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Abstract— We analyse P-superharmonic fuzzy sets on recurrent sets in dynamic
fuzzy systems and we derive a simple estimation for the fuzzy sets. This paper
presents a method to calculate an optimal value for Snell’s optimal stopping prob-
lem.
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1. INTRODUCTION

Bellman and Zadeh [1], Esogbue and Bellman [2] and some authors studied fuzzy
decision processes and fuzzy dynamic programming. In the dynamic fuzzy systems, a
sequence of fuzzy states are successively defined by fuzzy relations. Kurano et al. [3]
discussed the limiting behavior of the sequence, and Yoshida [4] studied the recurrence
for the systems. Yoshida [5] discussed Snell’s optimal stopping problem for the systems,
which is found in the classical probability theory (Neveu [6, Sect.VI-2]), and showed that
the problem is solved by a finite-step fuzzy dynamic program under a transient condition
([5, Condition (II)]).

The optimal value for Snell’s problem is given by a fuzzy set which satisfies a fuzzy
relational equation ([5, (4.3)]), in which the solutions are not unique in general. To obtain
the optimal value, we need to analyse it not only on transient sets but also on recurrent
sets. While, the optimal value has a )-superharmonic property of [5]. This paper derives
a simple estimation for ()-superharmonic fuzzy sets on recurrent sets and gives a method
to calculate the optimal value for Snell’s problem.

In Section 2 we describe notations and definitions of dynamic fuzzy systems and
a recurrence of the system in [4]. In Section 3 we show main theorems regarding P-
superharmonic fuzzy sets on a-recurrent sets. In Section 4, we give a numerical example
with a one-dimensional state space to comprehend our idea in this paper, and we calculate
the optimal value for Snell’s problem, using the results in Section 3.

2. DYNAMIC FUZZY SYSTEMS AND RECURRENCE




For a metric space S, we write a fuzzy set on .S by its membership function §: .S — [0, 1]
and a crisp set A(C S) by its indicator function 14 : S + {0,1}. The a-cut s, is defined
by

So :={z € S|5z)>a} (e (0,1]) and 3 :=cl{z e S|35z) >0},

where cl denotes the closure of a set. F(.5) denotes the set of all fuzzy sets $on S satisfying
the following conditions (i) and (ii) :

(i) 34 € E(S5) for a € [0,1];
(1) Narca Sar = 8o for a € (0,1],

where we put N := {0,1,2,3,---} and

E(9) = {A | A= |J Cy, C, are closed subsets of S (n € N)}

n=0

Then we define
g(s) .= { fuzzy sets Son S | there exists {5,},en C F(9) satisfying = \/ 3, } ,
neN

where V/, N 5,(2) := sup,eN S.(2), € 5.

We describe dynamic fuzzy systems in [3, 5]. IN denotes a time space. Let a state
space I be a complete metric space. Let § be an upper semi-continuous fuzzy relation on
FE x FE satisfying the following normality condition :

sup §(z,y) =1 (y € £) and supg(z,y)=1 (2 € E).
el y€EE

Let ¢ be a continuous fuzzy set on F, which denotes a fuzzy constraint on E. Define maps

P and Q) : G(F) — G(E) by

P3(z) := Ztelg{g(x,y) Niy)y zeE  for §€G(E), (2.1)
Q3(2) == é(z) A zlelg{(j(x,y) ANS(y)} z€FE for § € G(F), (2.2)

where we write binary operations a A b := min{a, b} for real numbers a,b € [0,1]. We call
P (Q) a fuzzy transition defined by the fuzzy relation ¢ (with a fuzzy constraint ¢ resp.).
We define a partial order > on G(FE) : For §,7 € G(F)

§>7 <> $(z) > Hz) z€E.

DermniTioN  ([5, Section 4]). A fuzzy set § (€ G(FE)) is called P-superharmonic (Q-

superharmonic) if
§> P5 (§> QS resp.).
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The optimal value for Snell’s problem is a ()-superharmonic fuzzy set ([5, Lemma 4.1]).
For simplicity of the proofs in this paper, we deal with the case of ¢ = 1 and we analyse P-
superharmonic fuzzy sets. The results in Sections 2 and 3 still hold for ()-superharmonic
fuzzy sets. We also define n-steps fuzzy transitions P, : G(F) — G(FE), n € N, by

P.5(z) := sug{t]”(a;,y} ANS(y)} zeE for e G(E), (2.3)
ve

where, for n € N, we put

i'(z,y) == q(z,y) and F*'(z,y):= Sug{ﬁn(w,Z) Ag(zy)} x,y€ k.
z€

We put a path space by  := [[i—, E and we write a path by w = (w(0),w(1),w(2),---) €
Q. Define a map X, (w) := w(n) and a shift 0,(w) := (w(n),w(n + 1),w(n + 2),---) for
n € N and w = (w(0),w(1),w(2),---) € Q. Put o-fields by M,, := o(Xo, Xy,--+, X)) !
for n € N and M := o(U,en Mn) 2. We define a fuzzy expectation : For an initial state
z € F and an M-measurable fuzzy set h € F(§),

Eo(h) = ]éwem(oz)l:(%) dP(w)

where P is the following possibility measure :

P(A) := sup N i Xnw, Xppqw) Ae M
wEA neN

and ][ dP denotes Sugeno integral (Sugeno [7]).

We put
E={A|Acé(F)and E\ A€ &E(E)}

and we call a map 7: ) — N U {oo} an E-stopping time if
{T=n}eM,NEN) n € N.
For A € £, we put the first hitting time of A by
opw)i=inf{n e N|n>1X,(w) € A} weQ,

where the infimum of the empty set is understood to be +oo ([5, Lemma 1.5]). Further
a fuzzy transition P, : G(F) — G(E), 7 is an E-stopping time, is defined by

P.s:=E(3X,)) forieG(k), (2.4)

1t denotes the smallest o-field on Q relative to which Xy, X, -+, X,, are measurable.
It denotes the smallest o-field generated by (J, . M-



where X, := X, on {r =n}, n € NU {oo}. We note that (2.4) is an extension of (2.3)
(see [5, (1.1)]) since

P,5(z) = E,(3X,)) z€FE forseG(E),neN. (2.5)
We define an operator G := V,en P on G(E). Then we note that

PGlyy(z) =\ Pulgy(z) = sup '(z,y) @y € F.

n>1

Now, Snell’s optimal stopping problem when ¢ = 1 is described as follows : Let z € F
be a initial state and let § € G(F) denote a fuzzy goal. The problem is to find a finite
E-stopping time 7 which maximizes T-step fuzzy transitions to the fuzzy goal 5 :

P.3(z), ze€k.
From [5, Lemma 4.1(i1) and Theorem 4.1], the optimal value, 9(z) := sup, P,3(z), satisfies
b= 3V P(d). (2.6)

However is characterization for v is not sufficient because the solutions in (2.6) is not
unique in general. Then we also have v = (5. In Section 4, we estimate the optimal value

7, using this fact.
In [4], a-recurrent sets are defined as follows.

DermiTioN ([4]). Let a € (0,1]. A non-empty set A € E(E) is called a-recurrent if
Pynl > avon Afor all n € N and all non-empty B € € satistying B C A, where o5 means
the nth hitting time of B :

n )0 ifn=20
987 o5 4 op o()ag-l ifn>1.

For 8 € [0, 1], we represent a constant fuzzy set Slg by § simply. Then we have the
following results regarding a-recurrent sets.
Lemma 2.1 ([4, Lemma 3.1]). Let 5(€ [0,1]) be a constant fuzzy set. It holds that
G(SANB)=GSN[ and PG(SAP)=PGSANEB forse G(E).
Especially,
GIA(f)=GlaANB and PGI4(B)=PGl4AB for Ae E(E),
where, for A € £(E), an operator 14 : G(E) — G(F) is defined by

IA.§:=§/\1A §EQ(E)



Lemma 2.2 ([4, Proposition 3.1]). Let o € (0,1] and let non-empty A € E(E). Then the
following statements are equivalent :

(i) A is a-recurrent;
(i) PGlg > a A1y for non-empty B € E(F) satisfying B C A;

(111) PGl{y} >aAlAly forye A
Lemma 2.3 ([4, Theorem 3.1]). It holds that

U A= {x € E|sup ¢*(z,z) > a} for o € (0,1].

A€E(E): a—recurrent sets n21

3. P-SUPERHARMONIC FUZZY SETS

We show main theorems, which characterize P-superharmonic fuzzy sets on a-recurrent
sets. The classical Harris chain in probability theory has similar properties (Revuz [8,
Proposition I11-2.10]).

TueoreMm 3.1.  Let o € (0,1] and let A(€ E(F)) be a-recurrent. Then, for any P-

superharmonic fuzzy set s, we have

g{ZQ on A if{§>a}lnNA#0, (3.1)

is constant on A if {§>a}NA=0.

Proor. Let §be P-superharmonic and define a positive constant # := sup, 4 3(x). Given
a positive number €, we put a non-empty set B := {3 > f — ¢} N A. We check B € £(F).
Since s € G(F), there exists a sequence {3, },en C F(F) such that §, T 5 (n — o). By
[5, Lemmal.1(i)], we have

B=J{5.>p-¢gnAa={ U {gnzﬁ—mt—%}mxesw),

neN neN m=1,2,-

So B € £(F). Using Lemmas 2.1 and 2.2, we obtain
§> PGs> PGlgs> PGIg(ff—€¢) > PGlg A (f—€) > aAN(f—¢€) on A

Therefore, we get § > a A (S —¢€) on A for all e > 0. So, § > a A f on A. This implies
(3.1) and we establish this theorem. |

We give a kind of sufficient conditions for Theorem 3.1.
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CororLary 3.1. Let a € (0,1]. If (3.1) holds for A = F and any P-superharmonic 3,
then E is a-recurrent.

Proor. Let y € E. We take § = Gl in (3.1). Then Glyy > o Asup,ep Gl (z) = o
Therefore we obtain PGly,y > P(a) = «. By Lemma 2.2, F is a-recurrent. |

Next we extend Theorem 3.1 to be applicable for calculation of optimal value for Snell’s
problem. We introduce the following notations. Let 2 € E, A € £(F) and o € (0,1]. We
write z —, A if Glu(2) > «. This means that the possibility to transit in some time
from z to A is greater than «. Especially if A = {y}, we write z —, y simply. We define
a set

To(A) ={z e F|x —, A} ={Gly > a} forac(0,1] and A € E(E).

Then T,(A) D A. The following theorems are useful to calculate P-superharmonic fuzzy

sets.

Tueorem 3.2. Let o € (0, 1] and let A(€ E(E)) be a-recurrent. Then, for P-superharmonic

fuzzy set 3, we have

§>aAsups(z) on T,(A). (3.2)
z€A
Proor. From Theorem 3.1
§> aAsups(z) on A (3.3)
TEA

Put B := {PG1l4 > a}. From Lemma 2.1 and (3.3) we have

§> PGI 5> PGIy(aNsupi(az)) = PGlaA(aAsup$(z)) = aAsups(z) on B. (3.4)
z€A TEA z€A

Since T,(A) = AU B, (3.3) and (3.4) complete the proof of this theorem. |
TueoreMm 3.3. Let a € (0,1] and let A(€ E(F)) be a-recurrent. Then :
(1) for §€ G(F), we have

L =supyeqs(z) on A If supyey S(z) < o
G]AS{ >a onA if sup,ey S(z) 2> o (3.5)

(i1) for § € G(E), we have

GIa5> aAsup §(z) on T,(A). (3.6)

z€A

Proor. (i) By Lemma 2.1, GI45Aa = G(I45A ). It is P-superharmonic from [4, Lemma
2.4]. From Theorem 3.1, GI45 A « is constant on A. Therefore

GI45N a=supGla8(z) A on A.
T€EA



Then we have

sup GI43(z) = sup §(2)
z€EA z€A

since

sup () < sup GI,5(z) < sup G(sup 3(y))(z) < sup 3(y).
z€A z€A z€A  y€A yeA

Thus we obtain

GI4sNa=sups(z) Ao on A
€A

and so (i) holds. (ii) is trivial from (i) and Theorem 3.2. |

4. A NUMERICAL EXAMPLE

In this section, we consider a numerical example with a one-dimensional state space
E =R, where R is the set of all real numbers. The purpose is to calculate the optimal
value 7 = G5 for Snell’s problem, using the results in Section 3.

ExampLE 4.1. We give a fuzzy goal § and a fuzzy relation ¢ by
3(z)=(08—-0.1]1—==z|)v0, z€R, (4.1)

gz,y)=(1—-ly—2°)Vv0, z,ye€R. (4.2)

(4.2) is shown in Yoshida [4, Example 6.1]. By [4, Example 6.1], there exist three maximal
a-recurrent sets Fy o, Fyy 1, Fi 2, which are closed intervals such that

{zeR|z,2)>at=Fo0UF,1UF,; ifa>a,

where aq 1= 1—1/v/3+3%% = 0.6151. Now we calculate the optimal value v = G5. First,
we note

sup §(z) = 0.8.
zeR

Solving ¢(x,x) = §(x), we have the solutions = = z1, 22, T3, T4, Ts5, T¢ such that
z1 ~ —1.1651, x5~ —0.6749, 23 = —0.4098,

x4 =~ 0.2964, 25~ 0.8687, x5~ 1.0916.

We put
ay = 5(xy) = 0.7296.

Figure 4.1 shows them.



2~ —1.1651

\ 7 T5 e x 1
L =0l @~ 70 S0 a 06749
i Ty T3 ! z3 ~ —0.4098

" - ‘\g(%w) 24 A 0.2964
| l‘ x5 ~ 0.8687
| 0.2t \ Tg = 1.0916
| \
| |

N 0 T 5

Fig. 4.1. The fuzzy set §(z,z) and the fuzzy goal 3(z).

Next, solving ¢(z,2) = a3, we have the solutions = = —x7, —4, x4, z7 such that
rr & 1.1147.
Also solving (z,z) = 0.8, we have the solutions @ = —x9, —29, —s, Ts, L9, T1 such that

g & 0.2091, w9~ 0.8789, 10~ 1.0880.
Figure 4.2 shows them. By Theorem 3.3,

v= sup 3(z)=0.8 on Fogy = [zg,210).
mE[l’e,wlo]

From [4, Figure 6.2], we have
Taz( o2 0) - Paz 0> Ta'z (Faz,l) = [“l’7, ‘7:7]7 Taz(FthJ) - Faz,‘Z'

Therefore, by Theorem 3.3,

b= sup s(z)= sup $§(x)=a;~0.7296 on [—z7,z4].
T€[—w4,24] z€F,, 2

Every starting point in (24, x9) transits to F,, 1 = [—4, £4] monotonically and every point
in (—oo0, —z7) transits to —oo and every point in (210, +00) transits to +o0o0 monotonically.

Therefore we obtain the optimal value :

() for z € (—oo,2;) ~ (—o0,—1.1651)
q(z, ) for z € [z1,—27) =~ [-L 1601 —1.1147)
ag ~ 0.7296 for z € [—x7,z4) ~ [—1.1147,0.2964)

() = 5(z) for z € [z4,25) =~ [0.2964,0.8687)

v q(z, ) for z € [xs5,29) = [0.8687,0.8789)

0.8 for = € [vo,m0) A [0.8789,1.0880)
q(z, ) for 2 € [z10,26) ~ [1.0880,1.0916)
5(z) for = € [z, +00) ~ [1.0916,+00).

The optimal value o(2) is shown in Figure 4.2.
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i
_m_l'\ / \ T [l
l/l:, “\ 0’48' \‘/y—-{,\
e v~ —1.1651
AN s T NS Ts a"6 6(1)
J ~ 0.6} :1:4 ~- |' ——11?7 @"11147
1 x4 ~ 0.2964

s ~ 0.8687
T9 =~ 0.8789
10 ~ 1.0880
zg ~ 1.0916

x

Fig. 4.2. The fuzzy set ¢(x, ) and the optimal value 9(z).
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