

where we write binary operations a A b := min{a, b} for real nu~nbers a ,  h E [0, I]. We call 

P (Q) a fuzzy tra,nsition defined by the fuzzy relation ij (with a fuzzy constrailit C resp.). 

We define a partial order > on G(E) : For g, i: E G (E) 

DEFINITION ([5, Section 41). A fuzzy set 5 (E G(E)) is called P-superharmonic (Q- 

superliarmonic) if 
512 P S  ( 2 2  QSresp.). 



The optillla1 value for Siiell's problem is a &-superliarrnoiiic fuzzy set ([5, Leniiiia 4. 11). 

For simplicity of the proofs in this paper, we deal with the case of c = 1 and we a,ilalyse P- 
superliarmonic fuzzy sets. The results in Sectioiis 2 and 3 still hold for Q-superha.rmonic 
fuzzy sets. We also defiiie n-steps fuzzy trailsitions P, : G(E) .ci g(E), n E N ,  by 

wliere, for 72 E N, we put 

We put a path space by fl := and we write a path by w = (w(O), w(l) ,  w(2), . .) t 
. Define a map X,(w) := w(n) a,iid a shift 0, (w) := (w(n), w (n  + l) ,  w(n + 2) ,  . .) for 
n E N aiid w = (w(O),w(l),w(2),. . .)  E a. Put 0-fields by JM, := o(Xo,X1,-- .  , X n )  ' 
for 72 E N axid JM := O(UnEN Mn) 2 We defiiie a fuzzy expectation : For an initial state 

s E E and an M-measurable fuzzy set h E F(f l ) ,  

E,(h) := $ h(w) d ~ ( w )  
w€SZ:w(O)=o;} 

where P is the followii~g possibility measure : 

d~ denotes Sugeno integral (Sugeno [7] ) .  

We put 
E := {A I A E E(E) and E \ A  E E(E) )  

and we call a map T : (2 I---+ N U {oo) an E-stopping time if 

For A t E, we put the first hitting tiiile of A by 

wliere the iiifiinurli of the empty set is uilderstood to be +m ([5, L e i m a  1.51). Further 

a fuzzy transition P, : G(E) t+ G(E), T is a.n £-stopping time, is defined by 

'1t denotes the smallest a-field on fl relative to which X o ,  XI,  . . . , X ,  ase rnea.surab1e. 
2 ~ t  denotes the sinallest a-field generated by UnEN M n .  



wliere X ,  := X ,  on (r = 7 2 ) ,  n E N U {oo). We note that (2.4) is an extensioli of (2.3) 
(see [5, (1  . I ) ] )  since 

P,g(x) := E,(sZ(X,)) x E E for s" E G ( E ) ,  n E N .  (2.5 

We define an operator G := VnEN Pn 011 G(E) .  Tlieil we note that 

PG1{y}(x) = V Pnl{,}(x) = sup r ( z ,  y )  s,  y E E .  
n2l n>l 

Now, Snell's optimal stopping probleili wlieii c = 1 is described as follows : Let s E E 
he a initial state and let 5 E G(E)  denote a fuzzy goal. The probleni is to find a finite 

E-stopping time 7- wliicli lna,xiiilizes r-step fuzzy transitions to the fuzzy goal S : 

Froin [5, L e i ~ ~ n i a  4.1 (ii) and Theorell1 4.11, tlie optimal value, u"(x) : = sup, P, sZ(s), satisfies 

However is clia~racterization for f i  is not sufficieiit because tlie solutioiis in (2.6) is not 

uiiiclue in general. Tlieii we a,lso have i j  = GsZ. In Section 4 ,  we estimate tlie optii1ia.l value 

G ,  using this fact. 

111 [4], a-recurrent sets are defiiiecl as follows. 

DEFINITION ( [4] ) .  Let cu E (0,1]. A lion-empty set A t £ ( E )  is called a-recurrent if 

Po; 1 2 a on A for all n t N aiid all non-empty B t E ~a~tisfying B c A, wliere og mealis 

the nth hittiiig t i i~ie of B : 

For /? E [0, I ] ,  we represent a coiistaliit fuzzy set P I E  by P siinply. Then we have tlie 

followiiig results regarding a-recurrent sets. 

LEMMA 2.1 ([q, Leiiiina 3.11). Let P ( E  [ O , 1 ] )  he a constant fuzzy set. It holds that 

G ( ; A ~ )  = Gar\ /? sad PG(SAP) = PGSAP for .YE G ( E ) .  

GIA(,8) = GIA and PGIA(,8) = PGIA A / ?  for A t E ( E ) ,  

where, for A E E(E) ,  a12 operator IA : G(E)  I---+ G(E)  is defined by 



LEMMA 2.2 ([4, Proposition 3.11). Let a E (0,1] a,lld let non-empty A E £(E) .  Then the  
following statements are equivadent : 

(i) A is a-rectzrrent; 

(ii) P G I B  2 a A lA for non-empty B E £(E)  satisfyillg B c A ;  

(iii) PG1{,] 2 a A lA for .I/ t A. 

LEMMA 2.3 ([4, Theorel11 3.11). It holds that 

U for cu E (0, 11. 
AEE(E)  : a-recurrent sets 

3. P-SUPERHARMONIC FUZZY SETS 

We show iliaill theorems, wliicli cha,racterize P-superharmoiiic fuzzy sets on a-recurrent 
sets. The classica.1 Harris clia,iii in probability theory has silliilar properties (Revuz [8, 
Propositioii 111-2.101). 

THEOREM 3.1. Let cu E ( O i l ]  a12d let A(E £(E))  he a-recurrent. Then,  for a.12y I)- 
superharmonic ftzzzy set ,?? we have 

;{ > a 012 A i f { . ? > a ) n A + @ ,  
is constant on A i f  {ii> a )  f l  A = 0. 

(3.1) 

PROOF. Let S he P-superl~armonic a8ild define a positive coilstailt /3 := SUI),,tA S(x). Given 
a positive iiuinbev t i  we put a non-eillpty set B := { S  > /3 - t} n A. We check B E E(E) .  
Siiice S E G(E), there exists a sequence { S n ) n E N  c F ( E )  such that gn 9 (n -+ m). By 

[5, Lemma 1.1 (i)] , we h a ~ e  

So B t £(E). Using Lelninas 2.1 and 2.2, we obtain 

Therefore, we get S > a A (P - t )  011 A for all t > 0. So, S 2 a A ,O 011 A.  This implies 
(3.1) aiid we establish this theorern. I 

We give a kiild of sufficient conditions for Theorein 3.1. 



COROLLARY 3.1. Let a E (0,1]. I f ( 3 . 1 )  holds fo1.A = E and ally P-supe~*lia,rmonic 6 
then E is a-recurrent. 

PROOF. Let y E E .  We take sl = GI{,} in (3.1). Then Gli,} 2 cu A supxEE Gl{,}(z) = a. 

Therefore we obtain PG1{,} > P(a) = a .  By Leinma 2.2, E is a-recurrent. I 

Next we extend Theorel11 3.1 to he applicable for caplculatioil of optimal va.lue for Snell's 

problem. We iiltroduce the followiilg notations. Let z E E, A E £(E) and a E (0, I]. We 

write x -+, A if G la (z )  2 a .  This iiieails that the possibility to transit in sollie time 

froin x to A is greater thaii a. Especially if A = {y }, we write x +, y simply. We define 

a, set 

Then T, (A) > A. The followillg theorems are useful to calculate P-superl~ariiionic fuzzy 

sets. 

THEOREM 3.2. Let a E (0,1] a~2d let A(E E(E)) be a-recunent. Then, for P-superl2armonic 

ft1zz.y set .?, we ha.ve 

.?? a A supS(z) on T,(A). 
x E A  

g2 cuA supsl(z) on A. 
ZEA 

Put B := { P G l a  ) a}. From Lemma. 2.1 and (3.3) we have 

9 2 PGIa 5 > P G I A  (a A sup S(m)) = P G I A  A (a A sup sl(x)) = a A sup S(m) 011 B. (3 -4) 
xEA TEA 33EA 

Since T,(A) = A U B, (3.3) aacl (3.4) complete the proof of this theorem. I 

THEOREM 3.3. Let a E ( O , l ]  a.nd let A(E £(E)) be a-recznrent. Then : 

(i) for S E G(E), we have 

(ii) for S E (E) , we ha.ve 

PROOF. (i) By Le1iii1ia 2.1, GIASAa = G(IAslAa). It is P-superliar~~ioilic froiii [4, Leinma 

2.41. Froiii Theorern 3.1, GIaS A a is coilstant on A. Therefore 



Then we have 
sup GIaS(x) = sup S(x) 
z E  A xEA 

since 

Thus we obtain 

sup .5(x) 5 sup GIA.?(.) 5 sup G(sup S(Y))(X) 5 sup ~ ( y ) .  
XEA XEA z E A  YEA YEA 

G I a s ~  a = supS(m) A a on A. 
XEA 

and so (i) holds. (ii) is trivial from (i) a,nd Theoreill 3.2. 

4. A NUMERICAL EXAMPLE 

I11 this section, we coilsider a iluiilerical exaiilple with a one- dimensioilal state space 
E = R, where R is the set of all rea.1 nuiilbers. The purpose is to calculate the optimal 
value 6 = GS for Snell's problem, using the results in Section 3. 

EXAMPLE 4.1. We give a fuzzy goall S and a fuzzy rela.tio11 q by 

q(", y )  = (1 - l y  - ~ ~ 1 )  v O 7  N ,  ?J E R. (4.2) 

(4.2) is showil in Yoshida [4, Exainple 6.11. By [4, Exainple 6.11, there exist three ~naxiinal 
a-recurrent sets Fa,o, Fa,1, Fa,Z, which are closed intervals such tlmt 

wllere at := 1 - I /  &+ 33/2 3 0.6151. Now we calcula.te the optimal value 6 = GS. First, 

sup S(x) = 0.8. 
3; ER 

Solvillg Q(a, x)  = .5(x), we have the solutions s = 21, x2, x3,54, xg, xs such that 

We put 

Figure 4.1 shows them. 



Fig. 4.1. The fuzzy set @ ( x ,  x )  aiid tlie fuzzy g o d  g(x) .  

Next, solviiig @ ( x ,  x )  = az, we have tlie solutioiis x  = -x7, -x4, x 4 ,  27 such that  

Also solviiig @(r, m )  = 0.8, we lia,ve tlie solutioils x  = -x,o, - 2 9 ,  -x8,x8,xg,  mlo such that  

Figure 4.2 shows them. By Tlieorem 3.3, 

From [4,  Figure 6.21, we halve 

Tlierefore, by Tlieorem 3.3, 

ij = sup g(x)  = sup g( z )  = cu2 NN 0.7296 011 [ - ~ 7 ,  x 4 ] .  
2€ [-z4 1~:*] 2 E F a 2  ,2 

Every starting point in ( z 4 ,  5 9 )  trailsits to F02,1 = [-x4,  z 4 ]  rno~iotoilically aiid every point 

in (-m , - 2 7 )  transits to  -m aiid every point iii (qo, +m) transits to  +w moiiotoiiically. 

Therefore we obta.iii tlie optiiiial value : 

* Q ( x )  for x E ( - m , x l )  
i ( z ,  x )  for x  E [ x l ,  - x7)  
cu2 w 0.7296 for z  E [-x7, 2 4 )  

S(x ) for x  E [x4 ,  5 5 )  

i ( x ,  x )  for x  E [ x 5 ,  z 9 )  
0.8 for x  E [xg  , x lo )  
@ ( x ,  x )  for m E [ x I 0 ,  x 6 )  

, .F(x) for x E [ x6 ,  $00) 

The optiiiial va,lue G(z) is shown in Figure 4.2. 



Fig. 4.2. The  fuzzy set G(x, x)  and the optillla1 vajlue G(x). 
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