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Abstract 

The elementary formal systems (EFS's for short) work as a theoretical basis in the var- 
ious fields of computer science such as formal language theory, programming semantics, 
machine learning and so on. In this paper, we first define proof figures which illustrate 
proofs of EFS and show standard proof figures for ground atoms which are distinctive in 
the usage of inference rules. Then we formalize typed EFS, which is a natural extension 
of EFS obtained by replacing variables by typed variables and show some basic properties 
as a logic programming language. Finally, we illustrate the first order logic in term of 
our typed EFS's. 

1 Introduction 

Types, i.e., data types, are sets of data in programming languages and are useful to verify the 
consistency of programs. Type theory is a tool to investigate types mathematically. Espe- 
cially type theory is extensively studied in the formal system of A-calculus which is a model 
of functional programming languages 14, 91. We can also see types as logical formulas. Conse- 
quently we can relate the theory of programs such as specification, verification, synthesis, and 
extraction to constructive mathematics [7, 51. 

The elementary formal system (EFS for short) is a formal system which was invented by 
Smullyan [8] to develop his recursive function theory. It is shown that EFS gives a theoretical 
foundation to various fields of computer science [2]. For example, in formal language theory, 
there is a correspondence between Chomsky hierarchy and EFS classes. We also regard EFS as 
a logic program so that we can use the refutation procedure of logic programs as a procedure 
to accept languages. Recently it is shown that EFS's are a unifying framework for learning, 
especially for inductive inference of languages 121. 

In this paper, we focus on the property of EFS's as a logic programming language and 
introduce types as sets of data into EFS's. In section 2, we give definitions of concepts on 
EFS's necessary for our discussion. In section 3, we define proof figures which illustrate the 
provable relation of EFS's and show there exist standard proof figures for ground atoms. In 
section 4, we first formalize typed EFS's and show that it has important properties as a logic 
programmjng language like the ordinary EFS's. Finally we illustrate the first order logic in 
the framework of our typed EFS's. 

2 EFS 

First we prepare some concepts on EFS's. For detailed definitions on first order logic, logic 
programming and EFS7s, readers should refer to [6, 1, 21. 



Let C be a finite alphabet, X be a countable set of variables and II be a finite set of predicate 
symbols. A finite non-empty string of symbols in (C U X) is called a pattern, which stands for 
a term in EFS's. Atomic formulas(atoms for short), clauses, ground clauses, ernpt y clauses, 
substitutions and unifiers are defined in the same way as in the logic programming. 

Definition 1 An EFS(Elementary Formal System) S is a triplet (C, II, I'), where I' is a finite 
set of definite clauses. A definite clause is a clause of the form 

The definite clauses in I' are also called axioms of S. 

Definition 2 Let S = (C, II, I') be an EFS. We define the relation I' t- C for a clause C of S 
inductively as follows: 

(1) If I' 3 C ,  then I' t- C. 

(2) If I' t C, then I' t- Ci3 for any substitution 8. 

(3) If I' t A +- B1,. . . ,Bntl and I' Bntl, then I' t A + B1,. . . ,Bn. 

C is provable from I' if I' t C. 

Definition 3 Let S = (C, II, I?) be an EFS, p be a predicate symbol with arity n in 11. Then 
we define 

L(S,p) = { (n l ,* . . ,nn)  E (C+)n I r t - p ( r ~ , * . - , r n )  + )- 
In case n = 1, L(S,p) is a language over C. A language L 2 C+ is definable by EFS or an EFS 
language if there exist S and p such that L = L(S,p). 

Let E be a term, an atom or a clause. Then v(E) denotes the set of all variables in E. 

Definition 4 A definite clause A c Bl, . . . , Bn is vamable-bounded if v(A) _> v(Bi) (i = 
1,. . . , n), and an EFS is variable-bounded if its axioms are all variable-bounded. 

A derivation is defined as follows. We assume a computation rule R to select an atom from 
a goal. 

Definition 5 Let S be an EFS, G be a goal of S, and R be a computation rule. A derivation 
from G is a (finite or infinite) sequence of triplets (Gi, Oi, Ci) (i = 0,1,. . .) which satisfies the 
following conditions. 

(1) G; is a goal, 8; is a substitution, Ci is a variant of an axiom of S, and Go EZ G. 

(2) v(Ci) n v(Cj) = PI (i f j ) ,  and v(Ci) v(G) = 0 for every i. 

(3) If Gi is c A,, . . . , Ak and Am is the atom selected by R, then Ci is A +- Bl, . . . , B,, Bi 
is a unifier of A and Am, and Gi+l is a goal 

Gi+1 is called a resolvent of Gi and Ci by 0;. A refutation is a finite derivation ending with the 
empty goal 0 ,  and if G, = 0 ,  then we call n the length of the refutation. 

We give the semantics of logic programming languages on the Herbrand base and the 
semantics of EFS's as follows. The Herbrand base is the set of all ground atoms, denoted by 
B(S).  We introduce two sets which give the semantics of EFS's. 

SS(S) = {A E B ( S )  I There is a refutation from +- A) 
PS(S) = {A E B(S) I I' I- A t) 



3 Proof Figures for EFS 

In this section, we investigate proofs of EFS's. First, we define proof figures for EFS's, which 
represent the relation I- as figures. Proof figures whose conclusions are a clause C are denoted 
by IIc, II'c,and so on. 

Definition 6 Let S = (C, II, I') be an EFS, and C be a clause of S such that I' I- C. A proof 
figure IIc of C and the length length(IIc) of IIc are defined inductively as follows: 

(I) If I' 3 C, then the proof figure of C and its length are C, 1 respectively. 

(2) If there exist a clause C' and a substitution 6 such that I' t- C' and C = C'O, then the 
proof figure of C and its length are 

(3) If there exist a clause C' EZ A + Bl, . . . , such that I' t- C', C" r Bntl such that 
I' t- C" and C =+ B1,. . . , Bn, then the proof figure of C and its length are 

Let 6 = {xl := TI,. . . , x, := T,) be a substitution. Then a support D(6) of 0 is the set 
{XI,. * .  ,xn). 

Definition 7 Let S = (C, 11, I') be an EFS, and C be a clause of S such that I' t- C. Then a 
normalized proof figure of C is a proof figure which satisfies the following conditions. 

(1) Every substitution used for the inference rule SUB is a ground substitution whose support 
is equal to the set of variables of the clause to which the substitution is applied 

(2) The inference rule MP is only applied to gound clauses. 

Theorem 1 Let S = (C, II, I') be a variable-bounded EFS, and A be a ground atom of S. If 
I' I- A +-, then there exists a normalized proof figure of A +-. 

Proof. We prove this theorem by an induction on the length of proof figures. If n = 1, then 
I' 3 A c, that is, A itself is a proof figure. Clearly this is a normalized proof figure. If n = 2, 
then there are the following two cases. 

a) There exist an axiom A' c of S and a substitution 0 such that A E A'O and the proof 
figure is Fig. 1. 

b) There exist clauses A +- B1 and Bl c such that they are ground instances of axioms of 
S and the proof figure is Fig. 2. 

A' r - (SUB) A +  

Fig. 1 Fig. 2 



Clearly these are normalized proof figures. 
Suppose the hypothesis of induction holds for n 5 k  ( k  2 2 ) ,  and then consider n = k  + 1. 

If MP is not used in the proof figure, the theorem clearly holds. Now suppose MP is used in 
the proof figure at least once. Then there are two cases about the last columns of the proof 
figures, where AandBl are ground. 

Fig. 3 Fig. 4 

If A A'B, then Fig. 3 is transformed to Fig. 5. A'B, BiB are ground so that Fig. 5 can be 
reduced to Fig. 4. Fig. 5 is not longer on the length than Fig. 3. 

Fig. 5 

If the same procedure is applied to A + Bl, then finally we can get Fig. 6, where A, B1, . . . , Bm 
are ground and A' c- B; , . . . , B& is an axiom of S (m 2 1). 

Fig. 6 

Let lIA+ be the proof figure, Fig. 6, of A, RBI,, . . . , IfBm+ be the proof figures of Bl, . . . , B, 
in nA+. Then length(lIB,+) < length(IIAt) 5 k + 1 (1 5 i 5 m). Hence from the hypothesis 
of induction, there exist a normalized proof figure of 3; c-. Therefore we can get a normalized 
proof figure of A + from ITa,. CI 

From the proof of Theorem 1, the normalized proof figure is given as the shortest proof figure 
of a ground atom A. For ground cluases, we can also prove the existence of the normalized 
proof figure. 

Example 1 Let S = ({a, b} ,  {p}, I') be an EFS with 

According to the procedure in the proof of Theorem 1, we can construct a normalized proof 
figure of p(baa) +- (Fig. 8) from its proof figure (Fig. 7). The lengths of those figures are 4 



and 5 ,  respectively. 

(IMP) 

Fig. 7 

Fig. 8 

4 Typed EFS 

In this section, we formalize the new concept called a typed EFS. First we define types and 
typed variables. 

Definition 8 Types, denoted by T ,q , .  . ., are subsets of C+ which satisfies the following 
condition (*) . 

For all T E C+, it is decidable whether T E I or not. (*) 

Let x be a variable and 7 be a type. Then x : T is called a typed variable, which means type 
of x is 7. A set {xl : z, . . . ,I, : In) is called a contezt, denoted by C. C is consistent iff it 
satisfies the following condition. 

If X; r xj, then ?; = ?;. 

Hence a variable x in an ordinary EFS is represented by x : c+. Now we define typed terms 
and typed definite clauses. 

Definition 9 A typed term E is a pair (El, {xl : , . . . , x : i r , ) ) ,  where E' is a term, 
{xl,. . . ,xn)  = v(E1), and {xl : 71,. . . ,xn  : ir,}, denoted by C(E1), is consistent. A typed 
definite clause is defined in the same way. We also call E' itself a typed term (typed definite 
clause). 

For 12;, . . . , ;m in C(E1), 71 = C+, . . . , = C+, then E is an ordinary definite term(c1uase). 
We formalize the substitution for typed terms(typed definite clauses) as follows. 

Definition 10 Let TI = (T:, C(T:)), . . . , ~ k  = (TL, C (T~) )  be typed terms, where C(T~)  U U 

C(T~)(= C) is consistent. Then we call ({xl := T:, . . . , xk := TL}, C) a substitution. 

If C = (2, : , . . . , : C+), then the substitution is a substitution in the sense of logic 
programming. 

Example 2 ({xl := xx,x, := bayab),{x : {ww I w E Ct}, y : C+)),({xl := aba,x2 := 
baaab), {)) are substitutions. ( 6 ,  {)) is an empty substitution. 



In order to prevent an inappropriate substitution, we define interpretations of terms and 
applicability of substitutions as follows. 

Definition 11 Let T = (T', {xl : z, . . . , x, : In)) be a typed term, where v(T') = isl,. . . , x,). 
Then the in terpre ta t ion  f of T is {T'O I 0 = {xl := nl, . . . , x, := n,), n;. E 1,}(C C+). 

Example 3 For the typed terms (x, {x : 7)), (ab, {I), (xax, {x : I}), their interpretations are 
(x, {x : 7)) = I, (ab, {)) = {ab), (sax, {x : 7)) = {waw 1 w E T ) ,  respectively. 

Definition 12 Let E = (E', {xl : ?;, . . . , x, : I,)) be a typed term(typed definite clause) 
and 6 = ({xi, := T:, . . . , xik := TL), C) be a substitution, where E' is a term(definite clause), 
{q, . . . , 5,) = v(E1), T; = (T:, C(T~)) is a typed term, C = C ( T ~ )  U - U C(T~).  8 is applicable 
to E iff the two following conditions hold: 

(1) For any j (1 5 j 5 k ) ,  7i if there exists an xr (1 5 1 5 n) such that xi, z xl. 

(2) (C(E') \ {xi : 13; xi E D(B), 1 5 i 5 n)) U UC(T~)(= C(E'6)) is consistent, where 
J 

UC(T~) is a union on j (1 5 j 5 k) such that there exists an xl (1 5 l 5 n )  such that 
j - $4, = XJ 

Then the typed term(typed definite clause) Ed is (E'B, C(Ef  0)). 

In Definition 12, (1) is the condition for checking types, (2) is the condition to guarantee that 
EB is a typed term (typed definite clause). If 8 is ground, 2 '(i of (1) means Tj E ?;, (2) 
clearly holds. 

Let us apply only the substitutions which satisfy the above two conditions to typed terns 
(typed definite clauses). then we define a typed EFS, which is a natural extension of an EFS 
as follows. 

Definition 13 A typed EFS is a triplet (C,II, I?), where I' is a finite set of typed definite 
clauses. 

A typed EFS is a natural extension of an EFS. Actually, if all variables in the typed term 
(typed definite clause) are typed by Ct and all contexts of the substitutions which is used in 
the proof are {q : C+, . . . , Zn : C+}, then the typed EFS becomes an ordinary EFS. 

We define various concepts such as provability, L(S,  p), proof figures and variable-boundedness 
in the same way as in the ordinary EFS's. Hence the following theorem holds. 

Theorem 2 Let S = (C, II, I?) be a typed variable-bounded EFS, and A be a ground atom of 
S. If I' l- A c, then there exists a normalized proof figure of A +. 

We also define the derivation procedure, SS(S) and PS(S) in the same way as in the 
ordinary EFS's. Hence the following lemma and theorems hold in typed EFS's. 

Lemma 1 Let aandp be a pair of typed terms or typed atoms. If one of them is ground, then 
every unifier of a and p is ground and the set of all unifiers U ( a ,  P )  is finite and computable. 

The following theorem holds from Lemma 1. 

Theorem 3 Let S be a typed variable-bounded EFS and G be a ground goal. Then every 
resolvent of G is ground, and the set of all the resolvents of G is finite and computable. 

We can show the following theorem by an induction on the length of normalized proof 
figures and the length of refutations. 



Theorem 4 Let S be a typed variable-bounded EFS. Then the following equation holds: 

Proof. First we show PS(S) C SS(S). Suppose PS(S) 3 A +- , i.e., I' I- A +-. From 
Theorem 2, there exists a normalized proof figure of A +-. We prove it by an induction on the 
length of normalized proofs. If n = 1, then I' 3 A +-. We can construct a refutation of length 
1, that is, A E SS(S). If n = 2, then there are two cases: 

a) There exist an axiom A' c of S and a substitution 0 which satisfy A A'8 and have 
the proof figure Fig. 9. 

b) There exist clauses A +- Bl and Bl t which are ground instances of axioms of S and 
have the proof figure Fig. 10. 

A' +- - (SUB) A + -  

Fig. 9 Fig. 10 

In each case, we can construct a refutation of length 1 or 2. Hence A E SS(S). 
Suppose the hypothesis of induction holds if n 5 k (k  2 2). Consider n = k + 1. A 

normalized proof figure is of the form of Fig. 11, where B1, . . . , Bm are ground and A t 
Bi, . . . , Bk is an axiom of S. 

Fig. 11 

length(n~,+)  < length(na+) = k+l ,  and hence Bi E SS(S) from the hypothesis of induction. 
We can get +- B1,. . . , Bm as a resolvent of +- A and A' +- Bi, . . . , BL. Therefore we can 
construct a refutation from +- A, that is, A E SS(S). Thus we have PS(S) g SS(S). 

Now we show SS(S) C PS(S) by an induction of length of refutations. If n = 1, then 
there are two cases: 

a) A + itself is an axiom of S. 

b) There exist an axiom A' +- of S and a substitution 8 such that A r A'@. 

In each case, I' t- A, that is, A E PS(S). 
Suppose the hypothesis of induction holds for n 5 k (k 2 2). Consider n = k + 1. 

Then there exist an axiom of S, A' +- Bi , . . . , BL (rn 2 1) and a substitution 8 such that 
A r A'8. By using them, we can get a resolvent +- B1,. . . , Bm of +- A and A' +- B;, . . . B& 
, where Bi E BiB. Clearly there exist a refutation from +- Bi which is ground for any 
i, whose length is less than k + 1. From the hypothesis of induction, I' t- Bi +-. Hence 
TI- A' +- B{ ,... ,BL, I' I- A +- B1 ,..., B,,.. .,I' I- A +, that is, A €'PS(S). Thus we have 
SS(S) 2 PS(S). 

Therefore we have SS(S) = PS(S). 



Now we discuss types defined by EFS, which satisfy the condition (*) on decidability. As a 
special case of these types, we define a type called Terms and we will illustrate the first order 
logic in the framework of the typed EFS which uses Terms. 

Definition 14 Let I ( 2  C+) be a type. If there exists an EFS S and a predicate symbol p 
such that L(S,  p) = 7, 7 is called a type definable by EFS. 

The advantage of these types is that we can use the refutation procedure for type checking. 
In order to check whether n E I or not, where T is defined by a certain EFS S, it suffices to 
check the derivation from the goal + p ( ~ ) .  

The append program is often used in Prolog textbooks [I, 31. We can describe it in a typed 
EFS. 

Example 4 Let S = (22, n, I?) be a typed EFS, where 22 = {cs, nl, a,  b, . . . X, Y, . . . , (, ), ; ), 
II = {ap) and 

(ap(n1, x, x) +, {x : Terms}) , 
(ap(cS (x; y) 7 ~7 ~8 ('; W )  ) 'P(Y 7 '7 W) , 
{x : Terms, y : Terms, z : Terms, w : Terms)) 

Terms is a type definable by an ordinary EFS S' = (C, {tm), I?') with 

Variables and auxiliary symbols such as a pair of parenthases (, ) and comma ' , I  which are used 
to construct terms of first order logic are represented by X, Y, . . . , (, ), ;, respectively, to avoid 
a confusion. A refutation from a goal c up($, y, c, (a; c, (b; nr)))  is depicted in Fig. 12. There 
may be a couple of unifiers that we can use in every step of the derivation procedure, but we 
can decide which unifiers to use by checking the applicability of the substitution. 

The above example shows that the resolution principle of the first order logic corresponds to 
the resolution principle and type-checking of typed EFS. All the axioms of S' are regular [2] so 
that we can see Terms, the set of all terms of the first order logic, is a context-free language. 

5 Concluding Remarks 

In this paper, we have formalized typed EFS's as natural extensions of EFS's by introducing 
types into EFS's. Then we have proved the completeness of refutation which is the basic 
property as a logic programming language of typed EFS's, and illustrated the first order logic 
in the framework of the typed EFS to show the power of typed EFS's. We have also defined 
proof figures for EFS's to give the concise proof of Theorem 4 and shown there exist standard 
proof figures in proof figures of ground atoms which give the semantics of EFS's. 

As future works, there are problems related to machine learning, especially to language 
learning. We believe that the introduction of types into EFS's contribute to improve efficiency 
in machine learning and also to make it easy to apply algorithmic/computational learning 
theory to practical problems. 



{x: = cs <x];yl >,y: =z1, 
xl: =a, wl:=cs<b;nl>) 

0 
Fig. 12:A refutation from + ap(x, y ,  c, (a; c,(b; n r ) ) )  
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