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Abst raet 

The infiniteness problem is investigated for the set proof ( a )  of 
closed A-terms in /?-normal form which has a as their types. The 
set is identical to  the set of normal form proofs for a in the natural 
deduction system for implicational fragment of intuitionistic logic. 

It is shown that the infiniteness is determined by checking A- 
terms with the depth at most 21 a 1 2 .  Thus the problem is solved 
in polynomial-space. The bound is obtained by an estimation of the 
length of an irredundant chain of sequents in type assignment system 
in sequent calculus formulation. Then the non-emptiness problem 
of proof (a ) ,  which is identical to the provability of a ,  is deduced 
to  the problem of infiniteness problem by a transformation of types. 
Since the provability is polynomial- space complete (Statman, The- 
oret. Comput. Sci. 9 (1979) 97-105), the infiniteness problem is 
polynomial-space complete. 

*Partially supported by Hara founcation and a Grant-in-Aid for Scientific Research 
No.02740115, No. 05680276 of the Ministry of Education, Science and Culture. 



1 Introduction 

Our interest is in the structure of the set proof(a) of closed A-terms in 
p-normal form which has a as their types. According to 'terms-as-proofs' 
correspondence [5], tlie set is identical to the set of normal form proofs for a in 
the natural deduction system N J  for implicational fragment of intuitionistic 
logic. 

When a is in simple form, there are simple description of the set. For 
example, when the degree of a is at most 2 and a = al -+ a2 -+ . . - 
a, -+ a, where ai = at -+ a$ -+ . -+ aLi with type variables at ,  . , a,;, 
we can describe the set as a context-free language [ll, 13, 141. If we extend 
this description to general types, we obtain a context-free-like description 
with infinitely many symbols and rules [Ill. It seems impossible to describe 
proof (a) as a context-free language. In fact, it is known that the complexity 
of non-emptiness of proof (a), which is equivalent to the provability of a 
in NJ, is polynomial-space complete [lo]. I11 this paper we show that the 
problem of infiniteness of proof (a) is polynomial-space complete. Thus the 
problems of the infiniteness and the problem of non-emptiness have the same 
complexity. 

Ben-Yelles [I] showed that proof (a) is infinite iff there is a A-term M in 
proof (a) whose type assignment contains a repetition. In [4], we showed a 
bound of the depth to test the infiniteness. Thus the problem of infiniteness 
of the set is decidable. However, the bound was I a I 2Ial+', where I a I 
is the size of a which is defined as the total number of occurrences of type 
variables and arrows in a .  In tlie present paper, we show that tlie infiniteness 
is determined within the depth of 2 1 a 12. That depth is obtained by an 
analysis of type assignment figures in sequent calculus formulation. We show 
that the length of the chain of sequents that does not contain repetition is 
at most I a2 I. Therefore we can test the infiniteness in polynomial-space. 

The polynomial-space hardness is proved in Section 3 by a deduction of 
the non-emptiness problem to the infiniteness problem. The transformation 
is defined by F(a) = (((b -+ a) -+ a) -+ b) -+ b where b is a type variable 
which does not occur in a .  We constructed the transformation from an 
example ((((a -+ b) -+ a) -+ a) -+ b) -+ b by Mints. ' It has infinitely many 

'Mints made this formula as a counter example to a problem by Komori [7]. This 
formula is essential in intuitionistic logic in the sense that it is not a non-trivial substitution 



normal form proofs. Our transformation is a generalization of this example. 
The transformation keeps the provability, i.e., kNJ a iff tNJ &'(a). Moreover, 
when F(a) is provable then F(a) has infinitely many normal form proofs. 
This infiniteness does not depend on the number of proofs for u as long as 
a is provable. Thus the decision problem of a is deduced to the infiniteness 
problem of p o o  f (F(a) ) .  

2 Sequent calculus of the type assignment 
system to lambda-terms 

We assume the familiarity to the basic notions in A-calculus [3] and in proof 
theory [9]. 

The set of types are constructed from type variables a,  b, . . by combining 
two types a and P with an arrow -+ obtaining a type ( a  -+ P). A type 
assignment formula (TA-formula) is an expression M : a with an arbitrary 
A-term M and a type a .  M is the subject of the TA-formula and a is the 
predicate of the TA-formula. The type assignment system Nx is defined by 
the following two inference rules. 

We assume that the subject of a TA-figure in each leaf is a variable. 
A sequent is an expression I' t- M : a where M : u is a TA-formula and 

I' is a set of TA-formulas xl : a l , .  . , x, : a, whose subjects are distinct 
variables. 

The sequent calculus of the type assignment system is defined as follows. 

Definition 1 [LA] 
Axiom: 

x : a , r t x : a  

instance of other provable formulas. Komori called such formulas minimal in intuitionistic 
logic. BCK-minimal formulas are defined similarly to  BCK-logic. In [8], a bijection is 
shown between the set of pq-normal form BCK-proofs for BCK-formula a and the set of 
BCK-minimal formulas which generates ctr as a substitution instance. 



Inference rules: 
x : a , r t - i W : p  

(-+ right) I' I- Ax.M : a -+ /3 

The difference of our formulation to that in [2] is that the set of as- 
sumption does not decrease when we go up through an inference rule. The 
system LA is a representation of Kleene's G3 (p. 481 of [6]) in terms of type 
assignment system in the following sense. If we erase all the subjects and 
colons from a TA-figure in LA, the result becomes a cut-free proof figure in 
Gentzen's sequent calculus L J'+ for implicatioiial fragment of intuitionistic 
logic. Conversely, given a cut-free proof figure P in LJL, we can construct 
A-terms and a TA-figure P' whose predicate part coincides P. 

Remark 1 If I' t- M : a in LA, then M is in P-normal form. 

Remark 2 If we impose on the (7- left) the restriction that y is a free 
variable in L, then we obtain the system Lf\. We can show the equivalence 
of LA and Lf\, i.e., I' t M : a in Lf\ iff I' t M : a in LA. If-part is 
trivial. Note that if y : p,x  : a -+,I' t- L : y in LA and y FV(L) then 
x : a -+ ,!3, I' t- L : y in LA. Therefore we can prove the only-if-part by 
induction on the structure of the TA-figure for I' I- M : a in LA. Thus we 
can assume the restriction on (-+ left) in the sequel of the paper. With this 
restriction, the size of A-term varies according to the the size of TA-figure. 

Using the translation of sequent calculus to natural deduction [15], we 
can see that both NA and LA are equivalent representations of cu r ry -~oka rd  
isomorphism. 

Theorem 1 Let M be a closed A-term in /?-normal form and a be a type. 
Then t M :  a in NA iff t- M :  a in LA. 



3 A bound of depth for infiniteness-test 

By proof(a)  we denote the set of closed A-terms M such that t M : a  in 
Lx The number of A-terms in the set is denoted by #pro0 f ( a ) .  

Definition 2 A chain in a TA-figure P in La is a sequence 

of occurrences of sequents such that ri t Mi : ai is an upper sequent of 
Mi+1 : ai+1 for i = 1,  . , m - 1. The length of the chain is m. A 

thread is a chain such that rl t- Ml : a1 is an axiom and rm t- Mm : a ,  is 
the end-sequent . A chain is irredundant iff (pred(ri) ,  a i )  # (pred(r j ) ,  a j )  
for i f j ,  where pred(r) = {( I x : ( E r}.  

Definition 3 The size I a  I of a type a  is defined as follows. I a I =  1 for 
type variable a. 1 a  -+ P =  I a  1 + I P  I+1. 

Lemma 1 Let rl t MI : a1,. . . , r ,  t Mm : am be an irredundant chain in 
a TA-figure for t M : a  i11 LA. Then we have 

Proof. By the sub-formula property, each ai is a sub-type of a .  Note 
that the number of sub-types is at most I a  I. Thus the number of distinct 
ai's is at most 1 a  I. On the other hand we have pred(rl) . 2 pred(ri) 

pred(ri+l) C . C pred(F,). By the sub-formula property, pred(ri) is 
a subset of all sub-types of a. Thus the number of distinct pred(ai)'s is at 
most I a  I. Thus the possibility of distinct pairs of (pred(ri) ,  a )  is at most 
I a  12. Thus wehavem 5 I n 12. 1 

Both in NA and LA,  a TA-figure is a tree. A thread in the tree is a 
sequence of nodes from a leaf to the root. 

Definition 4 Let P be a TA-figure in NA or LA. The depth of P, denoted 
by I P 1, is the maximal length of threads in P .  

Theorem 2 For any type a ,  #proof(a) = oo iff there is a closed A-term M 
in @-normal form and a TA-figure P for M : a  in LA such that 



( 1 )  IP 1521 a l 2  and 

(2) there are two distinct occurrences of sequents I' t R : [ and A t S : [ 
in the same thread in P and pred(I') = pred(A). 

Outline of proof. (If-part) Let P be the TA-figure which satisfies the 
conditions. From this TA-figure we construct a closed A-germ M* such that 
s i ze (M)  < size(M*) and M* E proof(a). Here the size of a A-term M is 
the number of occurrences of variables and A's in M .  Let PI and 732 be the 
sub-figures for I' t R : [ and A t S : ( respectively. 

7'2 
? I {  r t R : [  P2 A I R : [  

P P* 
A t S : [  A* t S* : [ 

M : a  t - M * : a  
Firstly, remove the sub-figure PI from P and replace all the occurence of 
R as sub-terms which has the origin in the occurrence of R in I' t R : [ 
by S. Since pred(r) = pred(A), we can make a correspondence from the 
subjects of I', which are variables, to the subjects of A. According to this 
correspondence, rename each variable in I' by the corresponding variable in 
A. At the root of this figure we obtain a closed A-term M* in p-normal form 
which is similar to M except that the sub-term R is replace by S and that in 
the construction in M around R the name of variables are replaced. Finally 
put P2 at the original position of PI .  Thus we obtain a TA-figure P* in LA 
for t M* : a.  Continuing this rewriting, we can construct infinitely many 
A-terms with type a.  Thus #proof ( a )  = oo. 
(Only-if-part) If #pro0 f ( a )  = oo then for any integer d there is a A-term 
M in proof ( a )  and a TA-figure P in L, for t M : a such that I P  I> d .  
Let P be such a TA-figure for I- M : a for d = 21 a 1 2 .  By Lemma 1, the 
length of an irredundant chain is at most I a 1 2 .  Since I P I >  21 a 1 2 ,  there 
is a thread which contains three distinct occurrences of sequents I' t Q : [, 
A t R : [ and C t S : such that pred(r) = pred(A) = pred(C). Select one 



of the longest thread among such threads. 

Replace P2 by PI and rename the variables in A. Then we obtain a A-term 
M' and a TA-figure P' for t- M' : a  such that I P' 1 < 1  P I. We can continue 
this shrinking while I P' I> 21 a  12. Finally we obtain a closed A-term M* 
and a TA-figure P* for I- M* : a  such that I P' 15 21 a  1 2 .  1 

Theorem 3 Given a type a, we can decide the infiniteness of proof ( a )  in 
polynomial-space with respect to I a  I. 

Proof. By Theorem 2 ,  we can decide the infiniteness of proof ( a )  by 
searching a A-term in proof ( a )  and a TA-figure P with the depth 5 21 a  l 2  
which contains the repetition in the thread. Therefore, it can be determined 
in p olynomial-space. 1 

4 A transformation and polynomial-space corn- 
plet eness 

According to Theorem 3 the infiniteness of proo f ( a )  is decidable in polynomial- 
space. Statman proved that the decidability of a, which is equivalent to the 
non-emptiness of proo f ( a ) ,  is polynomial-space complete [lo]. In this section 
we prove that the problem of infiniteness is polynomial-space complete. The 
proof is by a deduction of the non-emptiness problem into the infiniteness 
problem. We use Nx for this analysis. 

Definition 5 Let a be a type and b We define F(a)  by 



Theorem 4 For a type a, we put F(a) = ( ( (b  -+ a) -+ a) -+ b) -+ b where 
b is a type variable which does not occur in a .  Then the following (a),(b) 
and (c) are equivalent. 

Proof. (a) + (b). Consider the following TA-figure for z : a t 
Ax.x(Ay.y (x(Au.2))) : F(a). 

y(x(Xu.z)) : a 

x : ((b i a) -+ a) -+ b3 Xy.y(x(Xu.~)) : ( b  -+ a) -+ a 
2 

x(Xy.y(x(Xu.~))) : b 
Xx.x(Xy.y(x(Xu.~))) : (((b -+ a) -+ a) -+ b) -+ b 

3 

If #pro0 f (a) > 0 then there is a closed A-term M such that t M : a. Replace 
the assumption z : a by the TA-figure for I- M : a. Then we have a TA-figure 
for I- XX.X(X~.~(X(AU.M)))  : F(a). Thus #proof(F(a))  > 0. 
(b) =+ (a). Assume that #pro0 f (F(a)) > 0. Consider a substitution b := a .  
Then we have tNJ (((a -+ a) -+ a) -+ a) -+ a. Thus we tNJ a by the 
following   roof figure. Therefore #pro0 f (a) > 0. 

a 2 
( ( (a+a)  + a )  -+a)-+ a ((a-a) -+a) -+a 

a 

(c) j (b) is trivial. Thus it suffices to show (b) =+ (c). Assume that 
Ifproo f (F(a)) > 0 then we have #pro0 f (a) > 0 by (b) +- (a). There- 
fore we have a closed A-term M in /?-normal form such that I- M : a .  
Similarly to the proof of (a) =+ (b), we construct a TA-figure in Nx for 
XX.X(A~.~(X(AU.M))) : F(a). Replace the sub-figure above x(Au.M) : b by 
the TA-figure above x(Ay.y(x(Xu.M))) : b. Then we have a TA-figure for 



Ax.x(Ay.y(x(Ayl.yl(x(Au.lM))))) : F ( a ) .  We can repeat this transformation 
infinitely many times. Thus #pro0 f  ( F ( a ) )  = oo. I 

By Theorem 3 and Theorem 4 we liave the main theorem. 

Theorem 5 The problem of infiniteness of proof(a)  for given type a is 
polynomial-space complete. 

Remark 3 The transformation F ( a )  = ( ( ( b  -+ a )  -+ a )  -+ b )  -+ b is not 
the unique transformation which satisfies the equivalences in Theorem 4. We 
can construct another transformation G ( a )  = ( a  -+ b)  -+ ( b  -+ a )  -+ a from 
a closed A-term Axy.x(y(Az.xz)) whose principal type-scheme is ( a  -+ b) -+ 

( ( a  -+ b )  -+ a )  -+ b by the following TA-figure. 
x : a - + b  z : a  

A y  . ~ ( ~ ( A z . x z ) )  : ( ( a  -+ b )  -+ a)  -+ b 
A ~ ~ . x ( ~ ( A z . x z ) )  : ( a  -+ b )  -+ ( ( a  -+ b )  -+ a )  -+ b 

Note that the local assumption z : a is discharged at Xz.xz : a 7- b. If we 
does not discharge z : a and leave it until we reach the conclusion, we liave 
the following TA-figure for Axy.x(y(xz))  : ( a  -+ b )  --+ ( b  -+ a )  -+ b. The 
term is not closed and ( a  -+ b) -+ (b  -+ a )  -+ b is not N J  provable unless we 
use an assumption x : a. 

x : a - + b  z : a  
y : b - + a  xz : b 

Thus we obtain a transformation G ( a )  = ( a  -+ b )  -+ (b -+ a )  -+ a. 

Remark 4 In [14], Zaionc constructed a system of polynomial equation 
given a type a and showed that #pro0 f ( a )  is obtained as a fixpoint solution 



of the equation. To reach the fixpoint, we iterate the system of polynomial 
calculation. It is worth while investigating the relation between this number 
of iteration and the depth of proof in the present paper. 
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