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We propose a notion of the rejutably PAC learnability, which formalizes the refutability of 
hypothesis spaces in the PAC learning model. Intuitively, the refutable PAC learnability of a 
concept class F requires that the learning algorithm should refute F with high probability if 
a target concept can not be approximated by any concept in 7 with respect to the underlying 
probability distribution. We give a general upper bound of 0((1/~ + I/&') log (lFnI/S)) on 
the number of examples required for refutably PAC learning of F. Here, E and S are the 
standard accuracy and confidence parameters, and E' is the refutation accuracy. We also define 
the strongly refutably PA C learnability by introducing the refutation threshold. We prove a 
general upper bound of 0((1/~~ + 11~'~) log (lFnl/S)) for strongly refutably PAC learning of F. 
These upper bounds reveal that both the refutably PAC learnability and the strongly refutably 
PAC learnability are equivalent to the standard PAC learnability within the polynomial size 
restriction. 

I Introduction 

In the standard PAC learning model due to Valiant [Val841 and most of its variants [BEHW89, 
Natgl], a target concept is assumed to be in a hypothesis space. In these models, a learning 
algorithm has only to find a hypothesis which is consistent with given examples. There have 
been some studies [Hau89, KSS92, KS91, Yam901 which weakened the assumption. However, 
their main subjects are to find the best approximation in the hypothesis space, and they 
have paid little attention to determine whether or not the hypothesis space is suitable to 
approximate the target concept. 

As a practical application of PAC learning, we developed a machine learning system which 
finds a motif from given positive and negative strings [AKM+92, AMS'93, SSS+93], and made 
some experiments on amino acid sequences. In particular, we applied it to the following two 
problems. One is the transmembrane domain identification, which is rather an easy problem. 
The other is the protein secondary structure prediction, which is one of the most challenging 
problem in Molecular Biology. Our learning system succeeded in discovering some simple and 
accurate motifs for the transmembrane domain sequences in very short time. On the other 
hand, it has failed to find a rule to predict the secondary structures of proteins with high 
accuracy. Thus we have suspected that the representation is not suitable for the secondary 
structure prediction problem. Nevertheless, we did not have any criterion to terminate the 
learning algorithm even if there remains no possibility to find any good hypotheses. We need 
to refute all hypotheses in the current hypothesis space before trying some other space. 

The refutability of the whole space of hypotheses was originally introduced by Mukouchi 
and Arikawa [MA931 in the framework of inductive inference. It is a essence of a logic of 



machine discovery. 
In this paper, we formalize the refutability of hypothesis spaces in the PAC learning model. 

We propose a notion of the refutably P A C  learning. In this model, a learning algorithm tries 
to find a good approximation for a target concept with respect to the underlying probability 
distribution, in the same way as the standard PAC learning model. Additionally, the learning 
algorithm is required to refute the hypothesis space with high probability, if the target concept 
cannot be approximated by any concept in the hypothesis space. We also define the strongly 
refutably P A C  learning by introducing the refutation threshold. 

We prove general upper bounds of the number of examples which are required for both the 
refutably PAC learning and the strongly refutably PAC learning. These upper bounds implies 
that the polynomial-sample refutable PAC learnability and strongly refutably PAC learnability 
are equivalent to the standard polynomial-sample PAC learnability within the polynomial size 
restriction. 

2 Refutably PAC Learnability 

Let X = C* be the set of all strings on a finite alphabet C. We call X a learning domain.  Xn 
denotes the set of all strings of length n or less for n 2 1. A concept f is a subset of X. A 
concept class is a nonempty set F 2 X .  For a concept f E F and an integer n 2 1, we denote 
the n-th subclass of 7 by Fn = { f n Xn I f E 3). Let If be the indicator function for f on 
X, that is, If (x) = 1 if x E f and If(%) = 0, otherwise. An example on x E X for a concept 
f is a pair (x, If(x)). If Ij(x) = 1, (x, If(x)) is a positive example; otherwise, it is a negative 
example. 

Let F be a concept class on X. For any integer n 3 1, we define the dimension of n-th 
subclass by dim Fn = log, IFn 1. We say that concept class F is the polynomial dimension if 
there is a polynomial function p(n) with dim& 5 p(n) for any n > 1. 

Let g be a concept class and f be a target concept. For a probability distribution P, we 
define erp, ( g )  = P(gA f ) ,  where f A g  denotes the symmetric difference f U g - f n g. We call 
erp, (g) the error of g for f with respect to P. We define opt(P, 3) = mingEF erp,f(g). We 
remark that if the target concept f is in F, then opt(P, .F) = 0 for any probability distribution 
P. 

Now we define a notion of refutably PAC learnability. Intuitively, we expect the following 
algorithm A for a concept class F. If opt(P, F )  = 0, then A finds good approximation h E F 
for a target concept f .  Otherwise, A refutes F. However, if opt(P, F) is very close to  0,  
it is hard for the learning algorithm to determine opt(P,.F) = 0 or not. Thus we relax the 
requirement by introducing the rejutation accuracy E'. That is, A refutes F if opt(P, F) 2 E'. 
The formal definition is as follows. 

Definition 1. Let F be a concept class on X. An algorithm A is a refutably P A C  learning 
algorithm for F if 

(a) A takes E, E', 6 and n (0 < E , E ' , ~  < 1, n E N+) as inputs. 

(b) A may call EXAMPLE, which returns examples for some concept f 2 X. Note that f is 
called a target concept. The examples are chosen randomly according to an arbitrary and 
unknown probability distribution P on Xn. Note that the concept f i s  not necessarily 
in the concept class F .  

(c) A satisfies the following conditions for any concept f C X and any probability distribution 
P on Xn: 



(i) If opt(P, F) 2 E', then A refutes the hypothesis class 3 with probability a t  least 
1 - 6. 

(ii) If opt(P, F) = 0, then A outputs a hypothesis h E F which satisfying P(f Ah) < E 

with probability at least 1 - 6. 

We set up a complexity measure for learning algorithms to measure the number of examples 
required by the algorithm as a function of the various parameters. 

Definition 2. Let A be a learning algorithm for a concept class F. The sample complexzty 
of A is the function s : R x R x R x N -t N such that S(E,  E', 6, n) is the maximum number 
of calls of EXAMPLE by A, where the maximum is taken over all runs of A on inputs E ,  E', 

6 and n, with the target concept f ranging over all f c X and the probability distribution P 
ranging over all distribution on Xn. If no finite maximum exists, S(E,  E', 6, n) = oo 

The sample complexity of algorithm A is the number of examples which is required by A 
as a function of the input parameters. If this function is bounded by a polynomial in $,$,$ 
and n, we consider the learning task to be feasible. 

Definition 3. A concept class F is said to be polynomial-sample refutablg learnable if there 
exists a polynomial p and a refutably PAC learning algorithm Lfo r  .F withsample complexity 

1 1 1  
P(; ,  2,  67 n)' 

Now we show an upper bound of the sample complexity for refutably PAC learnability. 

Theorem 1. Let F be a concept class. Then there exists a refutably PAC learning algorithm 
for F with sample complexity 

Proof. Algorithm Al below is a refutably learning algorithm for F. 

Learning Algorithm Al 
input: E ,  E', 6 ,  n; 
begin - 

1Fn 1 let m= I(;+ f)log7]; 

make m calls of EXAMPLE; 
let S be the set of examples seen; 
if there exists a concept g E F that is consistent with S then 

begin 
pick a concept h E .F that is consistent with S; 
output h; 

end 
else 

refute the concept class .F; 
end 



We estimate the number of examples from which the algorithm Al refutes the concept class 
3 with probability at least 1 - 6. 

Suppose that opt(P, F )  > E'. By the definition of A1, we may consider only a probability 
distribution P on Xn. Then, without loss of generality, we can assume that a concept class is 
the n-th subclass Fn. If the algorithm A1 outputs some concept g, all examples produced by 
EXAMPLE is consistent with the concept g. By the supposition, P (gA f )  2 E' for any concept 
g E .En. Then, the probability that any call of EXAMPLE will produce an example consistent 
with g is a t  most (1 - E').  Hence, the probability that m calls of EXAMPLE will produce 
examples all consistent with g is at most (1 - NOW, there are a t  most (Fnl choices for g. 
We will make m sufficiently large to bound the probability IFnI(l - E ' ) ~  by 6. 

Using the approximation (1 - E ' ) ~  5 e-m", 

1.En e-m"' 5 G 

Simplifying, we obtain the following inequation: 

If the condition(ii) in Definition 1 holds, then we may refer [Natgl]. 

Corollary 1. If a concept class F is of polynomial dimension, then F is polynomial-sample 
refutably learnable. 

3 Strongly Refutably PAC learnability 

In a practical setting, it is unusual that there exists a concept g E 3 with P(gAf)  = 0. As 
long as the minimum error opt(P, F) is small enough, it is desirable that a learning algorithm 
should produce some approximation instead of refuting F .  For this purpose, we introduce a 
new parameter 7 (0 5 7 < I) ,  which is a refutation threshold. The formal definition is as 
follows. 

Definition 4. Let .F be a concept class on X. An algorithm A is a strong13 refutably PAC 
learning algorithm for T if 

(a) A takes E ,  7, E', 6 and n (0 < E, E', 6 < 1, 0 5 7 < 1, n E N') as inputs. 

(b) A may call EXAMPLE, which returns examples for some concept f 5 X. Note that f 
is called a target concept. The examples are chosen randomly according to an arbitrary 
and unknown probability distribution P on Xn . 

(c) A satisfies the following conditions for any concept f C_ X and any probability distribution 
P on Xn: 

(i) If opt(P, F) > 7 + E', then A refutes the hypothesis class F with probability at  least 
1 - 6. 

(ii) If opt(P, 3 )  < 7, then A outputs a hgpothesis h E 3 which satisfying P(f  Ah) < 7 - k ~  
with probability at  least 1 - 6. 

We define the sample complexity of strongly refutably PAC learning algorithm in the same 
way as Definition 2, with the refutation threshold 1) ranging over all 17 E [O,l). 

The following lemma is important in Theorem 2. 



Lemma 1. [AL88] If O 5 p 5 1,0 5 r 5 1, and m is any positive integer then 

and 

Theorem 2. Let F be a concept class. Then, there exists a strongly refutably PAC learning 
algorithm for 3 with sample complexity 

Proof. Algorithm $1, below is a strongly refutably PAC learning algorithm for 3. 

Learning Algorithm A2 
input: &,&',6,q,n; 
begin 

2 lFn  I let rn = I($ + -$) logT]; 

let K = min{&, E'}; 
make rn calls of EXAMPLE; 
let S be the sequence of examples seen; 
if there exists a concept g E .F such that the number of examples in S 

that is inconsistent with g is a t  most 

begin 
pick a concept h E F such that the number of examples in S that is 

inconsistent with h is at most 

output h; 
end 

else 
refute the concept class F; 

end 

We estimate the number of examples from which the algorithm A2 refutes the concept class 
3 with probability at  least 1 - 5. 

Suppose that opt(P, F) > L+E'. By the definition of Az, we may consider only a probability 
distribution P on Xn. Then, without loss of generality, we can assume that a concept class 
is the n-th subclass Fn. For any concept g E Fn, let v, = P(fAg) .  By the condition (i) in 
Definition 4, we see that vg > 7 + E'. If the algorithm A2 outputs a concept g, the number 
of examples that is inconsistent with a target concept f is a t  most Lm(v + ;&)A. Since the 
probability that the concept g is inconsistent with a target concept f is v,, the probability 
that the algorithm A2 outputs a concept g is at  most 



Then 

Now, there are a t  most lFnl choices for g. We will make m sufficiently large to bound this 
1 1  

probability lFn le-2m(s& ) by 6. Simplifying, we obtain the following inequation: 

21Fn 1 If the condition (ii) in Definition 4 holds, we can show that if rn > (2 + $) log - 
&12 S 

then the probability that the algorithm outputs a concept g E F with P(f Ag) < q + E is 
greater than 1 - 6 in the same way. EI 

Corollary 2. If a concept class F is of polynomial dimension, then F is polynomial-sample 
strongly refutably learnable. 

4 Conclusion 

We have formalized the refutability of hypothesis space in the PAC-learning model. We have 
also proved general upper bounds of the sample complexity both for refutably PAC learnability 
and for strongly refutable PAC learnability. 

We will discuss time complexity in future works. 
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