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Abstract 

Inductive Inference of Recursive Concepts 

Yasuhito Mukouchi 

Kyushu University 

December 1993 

Inductive inference is a process of hypothesizing a general rule from examples. As a suc- 

cessful inference criterion for inductive inference of formal languages and models of logic 

programming, we have mainly used Gold's identification in the limit. An inference machine 

M is said to infer a concept L in the limit, if the sequence of guesses from M which is 

successively fed a sequence of examples of L converges to a correct expression of L, that is, 

all guesses from M become a unique expression in a finite time and that the expression is 

a correct one. A class, or a hypothesis space, is said to be inferable in the limit, if there is 

an inference machine M which infers every concept in the class. 

In the present thesis, we mainly investigate three criteria related to the identification in 

the limit. As we will see, they are necessary for practical applications of machine learning 

or machine discovery. 

The first criterion requires an inference machine to produce a unique guess. That is, we 

apply so-called finite identification to concept learning. As stated above, ordinary inductive 

inference is an infinite process. Thus we can not decide in general whether a sequence of 

guesses from an inference machine has converged or not at a certain time. To the contrary, 

in the criterion of finite identification, if an inference machine produces a guess, then it is 

a conclusive answer. 

The second criterion requires an inference machine to refute a hypothesis space in ques- 

tion, if a target concept is not in the hypothesis space. In the ordinary inductive inference, 



the behavior of an inference machine is not specified, when we feed examples of a target con- 

cept not belonging to the hypothesis space. That is, we implicitly assume that every target 

concept belongs to the hypothesis space. As far as data or facts are presented according to 

a concept that is unknown but guaranteed to be in the hypothesis space, the machine will 

eventually identify the hypothesis. However this assumption is not appropriate, if we want 

an inference machine to infer or to discover an unknown rule which explains examples or 

data obtained from scientific experiments. Thus we propose a successful inference criterion 

where, if there is no concept in the hypothesis space which coincides with a target concept, 

then an inference machine explicitly tells us this and stops in a finite time. 

The third criterion requires an inference machine to infer a minimal concept within 

the hypothesis space concerned. In actual applications of inductive inference, there are 

many cases where we want an inference machine to infer an approximate concept within 

the hypothesis space, even when there is no concept which exactly coincides with the target 

concept. Here we take a minimal concept as an approximate concept within the hypothesis 

space, and discuss inferability of a minimal concept of the target concept which may not 

belong to the hypothesis space. That is, we force an inference machine to converge to an 

expression of a minimal concept of the target concept, if there is a minimal concept of the 

target concept within the hypothesis space. 

In the present thesis, we discuss inferability of recursive concepts under the above three 

criteria, and show some necessary and sufficient conditions for inferability and some compar- 

isons between inferable classes. Furthermore as practical and concrete hypothesis spaces, we 

take the classes definable by so-called lengt h-bounded elementary formal systems (EFS's, 

for short) and discuss their inferability in the above three criteria. In 1990, Shinohara 

showed that the classes definable by length-bounded EFS's with at most n axioms are in- 

ferable in the limit from positive data for any n 2: 1. In the present thesis, we show that 

the above classes are also refutably inferable from complete data, i.e. positive and negative 

data, as well as minimally inferable from positive data. This means that there are rich 

hypothesis spaces that are refutably inferable from complete data or minimally inferable 

from positive data. 
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Chapter 1. 

Introduction 

To research how computers assist human activities is an essential and important aspect of 

computer science. In some cases, a computer may be a tool for calculation, or in other 

cases, it may be a tool for retrieving a data base. Another important role for computer 

scientists is to make computers behave more intelligently, that is, to make computers act 

like human beings. The main purpose of the present thesis is to make computers assist 

human's scientific researches more intelligently in the framework of inductive inference of 

recursive concepts. 

Inductive inference is a process of hypothesizing a general rule from examples. In 

this thesis, we call a subset of a recursively enumerable universal set U a concept. As 

a successful inference criterion for inductive inference of formal languages and models of 

logic programming, we have mainly used Gold's identification in the limit [l2]. An inference 

machine M is said to infer a concept L in the limit, if the sequence of guesses from M 

which is successively fed a sequence of examples of L converges to a correct expression of 

L, that is, all guesses from M become a unique expression in a finite time and that the 

expression is a correct one. For a presentation, i.e. a sequence of examples, of a concept, 

we consider the following two types of presentations. A positive presentation, or a text, of 

a concept L is an infinite sequence of all elements in L. A complete presentation, or an 

informant, a of a concept L is an infinite sequence of elements in U x {+, -) such that the 

collection of all elements in a with the sign '+' coincides with L and that the collection of 

all elements in a with the sign '-' coincides with the complement of L. We assume that 

every class in question is an indexed family of recursive concepts. This assumption is quite 

natural to make a grammar, i.e. a hypothesis or theory, refutable by an observation, and 

also to generate grammars as hypotheses automatically and successively. 



Under the criterion of identification in the limit, many productive results on infer- 

ability of recursive concepts have been reported by Angluin[2], Shapiro[41], Wright [51], 

Shinohara[45, 461, Sato&Moriyama[39] and so on. 

In the present thesis, we mainly investigate three criteria related to the identification in 

the limit. As we will see, they are necessary for practical applications of machine learning 

or machine discovery. 

The first criterion requires an inference machine to produce a unique guess. That is, we 

apply so-called finite identification to concept learning. As stated above, ordinary inductive 

inference is an infinite process. Thus we can not decide in general whether a sequence of 

guesses from an inference machine has converged or not at a certain time. To the contrary, 

in the criterion of finite identification, if an inference machine produces a guess, then it is 

a conclusive answer. 

The second criterion requires an inference machine to refute a hypothesis space in ques- 

tion, if a target concept is not in the hypothesis space. In the ordinary inductive inference, 

the behavior of an inference machine is not specified, when we feed examples of a target con- 

cept not belonging to the hypothesis space. That is, we implicitly assume that every target 

concept belongs to the hypothesis space. As far as data or facts are presented according to 

a concept that is unknown but guaranteed to be in the hypothesis space, the machine will 

eventually identify the hypothesis. However this assumption is not appropriate, if we want 

an inference machine to infer or to discover an unknown rule which explains examples or 

data obtained from scientific experiments. Thus we propose a successful inference criterion 

where, if there is no concept in the hypothesis space which coincides with a target concept, 

then an inference machine explicitly tells us this and stops in a finite time. 

The third criterion requires an inference machine to infer a minimal concept within 

the hypothesis space concerned. In actual applications of inductive inference, there are 

many cases where we want an inference machine to infer an approximate concept within 

the hypothesis space, even when there is no concept which exactly coincides with the target 

concept. Here we take a minimal concept as an approximate concept within the hypothesis 

space, and discuss inferability of a minimal concept of the target concept which may not 

belong to the hypothesis space. That is, we force an inference rnachine to converge to an 



expression of a minimal concept of the target concept, if there is a minimal concept of the 

target concept within the hypothesis space. 

Furthermore as practical and concrete hypothesis spaces, we take the classes definable 

by elementary formal systems (EFSs, for short) and discuss their inferability in the above 

three criteria. The EFS7s were originally introduced by Smullyan[48] to develop his recursion 

theory. In a word, EFS7s are a kind of logic programming language which uses strings 

instead of terms in first order logic[52], and they are shown to be natural devices to define 

languages[4]. In 1990, Shinohara[45] showed that the classes definable by so-called length- 

bounded EFS's with at most n axioms are inferable in the limit from positive data for any 

n > 1. In the present thesis, we show that the above classes are also refutably inferable 

from complete data, i.e. positive and negative data, as well as minimally inferable from 

positive data. This means that there are rich hypothesis spaces that are refutably inferable 

from complete data or minimally inferable from positive data. 

This thesis is organized as follows: In Chapter 2 we prepare some definitions and notions 

necessary for our discussions, and review related results mainly due to Gold [l2], Angluin [2], 

Wright [51] and Sakurai [37].  

In Chapter 3 we consider an inductive inference where the number of mind changes of an 

inference machine is bounded by a constant number. First, we discuss inferability without 

any mind changes, that is, finite inferability of a class from positive data or complete data. 

Here we present a necessary and sufficient condition for a class to be finitely inferable from 

positive data or complete data. We also present examples of classes that are finitely inferable 

from positive data or complete data. By extending this results, when the equivalence of 

any two concepts in the class is recursively decidable, we show a necessary and sufficient 

condition for a class to be inferable within n mind changes from positive data or complete 

data for n 2 0. We also present examples of classes that are inferable within n mind changes 

but not inferable within n- 1 mind changes, and show that the inferability strictly increases, 

when the allowed number of mind changes increases. We review further results obtained 

by Lange&Zeugmann[21]. They discussed class-preserving learning from positive data or 

complete data. A class is said to be class-preservingly learnable, if the class is inferable with 

well-chosen indexing of the class. They showed the superiority of class-preserving learning 



and uniform characterizations of inferability with a bounded number of mind changes, and 

also showed that there are various hierarchies. 

In Chapter 4 we discuss both refutability and inferability of a hypothesis space from 

examples. First we discuss some conditions on refutable inferability from positive data 

or complete data. Concerning refutable inferability from positive data, we present some 

necessary and sufficient conditions, and reveal that the power is very small. Then we show 

the differences between the inferable classes under the criteria of refutable identification, 

reliable identification, finite identification and identification in the limit. Among them the 

reliable identification is only the inference that deals with sequences from concepts not in a 

hypothesis space in question. However as we are seeing in Section 2.3, the reliable inference 

machine does not tell us that the target concept is not in the hypothesis space, but it just 

does not converge to any of concept in the hypothesis space. Then we show that a class 

which consists of unions of at most n concepts from n classes is refutably inferable from 

complete data, if each class satisfies a certain condition. 

In Chapter 5 we discuss some sufficient conditions for a class to be minimally infer- 

able from positive data. In 1989, Wright[51] showed that if a class has so-called finite 

elasticity, then the class is inferable in the limit from positive data. On the other hand, 

Sato&Moriyama[39] introduced the notion of M-finite thickness to show another condition 

for inferability from positive data. Here we show that the classes with both finite elasticity 

and M-finite thickness are minimally inferable from positive data. We also reveal the dif- 

ferences between the powers of inference machines whose behaviors differs from each other 

when there is no minimal concept of the target concept in the class concerned. 

In Chapter 6 we adopt the classes definable by EFS7s as practical and concrete hypoth- 

esis spaces, and discuss refutable inferability and minimal inferability of them. We show 

that the classes definable by length-bounded EFS7s with at most n axioms are refutably 

inferable from complete data, and reveal that there are sufficiently large classes that are 

refutably inferable from complete data. Furthermore we show that the above classes are 

also minimally inferable from positive data. 



Chapter 2. 

This chapter gives definitions of ordinary inductive inference of recursive concepts and 

summarizes related results mainly due to Gold[12], Angluin [2], Wright [51] and Sakurai [37]. 

In Section 2.1 we review the definition of the criterion of identification in the limit 

and basic results of inferability from positive data or complete data. Here we show that 

every class is inferable in the limit from complete data, but the so-called super-finite classes 

are not inferable in the limit from positive data. In Section 2.2 we review characterization 

theorems and some sufficient conditions for inferability from positive data due to Angluin[2] 

and Wright [51]. In Section 2.3 we review definitions and characterization theorems on (semi- 

) reliable identification due to Sakurai[37], which has relations with definitions in Chapter 

4 and 5 .  

In what follows, for a set S, S+ denotes the set of all nonnull finite strings over S, and 

#S denotes the cardinality of S. For a finite sequence $, 4 denotes the set of all components 

in $, and #$ denotes the length of $. 

2.1. Inductive Inference of Recursive Concepts 

We start with basic definitions and notions on inductive inference of indexed families of 

recursive concepts. 

Let U be a recursively enumerable set to which we refer as a universal set. Then we call 

L U a concept. In case the universal set U is the set C+ of all nonnull finite strings over 

a finite alphabet C, we also call L 5 U a language. 

Definition 2.1. Let = {1,2, a) be the set of all natural numbers. A class C = {LijiEN 

of concepts is said to be an indexed family of recursive concepts, if there is a recursive 



function f : N x U -+ {0,1) such that 

I, i f w E L i ,  
f (i, W) = 

0, otherwise. 

In what follows, we assume that a class of concepts is an indexed family of recursive 

concepts without any notice, and identify a class with a hypothesis space. 

Definition 2.2. A positive presentation, or a text, of a nonernpty concept L is an infinite se- 

quence wl, w2, a of elements in the universal set U such that {wl, w2, e - .} = L. A complete 

presentation, or an informant, of a concept L is an infinite sequence (wl, tl), (w2, t2), . of 

elements in U x {+, -) such that {wi I ti = +, i > 1) = L and {wi I ti = -, i > 1) = 

LC (= U \ L). In what follows, 5 or 6 denotes a positive or complete presentation, and o [n] 

denotes the 0's initial segment of length n 2 0. For a positive or complete presentation o, 

each element in 5 is called a fact. For a positive presentation 5, o[n]+ denotes the set of 

all facts in ~ [ n ] .  For a complete presentation 0, o[n]+ (resp., o[n]-) denotes the set of all 

elements in the universal set U that appear in o[n] with the sign '+' (resp., the sign '-'), 

that is, o[n]+ = {wi I (wi7 +) E o[n]) and o[n]- = {w, I (wi7 -) E o[R.]}. 

A set T is said to be consistent with a concept L, if T C L. A pair (T, F) of sets is said 

to be consistent with a concept L, if T C L and F LC. For a positive presentation 5 and 

for n 2 0, the finite sequence a[n] is said to be consistent with a concept L, if o[n]+ c L. 

For a complete presentation 5 and for n > 0, the finite sequence o[n] is said to be consistent 

with a concept L, if c[n]+ C L and o[n]- C LC. 

For two sequences and G2, the sequence which is obtained by concatenating with 

3b2 is denoted by . G2. 

Here we note that for a class C = {Li)iEN and explicitly given finite sets T, F c U, 

whether T 2 Li or not and whether (T, F) is consistent with Li or not are recursively 

decidable for any index i, because for any w E U, whether w E L; or not is recursively 

decidable. 

The following Definition 2.3 shows a method of obtaining a positive or complete pre- 

sentation of a concept (cf. Lange&Zeugmann[21]). 



Definition 2.3. Let wl, w2, . be an effective enumeration of the universal set U .  For a 

nonempty concept L, let io = min{i I wi E L), and for i > 1, let vi = wi if wi E L, 

otherwise let vi = wi,. Then the infinite sequence vl, vz, . . is called the canonical positive 

presentation of L. 

For a concept L and for i > 1, let ti = '+' if wi E L, otherwise let ti = '-'. Then the 

infinite sequence (wl, tl), (w2, t2) is called the canonical complete presentation of L. 

An inductive inference machine (IIM, for short) is an effective procedure, or a certain 

type of Turing machine, which requests inputs from time to time and produces positive 

integers from time to time. 

Angluin[2] defines an IIM like this: An inductive inference machine is a deterministic 

Turing machine with input alphabet C ,  a finite tape alphabet A, and several one-way 

infinite tapes, i.e. a read-only sample tape, a write-only guess tape, and a finite number of 

read-write scratch tapes. Each tape is equipped with one head, which is initially positioned 

at the first square of the tape. The machine has a finite number of states, of which there are 

four distinct distinguished states: the initial state, the request state, the answer state, and 

the guess state. The $nite control of the machine consists of a finite function that specifies 

for each tuple consisting of a state of the machine (other than the request state) and the 

symbols currently scanned by the heads on the sample and scratch tapes, a move, consisting 

of a state of the machine, symbols from A to write at the currently scanned squares on the 

scratch and guess tapes, and a specification for each of the tapes whether its head should 

be shifted one square to the right, or left or not at all. We stipulate that no move of the 

machine may specify that the guess tape head be shifted left, and any move of the machine 

that writes a nonblank symbol on the guess tape must also shift the guess tape head right. 

Hereafter we will construct inductive inference machines in forms of ALGOL-like pro- 

grams, but we can translate them into the above form of Turing machines. Simply we 

consider as follows: If it is in the request state, then it is requesting and reading the next 

fact (or the next coded string over C), and if it goes through the guess state, then it 

produces an integer (or a coded string over A). 

The outputs produced by an inductive inference machine are called guesses. 



For an IIM M and a nonempty initial segment o[n] = wl, w2, . . , w, of a positive or 

complete presentation, we define M(o[n]) as follows: Initialize M and start M in the initial 

state. If it requests a fact for the i-th time with 1 5 i 5 n, then feed wi and continue the 

execution. If it produces more than one positive integers between any two input requests 

before requesting the (n + 1)-st fact, then leave M(o[n]) undefined. 

(I) In case M requests the (n + 1)-st fact, or it stops after it requested the n-th fact. If 

it produces a positive integer after it requested the n-th fact, then let M(o[n]) be the last 

integer produced by M, otherwise let M(o[n]) = 0. 

(11) In case M stops before requesting the n-th fact. Let M(o[n]) = 0. 

(IU) Otherwise. Leave M (o [n]) undefined. 

By definition, it is easy to see that for any n 2 1, if M(o[n]) is defined, then M(o[l]), 

M (o[2]), , M (o[n - 11) are also defined. The intended interpretation is as follows: (i) In 

case M ( ~ [ n ] )  is defined as a positive integer i, the IIM M guesses the i-th concept in the 

class concerned. (ii) In case M (o[n] ) is defined as the integer 0, the IIM M makes no guess. 

(iii) In case M(o[n]) is undefined, the IIM M is out of control. 

Then we define @(o[n]) as follows: 

(I) In case M(o[n]) is defined. If there is a positive integer in the sequence M(o[l]), 

M(o[2]), . . , M ( ~ [ n ] ) ,  then let M(o[n]) be the last positive integer in the sequence, other- 

wise let @(o[n]) = 0. 

(11) Otherwise. Leave @(o [n]) undefined. 

For two nonempty finite sequences $1 and $2, we write M($l) = M($,), if (i) both 

M($l) and M ( $ J ~ )  are undefined, or (ii) both M($l) and M(3h2) are defined and their values 

are identical. For a nonempty finite sequence $ and an integer i, we write M($) = i (resp., 

M($) > i), if M ($) is defined and the value of M ($) is equal to i (resp., greater than i) .  

In a similar way, we also define the relations a($,) = a($) = i and @($) > i. 

Definition 2.4 (Gold[12]). An IIM M is said to converge to an index i for a positive or 

complete presentation o, if there is an n 2 1 such that for any rn 2 n, M(o[rn]) = i. 



Let C = {Li)iEN be a class. For a concept Li E C and a positive or complete presentation 

o of Li, an IIM M is said to infer the concept Li w.r.t. C in the limit from a, if M converges 

to an index j with Lj = Li for a. 

An IIM M is said to infer a class C in the limit from positive data (resp., complete 

data), if for any Li E C, M infers Li w.r.t. C in the limit from any positive presentation 

o (resp., any complete presentation a) of Lie A class C is said to be inferable in the limit 

from positive data (resp., complete data), if there is an IIM M which infers the class C in 

the limit from positive data (resp., complete data). 

When we consider inductive inference from positive data, we restrict every concept to 

a nonempty concept, because we can not make any positive presentation of the empty 

concept. 

Here we note that if an inference machine M does not converge to any index for a 

positive or complete presentation o,  then @(o[n]) may be undefined for some n 2 1. On 

the other hand, we implicitly use the following Proposition 2.1 in showing some properties 

on various inferability. 

Proposition 2.1. (a) Assume that an IIM M infers a class C in the limit from positive 

data. Then for any nonempty finite sequence $ consisting o f  elements in U ,  if there exists 

an L; E C such that & G L;, then a($) is always defined. 

(b) Assume that an IIM M infers a class C in the limit from complete data. Then for any 

nonempty finite sequence q!~ consisting o f  elements in U x {+, -), i f  there exists an Li E C 

such that {w I (w, +) t $) C Li and {w I (w, -) E $) 2 L,", then a($) is always defined. 

Proof. We only give the proof of (a). The proof of (b) can be given in a similar way. 

Assume that there are a nonempty finite sequence $ and an Li E C such that & C L;. 

Let a be an arbitrary positive presentation of L;, and put S = $ a .  Then S is a positive 

presentation of L;. Therefore M converges to an index j with Lj = Li for 6, and it follows 

by definition that for any n > 1, M (S[n]) is defined. Thus a($) is also defined. II 

The above Proposition 2.1 claims that as far as we feed facts that are from a certain 

concept in the class, an inference machine either (i) successively requests another facts in 

a finite time forever or (ii) stops in a finite time after producing some positive integers. 



The following Proposition 2.2 is obvious, because for a complete presentation a of a 

nonempty concept L, we can effectively obtain a positive presentation of L by getting rid 

of all negative facts of a and repeating a positive fact. 

Proposition 2.2. I f  a class C is inferable in the limit from positive data, then C is also 

inferable in the limit from complete data. 

In this thesis, we implicitly use the following Lemma 2.3. 

Lemma 2.3. (a) For a concept L and a set T 2 U, i f T  is not consistent with L, then T' 

is not consistent with L for any set T' with T T' 2 U. 

(b) For a concept L and sets T, F U, i f  (T, F) is not consistent with L, then (T', F') is 

not consistent with L for any sets TI, F' with T s 5? 2 U and F s F' U .  

By a simple enumerative method as shown below, every indexed family of recursive 

concepts is always inferable in the limit from complete data. 

Theorem 2.4 (Gold[l2]). Every indexed family C = {Li)iGN o f  recursive concepts is in- 

ferable in the limit from complete data. 

Proof. Let us consider the procedure in Figure 2.1. 

Assume that we feed a complete presentation a of a concept Lh E C to the procedure, 

and let io be the least index such that Lio = Lh. Then for any index i < io, Lh f Li holds, 

and it follows that there is a w; E U such that wi E Lh \ Li or w; E L; \ Lh. Since a 

is a complete presentation of Lh, it follows that for any index i < io, there is an n; > 1 

such that wi E o[n;]+ or wi E a[ni]-. Therefore after reading the rnax{nl, nz, , n;o-l}-st 

fact, (T, F) in the procedure is not consistent with Li, and it follows that the index i in 

the procedure reaches io. Furthermore for any n > 1, a[n] is consistent with Li,, because 

a is a complete presentation of Lh = Lio. Hence the procedure converges to io for a .  This 

completes the proof. II 

Definition 2.5. Let C = {LiIitN be a class. An IIM M is said to be consistently working, 

if it satisfies the following condition: For any L; E C, any positive or complete presentation 



Procedure IIM M; 

begin 

T - 4 ;  F = 4 ;  i = 1 ;  

repeat 

readstore(T, F); 

while (T, F) is not consistent with Li do  i = i + 1; 

output i; 

forever; 

end; 

Procedure readstore(T, F); 

begin 

read the next fact (w, t); 

if t ='+' then  T = T u {w} else F = F u {w}; 

end. 

Figure 2.1: An inference machine which works on complete data 

o of L; and any n 2 1, if M(o[n]) > 0, then o[n] is consistent with LM(,[,]), that is, each 

guess by M on input o is consistent with all the input data read so far. 

An IIM M is said to be responsively working, if it satisfies the following condition: For 

any Li E C, any positive or complete presentation 0 of Li and any n 2 1, M(o[n]) > 0 

holds, that is, between any two input requests in the computation of M on input o, M 

produces a guess. 

An IIM M is said to be conservatively working, if it satisfies the following condition: For 

any Li E C,  any positive or complete presentation o of Li and any n, rn with 1 5 n < m, if 

M(o[n]) > 0, M(o[rn]) > 0 and M(o[m]) + M(o[n]) hold, then ~ [ m ]  is not consistent with 

LM(,[,]), that is, M never changes its guess as long as it is consistent with all the input 

data read so far. 

A class C is said to be consistently (resp., responsively or conservatively) inferable in 

the limit from positive data or complete data, if there is a consistently (resp., responsively 

or conservatively) working IIM which infers C in the limit from positive data or complete 

data. 



The procedure in Figure 2.1 is a consistently, responsively and conservatively working 

IIM. Thus every indexed family of recursive concepts are consistently, responsively and 

conservatively inferable in the limit from complete data. 

On the other hand, Gold[l2] showed that a class of all finite concepts and at least one 

infinite concept is not inferable in the limit from positive data. In what follows, such classes 

are said to be superfinite. 

Theorem 2.5 (Gold[l2]) . None of  superfinite classes is inferable in the limit from positive 

data. 

Proof. Let C be a superfinite class. Then suppose that an IIM M infers C in the limit 

from positive data. Let Lh E C be an infinite concept, and let wl , w2, be an effective 

enumeration of all elements in Lh. Without loss of generality, we assume wi # wj if i # j .  

Then for any i 2 1, there is an index ji such that Lji = {wl, w2, , wi), because C contains 

all finite concepts. 

We show that M changes its guess infinitely many times for a certain positive presen- 

tation of Lh. Put a1 = wl, wl, . . a, and define ni's and ai+,'s (i 2 1) inductively by the 

following st ages: 

Stage i (2 1): 

Since ai is a positive presentation of Lji, there is an n 2 1 such that Lji = L, and 
- 

g = M(ai[nl+nz+. -+ni-l+n]) for some g 2 1. Put ni = n and o i+~  = ai[nl+n2+. . -+ 

72 1 n 2  n i 

note that this ai+l becomes a positive presentation of 

Goto Stage i + 1. 

Now we take an infinite sequence a = wl, w1, , w1, w2, w2, . . . , w2, -. Then a is -- 
n1 n 2 

a positive presentation of Lh. However M changes its guess infinitely many times for a .  

Therefore M does not infer Lh w.r.t. C in the limit from a. This contradicts the assumption. 

By the above Theorem 2.5, we see that even the class of regular languages is not inferable 

in the limit from positive data. This result gave a negative impression to researchers in this 



field. In the following Section 2.2, we review the results due to Angluin[2], which gave a 

new life to inductive inference from positive data. 

2.2. Inductive Inference from Positive Data 

In this section we mainly review a characterization theorem for inferability from positive 

data due to Angluin [2]. 

Definition 2.6 (Angluin[2]). Let C = {Li}iEN be a class. A set Ti U is said to be a 

finite tell-tale of Li within C, if (i) Ti is a finite subset of Li and (ii) for any Lj E C, Ti Lj 

implies Lj L;. 

An indexed family {Ti}it of finite sets is said to be finite tell-tales of C, if for any index 

i, Ti is a finite tell-tale of Li within C. 

In the present thesis, an effective procedure Q is said to uniformly and recursively 

enumerate an indexed family {TiIiEN of sets, if Q on input i enumerates all elements in Ti 

for any index i. An indexed family {Ti}iEN of sets is said to be uniformly and recursively 

enumerable, if there is an effective procedure which uniformly and recursively enumerates 

the family 

An effective procedure is said to recursively generate a finite set T ,  if it enumerates 

all elements in T and then halts. An effective procedure P is said to be uniformly and 

recursively generate a finite-set-valued function F with parameters XI, . . , x,, if P on any 

input (xl, . . , x,) in the domain of F recursively generates the finite set F(xl, . . , x,). A 

finite-set-valued function F with parameters XI, . . , x, is said to be uniformly and recur- 

sively generable, if there is an effective procedure which uniformly and recursively generates 

the function F .  An effective procedure P is said to uniformly and recursively generate an 

indexed family {Ti}aEN of finite sets, if P on input i recursively generates the finite set Ti for 

any index i. An indexed family {Ti}iEN of finite sets is said to be uniformly and recursively 

generable, if there is an effective procedure which uniformly and recursively generates the 

family {T.} z i f N .  

Theorem 2.6 (Angluin[2]) . A class C = {Li}iEN is inferable in the limit from positive 

data, i f  and only i f  finite tell-tales s f C  are uniformly and recursively enumerable. 



Proof (Sketch). (I) The 'only if' part. Assume that an IIM M infers C in the limit from 

positive data. Then finite tell-tales of C are uniformly and recursively enumerable by the 

procedure in Figure 2.2. In the procedure, we note that both a($) and a($ $J are 

always defined for any j > 1 (cf. Proposition 2.1). We omit the details. 

Procedure Q(i); 

begin 

let wl, w2, be an effective enumeration of all elements in Li; 

let $2, be an effective enumeration of 
all nonempty finite sequences consisting of elements in L;; 

$ = w l ;  n = l ;  

output $; 

repeat 

search for an index j such that a($) # a($ . $J; 
/* It makes no matter, even if it does not terminate */ 

if such an index j is found then  begin 

output $j and w,+~; 

w , +  n = n + l ;  

end; 

forever; 

end. 

Figure 2.2: An algorithm which uniformly and recursively enumerates finite tell-tales 

(11) The 'if' part. Assume that a procedure Q uniformly and recursively enumerates finite 

tell-tales of C, and for n 2 1, let ~ ( " ) ( i )  be the set of elements produced by the procedure 

Q on input i in the first n steps execution. Then let us consider the procedure in Figure 

For any L; E: C and any positive presentation a of Li, we can show that the procedure 

converges to io for 0, where io is the least index such that L;, = La. Here we note that 

finite tell-tales play an import ant role in avoiding overgeneralization. We omit the details. 

w 

The following Corollary 2.7 is obvious (cf. Theorem 2.13). 



Procedure IIM M ;  

begin 

T = 4 ;  n=0 ;  

repeat 

read the next fact and store it in T ;  

n = n + l ;  

search for the least index i < n  such that ~ ( " ) ( i )  T  L;; 
if such an index i is found then output i else output n; 

forever; 

end. 

Figure 2.3: An inference machine which works on positive data 

Corollary 2.7. If a class C = {Li)iEN contains no infinite concept, then C is inferable in 

the limit from positive data. 

Proof. Assume that a class C contains no infinite concept. It is easy to see that for any 

Li E C,  Li itself is a finite tell-tale of L; within C. Then the procedure in Figure 2.4 

uniformly and recursively enumerates finite tell-tales of C, and thus C is inferable in the 

limit from positive data. 

Procedure Q(i); 

begin 

let wl , wz, be an effective enumeration of the universal set U ;  

j  = 1; 

repeat 

if wj E L; then output wj; 

j = j + l ;  

forever; 

end. 

Figure 2.4: An algorithm which uniformly and recursively enumerates finite tell-t ales 

Here we note that we can modify the procedure in Figure 2.3 so as to work consistently 

and responsively. Thus the requirement of both consistency and responsiverness does not 
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restrict the power of inferability from positive data. To the contrary, it is well known 

that the requirement of conservativeness restricts the power (cf. Angluin[2]). In 1990, 

Motoki[26] obtained characterization theorems for consistent, responsive and conservative 

inferability from positive data. Furthermore Kapur[14] and Lange&Zeugrnann[20] obtained 

characterization theorems for consistent and conservative inferability from positive data. 

Definition 2.7. Let wl , w2, . be an effective enumeration of the universal set U, and let 

L U be a concept. Then the finite subset of L masked by {wl, w2,. , w,) is denoted by 

L("), that is, L(") = L n {w,, w2, . . . , w,). 

Lemma 2.8. Let L1, L2 C U be concepts. 

(a) I f  L1 5 L2, then there is a j 2 1 such that for any n 2 j, L?) 5 L?). 

(b) I f  L1 (Z L2, then there is a j 2 1 such that for any n 2 j ,  L?) (Z L?). 

Proof. (a) Assume L1 2 L2. Then (i) L1 L2 and (ii) L2 \ L1 # 4 hold. By (ii), there is a 

j > 1 such that wj E L2 \ L1. Therefore for any n 2 j ,  wj E L?) \ L?) holds. On the other 

hand, by (i), for any n 2 1, L?) 2 L?) holds. Therefore for any n 2 j, L?) 2 L?) holds. 

(b) Assume L1 (Z L2. Then L1 g L2 or L1 = L2 holds. 

(I) In case L1 L2. There is a j 2 1 such that wj E L1 \ L2. Therefore for any n 2 j, 

wj E L?) \ L?), i.e. L?) g L?), holds, and it follows that L?) (Z A?). 

(11) In case L1 = L2. For any n 2 1, L?) = L?) holds, and it follows that L?) (Z LP). 

We note that for any indexed family C = {LiIiEN of recursive concepts and any i, j, n 2 

1, whether Lln) 5 L?) or not is recursively decidable. 

The following Theorem 2.9 is useful to show that some sufficiently large classes are 

inferable in the limit from positive data (cf. Example 2.2, Theorem 6.7, Chapter 5 and 6). 

Definition 2.8 (Wright [51], Motoki et a1. (271). A class C is said to have infinite elasticity, 

if there are two infinite sequences wo, wl, w2, . E U and Lj,, Lj,, E C such that for any 

i 2 1, 

{ w ,  w , w L but wi 6 Lji. 

A class C is said to have finite elasticity, if C does not have infinite elasticity. 
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Theorem 2.9 (Wright [51]) . If a class C = has finite elasticity, then finite tell-tales 

of  C are uniformly and recursively enumerable, and thus it is inferable in the limit from 

positive data. 

Proof (Sketch). By Theorem 2.6, it suffices for us to show that there is an effective procedure 

which uniformly and recursively enumerates finite tell-tales of C. 

Let us consider the procedure in Figure 2.5 due to Angluin[2]. 

Procedure Q(i) ; 

begin 

T = $ ;  n = 0 ;  

repeat 

n = n + 1 ;  

search for an index j 5 n such that T L j  and L?) 5 Lin); 

if such an index j is found then begin 

let w be an element in L ! ~ )  \ L?); 

T=Tu{w);  

output w; 

end; 

forever; 

end. 

Figure 2.5: An algorit hm which uniformly and recursively enumerates finite tell-t ales 

Since C has finite elasticity, it is guaranteed that the procedure enumerates at most 

finitely many elements in L;. Furthermore we can show that the set of enumerated elements 

by the procedure on input i is a finite tell-tale of L; within C. We omit the details. II 

Definition 2.9 (Angluin[2]). A class C is said to have finite thickness, if for any w E U ,  

#{Li E C I w E Li) is finite. 

The following Proposition 2.10 is obvious. 

Proposition 2.10 (Wright [51]) . If a class C has finite thickness, then C has finite elasticity. 

By the above Theorem 2.9 and Proposition 2.10, we have the following Corollary 2.11. 



Corollary 2.11 (Angluin[2]). If a class C has finite thickness, then finite tell-tales of C are 

uniformly and recursively enumerable, and thus i t  is inferable in the limit from positive 

data. 

Example 2.1 ( Angluin[l , 21) . We consider the class FAT of pat tern languages. Fix a 

finite alphabet 22. A pattern is a nonnull finite string of constant and variable symbols. 

The pattern language L(n) generated by a pattern n is the set of all constant strings 

obtained by substituting nonnull strings of constant symbols for the variables of T.  

For example, let C = {a, b, c}. Then n = axbxcy is a pattern, and the set {aabac, abbbc, 

acbcc, aaabaac, aabbabc, . a} is the pattern language of n. 

Since two patterns that are identical except for renaming of variables generate the 

same pattern language, we do not distinguish one from the other. The set of all patterns 

is recursively enumerable and whether w E L(T) or not is recursively decidable for any 

constant string w and any pattern x. Therefore we can consider the class of pattern 

languages as an indexed family of nonempty recursive concepts, where the pattern itself is 

considered to be an index. 

The class FAT has finite thickness. In fact, fix a constant string w. Then if w E L(.rr), 

then n is not longer than w. The set of all patterns shorter than a fixed length is a uniformly 

and recursively generable finite set, and whether w E L(n) or not is recursively decidable 

for any w and n. Therefore the set {n I w E L(n)} is a uniformly and recursively generable 

finite set, and it follows that #{L(n) I w E L(n)) is finite. Thus, by Corollary 2.11, PAT is 

inferable in the limit from positive data. 

The advantage of finite elasticity is that if a class C has finite elasticity, then the union 

class of C also has finite elasticity as shown below, and thus it is inferable in the limit from 

positive data. 

Definition 2.10. Let n 2 1 be an integer, and let C1, . . , Cn be classes. For i with 1 5 

i 5 n and j 2 1, the j-th concept Lj of the class Ci is denoted by L(ij). Then let Ur==, Ci 

be the class of concepts each of which is a union of n concepts from C1, . , Cn, that is, 



By assuming a bijective coding from N" to N, the new class above becomes an indexed 

family of recursive concepts. 

For a class C = {LijiEN and for n 2 1, let 

Theorem 2.12 (Wright [51]). Let n 2 1 be an integer, and let C1, - , Cn be classes. Then 

if each o f  C1, . . , Cn has finite elasticity, then the class UYEl Ci also has finite elasticity, and 

thus it is inferable in the limit from positive data. 

Example 2.2 (Wright[51]). We consider the class PA7 of pattern languages. As shown in 

Example 2.1, FA7 has finite thickness, and it follows by Proposition 2.10 that PAT also 

has finite elasticity. Therefore for any n 2 1, PAT[<"] is inferable in the limit from positive 

data. 

We note that Sato&Umayahara[38], Sato&Moriyama[39] and Kapur[l4] have obtained 

more general sufficient conditions for inferability from positive data than the condition of 

finite elasticity. 

2.3. Reliable Identification 

In Section 2.1 we have defined ordinary inductive inference. However in the definitions, 

the behavior of an inference machine is not specified, when we feed a positive or complete 

presentation of a concept not in a hypothesis space in question. In contrast, the reliable 

identification deals with sequences from a concept not in the hypothesis space. The notion 

of reliable identification was introduced by Minicozzi[24] and Blum&Blum[8] for function 

learning, and it was adapted to language learning by Sakurai[37]. 

In case we feed a positive or complete presentation of a concept not in the hypothesis 

space, the reliable inference machine is required not to converge to any index. However the 

reliable inference machine does not tell us that the target concept is not in the hypothesis 



space. In Chapter 4 and 5 we also define some other criteria where the behaviors of inference 

machines are more desirably defined, when we feed a positive or complete presentation of 

a concept not in the hypothesis space. 

Hereafter, for a concept L C U, we write L E C, if there is an L; E C such that Li = L. 

Let L C U be a concept, and let C = {Li)itN be a class. Then a concept L, E C is said 

to be a minimal concept of L within C, if (i) L C L, holds and (ii) for any L; E C, L C Li 

implies Li (Z L,. 

Definition 2.11 (Sakurai[37]). An IIM M is said to reliably infer a class C from positive 

data, if it satisfies the following condition: For any nonempty concept L and any positive 

presentation a of L, (i) if L E C, then M infers L w.r.t. C in the limit from a, (ii) otherwise 

M does not converge to any index for a .  

An IIM M is said to semi-reliably infer a class C from positive data, if it satisfies the 

following condition: For any nonempty concept L and any positive presentation a of L, (i) 

if L E C, then M infers L w.r.t. C in the limit from a, (ii) otherwise if M converges to an 

index i for a, then L; is a minimal concept of L within C. 

A class C is said to be reliably inferable (resp., semi-reliably inferable) from positive data, 

if there is an IIM M which reliably (resp., semi-reliably) infers C from positive data. 

In a similar way to the case of positive data, we also define the case of complete data. 

By definition, it is guaranteed that if a semi-reliable inference machine converges to 

an index i, then Li is a minimal concept of the target concept within the class. However 

even when there is a minimal concept of the target concept within the class, the semi- 

reliable inference machine may not converge to any index for its presentation. In Chapter 

5 we consider an inference criterion where an inference machine converges to an index of a 

minimal concept of the target concept within the class, whenever there is a minimal concept 

of the target concept within the class. 

We note that, by definition, an IIM M which (semi-)reliably infers a class C from 

positive data (resp., compete data) also infers C in the limit from positive data (resp., 

complete data). 



Concerning (semi-)reliable inferability from positive data, Sakurai[37] obtained the fol- 

lowing characterizations. 

Theorem 2.13 (Sakurai[37]) . (a) A class C is reliably inferable from positive data, i f  and 

only i f  C contains no  infinite concept. 

(b) A class C is semi-relia bly inferable from positive data, i f  and only if C is inferable in 

the b i t  from positive data. 

Proof (Sketch). (a) (I) The 'only if' part. Assume that an IIM M reliably infers C from 

positive data. Then suppose that C contains an infinite concept. 

Let Lh E C be an infinite concept, and let wl, w2, . be an enumeration of Lh. Without 

loss of generality, we assume w; f wj if i f j. 

We show that M does not converge to any index i with Li = Lh for a certain positive 

presentation of Lh. Put al = wl, wl, ., and define n;'s and O ~ + ~ ' S  (i > 1) inductively by 

the following stages: 

Stage i (2 1): 

Since a; is a positive presentation of the concept {wl, . . , w;) (f Lh), there is an n 2 1 
- 

such that Lh # Lg and g = M(o;[nl + n2 + . . . + n;-1+ n]) for some g > 1. Put n; = n 

and a;+1 = a;[n1 + n2 + .. + n;],w;+l,wi+~, = W l , W l ,  ... , W ~ , W Z ~ W Z ,  .-.rW2,... ,  -- 
n I 722 

wi, wi, . . , wi, w;+~,  w;+~,  . a .  We note that this a;+l becomes a positive presentation of - 
n i 

the concept {wl, w2, . . , wi+l}. 

Goto Stage i $- 1. 

Now we take an infinite sequence a = wl, wl, . , wl, w2, w2, . , war .. Then a is a -- 
n 1 n2 

positive presentation of Lh. However M does not converge to any index i with L; = Lh 

for a .  That is, M does not infer C in the lirnit from positive data. This contradicts the 

assumption. 

(11) The 'if' part. Assume that C contains no infinite concepts. It is easy to see that 

the procedure in Figure 2.6 reliably infers C from positive data. We omit the details. 

(b) The 'if' part is obvious by definition. We show the 'only if' part. Assume that a 

class C is inferable in the limit from positive data. Then, by Theorem 2.6, finite tell-tales 
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Procedure IIM M ;  

begin 

T = + ;  n = 0 ;  

repeat 

read the next fact and store it in T ;  

n = n + l ;  

search for the least index i  < n such that T = L!"); 

i f  such an index i  is found then output i  else output n; 

forever; 

end. 

Figure 2.6: An inference machine which reliably infers a class 

of C are uniformly and recursively enumerable. Let Q  be a procedure which uniformly and 

recursively enumerates finite tell-tales of C, and for n 2 1, let ~ ( " ) ( i )  be the set of elements 

produced by the procedure Q on input i  in the first n steps execution. We reconsider the 

procedure in Figure 2.3 at  the proof of Theorem 2.6. 

Let L C U be a nonempty concept, and let a be an arbitrary positive presentation of 

Claim: If the procedure converges to an index i  for a, then L; is a minimal concept of L 

within C. 

Proof of the claim. Assume that the procedure converges to an index i  for a. 

(I) Q(i) L holds. In fact, suppose the converse. Then there is a w E U such that 

w E Q(i) \ L, and it follows that there is an n 2 1 such that w E ~ ( " ) ( i ) .  However 

since w 6 L, it follows that for any n 2 1, w 6 a[n]+. This contradicts the fact that the 

procedure converges to i  for a. 

(II) L C L; holds. In fact, suppose the converse. Then there is a w E U such that 

w E L \ Li, and it follows that there is an n > 1 such that w E a[n]+. However since 

w 6 L;, it follows that a[n]+ Li. This contradicts the fact that the procedure converges 

to i  for a. 



By (I) and (II), we have Q(i) L c Li. Since Q(i) is a finite tell-tale of Li within C, it 

follows that there is no concept Lj E C such that Q(i) c Lj 5 Li, and thus Li is a minimal 

concept of L within C. 

Furthermore, as stated in the proof of Theorem 2.6, the procedure infers C in the limit 

from positive data. Thus the procedure semi-reliably infers C from positive data. w 

Concerning reliable inferability from complete data, the following Proposition 2.14 holds. 

Proposition 2.14. Every indexed family C = {LijiEN of  recursive concepts is reliably 

inferable from complete data. 

Proof. Let us consider the procedure in Figure 2.7, where the procedure readstore is the 

same one as in Figure 2.1. 

Procedure IIM M; 

begin 

T = + ;  F = + ;  i=1 ;  

repeat 

readstore(T, F ) ;  

if (T, F) is not consistent with Li then i = i + 1; 

output i; 

forever; 

end. 

Figure 2.7: An inference machine which reliably infers a class 

In a similar way to the proof of Theorem 2.4, we can show that for any Li E C, the 

procedure infers Li w.r.t. C in the limit from any complete presentation of Li. Thus it 

suffices for us to show that for any concept L 6 C, the procedure does not converge to any 

index for any complete presentation a of L. 

Now suppose that there are a concept L $ C and a complete presentation a of L such 

that the procedure converges to an index i for a. Since L 6 C, it follows that L # Li. 

Therefore there is a w E U such that w E L \ Li or w E Li \ L. Since a is a complete 

presentation of L, it follows that there is an n 2 1 such that w E o[n]+ or w E a[n]-. 



Therefore after reading the n-th fact, (T, F) in the procedure is not consistent with L;, and 

it follows that the procedure changes its guess. This contradicts the assumption. 

By the above Proposition 2.14, we see that every indexed family of recursive concepts 

is also semi-reliably inferable from complete data. 



Chapter 3. 

Inferability with a Bounded Nu 
Mind Changes 

In this chapter we consider inductive inference of recursive concepts with a bounded number 

of mind changes from positive data or complete data. We use the phrase 'mind change' to 

mean that an inference machine changes its guess. 

The criterion of identification in the limit seems to be natural, if we consider ordinary 

learning process of human beings. However we can not decide in general whether a sequence 

of guesses from an inference machine has converged or not at a certain time, and the results 

of the inference necessarily involve some risks. Clearly, it is important to have a conclusive 

answer, when we want to use the results of machine learning. 

In Section 3.1 we deal with finite identification for a class of recursive concepts. Origi- 

nally, finite identification was introduced to function learning (cf. Freivald&Wiehagen[ll] , 

Klette& Wiehagen[18] and Jantke&Beick [l3]). An inference machine M is said to finitely 

infer a concept L, if M which is successively fed a sequence of examples of L produces 

a unique guess at a certain time and the guess is a correct expression of L. That is, the 

inference machine does not produce a guess until it is convinced that the guess is correct. 

As stated in Section 2.2, Angluin[2] introduced the notion of a finite tell-tale of a concept 

to discuss inferability of an indexed family of recursive concepts from positive data, and 

showed that a class is inferable in the limit from positive data, if and only if finite tell- 

tales of the class are uniformly and recursively enumerable. Here we introduce a definite 

finite tell-tale (resp., a pair of definite finite tell-tales) of a concept, and show that a class 

is finitely inferable from positive data (resp., complete data), if and only if definite finite 

tell-tales (resp., pairs of definite finite tell-tales) of the class are uniformly and recursively 

generable. 



In Section 3.2, by extending the above results, when the equivalence of any two concepts 

in the class is recursively decidable, we show a necessary and sufficient condition for a class 

to be inferable within n mind changes from positive data or complete data for n 2 0. 

Case&Srnith[lO] discussed inductive inference of a class of recursive functions from view 

points of anomalies and mind changes, and showed that there are natural hierarchies. 

Case&Lynes[S] also showed that an anomaly hierarchy exists even in case of a class of 

recursive languages. 

Here we also present examples of classes that are inferable within n mind changes but 

not inferable within n - 1 mind changes, and show that the inferability strictly increases, 

when the allowed number of mind changes increases. 

In Section 3.3 we review further results obtained by Lange&Zeugmann[21]. They dis- 

cussed class-preserving learning of a class from positive data or complete data. A class is 

said to be class-preservingly learnable, if the class is inferable with well-chosen indexing of 

the class. They showed the superiority of class-preserving learning and uniform characteri- 

zations for inferability with a bounded number of mind changes, and also showed that there 

are various hierarchies. 

Section 3.1 and 3.2 are based on Mukouchi[28, 291, and Section 3.3 is based on Lange& 

Zeugrnann [2 11. 

3.1. Finite Identification 

First of all, we define finite identification for a class of recursive concepts. 

Definition 3.1. An IIM M is said to finitely converge to  an  index i for a positive or 

complete presentation a, if there is an n 2 1 such that (i) M(a[n]) = i and that (ii) for any 

rn with 1 5 rn # n, M (o[rn]) = 0. In this case we also say that M finitely converges to the 

index i from a [n] . 

Let C = {LijiEN be a class. For a concept Li E C and a positive or complete presentation 

a of Li, an IIM M is said to finitely infer the concept L; w.r.t. C from a, if M finitely 

converges to an index j with Lj = L; for 0. 



An IIM M is said to finitely infer a class C from positive data (resp., complete data), 

if for any Li E C, M finitely infers Li w.r.t. C from any positive presentation a (resp., any 

complete presentation a) of L;. A class C is said to be finitely inferable from positive data 

(resp., complete data), if there is an IIM M which finitely infers the class C from positive 

data (resp., complete data). 

We can consider that an IIM M finitely converges to an index i for a, if M which is 

successively fed a's facts produces the unique guess i and stops. Thus, in criterion of finite 

identification, an inference machine produces a unique guess when the inference process 

terminates. 

Now we show our definition and theorem that form a remarkable contrast to Definition 

2.6 and Theorem 2.6 concerning inferability from positive data. 

Definition 3.2. Let C = {Li)iEN be a class. A set Ti is said to be a definite finite tell-tale 

of Li within C,  if (i) Ti is a finite subset of L; and (ii) for any Lj E C,  Ti Lj implies 

Lj = L;. 

A pair (Ti, Fi) of sets is said to be a pair of definite finite tell-tales of Li within C,  if it 

satisfies the following conditions: (i) Ti is a finite subset of Li, (ii) Fi is a finite subset of 

L:, and (iii) for any Lj E C, if (Ti, F;) is consistent with Lj, then Lj = L; holds. 

An indexed family {T,)iEN of finite sets is said to be definite finite tell-tales of C,  if for 

any index i, Ti is a definite finite tell-tale of L; within C. 

Two indexed families {Ti)itN and {Fi)iEN of finite sets is said to be pairs of definite 

finite tell-tales of C ,  if for any index i, (T,, F;) is a pair of definite finite tell-tales of Li 

within C. 

By definition, the definite finite tell-tale has a more specific meaning than the finite 

tell-t ale. 

Theorem 3.1 (Mukouchi[28], Lange&Zeugmann[20], Kapur[l5]) . A class C is finitely in- 

ferable from positive data, i f  and only i f  definite finite tell-tales of C are uniformly and 

recursively genera ble. 



Proof. (I) The 'only if' part. Assume that an IIM M finitely infers C from positive data. 

Let us consider the procedure in Figure 3.1. In the procedure we note that we can effectively 

take a positive presentation a of L; (cf. Definition 2.3). 

Procedure Q( i ) ;  

begin 

let a be an arbitrary positive presentation of Li; 

search for an integer n 2 1 such that M ( a [ n ] )  > 0; 

if such an integer n is found then output a[n] ;  

end. 

Figure 3.1 : An algorithm which recursively generates definite finite tell-tales 

Let a be the positive presentation of L; which we used in the procedure. Since M finitely 

infers C from positive data, there is an n 2 1 such that M ( a [ n ] )  > 0, and thus the procedure 

on input i recursively generates the finite set a[n]+. Now we show by contradiction that 

Q(i )  (= a[n]+) is a definite finite tell-tale of Li. Suppose that Q(i )  is not a definite finite 

tell-tale of Li. It is easy to see that Q(i )  is a finite subset of Li. Therefore there is an 

Lj E C such that Q( i )  2 Lj and Lj # Li. Let 5 be an arbitrary positive presentation of 

Lj.  Then a[n] S is a positive presentation of Lj. Since M finitely converges to an index 

k with Lk = Li for a[n] ,  it follows that M does not finitely infer Lj w.r.t. C from a[n]  6. 

This contradicts the assumption. 

(11) The 'if' part. Assume that a procedure Q uniformly and recursively generates definite 

finite tell-tales of C. Then let us consider the procedure in Figure 3.2. In the procedure 

we note that whether Q(i)  C T or not is recursively decidable, because Q(i)  and T are 

explicitly given finite sets. 

Assume that we feed a positive presentation a of a concept Lh E C to the procedure. 

(1)  If the procedure finitely converges to an index k,  then Lk = Lh holds. In fact, when 

the procedure terminates, Q ( k )  2 T 2 Lh holds, and it follows that Lk = Lh by Definition 



Procedure IIM M; 
begin. 

T = d ;  n = l ;  

repeat 

read the next fact and store it in T; 

search for an index i 5 n such that Q(i) C T; 

if such an index i is found then output i and stop; 

n = n + l ;  

forever; 

end. 

Figure 3.2: An inference machine which finitely infers a class 

(2) The procedure terminates in a finite time. In fact, let 

k = min{j I Q(h) C o[ j ]+)  and m = max{k, h}. 

We note that h < m. Suppose that the procedure does not terminate. Then it reaches the 

case of n = m and i = h. In this case, Q (i) T (= 0 [m]+) holds, and it follows that the 

procedure outputs a guess and terminates. This contradicts the assumption. 

In a similar way, we can also show the following Theorem 3.2. 

Theorem 3.2. A class C is finitely inferable from complete data, if and only if pairs o f  

definite finite tell- tales o f  C are uniformly and recursively genera b2e. 

The following Corollary 3.3 presents an interesting relation between presentations and 

mind changes. 

Corollary 3.3 (Lange&Zeugmann[l9]) . I f  a class C is finitely inferable from complete data, 

then C is also inferable in  the limit from positive data. 

Proof. Assume that a class C is finitely inferable from complete data. Then, by Theorem 

3.2, pairs of definite finite tell-tales of C are uniformly and recursively generable. 

Claim: For any index i, if (Ti, Fi) is a pair of definite finite tell-tales of Li within C, then 

Ti is a finite tell-tale of Li within C. 



Proof of the claim. Let (Ti, Fi) be a pair of definite finite tell-tales of Li within C .  Then 

(i) Ti Li holds, (ii) F; Lz holds, and (iii) Li # Lj implies Ti Lj or Fi L;. Suppose 

that Ti is not a finite tell-tale of L; within C.  Therefore, by (i), there is an Lj E C such 

that Ti Lj 5 Li. Since Lj 2 Li, it follows that LP 2 Lj' Hence by (ii), we have Fi 2 Lje. 

This contradicts (iii) . 

We see by this claim that finite tell-tales of C are uniformly and recursively generable, 

and it follows that they are uniformly and recursively enumerable. Hence C is inferable in 

the limit from positive data. H 

The following Corollary 3.4 is obvious from Definition 3.2 and Theorem 3.1. 

Corollary 3.4. Let C = {Li}iEN be a class. Then if there are two concepts Li, Lj E C such 

that Li 2 Lj, then C is not finitely inferable from positive data. 

Here we present examples of classes that are finitely inferable from positive data. 

Example 3.1. For i > 1, let pi be the i-th prime number, and let Li be the set of all 

multiples of pi. Then let PR1 = {Li)itN be the class of interest. 

Since pi is a primitive recursive function of i > I, PR1 is an indexed family of nonempty 

recursive concepts on N. This class is finitely inferable from positive data. In fact, we can 

take the set {pi} as a definite finite tell-tale of Li. 

Furthermore we have the following Example 3.2. 

Example 3.2. For n > 1, let F C ,  be the class of all nonempty finite concepts on the 

universal set U each of which cardinality is just n. By assuming a bijective coding from 

F C ,  to N ,  this class becomes an indexed family of nonempty recursive concepts. This 

class is finitely inferable from positive data. In fact, each concept itself is its definite finite 

tell-tale within F C ,  , and they are uniformly and recursively generable. 

For n > 1, let PR, be the class of all concepts each of which consists of all multiples 

of n distinct prime numbers. By assuming a bijective coding from the set of all n distinct 

prime numbers to N,  this class becomes an indexed family of nonempty recursive concepts 

on N. For example, the concept {2,4,6, . ,7,14,21, .} is in PRa but not in F R i  with 



i = 1 or i > 3. This class is finitely inferable from positive data. In fact, a set of n distinct 

prime numbers is a definite finite tell-tale of the corresponding concept within PR,, and 

they are uniformly and recursively generable. 

We note that if n > 2, the above two classes FC, and PR, do not have finite thickness 

(cf. Definition 2.9). 

We present a sufficient condition for a class to be finitely inferable from complete data. 

This condition has more specific meaning than the condition of finite thickness (cf. Defini- 

tion 2.9). 

Definition 3.3. Let C = {Li)iEN be a class, and let S be a subclass of C. A set I of indices 

is said to be a cover-index set of S ,  if the collection of all concepts each of which has an 

index in I is equal to S, that is, S = {L; E C / i E I ) .  

Theorem 3.5. A class C = {Li}itN is finitely inferable from complete data, i f  

(i) C does not contain the empty concept as its member, 

(ii) for any w E U ,  there is a uniformly and recursively generable finite cover-index set o f  

the subclass {Li E C I w E Li} o f  C ,  and 

(iii) whether L; = Lj or not is recursively decidable for any indices i and j . 

Proof. Assume that a class C satisfies the above three conditions. Then the procedure in 

Figure 3.3 uniformly and recursively generates definite finite tell-t ales of C. 

In fact, it is easy to see that for any index i ,  the procedure on input i terminates in 

a finite time, and that the output of the procedure on input i is a pair of definite finite 

tell-tales of L; within C. 

Here we present an example of a class of languages which is finitely inferable from 

complete data. 

Example 3.3 (Mukouchi[28], Lange&Zeugmann[19]). We consider the class ?AT of pat- 

tern languages (cf. Example 2.1). 

(I) By definition, it is easy to see that PAT satisfies the condition (i) of Theorem 3.5. 



Procedure Q(i)  ; 

begin 

let w be an arbitrary element in Li; 

T = {w}; F = 4; 
recursively generate a cover-index set of {Lj E C / w E Lj}, and set it to I; 

for each j E I d o  

if Li # Lj then  begin 

search for an element w such that w E Li \ Lj or w E Lj \ Li; 

i f w ~ L ; \ L j  t h e n T = T ~ { w ) e l s e F = F ~ { w ) ;  

end; 

output the pair (T, F); 

end. 

Figure 3.3: An algorithm which recursively generates a pair of definite finite tell-tales 

(II) PAI also satisfies the condition (ii) of Theorem 3.5. This is already shown in Example 

(III) Angluin [I] showed that L(T) = L(r) if and only if n- = r, and it follows that whether 

L(T) = L(r) or not is recursively decidable for any patterns T and r .  

Therefore we see by Theorem 3.5 that PAT is finitely inferable from complete data. 

By theorems in Angluin[l], we can also show that (T, F) is a pair of definite finite tell- 

tales of L(T) within PAT, where T is the set of all elements in L(T) of the same length 

as n-, and F is the set of all constant strings each of which is not longer than T and is not 

in T. Furthermore we see by Corollary 3.4 that PAT is not finitely inferable from positive 

data. 

Example 3.4 (Tanimizu&Sato[49]). Let n 2 2 be an integer. We consider the class 

 AT[^"] of unions of at most n pattern languages (cf. Example 2.2). This class  PAT[^"] is 

not  finitely inferable from complete data. 

In fact, let wl E C+ be an arbitrary constant string. We show that there is no pair 

of definite finite tell-tales of L(wl) within PAT['"]. Suppose that there is a pair (T, F) 

of definite finite tell-tales of L(wl) within Since F is a finite set, it follows that 



there is a w2 E C+ such that wl # w2 and w2 6 F .  Then (T, F) is consistent with 

L(wl) U L(w2) E F'AT[~"], which contradicts the assumption. 

The following Corollary 3.6 shows a necessary condition for a class to be finitely inferable 

from positive data or complete data. 

Corollary 3.6. I f  a class C is finitely inferable from positive data or complete data, then 

whether L; = Lj or not is recursively decidable for any indices i and j .  

Proof. Clearly, if C is finitely inferable from positive data, then C is also finitely inferable 

from complete data (cf. Proposition 2.2). Therefore it suffices for us to show the case of 

complete data. 

Assume that C is finitely inferable from complete data. For any indices i and j ,  we can 

recursively decide whether Li = Lj or not as follows: To begin with, recursively generate 

a pair of definite finite tell-tales of L; within C ,  and set it to (T,, Pi). Then check whether 

(T,, F;) is consistent with Lj. If (T,, F;) is not consistent with Lj, then we conclude L; # Lj, 

because (Ti, F') is consistent with Li. Otherwise, we conclude Li = Lj by Definition 3.2. 

3.2. Bounded Mind Changes 

In this section we extend the results obtained in the previous section to the case of inductive 

inference where the number of mind changes is bounded by a constant number. 

Definition 3.4. Let M be an IIM. For a positive or complete presentation a and for n > 1, 

we define M[a[n]] and @[a[n]] as follows: (i) In case M(a[n]) is defined. Let M [ ~ [ n ] ]  be 

the finite sequence M(o[l]), M(a[2]), . . , M (o [n]), and let M [o[n]] be the finite sequence 

obtained by getting rid of every 0 from M [a[n]] . (ii) Otherwise. Leave M [a [n]] and @[o[n]] 

undefined. 

Let n > 0 be an integer. An IIM M is said to converge to  an  index i within n mind 

changes for a positive or complete presentation a, if (i) there is an rn > 1 such that for any 

k 2 rn, M(a[k]) = i and (ii) for any k > 1, #M[o[k]] 5 n + I .  



Let C = {LiIiEN be a class. For a concept Li E C and a positive or complete presentation 

a of L;, an IIM M is said to infer the concept L; w.r.t. C within n mind changes from a, if 

M converges to an index j with Lj = L; within n mind changes for a. 

An IIM M is said to infer a class C within n mind changes from positive data (resp., 

complete data), if for any Li E C, M infers Li w.r.t. C within n mind changes from any 

positive presentation a (resp., any complete presentation a )  of L;. A class C is said to be 

inferable within n mind changes from positive data (resp., complete data), if there is an 

IIM M which infers the class C within n mind changes from positive data (resp., complete 

data). 

In the above definition, M[a[n]] represents the sequence of guesses produced by M 

which is successively fed o[n]'s facts on its input requests, and thus #il?[a[n]] represents the 

number of guesses produced by M. We can simply consider that an IIM M converges to 

an index i within n mind changes for a, if M which is successively fed a's facts produces 

at most n + 1 guesses and its last guess is i. 

For n > 0, if a class C is inferable within n mind changes from positive data (resp., 

complete data), we also say that C is EXn-TXT inferable (resp., EX,-INF inferable). Fur- 

thermore, if a class C is inferable in the limit from positive data (resp., complete data), we 

also say that C is EX,- TXT inferable (resp., EX,-INF inferable). 

For n > 0 or n = *, by the same notation EXn-TXT (resp., EXn-INF), we also denote 

the collection of all classes that are EXn-TXT inferable (resp., EXn-INF inferable). 

We note that, by definition, finite identification is equivalent to inferability within 0 

mind change, that is, inferability without any mind changes. 

First of all, we present a necessary condition for a class to be EXn-TXT inferable, which 

is a natural extension of Corollary 3.4. 

Proposition 3.7. Let n > 0 be an integer, and let C = {LiIitN be a class. Then if there 

are concepts Ljl, Lj,, a s . ,  Ljn+, E C such that Ljl 2 Lj2 5 2 Ljn+,, then C is not 

EXn- T X  T in fera bl e . 



Proof. Assume that there are concepts Ljl , Lj2, . , Ljn+, E C such that Lj, S Lj2 5 - . 5 
\ 

'.in+2 Then suppose that an IIM M infers C in the limit from positive data. We show that 

M changes its guesses at least n + 1 times to infer Ljn+, w.r.t. C in the limit from a certain 

positive presentation of Ljn+,. For i with 1 5 i < n + 2, let oi be an arbitrary positive 

presentation of Lji. Put 61 = 01, and define ni7s and bi+l's (1 5 i 5 n + 1) inductively by 

the following stages: 

Stage i (1 5 i 5 n + 1): 

Since 6, is a positive presentation of Lj,, there is an n 2 1 such that Lji = L, and 

g = M(Si [nl + n2 + + ni-I + n]) for some g 2 1. Put n; = n and = Si [nl + n2 + 
. . + nil . ~ i + ~ .  We note that this Si+l becomes a positive presentation of because 

Lji 2 Lji+l 

If i < n + 1 then goto Stage i + 1 else stop. 

Then Sn+2 is a positive presentation of Ljn+,. However M changes its guesses at least 

n + 1 times for Sni2. This completes the proof. H 

Corollary 3.8. For any n 2 0,  the class EAT of  pattern languages is not EXn-TXT 

inferable. 

Proof. By Proposition 3.7, it suffices for us to show that for any n 2 0, there are pat- 

terns nl, 7r2, - - - ,  7rn+z such that L(7rl) 5 L(7r2) 5 - .  . 5 L(7rn+2). In fact, let 7rl = 

xlx2 xn+,, 7r2 = x1x2 x,+~, . , 7rn+2 = xl. Then L(7r;) is the set of all constant strings 

of length more than n + 2 - i, and thus 

holds. rn 

The above Corollary 3.8 means PAT 6 Uzl EXi-TXT. To the contrary, as shown in 

Example 2.1, PAT E EX,-TXT holds. 

Definition 3.5. Let C = {LiIiEN be a class. A set Ti is said to be a 0-bounded finite 

tell-tale ($'To, for short) of Li within C, if Ti is a definite finite tell-tale of Li within C, that 

is, (i) T,  is a finite subset of L; and (ii) for any Lj  E C, T,  C Lj  implies Lj  = Li. 
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A set Ti is said to be an n-bounded finite tell-tale (FT,, for short; n 2 1) of Li within C, 

if it satisfies the following conditions: (i) Ti is a finite subset of Li and (ii) for any Lj E C, 

if Lj # Li and Ti C Lj hold, then there exists an FTn-I of Lj within C. 

A pair (T,, F;) is said to be a pair of 0-bounded finite tell-tales (PFTo, for short) of Li 

within C, if it satisfies the following conditions: (Ti, F;) is a pair of definite finite tell-tales 

of Li within C, that is, (i) Ti is a finite subset of L;, (ii) Fi is a finite subset of Lz, and (iii) 

for any Lj  E C, if (Ti, F;) is consistent with Lj, then Lj = L; holds. 

A pair (T,, F;) is said to be a pair of n-bounded finite tell-tales (PFT,, for short; n 2 1) 

of Li within C, if it satisfies the following conditions: (i) Ti is a finite subset of Li, (ii) F; 

is a finite subset of Lz, and (iii) for any Lj E C,  if Lj f L; holds and (Ti, F;) is consistent 

with Lj, then there exists a PFTn-I of Lj within C. 

Intuitively, an FT, or a PFT, of Li within C is a tell-tale which validates producing the 

guess i ,  when the inference machine is allowed to produce another n + 1 guesses. 

For n > 0, we can easily show by mathematical induction on n that if a finite set T is 

an FT, of L; within 6 ,  then it is also an FT,+l of Li within C. In a similar way, we can 

show that if a pair (T, F) of finite sets is a PFT, of Li within C, then it is also a PFT,+, 

of Li within C. 

Definition 3.6. Let n > 0 be an integer. An effective procedure Ft is said to uniformly 

and recurrently construct FT, 's of C, if it satisfies the following conditions: 

(i) For any index i, the procedure Ft on inputs n and i recursively generates a finite set. 

(ii) For any rn with 0 5 rn 5 n and any index i, if the procedure Ft on inputs rn and i 

recursively generates a finite set S, then 

(a) S is an FT, of Li within C,  and 

(b) for any index j ,  if Lj # Li and S C Lj hold, then the procedure F t  on inputs r n  - 1 

and j also recursively generates a finite set. 

For n > 0, FT,'s of C are said to be uniformly and recurrently constructible, if there is 

an egective procedure which uniformly and recurrently construct FTn7s of C. 

In a similar way, we also define the uniform and recurrent constructibility of PFT,'s of 

a class. 



Theorem 3.9. Let n 2 0 be an integer, and let C = {LiliEN be a class. Assume that 

whether Li = Lj or not is recursively decidable for any indices i and j .  Then C is EX,-TXT 

inferable, i f  and only if FT, 's of  C are uniformly and recurrently constructible. 

Proof. (1) The 'only if' part. Assume that an IIM M infers C within n mind changes from 

positive data. Let us consider the procedure in Figure 3.4. 

Procedure Ft (m, i ) ;  

begin 

let q2, be an effective enumeration of 
all nonempty finite sequences consisting of elements in L;; 

search for an integer j 2 1 such that > n - m and Lz(4j) = Li; 

if such an integer j is found then output $ j  and stop; 

end. 

Figure 3.4: An algorithm which uniformly and recurrently constructs F K ' s  of a class 

(1) For any index i ,  the procedure on inputs n and i recursively generates a finite set. 

This is because M infers C in the lirnit from positive data. 

(2) If the procedure on inputs m and i recursively generates a finite set, then it is a finite 

subset of Li. 

(3) If the procedure on inputs 0 and i recursively generates a finite set S, then S is an 

FTo of L; within C. In fact, suppose that S is not an FG of L; within C. Then there is 

an Lj t C such that Lj f Li and S 2 Lj.  Let a be an arbitrary positive presentation of 

Lj, and let $ be the finite sequence enumerated by the procedure on inputs 0 and i. Since 

$ - o is a positive presentation of Lj ,  it follows that M does not infer Lj w.r.t. C within n 

mind changes from $ a, which contradicts the assumption. 

(4) For any m with 0 < m < n and any index i, if the procedure on inputs m and i 

recursively generates a finite set S and there is an index j such that Lj # L; and S 2 Lj ,  

then the procedure on inputs m - 1 and j also recursively generates a finite set. In fact, 

suppose that the procedure on inputs m - 1 and j does not recursively generate a finite set. 

Let a be an arbitrary positive presentation of Lj, let $ be the finite sequence enumerated 



by the procedure on inputs m and i, and put S = $ . a. Then there is a k > #$ such 

that M(S[k]) > 0 and Lj = LM(6[kll, because M infers Lj w.r.t. C in the limit from 6. 

Since S[k] is a finite sequence consisting of elements in Li, there is a case where the search 

statement in the procedure is executed with this finite sequence. Furthermore, by its 

construction, #M[S[k]] > n - m + 1 holds. Hence the procedure will produce a guess. This 

is a contradiction. 

By (I), ( 2 ) ,  (3) and (4), we see that the procedure uniformly and recurrently constructs 

FTn's of C. Therefore FTn's of C are uniformly and recurrently constructible. 

(11) The 'if' part. Assume that a procedure Ft uniformly and recurrently constructs FTn7s 

of C. Then let us consider the procedure in Figure 3.5. 

Procedure IIM M; 

begin 

m = n ;  k=O; S = d ;  T = d ;  
j = 1; 

repeat 

read the next fact and store it in 7'; 

for i = 1 to j d o  

if k = 0 or (Lk # L; and S L;) then  

if Ft(m, i) T then  begin 

output i; 

if m = 0 then  stop; 

m = m - 1 ;  i ;  S = F t ( m , i ) ;  

end; 

j = j + l ;  

forever; 

end. 

Figure 3.5: An inference machine which infers a class within n mind changes 

It is easy to see that the procedure produces at most n + 1 guesses. Assume that we 

feed a positive presentation CT of a concept Lh E C to the procedure. 



(1) The procedure produces at least one guess. In fact, suppose that the procedure never 

produces a guess. When it reaches the case 

j = max{h,min{l I Ft(n, h) G u-[l]')} and i = h, 

the procedure should produce the guess h, which contradicts the assumption. 

(2) Suppose the last guess g produced by the procedure is not correct. 

(a) In case the value of rn in the procedure is equal to 0, when the procedure produced 

the last guess. It contradicts the definition of an FTo. 

(b) Otherwise. In the procedure, we note that S G T and L, # Lh. When it reaches 

the case 

j 2 max{h,min{l I Ft(n,h) 2 o[z]+)) and i = h, 

the procedure should produce the next guess h, which contradicts the assumption. 

In a similar way to the proof of Theorem 3.9, we can show the following Theorem 3.10. 

Theorem 3.10. Let n 2 0 be an integer, and let C = {Li)iEN be a class. Assume that 

whether Li = Lj or not is recursively decidable for any indices i and j .  Then C is EXn-INF 

inferable, i f  and only i f  PFTn's o f  C are uniformly and recurrently constructible. 

We note that in case n = 0, the above Theorem 3.9 or Theorem 3.10 is equivalent to 

Theorem 3.1 or Theorem 3.2 by Corollary 3.6. In the following Section 3.3, we show another 

complete characterizations on EXn-TXT or EXn-INF inferability without the assumption 

of recursive decidability of equivalence of two concepts. 

The following Example 3.5 contrasts well with Example 3.2. 

Example 3.5. For n 2 1, let FC<, - be the class of all nonempty finite concepts on the 

universal set U each of which cardinality is at most n. By assuming a bijective coding from 

FCCn - to N ,  this class becomes an indexed family of nonempty recursive concepts. Then it 

is clear that whether Li = Lj  or not is recursively decidable for any indices i and j .  



This class is EXnm1-TXT inferable. In fact, for a concept {wl, , wk} (1 5 k 5 n), 

there is an FT, (n - k 5 rn 5 n - 1) of it within FC<,  such as - 

and it follows that FTn-l's of FC<, - are uniformly and recurrently constructible. 

On the other hand, we see by Proposition 3.7 that this class is not EXn-2-TXT inferable, 

if n > 2. Furthermore this class is shown not to be EXn-2-INF inferable. This is because 

there is no PFTn-2 of the concept {wl} within FC5,, where wl is an arbitrary element in 

the universal set U .  In fact, suppose that there is a PFTnm2 (7-1, Fl) of the concept {wl} 

within FC<,. - We define wi7s and (T,, Fi)'s (2 5 i 5 n - 2) inductively by the following 

stages: 

Stage i (2 5 i 5 n - 1): 

Let wi E U be an arbitrary element such that wi $ {w17. , wi-1) and wi $ u:=\ F'. 

Since (Tim1, is a PFT,-i of the concept {wl, . , wi-1) within FC<, and it is - 

consistent with the concept {wl, , wi}, there is a PFTn-i-l (T, F) of the concept 

{wl, . , wi} within FC<,. - Put (Ti, Fi) = (T, F) .  

If i < n - 1 then goto Stage i + 1 else stop. 

Thus we have a PFTo (Tn-,, F,-,) of the concept {wl, . . , w,-~} within FC<,. Let - 

w, E U be an arbitrary element such that w, $ {wl,.. , wnFl} and w, $ Uyz: Fi. Then 

the concept {wl, , w,} is in FC<,  - and that (T,-,, Fn-1) is consistent with this concept. 

This is a contradiction, because (T,-l, is a PFTo of the concept {wl, , w,-l} within 

FC5,. Hence FC<,  - is not EXn-2-INF inferable. 

Let FC, be the class of all nonempty finite concepts on the universal set U .  By assuming 

a bijective coding from FC, to N ,  this class becomes an indexed family of nonempty 

recursive concepts. This class is EX,-TXT inferable (cf. Corollary 2.7), and thus it is 

EX,-INF inferable. Furthermore in a similar way to the case of FC<,, this class is shown - 

to be neither EX,-TXT nor EX,-INF inferable for any n 2 0. 



By Corollary 3.8 and Example 3.5, we see that there are hierarchies such as 

3.3. rt her Results 

In this section we review further results obtained by Lange&Zeugmann[21]. Here we mainly 

consider class-preserving learning defined below. 

Definition 3.7. A class C = {Li)itN is said to be class-preservingly inferable in the limit 

from positive data (resp., complete data), if there is a class C' = {Li)iEN such that (i) C' is 

inferable in the limit from positive data (resp., positive data) and that (ii) {L;  E C I i > 
1)  = {L: E C' 1 i > 1). 

That is, class-preserving learnability means inferability with well-chosen indexing of the 

class. 

In a similar way, we also define class-preserving inferability with a bounded number of 

mind changes. For n 2 0, if a class C is class-preservingly inferable within n mind changes 

from positive data (resp., complete data), we also say that C is CPEXn- TXT inferable 

(resp., CPEXn-INF inferable). Furthermore, if a class C is class-preservingly inferable in 

the limit from positive data (resp., complete data), we also say that C is CPEX,- TXT 

inferable (resp., CPEX, -INF inferable). 

For n 2 0 or n = *, by the same notation CPEXn-TXT (resp., CPEXn-INF), we 

also denote the collection of all classes that are CPEXn-TXT inferable (resp., CPEXn-INF 

inferable). 

By definition, it is clear that for any n 2 0 or n = *, EXn-TXT CPEXn-TXT and 

EXn-INF C CPEXn-INF. The following Theorem 3.11 shows superiority of class-preserving 

learning, if the number of mind changes is bounded by a constant number greater than 0. 



Theorem 3.11 (Lange&Zeugmann [2 I]) . (a) The following four equations are valid: 

CPEX* - TXT = EX, - TXT, CPEX* -IN? = EX, -1N.F. 

(b) For any n 2 1, EX,-TXT 2 CPEXn-TXT holds. 

It is unknown at present whether EXn-INF 2 CPEXn-INF holds or not for any n 2 1. 

Lange&Zeugrnann[21] also obtained very interesting and surprising results as follows: 

Theorem 3.12 (Lange&Zeugmann[21]). (a) For any n 2 0, EXn+l-TXT g CPEXn-INF 

holds. Therefore for any n 2: 0, CPEXnI1-TXT g CPEX,-INF holds. 

(b) EXl -INF g CPEX, - TXT holds. Therefore for any n 2 1, EXn-INF g CPEX, - TXT 

and CPEXn-INF CPEX*-TXT hold. 

(c) UglEXi-INF#CPEX,-TXT and UglEXi-INF#CPEX,-TXT hold, where for two 

sets S and T, the relation TSfiS means T g S and S g T. 

Furthermore Lange&Zeugmann[21] showed that there are hierarchies such as 

Concerning characterizations for inferability with a bounded number of mind changes, 

the following Theorem 3.13 and 3.14 hold: 

Theorem 3.13 (Lange&Zeugmann[21]). Let n > 0 be an integer, and let C = {Li)itN be 

a class. Then C is CPEXn-TXT inferable, if and only if there are a class C' = {L:}itN, a 

computable relation 4 over N ,  and a uniformly and recursively generable family {Ti}iEN 

of finite sets such that 

(i) {Li E C 1 i 2 I} = {L: E C' 1 i 2 I}, 



(ii) for any index i, Ti 2 Li holds, 

(iii) for any indices i and j ,  if Ti 2 L j  and L j  # Li hold, then there is an index k such 

that i -4 k ,  Ti C Tk and LI, = Li, 

(iv) for any index i, there is no sequence i l ,  i2, . , in+2 of  indices such that il 4 i2 4 . 4 

in+2 and Ti, c Ti, . . 2 Tin+, C Li- 

Theorem 3.14 (Lange&Zeugrnann[21]). Let n > 0 be an integer, and let C = {Li)iEN be 

a class. Then C is CPEX,-INF inferable, if and only i f  there are a class C' = {L:)it , and 

uniformly and recursively genera ble families and of  finite sets such that 

(i) {Li  E C I i > 1 )  = {L: E C' I i > 1 ) )  

(ii) for any index i, (Ti, Fi) is consistent with Li, 

(iii) for any indices i and j,  if (T,, I$) is consistent with L j  and L j  # Li holds, then there 

is an index k such that (T,, Fi) C (Tk, Fk)  and LI, = L;, 

(iv) for any index i, there is no sequence il, i2, . , in+2 o f  indices such that (T,, , Pi,) c 

(T,,, 4,) C . . C (Ti,,,, Kn+,) C (Li ,  L;), 

where for sets T , F , T 1  and F', the relation (T,  F )  C (TI, F')  means T T', F C F' and 

Furthermore we have the following characterizations for EXn-TXT or EXn-INF infer- 

ability for n > 0. 

Corollary 3.15 (Sato[40]).  Let n 2 0 be an integer, and let C = {Li}iEN be a class. Then 

C is EX, - T X T  inferable, i f  and only if there are a uniformly and recursively genera ble family 

{ z ) i E N  o f  finite sets, a computable relation -+ over N ,  and a recursive function h : N + N 

such that 

(i) for any index i, there exists a j > 1 such that Li = Lh( j ) ,  

(ii) for any index i, Ti C Lh(i), 

(iii) for any indices i and j ,  i f  T, L j  and L j  # Lh(i) hold, then there is an index k such 

that i 4 k and L j  = Lh(k), 

(iv) for any index i ,  there is no sequence il, i2, . , in+2 of  indices such that il 3 i2 4 . -4 

in+2 and T,, c T,, a-• C Tin+, C Li. 



Proof (Based on the proof of Theorem 3.13). (I) The 'only if7 part. Assume that an IIM 

M infers C within n mind changes from positive data. 

Let y!~~, . be an enumeration of all nonempty finite sequences consisting of elements 

in U such that if +; is an initial segment of qj then i < j holds. Let c : N x N -+ N be 

Cantor's pairing function. For i, j 2 1, put L&) = L;, and define T;(; as follows: 

(1) In case the length of q!Ji is 1. We put 

(2) Otherwise. Then there are a finite sequence +k and an element w in U such that 

q!J; = +kw. We note that k < i by assumption. We put 

- 
if +j L; (= LL(i,j)) and a(&) = a ( + j )  = i, 

- 
if +j c L; (= L&)) and a(+k) # = i, 

undefined, otherwise. 

Next, we define a function g : N --+ N as follows: 

g(0) = 0 and g(i + 1) = min{j > g(i) I T' is defined) for i 2 0. 

Then for i 2 1, put Ti = Ti(i), and let h(i) be the integer j such that g(i) = c(j, m) for 

some m > 1. 

We note that the above {Ti)iEN is a uniformly and recursively generable family of finite 

sets and that two functions g and h are recursive. 

Finally we define the relation 4 as follows: For i, j 2 1, i 4 j if and only if g(i) = c(i' , k) , 

g(j) = c(jt, l ) ,  it # j' hold and +k is an initial segment of +l for some it, j', k ,  I 2 1. 

Now we verify that the family {Ti)iEN, the relation 4 and the function h satisfy the 

conditions (i)-(iv). Since M infers C in the limit from positive data, it is easy to see that 

(i) holds. It is also easy to see that (ii) holds. 

Assume Ti Lj and Lj f Lh(;). Let it, kt be the integers such that h(i) = it and 

g(i) = c(il, kt), and let 6 be an arbitrary positive presentation of Lj- Since T;(i,,lc,) = Ti 2 Lj, 



@($kt) = i' and Lj # Lh(i) (= Lit), it follows that there are an Z 2 1 and an index j' such 

that S[Z - 11) # &!($kt S[1]) = j' and Ljl = Lj. Let 1' be an integer such that 

$p = S[Z] , and let k be an index such that h(k) = j' and g(k) = c ( j l ,  1'). Then i 4 k 

and Lj = Lh(k) hold. Hence (iii) holds. 

Finally suppose that there are an index i and a sequence il, i2, . . , in+2 of indices such 

that il 4 i2 4 . 4 in+z and Ti, C T,, G . c Tin+, c Li. Then it is easy to see 

that M makes at least n + I mind changes for a certain positive presentation of L;, which 

contradicts the assumption. Hence (iv) holds. 

(11) The 'if' part. Assume that there are a uniformly and recursively generable family 

of finite sets, a computable relation 4 over N,  and a recursive function h : N -+ N 

that satisfy (i)-(iv). Let us consider the procedure in Figure 3.6, where we put To = 4 and 

O 4 i for any i > 1. 

Procedure IIM M; 
begin 

T = 4; 
m=O; j = O ;  

repeat 

read the next fact and store it in T;  

m = m + l ;  

search for the least index i 5 rn such that T, C Ti C_ T and j 4 i; 

if such an index i is found then let j = i, and output h(i); 

forever; 

end. 

Figure 3.6: An inference machine which infers a class within n mind changes 

Since {T,)iEN is a uniformly and recursively generable family of finite sets, the relation 

4 over N is computable, and the function h : N -+ N is recursive, it follows that the 

procedure is effective. 

By the conditions (i), (ii) and (iii), it is easy to see that the procedure infers C in the 

limit from positive data, and by the condition (iv), it is also easy to see that the procedure 

makes at most n mind changes. I 



Corollary 3.16 (Sato[40]). Let n 2 0 be an integer, and let C = {LiIiEN be a class. Then 

C is EXn-INF inferable, if and only if there are uniformly and recursively generable families 

{z}itN and {F21iEN of finite sets and a recursive function h : N -+ N such that 

(i) for any index i, there exists a j 2 1 such that L; = Lh(j), 

(ii) for any index i, (Ti, F;) is consistent with Lh(;), 

(iii) for any indices i and j, if (Ti, F;) is consistent with Lj and Lj $. Lh(;) holds, then there 

is an index k such that (Ti, F;) C (Tk, Fk) and Lj = Lh(k), 

(iv) for any index i, there is no sequence il, i2, , i,+2 of indices such that (T,, , F;,) c 

(T,,,Fi,) C - - .  C (T,n+,7F,n+,) C (L;,L:), 

where for sets T, F, T' and F', the relation (T, F) C (TI, F') means T c TI, F C F' and 

(T7 F )  # (TI, F'). 

Proof (Based on the proof of Theorem 3.14). (I) The 'only if' part. Assume that an IIM M 

infers C within n mind changes from complete data. Without loss of generality, we assume 

that M works conservatively. 

Let c : N x N -+ N be Cantor's pairing function. For index i, let o; be the canonical 

complete presentation of Li (cf. Definition 2.3). For i, j 2 1, put L:(; j) = Li and 

oi[min{k 5 j I M(o;[k]) = i l l+ ,  if 3k 5 j s.t. M(oi[k]) = i, 
Ti(;,$ = 

undefined, otherwise, 

o;[min{k 5 j I M(o;[k]) = i}]-, if 3 k  5 j s.t. M(oi[k]) = i, 
Fi(i,j) = 

undefined, otherwise. 

Next, we define a function g : N -+ N as follows: 

g(0) = 0 and g(i + 1) = min{j > g(i) I Tj is defined} for i > 0. 

Then for i > 1, put Ti = Ti(;) and Fi = Fi(;), and let h(i) be the integer j such that 

g(i) = c(j, m) for some m 2 1. 

We note that the above {Ti};EN and {FiIiEN are uniformly and recursively generable 

families of finite sets and that two functions g and h are recursive. 



Now we verify that two families {z}iEN and {F2}iEN and the function h satisfy the 

conditions (i)-(iv). Since M infers C in the limit from complete data, it is easy to see that 

(i) holds. It is also easy to see that (ii) holds. 

Assume that (Ti, Pi) is consistent with Lj and that Lj # Lh(i)- Let lo = #(Ti U E ) .  Since 

(T,, Fi) is consistent with Lj and oj is the canonical complete presentation of Lj, it follows 

that Ti = oj [lo]+ and Fi = oj [lo]-. Since M conservatively infers Lj w.r.t. C in the limit 

from oj, there are an 1 > lo and an index k' such that Lj = Lkt and k' = a(oj [l]). Therefore 

is defined, and thus there is an index k such that g(k) = c(kl, l )  and h(k) = k'. Then 

we have (Ti, Fi) c (TL(k/,l), F;(kl,l)) = (Tk , Fk) and Lj = Lkl = Lh(k). Hence (iii) holds. 

Finally suppose that there are an index i and a sequence il, i2, , of indices such 

that (Ti,, F,,)  C (T,, , F,,)  C . C (zn+, , En+,) C (Li, L:). Then it is easy to see that M 

makes at least n + 1 mind changes for the canonical complete presentation of Li, which 

contradicts the assumption. Hence (iv) holds. 

(II) The 'if' part. Assume that there are uniformly and recursively generable families 

{Ti}iEN and {Fi}iEN of finite sets and a recursive function h : N -+ N that satisfy (i)-(iv). 

Let us consider the procedure in Figure 3.7, where the procedure readstore is the same one 

as in Figure 2.1, and we put To = 4 and Fo = 4. 

Since {T,IiEN and {FiliEN are uniformly and recursively generable families of finite sets, 

and the function h : N -+ N is recursive, it follows that the procedure is effective. 

By the conditions (i), (ii) and (iii), it is easy to see that the procedure infers C in the 

limit from complete data, and by the condition (iv), it is also easy to see that the procedure 

makes at most n mind changes. II 

3.4. Discussion 

In this chapter we have discussed conditions for a class to be inferable with a bounded 

number of mind changes from positive data or complete data. We also presented some 

classes that are inferable within n mind changes but not inferable within n - 1 mind 

changes from positive data or complete data for n 2 1. 



Procedure IIM Ad; 

begin 

T = 4; F = 4; 

m = 0 ;  j = O ;  

repeat  

readstore(T, F ) ;  

m = r n + l ;  

search for the least index i < m such that 

T, T, Fi F and (T', F') c (Ti, Fi) hold; 

if such an index i is found then  let j = i, and output h(i); 

forever; 

end. 

Figure 3.7: An inference machine which infers a class within n mind changes 

Among them, finitely inferable classes are much smaller than those that are inferable in 

the limit, but the finite identification seems to be much more significant than it is thought 

of. For example, it is not only a base case of inductive inference but also a base case of 

PAC and MAT learning[50, 31, and its characterization theorems (cf. Theorem 3.1 and 3.2) 

seem to be depicting everything that we can finitely identify. 

Concerning conditions for inferability with a bounded number of mind changes, Corol- 

lary 3.4, 3.6 and Proposition 3.7 are very interesting, when we consider the necessity of mind 

changes. Furthermore Corollary 3.3 and Theorem 3.12 by Lange&Zeugmann[2 11 present 

interesting relations between presentations and mind changes. 

The class of pattern languages, which was introduced by Angluin[l, 21 as a concrete class 

which is inferable in the limit from positive data (cf. Example 2.1), is also very interesting 

from view points of presentations and mind changes. That is, this class is finitely inferable 

from complete data (cf. Example 3.3) but not inferable within n mind changes from positive 

data for n 2 0 (cf. Corollary 3.8). Moreover the class of unions of at most n pattern 

languages is shown to be inferable in the limit from positive data (cf. Example 2.2), while it 

is shown not to be finitely inferable from complete data if n 2 2 (cf. Example 3.4). However 

it is unknown at present whether or not the class of unions of at most n pattern languages 



is inferable within m mind changes from complete data for n, rn 2 2. 

In Chapter 6 we discuss inferability of the class of languages definable by EFS's. We 

can regard this class as a natural extension of a class of unions of pattern languages, and 

it also has rnany interesting properties. 



Chapter 4. 

Refutabilit y and Inferability fro 

In the middle of this century the logic of scientific discovery was deeply discussed by 

philosophers[32, 331. Recently in Artificial Intelligence, especially in Cognitive Science, 

researchers are extensively discussing frameworks for scientific discovery from various view- 

points[4'7]. 

Before going into such detailed discussions we need to set up a computational logic of 

scientific discovery in a mathematical way so that we can precisely discuss what kinds of 

machine discovery can work. One of the best ways to this should be to reexamine the 

philosophical results from computational viewpoints. In the present chapter we start with 

making the Popperian logic of scientific discovery[32, 331 computational. 

The Popperian logic of scientific discovery concentrated on the testability, falsifiability or 

refutability of hypotheses or scientific theories. Popper also asserted that scientific theory 

should have been refuted by observed facts and any such theory could by no means be 

verified[32]. Thus we tentatively believe the current theory until we face with an observation 

which is inconsistent with the theory. 

Hence the consistent and conservative inductive inference can be viewed as a compu- 

tational realization of the Popperian notion of refutability. In the inductive inference, the 

inference machine requests data or facts from time to time and produces hypotheses from 

time to time. The hypotheses produced by the machine are to be consistent with the facts 

read so far, and each of them is to be refuted when the machine faces with inconsistent 

data or facts. 

Thus the Popperian logic of scientific discovery can be viewed as a basis of the modern 

inductive inference studies. The inductive inference is thus a mathematical basis of machine 



learning. Then what should be a logic of machine discovery or a computational logic of 

scientific discovery? 

The machine discovery we are concerned with in this thesis is to make computers discover 

some scientific theories from given data or facts. Hence machine learning should be a key 

technology for rnachine discovery. In machine learning first we must select a hypothesis 

space from which the learning machine proposes theories or hypotheses. The space is 

naturally required to be large, but to make the learning efficient it is required to be s d .  As 

far as data or facts are presented according to a hypothesis that is unknown but guaranteed 

to be in the space as in the ordinal inductive inference, the machine will eventually identify 

the hypothesis, and hence no problem may arise. In machine discovery, however, we can 

not assume this. God knows whether or not a hypothesis behinds the data or facts belongs 

to the space. 

If the hypothesis is not in the space, most learning machines will continue for ever to 

search the space for a new hypothesis. Usually we can not know the time when to stop 

such an ineffective searching. This is the most crucial problem we must solve in realizing 

rnachine discovery systems. In machine discovery the sequences of data or facts are given 

at first independently of the space. We can not give in advance the space that includes the 

desired theory. If the learning machine can explicitly tell us that there are no theories in 

the space which explain the given sequence, the machine will work for machine discovery. 

Hence the essence of a computational logic of scientific discovery should be that the 

entire hypothesis space is refutable by a sequence of observed data or facts. If there exist 

rich hypothesis spaces that can be refuted, we can give a space and a sequence to the 

machine, and then we can just wait for an output from it. The machine will discover a 

hypothesis which is producing the sequence if it is in the space, otherwise it will refute the 

whole of the space and stop. When the space is refuted, we may give another space to the 

rnachine and try to make such a discovery in the new space. 

In the present thesis, we choose the inductive inference as the framework for machine 

learning. Then the machine discovery system is an inductive inference machine that can 

refute hypothesis spaces. 



If the class is a finite set of recursive concepts, it is trivially refutable from complete data. 

Also if the class contains all finite concepts, it is easily shown not to be refutable. Then  are 

there any meaningful classes, i.e. hypothesis spaces, that are identifiable and refutable? We 

give a positive answer to this question. We will say such classes to be refutably inferable. 

In Section 4.2 we discuss some conditions on refutable inferability from positive data 

or complete data. Concerning refutable inferability from positive data, we present some 

necessary and sufficient conditions, and reveal that the power is very small. Then in 

Section 4.3 we show the differences between the inferable classes under the criteria of 

refutable identification, reliable identification, finite identification and identification in the 

limit. In Section 4.4 we show that a class which consists of unions of at most n concepts 

from n classes is refutably inferable from complete data, if each class satisfies a certain 

condition. Furthermore in Section 6.2 we show that for any n 2 0, the classes definable by 

length-bounded EFS's with at most n axioms are refutably inferable from complete data, 

and reveal that there are sufficiently large classes that are refutably inferable from complete 

data. 

This chapter is based on Mukouchi&Arikawa[30]. 

4.1. Definitions of Refutability and Inferability 

First of all, we give the ability to refute a hypothesis space to an inference machine. 

Definition 4.1. An inductive inference machine that can refzlte hypothesis spaces (RIIM, 

for short) is an effective procedure, or a certain type of Turing machine, which requests 

inputs from time to time and either (i) produces positive integers from time to time or (ii) 

refutes the class and stops after producing some positive integers. 

For an RIIM M and a nonempty initial segment o[n] = wl, w,, . , w, of a positive or 

complete presentation, we define M (o[n]) as follows: Initialize M and start M in the initial 

state. If it requests a fact for the i-th time with 1 5 i 5 n, then feed w; and continue the 

execution. If it produces more than one positive integers or 'refutation' signs between any 

two input requests before requesting the (n + 1)-st fact, then leave M (o[n]) undefined. 



(I) In case M requests the (n $- 1)-st fact, or it stops after it requested the n-th fact. 

If it produces a positive integer or the 'refutation7 sign after it requested the n-th fact, 

then let M(a[n]) be the last integer or the 'refutation7 sign produced by M, otherwise let 

M(a[n]) = 0. 

(11) In case M stops before requesting the n-th fact. Let M(a[n]) = 0. 

(El) Otherwise. Leave M (a[n] ) undefined. 

The intended interpretation is as follows: (i) In case M (a[n]) is defined as the 'refutation7 

sign, the RIIM M refutes the class concerned. (ii) In case M (o[n]) is defined as a positive 

integer i, the RIIM M guesses the i-th concept in the class. (iii) In case M ( ~ [ n ] )  is defined 

as the integer 0, the RIIM M makes no guess. (iv) In case M (a[n]) is undefined, the RIIM 

M is out of control. 

Furthermore we define &?(a[n]) as follows: 

(I) In case M(a[n]) is defined. (i) If there is the 'refutation' sign in the sequence 

M(a[l]), M(a[2]), , M(a[n]), then let M(a[n]) be the 'refutation7 sign. (ii) Otherwise. If 

there is a positive integer in the sequence M (~[ l ] ) ,  M(o[2]), , M(o[n]), then let M(o[n]) 

be the last positive integer in the sequence, otherwise let M(o[n]) = 0. 

(11) Otherwise. Leave M (a [n] ) undefined. 

An RIIM M is said to converge to  an index i for a positive or complete presentation a, 

if there is an n 2 1 such that for any rn 2 n, &!(o[rn]) = i. 

An RIIM M is said to refute a class C from a positive or complete presentation a, if 

there is an n 2 1 such that &f(a[n]) is the 'refutation7 sign. In this case we also say that 

M refutes the class C from o[n]. 

Let C = {LiIiEN be a class. For a concept L; E C and a positive or complete presentation 

a of Li, an RIIM M is said to infer the concept L; w.r.t. C i n  the limit from a, if M converges 

to an index j with Lj = Li for a .  

An RIIM M is said to refutably infer a class C from positive data (resp., complete data), 

if it satisfies the following condition: For any nonernpty concept L (resp., any concept L) 



and any positive presentation o (resp., any complete presentation a) of L, (i) if L E C, then 

M infers L w.r.t. C in the limit from a, (ii) otherwise M refutes the class C from a. A class 

C is said to be refutably inferable from positive data (resp., complete data),  if there is an 

RIIM M which refutably infers the class C from positive data (resp., complete data). 

Corresponding to Proposition 2.1, we have the following Proposition 4.1, which we 

implicitly use in showing some properties. 

Proposition 4.1. (a) Assume that an RIIM M refutably infers a class C from positive 

data. Then for any nonempty finite sequence $ consisting o f  elements in U ,  a($) is always 

defined. 

(b) Assume that an RIIM M refutably infers a class C from complete data. Then for any 

nonempty finite sequence i$ consisting o f  elements in U x {+, -}, a($) is always defined. 

Proof. We only give the proof of (a). The proof of (b) can be given in a similar way. 

Let $ = wl, w2, . . , w, be a nonempty finite sequence, and put a = $, wl, wl, wl, - .. 

Then o is a positive presentation of the concept {wl, w2, . , wn). Therefore M either (i) 

converges to an index j with Lj = {wl, w2, . , w,} for o or (ii) refutes the class C from 

a, and it follows by definition that for any n 2 1, M(o[n]) is defined. Thus a($) is also 

defined. 

The above Proposition 4.1 claims that even when we feed any  facts that may not be 

from any concept in the class, an RIIM either (i) successively requests another facts in a 

finite time forever or (ii) stops in a finite time after producing some positive integers. 

Since we are considering an indexed family of recursive concepts, every class can be 

inferred from complete data by a simple enumerative method (cf. Theorem 2.4). However 

we can not take the class of all recursive concepts as a hypothesis space, because the 

following Proposition 4.2 holds. 

Proposition 4.2. The class C of all recursive concepts is not an indexed family o f  recursive 

concepts. 



Proof. suppose that the class C = {LijiEN is an indexed family of all recursive concepts. 

Let wl, wz, be an effective enumeration of the universal set U .  Without loss of generality, 

we assume w; # wj if i # j .  Then we take a concept L as follows: 

As easily seen, this L is recursive, and it differs from any concept in C. This is a contradic- 

tion. 

In case an RIIM M is fed a positive or complete presentation of a non-recursive concept, 

M should refute the class. Therefore even if we could take the class of all recursive concepts, 

it would be still significant to consider refutable inferability. 

4.2. Characterizations 

In order to characterize the refutable inferability, we need the following Lemma 4.3. 

Lemma 4.3. Let M be an H I M  which refutably infers a class C from positive data (resp., 

complete data). Then for a nonempty concept L (resp., a concept L) ,  for a positive pre- 

sentation a (resp., a complete presentation 0) of  L and for n 2 1, if M refutes the class C 

from a[n], then a[n] is not consistent with any Li E C .  

Proof. Assume that an RIIM M refutes a class C from a[n]. Then suppose that there is 

an Li E C such that o[n] is consistent with Li. Let S be a positive presentation (resp., 

a complete presentation) of Li. Then the infinite sequence a[n] . S becomes a positive 

presentation (resp., a complete presentation) of Li. Therefore M can not infer Li w.r.t. C 

in the limit from a[n] -6 ,  which contradicts the assumption. II 

By the above Lemma 4.3, we obtain the following Proposition 4.4. 

Proposition 4.4. (a) I f  a class C is refutably inferable from positive data, then 

(4.1) for any nonempty concept L @ C, there is a finite set T L such that T is not 

consistent with any Li E C .  

(b) I f  a class C is refutably inferable from complete data, then 



(4.2) for any concept L $! C, there are finite sets T C L and F c LC such that (T, F) is 

not consistent with any L; E C.  

Proof. We only give the proof of (a). The proof of (b) can be given in a similar way. 

Assume that an RIIM M refutably infers a class C from positive data. Let L 6 C be 

a nonempty concept, and let a be an arbitrary positive presentation of L. By definition, 

there is an n 2 1 such that M refutes the class C from ~ [ n ] .  Put T = o[n]+. Then, by 

Lernma 4.3, T is not consistent with any Li E C. 

Corollary 4.5. I f  a class C contains all nonempty finite concepts, then C is not refutably 

inferable from positive data or complete data. 

Proof. We only give the proof of the case of complete data. The proof for positive data can 

be given in a similar way. 

Assume that a class C contains all nonempty finite concepts. Then let L 6 C be a 

concept. Let T 2 L and F LC be finite sets. (i) In case T is not empty. There is an 

L; E C with T = Li, and it follows that (T, F) is consistent with L;. (ii) In case T is 

empty. Since F is a finite set, there is an Li E C such that F c Lz, which means (T, F) is 

consistent with Li. Therefore by Proposition 4.4, we see that C is not refutably inferable 

from complete data. I 

In characterizing the refutable inferability, the notion of consistency plays an important 

role (cf. Definition 2.5). 

Definition 4.2. Let C = {LijiEN be a class. An RIIM M which refutably infers a class 

C from positive data (resp., complete data) is said to be consistently working, if it satisfies 

the following condition: For any nonempty concept L (resp., any concept L), any positive 

presentation a (resp., any complete presentation a) of L and any n 2 1, (i) if M(a[n]) is 

the 'refutation' sign, then a[n] is not consistent with any Li E C, (ii) if M (a[n]) > 0, then 

a[n] is consistent with LM(,[,]) 

An RIIM M which refutably infers a class C from positive data (resp., complete data) 

is said to be responsively working, if it satisfies the following condition: For any nonernpty 



concept L (resp., any concept L) , any positive presentation a (resp., any complete presen- 

tation cr) of L and any n 2 1, if M does not refute the class C from ~ [ n ] ,  then M(a[n]) > O 

holds, that is, while M does not refute the class, M produces a guess between any two 

input requests in the computation of M on input a. 

A class C is said to be refutably, consistently and responsively inferable from positive 

data (resp., complete data), if there is a consistently and responsively working RIIM which 

refutably infers the class C from positive data (resp., complete data). 

Here we note that a consistently and responsively working RIIM refutes a class imme- 

diately after the observed data become not consistent with any concept in the class. 

Since we are considering an indexed family of recursive concepts, we can easily show 

that if a class C is inferable in the limit from positive data or complete data, then it 

can be achieved by a consistently and responsively working IIM (cf. Section 2.1 and 2.2). 

Furthermore, as shown later, if a class C is refutably inferable from positive data or complete 

data, then it can be achieved by a consistently and responsively working RIIM. 

Definition 4.3. For a finite set T U ,  let 

1, if there exists an L; E C such that 

econs,(T) = T is consistent with Li, 

0, otherwise. 

For finite sets T, F C U ,  let 

1, if there exists an L; E C such that 

econs,(T, F) = 

0, otherwise. 

(T, F )  is consistent with Li, 

For any Li E C, whether T Li and F c L: or not is recursively decidable, because Li 

is recursive, and T and F are explicitly given finite sets. Therefore in general, the above 

functions are regarded as recursively enumerable predicates. 

Proposition 4.6. I f  a class C is refutably inferable from. positive data, then 

(4.3) the function econs, for C is recursive. 



Proof. Assume that an RIIM M refutably infers C from positive data. Let T = {wl, . , wn} 

C U be a nonempty finite set, and put a = wl, w2, . . , w,, w1, wl, wl, . .. Clearly, the 

infinite sequence a is a positive presentation of the concept T. Thus when we successively 

feed a,  M either refutes the class C or produces an index i with T = L; after producing 

some positive integers. Therefore we can recursively compute the function econs,(T) for 

C as follows: Simulate M with presenting a. During the simulation, (i) if M refutes the 

class C,  then output 0 and stop, (ii) if M produces an index i with T C Li, then output 

1 and stop, (iii) otherwise continue the simulation. We note that whether T C L; or not 

is recursively decidable. By Lemma 4.3, it is clear that the above output agrees with the 

econs, (T) . II 

Theorem 4.7 (Based on Kinber [l7]) . I f  a class C is refutably inferable from complete data, 

then 

(4.4) the function econs, for C is recursive. 

Proof. Assume that an RIIM M refutably infers C from complete data. Let T = {wl, , w,} 

C U and F = {w,+~, , w,} U be finite sets. 

It is easy to see that if T n F f 4, then econs,(T, F) = 0. Thus in what follows, we 

assume T n F = q5. 

Let $o = (wl , +) , . , (w,, +) , (wn+1, -), , (w,, -), and let u1, u2, . . be an effective 

enumeration of U \ (T  u F )  . Then let 7 be the set of all initial segments of ul , u2, - coupled 

with + and - 7  that is, 2- = (4 ;  ( I ,  ( 1 ,  -1; ( ~ l , + ) ,  (u2,+); (u1,+), ( ~ 2 ,  -1; ( ~ 1 ,  -), 

(u2 , +); ( u  , -1, ( a ,  -1; a } .  We define the binary relation C over 7 as follows: $1 $72 

if and only if is an initial segment of $2. This gives a partial ordering of 7, and it 

becomes a binary tree, which can be diagrammed in Figure 4.1. 

Then we define a subtree S of T as follows: 

S = {$ E 7 I . $) f 'refutation'}. 

Bere we note that if $1 & $2 and $1) = 'refutation', then $2) = 'refutation7. 

Claim A: The subtree S is finite, if and only if there is no concept L; E C such that (T, F) 

is consistent with hi. 



Figure 4.1: The binary tree I 

Proof of the claim. ( I )  The 'if' part. Assume that there is no concept Li E C such that (T, F )  

is consistent with L;. Then suppose that the subtree S has an infinite branch, say qb2, -. 

By the construction of the subtree S, there is an infinite sequence tl, t2, - t {+, -) such 

that for any i 2 1, +i = (ul,tl), (u2, t2) , . - .  (ui,ti). Put a = $0, (ul,tl), (u2,t2), . . . ,  and 

let L = {u; E U I (ui, +) E a, i 2 1) be a concept. Then (T, F) is consistent with L, and 

a is a complete presentation of L. By assumption, L is not in C, and it follows that M 

refutes C from a[n] for some n 2 1. However, by the construction, there is a j 2 1 such 

that a[n] = $0 @ This contradicts the assumption of +j E S .  

Thus we see that the subtree S has no infinite branch, and it follows by Endlichkeits- 

lemma for trees with finite branching (cf. e.g. Rogers[36], Exercise 9.40) that the subtree S 

is finite. 

(II) The 'only if' part. Assume that the subtree S is finite. Therefore the subtree S has 

no infinite branch. Then suppose that there is an Li E C such that (T, F )  is consistent 

with Li. For j 2 1, let ti = '+' if uj E Li, otherwise let t j  = ' - ' . Then put a = 

Go, (ul, tl), (u2, tZ) , . .. By the construction, 0 is a complete presentation of Li. Thus M 

does not refute C from a. It is easy to see that this contradicts the assumption. CI 

Claim B: There is an Li E C such that (T, F) is consistent with Li, if and only if there is 

a li, E S such that +) > 0 and (T, F) is consistent with Lli?(+,.+) 



Proof of the claim. The 'if' part is obvious. Thus we only give the proof of the 'only if' 

part. Assume that there is an L; E C such that (T, F) is consistent with Li. For j 2 1, 

let t j  = '+' if uj  E L;, otherwise let t j  = '-'. Then put o = $o, (ul,  tl), (212, t2), . -. By 

the construction, (7 is a complete presentation of L;. Since M infers L; w.r.t. C in the limit 

from o, it follows that there is an n 2 1 such that M(o[n]) > 0 and Li = LE(,[,]). It is 

easy to see that there is a $ E S such that $0 . $ = o[n]. 

Therefore we can compute econs,(T, F) as follows: Search for a node $ E S such that 

+) > 0 and (T, F) is consistent with By Claim A and B, we see that there 

must happen one of two cases: 

(1) Such a node is found. 

(2) The subtree S is confirmed to be finite. 

In case (I), put econs,(T, F) = 1 and in case (2), put econs,(T, F) = 0. It is easy to see 

that the obtained results agrees with the definition of econsc(T, F) .  II 

Theorem 4.8. (a) I f  a class C satisfies the following three conditions, then C is refutably, 

consistently and responsively inferable from positive data. 

(4.1) For any nonempty concept L 6 C, there is a finite set T L  such^ that T is not 

consistent with any Li E C .  

(4.3) The function econs, for C is recursive. 

(4.5) The class C is inferable in the limit from positive data. 

(b) I f  a class C satisfies the following two conditions, then C is refutably, consistently and 

responsively inferable from complete data. 

(4.2) For any concept L $ C, there are finite sets T c L and F LC such that (T, F) is 

not consistent with any Li E C. 

(4.4) The function econs, for C is recursive. 

Proof. We only give the proof of (a). The proof of (b) can be given in a similar way, where 

we note that every class is consistently and responsively inferable in the limit from complete 

data (cf. Theorem 2.4 and Definition 2.5). 



Assume that a class C satisfies the above three conditions (4.1)) (4.3) and (4.5). Let M 

be an IIM which infers C in the limit from positive data. Without loss of generality, we can 

assume that it works consistently and responsively. Then let us consider the procedure in 

Figure 4.2. 

Procedure RIIM M; 

begin 

T = 4; 
repeat 

read the next fact w and store it in IT; 

if econs,(T) = 0 then 

refute the class C and stop; 

else begin 

simulate M with presenting the fact w until requesting the next fact; 

if M produces a guess then output it; 

end; 

forever; 

end. 

Figure 4.2: An inference machine that can refute a hypothesis space 

Assume that we feed a positive presentation a of a nonempty concept L to the procedure. 

(I) In case L 6 C. By the condition (4. I), there is a finite set T L such that econsp(T) = 

0, and by the definition of a positive presentation, we see that there is an n 2 1 such that 

T a[nIi. Therefore the procedure refutes the class C from ~ [ n ]  and stops. 

(II) In case L E C. As easily seen, for any finite set T 2 L, the value of econsp(T) never 

becomes 0. Since the IIM Ad infers L w.r.t. C in the limit from a, it follows that the 

procedure infers L w.r.t. C in the limit from o. 

Furthermore it is easy to see that the procedure works consistently and responsively. 

By Propositio~l 4.4, 4.6, Theorem 4.7 and 4.8, we have the following Corollary 4.9. 

Corollary 4.9. (a) For a class C ,  the following three statements are equivalent: 

(i) C is refutably inferable from positive data. 
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(ii) C is refu ta bly, consis ten tly and responsively inferable from positive data. 

(iii) C satisfies the conditions (4. I ) ,  (4.3) and (4.5). 

(b) For a class C ,  the following three statements are equivalent: 

(i) C is refutably inferable from complete data. 

(ii) C is refu ta bly) consistently and responsively infera ble from complete data. 

(iii) C satisfies the conditions (4.2) and (4.4). 

The above conditions heavily depend on each concept rather than the properties of 

the class concerned. Thus we need to investigate another conditions concerned with the 

properties of the class itself. 

Definition 4.4. A class C is said to be closed under the subset operation, if for any Li E C, 

all nonempty subsets of Li are also in the class C. 

A class C is said to be of finite hierarchy, if there is no infinite sequence of concepts 

L;,, Liz, E C such that Li, 2 L;, 5 . .. 

As easily seen, if a class C has finite elasticity (cf. Definition 2.8), then C is of finite 

hierarchy. Moreover, if a class C is closed under the subset operation and it is of finite 

hierarchy, then C contains no infinite concept, as shown in the proof of Lemma 4.11. 

Lemma 4.10. I f  a class C is refutably inferable from positive data, then C satisfies the 

following two conditions: 

(4.6) C is closed under the subset operation. 

(4.7) C is o f  finite hierarchy. 

Proof. (I) Suppose that the condition (4.6) does not hold, that is, there is a nonernpty 

concept L such that L 6 C and L C Li for some Li E C. Then every subset of L is 

consistent with Li. Therefore by Proposition 4.4, C is not refutably inferable from positive 

data. 

(JI) Assume that a class C is refutably inferable from positive data. Then, by the above 

(I), the condition (4.6) holds. 



Claim: The class C contains no infinite concept. 

Proof of the claim. Suppose that C contains an infinite concept Li. Then, by the condition 

(4.6), we see that C contains all nonempty finite subset of L;. By modifying the proof of 

Theorem 2.5, we can show that any RIIM does not infer Li w.r.t. C in the limit from a 

certain positive presentation of L;. This is a contradiction. 

Now suppose that the condition (4.7) does not hold, that is, there is an infinite sequence 

of concepts L;,, Li2,. . E C such that L;, 2 L;, 5 . a. Then we consider the concept 

L = Uz, LG. Since L is an infinite concept, it follows by the above claim that L @ C. By 

the definition of the concept L, we see that for any finite set T 2 L, there is an L;, E C 

such that T is consistent with L;, . This contradicts the assumption by Proposition 4.4. 

Lemma 4.11. I f  a class C satisfies the following three conditions, then C is refutably, 

consistently and responsively infera ble from positive data. 

(4.6) C is closed under the subset operation. 

(4.7) C is o f  finite hierarchy. 

(4.3) The  function econs, for C is recursive. 

Proof. Assume that a class C satisfies the above three conditions. Then, by Theorem 4.8, 

it suEces for us to show that C satisfies the conditions (4.1) and (4.5). 

Claim: The class C contains no infinite concept. 

Proof of the claim. Suppose that C contains an infinite concept Li. Then, by the condition 

(4.6), all subsets of L; are also in C, and it follows that there is an infinite sequence of 

concepts L;,, Liz, . E C such that Li, 5 L;, 5 ., which contradicts the condition (4.7). 

(I) By this claim, we see that C is inferable in the limit from positive data, that is, the 

condition (4.5) is satisfied (cf. Corollary 2.7). 

(11) Let L @ C be a nonempty concept. (i) In case L is a finite concept. By the condition 

(4.6), we see that L is not consistent with any Li E C, because the existence of Li E C with 



L C L; means L E C .  Therefore it suffices for us to take L itself as T in the condition (4.1). 

(ii) In case L is an infinite concept. Suppose that the condition (4.1) does not hold. Then 

for any finite set T C L, there is an Li E C such that T is consistent with L;. However by 

the condition (4.6), we see that the above T's themselves are in C .  To sum up, every finite 

set T C L is in C ,  and it follows that there is an infinite sequence Li, , Liz, such that 

L;, 5 L;, 2 ., because L is an infinite concept. This contradicts the condition (4.7). . 
By Corollary 4.9, Lemma 4.10 and 4.11, we have the following Theorem 4.12. 

Theorem 4.12. For a class C ,  the following four statements are equivalent: 

(i) C is refutably inferable from positive data. 

(ii) C is refutably, consistently and responsively inferable from positive data. 

(iii) C satisfies the conditions (4.1)) (4.3) and (4.5). 

(iv) C satisfies the conditions (4.3)) (4.6) and (4.7). 

Example 4.1. Let FC, be the class of all nonempty finite concepts each of which cardi- 

nality is just n (cf. Example 3.2). Then this class is not refutably inferable from positive 

data for any n 2 2, because it is not closed under the subset operation. 

In contrast with the above class, let FC<,  - be the class of all nonempty finite concepts 

each of which cardinality is at most n (cf. Example 3.5). We note that F C S 1  = FC,.  As 

easily seen, the function econs, for FC<,  - is recursive, because econs,(T) = 1 if and only if 

#T is not greater than n. Furthermore this class is closed under the subset operation and 

of finite hierarchy. Therefore FC<,  - is refutably inferable from positive data. 

Lastly, let F C ,  be the class of all nonempty finite concepts (cf. Corollary 4.5 and Ex- 

ample 3.5). The function econs, for F C ,  is recursive, because econs,(T) = 1 for any finite 

set T 5 U .  This class is closed under the subset operation but is not of finite hierarchy. 

Therefore F C ,  is not refutably inferable from positive data. 

Here we present a sufficient condition for a class to be refutably inferable from complete 

data, which is very strict but widely applicable as shown in Section 4.4 and 6.2. 

The following Lemma 4.13 is basic. 



Lemma 4.13. Let n > 1 be an integer, let L1,. . , L, C U be concepts, and let L C U be 

a concept which differs from L1, . . , L,. Then for any complete presentation a o f  L, there 

is an m > 1 such that ~ [ m ]  is not consistent with any concept L; with 1 5 i < n. 

Theorem 4.14. If a class C satisfies the following two conditions, then C is refutably 

inferable from complete data. 

(4.8) For any w E U ,  there is a uniformly and recursively genera ble finite cover-index set 

o f  the subclass {L; E C I w E Li) o f C .  

(4.9) The class C contains the empty concept as its member. 

Proof. Assume that a class C satisfies the conditions (4.8) and (4.9). Then let us consider 

the procedure in Figure 4.3, where the procedure readstore is the same one as in Figure 

Procedure RIIM M ;  

begin 

T = + ;  F = + ;  i - 1 ;  

readstore(T, F); 

. . . . . . . . .  while T = q5 do begin 

while F L: d o  i = i + 1; 

output i; 

readstore(T, F); 

end;  

let {w) = T; 

recursively generate a cover-index set of {L; E C I w E Li), and set it to I; 

for each j E I do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (2) 

while (T, F) is consistent with Lj  d o  begin . . . . . . . . . . . . . . . . . . . . . . . . . . .  (3) 

output j; 

read-store(T, F) ; 

end; 

refute the class C and stop; 

end. 

Figure 4.3: An inference machine that can refute a hypothesis space 

Assume that we feed a complete presentation c~ of a concept L to the procedure. 
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(I) In case L = 4. It is easy to see that the while-loop (1) never terminates and that the 

procedure infers the empty concept w.r.t. C in the limit from a. 

(II) In case L # 4. The procedure terminates the while-loop (1) in a finite time. 

(i) In case L E C. It is easy to see that L is in the subclass {L; E C I w E Li), and 

it follows that there is an index j E I such that Lj = L. Since I is a finite set, we see by 

Lemma 4.13 that the for-loop (2) is eventually executed with j E I such that Lj = L, and 

the while-loop (3) never terminates. That is, the procedure infers L w.r.t. C in the limit 

from a. 

(ii) In case L $ C. Since I is an explicitly given finite set, we see by Lemma 4.13 that 

the procedure refutes the class C from a. 

Example 4.2. We consider the class PA7 of pattern languages (cf. Example 2.1). As 

easily seen, the empty concept L = 4 is not in PAT. Furthermore, for any finite set 

F C U ,  there is an Li E PA7 such that (4, F) is consistent with Li. In fact, let 1 be the 

length of the longest string in F .  Then (4, F) is consistent with the language of the pattern 

x1x2 X ~ + I .  Therefore by Proposition 4.4, we see that PA7 is not refutably inferable from 

complete data. 

However PA7 satisfies the condition (4.8) as shown in Example 2.1. Thus, by Theorem 

4.14, we see that if we add the empty concept to the class of pattern languages, then the 

obtained class is refutably inferable from complete data. 

4.3. Comparisons with Other Identifications 

In this section by some distinctive examples of classes, we compare the criterion of refutable 

identification with some other criteria. This is motivated by the following question: What 

should we do if we face with facts that are not consistent with a finitely inferred hypothesis? 

For the purpose of comparing the inferability from positive data with the inferability 

from complete data, we assume that every concept is nonernpty throughout this section. 

The following Proposition 4.15 is obvious (cf. Proposition 2.2). 



Proposition 4.15. I f  a class C is inferable in the limit from positive data, then C is also 

inferable in the limit from complete data. 

Furthermore the above assertion is still valid, i f  we replace the phrase 'inferable in the 

limit' with the phrase 'finitely inferable', 'reliably inferable' or 'refutably inferable'. 

In the following examples, we assume appropriate universal sets and indexings of the 

classes. 

Example 4.3. We consider the classes FC,, FC<,  - and F C ,  (cf. Theorem 2.13, Example 

3.2 and 4.1). 

(A.1) For any n 2 2, the class F C ,  is not refutably inferable from complete data. 

In fact, let L c U be a concept with cardinality 1. It is easy to see that there are no 

finite sets T L and F C LC that satisfy the condition (4.2) in Proposition 4.4. 

(A.2) For any n > 1, the class F C ,  is reliably inferable from positive data. 

(A.3) For any n 2 1, the class F C ,  is finitely inferable from positive data. 

(B.1) For any n 2 1, the class FC<,  - is refutably inferable from positive data. 

(B.2) For any n > 1, the class FC<,  - is reliably inferable from positive data. 

(B.3) For any n 2 2, the class FC<,  - is not finitely inferable from complete data. 

((3.1) F C ,  is not refutably inferable from complete data (cf. Corollary 4.5). 

(C.2) F C ,  is reliably inferable from positive data. 

((2.3) F C ,  is not finitely inferable from complete data. 

Example 4.4. Let C = {a), L1 = {aj I j 2 I), and Li = {aj I 1 < j < i - 1) for i 2 2. 

Then let CW: = {Li)iEN be the class of interest. 

(D.l) The class CLC is refutably inferable from complete data. 

In fact, let L 6 CLC be a nonempty concept. Then as easily seen, there is a j > 1 such 

that a j  $! L but ajtl E L. Therefore T = {ajtl) and F = {aj) satisfy the condition (4.2). 

It is easy to see that the condition (4.4) is also satisfied (cf. Theorem 4.8). 

(D.2) The class CLC is not  inferable from positive data. 

We note that, in Lange&Zeugrnann[21], this class was shown to be inferable within one 

mind change from complete data but not inferable in the limit from positive data. 



Example 4.5. Let PR,, - be the class of concepts each of which consists of all multiples 

of at most n prime numbers (cf. Example 3.2). 

(E.l) For any n 2 1, the class PR,, - is refutably inferable from complete data. 

In fact, let L E PR<, - be a nonempty concept. (i) In case L contains more than n 

prime numbers. Let T be a set of some n + 1 prime numbers in L, and let F = 4. (ii) In 

case L contains no prime number. Let m be the least integer in L. Then let T = {m} and 

F = (1, . , m - 1). (iii) Otherwise. Let pl, ,pk be all prime numbers in L. As easily 

seen, the following (1) or (2) holds. (1) There is an m E L which is not a multiple of any 

pi with 1 5 i 5 k .  Then let T = {m), and let F be the finite set of all prime numbers less 

than m each of which differs from pl,  . , p,. (2) There is an m 6 L which is a multiple of 

some pi. Then let T = {pl , , p,) and F = {m). It is easy to see that the above defined 

T and F satisfy the condition (4.2). Furthermore it is also easy to see that the condition 

(4.4) is satisfied. 

(E.2) For any n 2 1, the class PRi, - is not  reliably inferable from positive data. 

(E.3) For any n 2 2, the class PR,, - is not  finitely inferable from complete data. 

(E.4) For any n 2 1, the class Pa<, - is inferable in the limit from positive data. 

Let PRn be the class of concepts each of which consists of all multiples of n distinct 

prime numbers (cf. Example 3.2). We note that ?R1 = PRo.  - 

(F.l) For any n 2 2, the class PR, is not refutably inferable from complete data. 

In fact, let L = (2). Then for any finite set F LC, there is a prime number which is 

greater than any integer in F. Therefore there are no finite sets T C L and F C LC that 

satisfy the condition (4.2). 

(F.2) For any n 2 1, the class PR, is not  reliably inferable from positive data. 

(F.3) For any n 2 1, the class PR, is finitely inferable from positive data. 

Example 4.6. We consider the class PAT of pattern languages (cf. Example 4.2). As 

easily seen from Theorem 4.14 and Example 4.2, the empty concept is only the concept 

that does not satisfy the condition (4.2). Since all concepts are assumed to be nonempty in 



this section, the class of pattern languages is shown to be refutably inferable from complete 

data. 

(G.1) PA7 is refutably inferable from complete data. 

(G.2) P A I  is not reliably inferable from positive data. 

(G.3) PA7 is finitely inferable from complete data but not finitely inferable from positive 

data (cf. Example 3.3). 

(G.4) PA7 is inferable in the limit from positive data (cf. Example 2.1). 

We can summarize the above comparisons in Figure 4.4. 

Figure 4.4: Comparisons with other identifications 

In the figure, the prefix 'LIM', 'FIN', 'REL' or 'REF' means the collection of all classes 

that are 'inferable in the limit', 'finitely inferable', 'reliably inferable' or 'refutably inferable', 

respectively, and the postfix 'TXT' or 'INF' means 'from positive data7 or 'from complete 

data', respectively. For example, REF-TXT is the collection of all classes that are refutably 

inferable from positive data. By definition, FIN-TXT = EXo-TXT, FIN-INF = EXo-INF, 

LIM-TXT = EX,-TXT, and LIM-INF = EX,-INF hold. 

The classes FC1, FC,, FC<,  - and F C ,  consist of all finite concepts each of which car- 

dinality is just 1, n 2 2, at most n and unrestricted finite, respectively (cf. Example 4.3). 



The class CLC has been shown in Example 4.4. The classes PR1, PRn and pR<, - consist 

of all multiples of a prime number, n > 2 distinct prime numbers and at most n prime 

numbers, respectively (cf. Example 4.5). The class PAT is the class of pattern languages 

(cf. Example 4.6). The class S F C  is the so-called superfinite class (cf. Theorem 2.5), that 

is, a class contains all finite concepts and at least one infinite concept. 

In Figure 4.4, we see that a subclass of a refutably inferable class is not always refutably 

inferable. 

4.4. Unions of Some Classes 

In this section we consider two types of union classes. First we take a class as the collection 

of all concepts from n classes. 

Definition 4.5. Let n > 1 be an integer, and let C1, . , C, be classes. For i with 1 < i < n 

and j > I, the j-th concept Lj of the class Ci is denoted by L(i,J). Then the union class of 

C1, . , Cn is represented as: 
n 

U Ci = {L(i,j)}l5i5n, JEW 
i=l 

By assuming a bijective coding from (1, , n) x N to N,  the new class above becomes 

an indexed family of recursive concepts. 

Theorem 4.16. Let n > I be an integer, and let C1, , Cn be classes each o f  which is 

refutably inferable from positive data (resp., complete data). Then the class Uy=lCi is 

refutably inferable from positive data (resp., complete data). 

Proof. We only give the proof of the case of positive data. The proof for complete data can 

be given in a similar way. 

For any i with I 5 i 5 n, let Mi be an RIIM which refutably infers Ci from positive 

data. Then let us consider the procedure in Figure 4.5. 

Assume that we feed a positive presentation a of a nonempty concept L to the procedure. 



Procedure RIIM M; 

begin 

for i = 1 to n do 

while Mi does not refute the class Ci do begin 

simulate Mi with presenting facts read so far; 

during the simulation, 

if Mi requests another fact then 

read the next fact and present it to Mi; 

if Mi produces a guess j then 

output the coding of (i, j) ;  

end; 

refute the class Uy=l Ci and stop; 

end. 

Figure 4.5: An inference machine that can refute a hypothesis space 

(I) In case L 6 UE1 C;. Then for any i with 1 < i < n, L 6 Ci holds, and it follows that 

Mi refutes the class Ci from o. Thus the procedure refutes the class Uy=l Ci from o.  

(It) In case L E UyZ1 Ci. Let io be the least integer such that L E Cia. Then for any i with 

1 5 i < io, L 6 Ci holds, and it follows that Mi refutes the class Ci from a. Therefore the 

for-loop in the procedure reaches the case of i = io. Since Mio infers L w.r.t. Ci, in the 

limit from o, it follows that Mi, converges to an index j with L(i,,j) = L for 0. Thus the 

procedure converges to the coding of (io, j) for o.  That is, the procedure infers L w.r.t. 

UyZl Ci in the limit from o. 

Thus the procedure refutably infers the class UyZl Ci from positive data. H 

Now we consider a class of concepts each of which is a union of at most n concepts from 

n classes (cf. Definition 2.10). 

Definition 4.6. Let n > I be an integer, and let C1, - , Cn be classes. For i with 1 i < n 

and j 2 0, L(i,j) denotes the empty concept if j = 0, otherwise the j-th concept Lj of the 

class C;. Then we define a class generated by C1, , Cn as follows: 



where Nn is the set of all n-tuples of nonnegative integers, that is, Nn = {0,1,2, . . -1". 

By assuming a bijective coding from Nn to N ,  the new class above becomes an indexed 

family of recursive concepts. 

If each class satisfies the condition (4.8), then the above class is shown to be refutably 

inferable from complete data. 

Theorem 4.17. Let n > 1 be an integer, and let C1, . , Cn be classes each o f  which satisfies 

the condition (4.8). Then the class n:=, Ci is refutably inferable from complete data. 

Proof. Let us consider the procedure in Figure 4.6, where the procedure readstore is the 

same one as in Figure 2.1 and X is a special element not in the universal set U .  

Assume that we feed a complete presentation a of a concept Lbase to the procedure. 

-n 
(A) In case Lbase E Ci. Let NE(m) = {(A, . . , jn) E Nn I there are just m nonempty 

concepts among L(, jl), . . . , L(n,jn) }. 

Claim: In the procedure, for any m with 0 5 m 5 n, if Tm and Fm are defined, then 

(Tm, Fm) is not consistent with (L(lj1) U U L(n,jn)) for any (jl, - , j,) E NE(m). 

Proof of the claim. This proof is given by mathematical induction on m. 

(I) In case m = 0. It is clear because To is nonempty and the union of n empty concepts 

is empty. 

(II) In case m 2 1. We assume the claim for m- I, and assume that T, and Fm are defined. 

Then suppose that there is an n-tuple (kl, . . , k,) E NE(m) such that (Tm, Fm) is consistent 

with (L(1,kl) U U L(n,bn)). Then (K-1, Fm-l) is consistent with (L(l,kl) U U L(n,k,)), 

because T,-l c Tm and Fm-l 2 F, hold. 

Here suppose that there is an i 2 1 such that L(+,) # 4 and (L(+.) n T,-,) = 4. Then 

Tm-l L (L(l,kl)ua . .UL(i-l,ki-l)UL(i+l,ki+l)U- .uL(n,&)) and Fm-1 2 (L(l,kl)u. . -UL(n,k,))' 2 

(L(l,kl) U . . U L(i-l,ki-l) U L(i+l,ki+l) U . U L(n,k,))' hold. This means that (Tm-1, is 

consistent with (L(l,k,) U . U L(i-l,ki-l) U L(i+l,ki+l) U . . . U L(n,k,)) This contradicts the 

induction hypothesis, because (kl, , ki-l, 0, ki+l, , ic,) E NE(m - 1). 



Procedure  RIIM M; 

begin 

T = + ;  F = + ;  

readstore(T, F); 

while T = + d o  begin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (1) 
output the coding of (0, . ,0);  

readstore(T, F ) ;  

end; 

To = T ;  F, = F ;  

for rn = 1 to n d o  begin 

... for each (wl, , wn) E Tm d o  begin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( 2 )  

( w I , + + .  ,wn) let T, = 
E (Tm-I u {A})" 

for i = 1 to n d o  

if wi = X t h e n  let Si = (0) 

the number of wi7s 
other than X is just rn 

else recursively generate a cover-index set w.r.t. Ci 
of {L(i,j) E Ci I wi E L(iJ)), and set it to Si; 

if all Si's are nonempty t h e n  

... for each (jl, , jn) E Sl x ... x Sn d o  . . . . . . . . . . . . . . . . . . . . . . . . .  (3) 
while (T, F) is consistent with (L(,,j1) U LJ L(, j n ) )  d o  begin . (4) 

output the coding of (j17 . , j,); 
readstore(T, F) ;  

end;  

end;  

Tm=T;  Fm=F; 

end; 
-n 

refute the class Hi=, C; and stop; 

end. 

Figure 4.6: An inference machine that can refute a hypothesis space 



Thus we have (L(i,+) n T,-,) # 4 for any i with L(i,ki) # 4. Therefore we can take ui's 

as follows: If L(+) # 4, then ui E (L(i,ki) f l  TmM1), otherwise ui = A. Since all ui's are 

in (T,-l U { A ) )  and the number of ui7s other than A is just rn, the n-tuple (ul , . . . , u,) is 

in I,. Thus there is a case where the for-loop ( 2 )  is executed with (ul ,  . . , u,). In this 

case there is an n-tuple (k:, . . . , k k )  E Sl x - - x S, such that for any i with 1 5 i 5 n, 

Lk; = LLki Thus there is a case where the for-loop (3) is executed with (k; ,  . . . , k:). Since 

(T,, F,) is consistent with (L(1,k;) U U L(n,rck))r it follows that for any finite sets T T, 

and F c F,, (T ,  F)  is consistent with (L(l,k;) U . . U L(n,k;)). However the while-loop (4) 

should terminate with T C Tm and F' 2 F,, because T, and F, are assumed to be defined. 

This is a contradiction. 

-n 
Since LbWe E UiZ1 Ci, there are an rno with 0 5 rno 5 n and an n-tuple ( j l ,  , jn) such 

that ( j l ,  , jn) E NE(rno) and Lb, = (L(l,h) U U L(n,j,)) By this claim, we see that 

Tmo and F,, are never defined. By Lemma 4.13, this means that the procedure outputs the 

coding of an n-tuple ( j l ,  . . , jn) with Lbase = (L(1,jl) U U L(, j n ) )  and never terminates 

the while-loop (1) or (4). 

(B) In case Lb, 6 f ly.lCi.  By using Lemma 4.13 n times, we see that the procedure 
-n 

refutes the class Ui=, Ci from 0. • 

Example 4.7. We consider the class FAT of pattern languages. As shown in Example 

4.2, the class satisfies the condition (4.8). Therefore by Theorem 4.17, for any n 2 1, the 

class of unions of at most n pattern languages is refutably inferable from complete data. 

By Corollary 4.5, we see that if the number of patterns is not bounded by a constant 

number, then the class is not refutably inferable from complete data, because it contains 

all nonempty finite languages. 

We note that as shown in Example 2.2, for any n 2 I ,  the class of unions of at most n 

pattern languages is inferable in the limit from positive data. 

4.5. Discussion 

We have pointed out that the essence of the computational logic of scientific discovery or 

the logic of machine discovery should be the refutability of the whole space of hypotheses 



by observed data or given facts. 

The refutability we proposed here forms an interesting contrast to the original one: 

In the logic of scientific discovery for scientists each theory in a hypothesis space is to be 

refutable, while in the computational version of the logic for machines or the logic of machine 

discovery the space itself is to be refutable by an observation. Popper contributed to the 

modern theory of inductive inference. In his books[32, 331, however, Popper strongly denied 

the induction so far developed by, for example, J. Stuart Mi11[23], which had two stages of 

mechanical creation of a hypothesis from observations and proof of its validity. In fact, he 

said that the induction, i.e. inference based on many observations, was a myth, and it was 

neither a psychological fact, nor a fact of ordinary life, nor one of scientific procedure[32]. 

What he wanted to assert in those books was that scientific theory should have been refuted 

by observed data or facts and any such theory could by no means be verified. He could not 

agree with the assertion that the induction should have proved the validity of theory. But 

we think there were no reasons to deny the stage of mechanical creation of hypotheses. 

The inductive inference machine that can refute the hypothesis space itself works as 

an automatic system for scientific discovery. If the machine for scientific discovery can not 

refute the whole space of hypotheses, it can just work for computer aided scientific discovery. 

That is, we need to check from time to time whether the machine is still searching for a 

possible hypothesis. 

As a future work we have left the refutability of hypothesis spaces in another two major 

frameworks of PAC and MAT learning[50, 31. Searching for classes which can be refutably 

inferred by efficient algorithms will be another important and interesting work. 



Chapter 5. 

Inferability of Approxi ate Concepts fro 
Positive Data 

In the previous chapter, we have discussed both refutability and inferability of a hypothesis 

space from examples. If a target concept is in the hypothesis space, then an inference 

machine should identify the target concept in the limit, otherwise it should refute the 

hypothesis space itself in a finite time. Unfortunately the refutably inferable classes from 

only positive data were shown to be very small. 

In practical applications of inductive inference, there are many cases where we want an 

inference machine to infer an approximate concept within the hypothesis space concerned, 

even when there is no concept which exactly coincides with the target concept. In this 

chapter we take a minimal concept as an approximate concept within the hypothesis space, 

and discuss inferability of a minimal concept of the target concept which may not belong 

to the hypothesis space. That is, we force an inference machine to converge to a minimal 

concept of the target concept, if there is a minimal concept of the target concept within the 

hypothesis space. We introduce some criteria which specify behaviors of inference machines 

in case there is no minimal concept of the target concept within the hypothesis space. 

In 1989, Wright [51] showed that if a class has finite elasticity, then the class is infer- 

able in the limit from positive data. Using this result, Shinohara[45, 461 showed that the 

classes definable by length-bounded EFS's with at most n axioms are inferable in the limit 

from positive data. Furthermore Moriyama&Sato[25] discussed closure properties of the 

classes with finite elasticity and inferability of the classes definable by so-called max-length 

bounded EFS's from positive data. On the other hand, Sato&Moriyama[39] introduced the 

notion of M-finite thickness to show another condition for inferability from positive data. 

In this chapter we show that the classes with both finite elasticity and M-finite thickness 



are minimally inferable from positive data. In Section 6.3, by using the result, we show 

that the classes that were introduced by Shinohara[45, 461 are also minimally inferable from 

positive data. This means that there are rich hypothesis spaces that are minimally inferable 

from positive data. 

In Section 5.1 we prepare some necessary concepts for our discussions and introduce our 

definitions of inferability. In Section 5.2 we discuss some sufficient conditions for a class 

to be minimally inferable from positive data. In Section 5.3 we also show the differences 

between the powers of inference machines whose behaviors differs from each other when 

there is no minimal concept of the target concept in the class concerned. 

This chapter is based on Mukouchi[31]. 

5.1. Definitions of Minimal Inferabilit y 

First of all, we introduce our definitions of minimal inferability. 

Definition 5.1. An IIM M is said to minimally infer a class C from positive data, if it 

satisfies the following condition: For any nonempty concept L and any positive presentation 

a of L, if there exists a minimal concept of L within C, then M converges to an index of a 

minimal concept of L within C for a .  

An RIIM M is said to refutably minimally infer a class C from positive data, if it satisfies 

the following condition: For any nonempty concept L and any positive presentation a of 

L, (i) if there exists a minimal concept of L within C, then M converges to an index of a 

minimal concept of L within C for a, (ii) otherwise M refutes the class C from a .  

An IIM M is said to reliably minimally infer a class C from positive data, if it satisfies 

the following condition: For any nonempty concept L and any positive presentation a of 

L, (i) if there exists a minimal concept of L within C, then M converges to an index of a 

minimal concept of L within C for a, (ii) otherwise M does not converge to any index for 

a .  

An IIM M is said to strong-minimally infer a class C from positive data, if for any 

nonempty concept L and any positive presentation a of L, M converges to an index of a 

minimal concept of L within C for a .  



A class C is said to be minimally (resp., strong-minimally, refutably minimally or reliably 

minimally) inferable from positive data, if there is an IIM M (resp., an IIM M, an RIIM 

M or an IIM M) which minimally (resp., strong-minimally, refutably minimally or reliably 

minimally) infers C from positive data. 

We note that a strong-minimally inferable class C has the strong property that for any 

nonempty concept L, there always exists a minimal concept of L within C. To the contrary, 

by definition, for a class with this property, (refutably or reliably) minimal inferability is 

equivalent to strong-minimal inferability. In Section 6.3 we show that there are some rich 

hypothesis spaces that are strong-minimally inferable from positive data. 

Let M be an IIM or an RIIM which (refutably, reliably or strong-) minimally infers a 

class C from positive data. If we feed a positive presentation 0 of a concept Li E C to M, 

then M converges to an index j with Lj = Li for 0, because L; itself is the unique minimal 

concept, i.e. the least concept, of L; within C. Therefore M also infers C in the limit from 

positive data. 

By definitions and Theorem 2.13, it is easy to see that the following implications hold: 

C is strong-minimally inferable from positive data, 

C is refutably minimally inferable from positive data, 

1 
C is reliably minimally inferable from positive data, 

i 
C is minimally inferable from positive data, 

1 
C is inferable in the limit from positive data, 

I t  
C is semi-reliably inferable from positive data. 

In Section 5.3 we will sharpen the above separations. 

As stated in Section 2.2, a class C is inferable in the limit from positive data, if and 

only if finite tell-tales of C are uniformly and recursively enumerable (cf. Theorem 2.6). 



Hence many studies on inferability from positive data concentrate on uniform and recursive 

enumerability of finite tell-tales (cf. Theorem 2.6, 2.9, Proposition 2.10, Corollary 2.11, 

Sato&Umayahara[38] and Kapur [l4]). 

In the ordinary inductive inference of an indexed family of nonempty recursive concepts 

from positive data, an inference machine takes the following strategy (cf. Theorem 2.6): 

0 Search for an index i such that Li contains the obtained data and that a currently 

enumerated finite tell-tale of L; within C is contained in the set of obtained data. 

o If such an index is found, output it. 

However if an inference machine takes the same strategy on a positive presentation of 

a concept not in C, then it may not converge to any index for the presentation. 

By the following Proposition 5.1, we see that if we force an inference machine to converge 

to an index of a minimal concept of a target concept within the class concerned, finite tell- 

tales turn to be of no use. 

Proposition 5.1. Let C = {Li)itN be a class of concepts each of  which has a finite tell-tale 

within C, let L 6 C be a concept, and let Lj,, LA, . E C be minimal concepts of  L within 

C. Then for any i 2 1, there is a finite tell-tale Ti of  Lji within C such that Ti L. 

Proof. For i 2 1, let T,' be a finite tell-tale of LA within C. Since Lji is a minimal concept 

of L within C and L # Lji holds, it follows that L 2 Lji. Thus there is a w; E Lji \ L. 

Put Ti = T,' U {wi). Then it is easy to see that Ti is a finite tell-tale of Lji within C which 

satisfies the proposition. II 

5.2. Some Sufficient Conditions 

We start with some basic definitions and lemmas necessary for showing some suflticient 

conditions for minimal inferabilit y. 

Definition 5.2 (Sato&Moriyama[39]). A class C is said to satisfy MEF-condition, if for 

any nonempty finite set T & U and any Li E C with T L;, there is a minimal concept Lj 

of T within C such that Lj & L;. 



A class C is said to satisfy MFF-condition, if for any nonempty finite set T 2 U ,  

#{Li E C I Li is a minimal concept of T within C} is finite. 

A class C is said to have M-finite thickness, if C satisfies both MEF-condition and MFF- 

condition. 

We note that if a class C contains all nonempty finite concepts, then C has M-finite 

thickness. 

For a class with M-finite thickness, the existence of a finite tell-tale of each concept in 

the class leads to the enumerability of it. 

Theorem 5.2 (Sato&Moriyama[39]). I f  a class C has M-finite thickness and each concept 

in C has a finite tell-tale within C, then finite tell-tales o f  C are uniformly and recursively 

enumerable, and thus it is inferable in the limit from positive data. 

Here we note that the condition of M-finite thickness alone is not sufficient for inferability 

from positive data. 

Example 5.1. Let SFC be the so-called superfinite class, that is, a class contains all finite 

concepts and at least one infinite concept. 

It is easy to see that this class has M-finite thickness. However as shown in Theorem 

2.5, this class is not inferable in the limit from positive data. 

Therefore this class is also not (refutably, reliably or strong-) minimally inferable from 

positive data. 

Lemma 5.3. Let C = {La)iGN be a class. Then i f  there are two infinite sequences TI, T2, . 

U o f  nonempty finite sets and Ljl, Lj,, . E C o f  concepts such that 

(i) TI 2 T2 . -, and 

(ii) for any i 2 1, Lji is a minimal concept o f  Ti within C but is not that o f  Ti+1, 

then C has infinite elasticity. 

Proof. Assume that there are two infinite sequences TI, T2, . . . & U of nonempty finite sets 

and Ljl, Lj,, - E C of concepts that satisfy both (i) and (ii). 



Since Lji is a minimal concept of Ti within C, (a) T,  Lji holds and (b) for any Lj E C, 
r-, 

Ti c Lj implies Lj (Z Lji. On the other hand, since Lji is not a minimal concept of Ti+l 

within C, either (c) Ti+1 Lh holds or (d) there is an Lj E C such that T,+l c Lj and 

Lj 5 Lji . Since Ti c Ti+1, (d) contradicts (b). Therefore (a), (b) and (c) hold. 

Thus we see by (c) that there is an infinite sequence WO, wl, wz, such that 

wo E TI and wi E T,+l \ Lji for i 2 1. 

Furthermore we see by (a) that two infinite sequences wo, wl,  W U ) ~ ,  . . . and Lj,, Lj,, . 

satisfy the following condition: For i 2 1, 

That is, C has infinite elasticity. II 

Lemma 5.4. Let C = {LijiEN be a class, let L c U be a nonempty concept, and let L, E C 

be a concept. Then i f  there is a finite subset T o f  L such that for any finite set T' with 

T c TI c L, L, is a minimal concept o f  T' within C, then L, is also a minimal concept o f  

L within C. 

Proof. Assume that there is a finite subset T of L such that for any finite set T' with 

T c T' c L, L, is a minimal concept of TI within C. 

(I) L 2 L, holds. In fact, suppose the converse. Then there is a w E L \ L,. Let 

T' = T LJ {w). Then T c T' C L holds, and it follows by assumption that L, is a 

minimal concept of T' within C. Thus we have w E L,, which contradicts the assumption 

of w E L\ L,. 

(11) For any L; E C, L c Li implies L; (Z L,. In fact, suppose the converse. Then there is 

an Li E C such that L L; and L; 5 L,. Since T 2 L, it follows that T & Li 5 L,, which 

contradicts the assumption that L, is a minimal concept of T within C. II 

Lemma 5.5. Let C = {Li)iEN be a class which satisfies MEF-condition and has finite 

elasticity, let L U be a nonempty concept, and let L, E C be a concept. 

(a) I f  L C L,, then there is a minimal concept Lj o f  L within C such that Lj L,. 



(b) I f  L, is a minimal concept of  L within C, then there is a finite subset T of L such that 

L, is a minimal concept of  T within C .  

Proof. (a) Assume L C L,. 

Claim: There are a finite subset T of L and an Lj E C with Lj G L, such that for any 

finite set T' with T G T' G L, Lj is a minimal concept of T' within C. 

Proof of the claim. Suppose the converse. Then for any finite subset T of L and any Lj E C 

with Lj c L,, there is a finite set T' with T T' C L such that Lj  is not a minimal 

concept of T' within C. 

We define Ti's and ji's (i 2 1) inductively by the following stages: 

Stage I: 

Let T1 be any nonempty finite subset of L. Since TI 2 L c L,, it follows by MEF- 

condition that there is a minimal concept Lj of T within C such that Lj c L,. Put 

jl = j, and goto Stage 2. 

Stage i (2 2): 

Since TiRl is a finite subset of L and Lji-, L, holds, it follows by assumption that 

there is a finite set T' with x-1 T' c L such that Lji-, is not a minimal concept of 

T' within C. Put Ti = TI. Since Ti L L,, it follows by MEF-condition that there 

is a minimal concept Lj of Ti within C such that Lj c L,. Put j; = j ,  and goto Stage 

i + 1. 

Then two infinite sequences TI, T2, . and Lj, , Lj,, satisfy the condition of Lemma 

5.3, and it follows that C has infinite elasticity. This contradicts the assumption. 

By this claim and Lemma 5.4, we have the lemma. 

(b) Assume that L, is a minimal concept of L within C. Then suppose that for any finite 

subset T of L, L, is not a minimal concept of T within C. 

We define Ti's and ji's (i 2 1) inductively by the following stages: 



Stage 1: 

Let Tl be any nonempty finite subset of L. Since TI C L 5 L,, it follows by MEF- 

condition that there is a minimal concept Lj of T within C such that Lj L,. Put 

jl = j ,  and goto Stage 2. 

Stage i (2 2): 

Since Ti-1 is a finite subset of L, it follows by assumption that L, is not a minimal 

concept of TiM1 within C .  

Here suppose that for any finite set T with Ti-1 C T c L, Lj,-, is a minimal concept 

of T within C. Then, by Lemma 5.4, Lj,-, is a minimal concept of L within C.  Since 

L, is not a minimal concept of Ti-1 within C ,  it follows that Lj,-, f L,. Thus we have 

Lji-, 2 L,, which is impossible because both Lji-, and L, are minimal concepts of L 

within C. 

Therefore there is a finite set T with Tiw1 C T L such that Lj,-, is not a minimal 

concept of T within C .  Put Ti = T .  Since Ti C L C L,, it follows by MEF-condition 

that there is a minimal concept Lj of Ti within C such that Lj c L,. Put ji = j ,  and 

goto Stage i -t 1. 

Then two infinite sequences TI, T2, and Lj, , Lj,, . . satisfy the condition of Lemma 

5.3, and it follows that C has infinite elasticity. This contradicts the assumption. II 

In the above Lemma 5.5 (b), the condition that C has finite elasticity is necessary. In 

fact, we consider the class S F C  (cf. Theorem 2.5 and Example 5.1). It is easy to see that 

this class has infinite elasticity. Put L = U. Then the unique minimal concept, i.e. the 

least concept, of L within S F C  is L itself and that for any nonempty finite set T C U, the 

unique minimal concept of T within S F C  is T itself. Thus for any finite set T U ,  L is 

not a minimal concept of T within S F C .  

Theorem 5.6. I f  a class C has both finite elasticity and M-finite thickness, then C is 

reliably minimally inferable from positive data. 

Proof. Let us consider the procedure in Figure 5.1, where the notation L!") is defined in 

Ilefinition 2.7. 



Procedure IIM M ;  

begin 

T n = 0 ;  

repeat 

read the next fact and store it in 2'; 

n = n + l ;  

search for the least index i 5 n such that 

(I) T C L;, and 

(2) Vj  'j n ,  [T C Lj +- L?) , L ! ~ ) ] ;  

i f  such an index i is found then  output i else output n; 

forever; 

end. 

Figure 5.1: An IIM which reliably minimally infers a class 

Assume that we feed a positive presentation a of a nonempty concept L to the procedure. 

(I) In case there is no minimal concept of L within C. Suppose that the procedure 

converges to an index i for a. Then we see by Lemma 5.5 (a) that L g L;. Therefore 

there is an n 2 1 such that o[n]+ g L;, and it follows that the index i does not satisfy the 

condition (1) in the procedure after reading the n-th fact. This is a contradiction. 

(I[) In case there is a minimal concept of L within C. Let io be the least index i such that 

L; is a minimal concept of L within C, that is, 

io = min{i I L c L; E C and V j ,  [L E Lj +- Lj L;]). 

Claim A: There is an n 2 1 such that any index i < io does not satisfy the condition (1) 

or (2) ,  after reading the n-th fact. 

Proof of the claim. We define mi's (1 5 i < io) as follows: 

(i) In case L L;. It is easy to see that there is an m 2 1 such that for any j 2 m, 

a[j]+ g L;. Put mi = m. 

(ii) Otherwise. By the definition of io and the fact i < io, there is a j 3 1 such that 

L C Lj and Lj 2 Li. Since Lj 2 L;, we see by Lemma 2.8 that there is an rn 2 1 such that 



for any n 2 rn, L?) 5 Lin). Put mi = rn. 

Then any index i < io does not satisfy the condition (1) or (2), after reading the 

max{mi I 1 5 i < io}-th fact. 

It is clear that io satisfies the condition (1) at any point. 

Claim B: There is an n 2 1 such that io always satisfies the condition (2), after reading 

the n-th fact. 

Proof of the claim. For i 2 1, put T, = a[i]+. Since Lio is a minimal concept of L within C, 

it follows by Lemma 5.5 (b) that there is a finite subset T of L such that Lio is a minimal 

concept of T within C. Since a is a positive presentation of L, it follows that there is an 

rn 2 1 such that T Tm. Since T Tm C L c Lie, it follows that Li, is also a minimal 

concept of Tm within C. 

Let {Lj,, , Ljk) be the collection of all minimal concepts of T, within C, which is 

of finite cardinality by MFF-condition. Since Lio is a minimal concept of T, within C 

and T, & Lji holds, it follows that Lji % Li, for any i with 1 < i 5 k. Therefore, by 

Lemma 2.8, we can take ni7s (1 5 i < k)  such that for any n 2 n;, L::) % L!:). Let 

( nmax = rnax{ni I 1 < i 5 k}. Then for any i with 1 5 i 5 k and any n 2 n,,, L:' % Li:) 

holds. 

On the other hand, for any n 2 1, if L::) L!:), then for any Lj 2 Lj,, L?) L!:) 

holds. By MEF-condition and the definition of {L j,, . . , Ljk } , for any index j , if Tm E Lj , 

then there is an i with 1 5 i 5 k such that Tm E Lji C Lj. Therefore for any n 2 n,, 

and any j 2 1, T, 2 Lj implies L?) (Z L!:). Since Tm C Tm+l 2 a, it follows that for 

any n 2 rnax{rn, n,,,) and any j 2 1, Tn c Lj implies L?) % L!:). Therefore io always 

satisfies the condition (2), after reading the max{rn, n,,)-th fact. 

By Claim A and B, the procedure converges to io for a. 

Here we note that the procedure in Figure 5.1 is a sufficiently general one in the following 

sense: By directly using the procedure, we can show that (i) the classes with finite elasticity 

or (ii) the classes with M-finite thickness, each of which concept has a finite tell-tale within 

the class, are inferable in the limit from positive data (cf. Theorem 2.9 and 5.2). 



For a class C which has finite elasticity but does not have M-finite thickness, the pro- 

cedure in Figure 5.1 may not minimally infer C from positive data, even when C is reliably 

minimally inferable from positive data. 

Example 5.2 (Kapur 1161) . Let wl , wz , . . be an effective enumeration of the universal set 

U ,  which we used in defining L!~) (cf. Definition 2.7). Without loss of generality, we assume 

w i # w j i f i #  j .  

We put 

L = {wl} and L = { w ,  + for i 2 1. 

Then let C = {Li}iEN be the class of interest. It is easy to see that this class has finite 

elasticity but does not have M-finite thickness. 

On the other hand, any concept in C is a minimal concept of L within C. Let 0 = 

wl, wl, wl, . . . be the positive presentation of L. Since for any n 2 1 and any i with 

1 5 i < n, L?) = {wl} and L!") = {wl, wi+l} hold, it follows that the procedure does not 

converge to any index for a. 

That is, the procedure does not minimally infer C from positive data. 

However it is easy to see that this class is refutably minimally inferable from positive 

data. We omit the details. 

In Example 5.1, we have seen that the condition of M-finite thickness is not sufficient for 

inferability from positive data. Furthermore, by the following Example 5 -3, the condition 

for a class with M-finite thickness to have finite elasticity is not necessary for minimal 

inferability. 

Example 5.3. Let FC, be the class of all nonempty finite concepts on the universal set 

U .  It is easy to see that this class has M-finite thickness, but does not have finite elasticity. 

Furthermore it is also easy to see that for any nonempty concept L, there is a minimal 

concept of L within C if and only if L is a finite concept. Since this class is reliably inferable 

from positive data (cf. Theorem 2.13), it follows that this class is reliably minimally inferable 

from positive data. 



Corollary 5.7. Let C = {Li)itN be a class with both finite elasticity and M-finite thick- 

ness. Then if C contains the universal set U as its member, then C is strong-minimally 

inferable from positive data. 

Proof. Assume that C contains the universal set U as its member. Then, by Lemma 5.5 

(a), for any concept L, there is a minimal concept of L within C. Thus, by Theorem 5.6, 

we have the corollary. rn 

Lemma 5.8. I f  a class C does not satisfy MEF-condition, then there are a nonempty finite 

set T & U and an infinite sequence Lj,, Lj2, . E C such that Lj, 2 Li2 2 . 2 T .  

Proof. Assume that C does not satisfy MEF-condition. Then, by Definition 5.2, there are 

a nonempty finite set T G U and an L; E C such that (i) T 2 Li and that (ii) there is no 

minimal concept Lj of T within C such that Lj Li. 

Put jl = i, and define ji7s (i 2 2) inductively by the following stages: 

Stage i (2 2): 

Since Lji-, Li, we see by (ii) that Lji-, is not a minimal concept of T within C. 

Therefore there is a j > 1 such that T c Lj Lji-,. Put ji = j ,  and goto Stage i + 1. 

Then it is clear that Lj, 2 Lj, 2 . 2 T .  • 

The following Corollary 5.9 is a weak form of Theorem 5.6 and Corollary 5.7. 

Corollary 5.9. (a) I f  a class C has finite thickness, then C is reliably minimally inferable 

from positive data. 

(b) I f  a class C with finite thickness contains the universal set U as its member, then C is 

strong-minimally inferable from positive data. 

Proof. (a) Assume that a class C has finite thickness. By Theorem 5.6, it suffices for us to 

show that C has finite elasticity and satisfies both MEF-condition and MFF-condition. By 

Proposition 2.10, C has finite elasticity. It is easy to see that C satisfies MFF-condition. 

Suppose that C does not satisfy MEF-condition. Then, by Lemma 5.8, there are a 

nonempty finite set T C U and an infinite sequence Lj17 Lj,, E C of concepts such that 



Lj, 2 Lj, 2 2 T. This means that C has infinitely many distinct concepts that include 

T. This contradicts the assumption that C has finite thickness. 

(b) is clear by the above (a) and Corollary 5.7. II 

Example 5.4. We consider the class PAT of pattern languages. As shown in Example 

2.1, F A 7  has finite thickness. Furthermore PAT contains the universal set U (= E+) as 

its member. Thus, by Corollary 5.9 (b), PAT is strong-minimally inferable from positive 

data. 

Lemma 5.10 (Kapur[l6]) . Let C = {Li)iEN be a class with finite elasticity, and let L 5 U 

be a concept. Then if L is not a subset o f  any Li E C, then there is a finite subset T of L 

such that T is not a subset o f  any Li E C .  

Proof. Assume that L is not a subset of any Li f C. Thus wee see that L is nonempty. 

Here suppose that for any finite subset T of L, there is an Li E C such that T C Li. 

Let wo be an arbitrary element in L, and define wi7s and Lji7s (i 2 1) inductively by the 

following stages: 

Stage i (2 1): 

Since {wo, wl, , wi-,) 5 L, it follows by assumption that there is an Lj E C such that 

{wo7 wl, . . , wiml} 2 Lj. Put ji = j .  Then, by assumption, L is not a subset of Lji, it 

follows that there is a w E L \ Lji. Put w; = w, and goto Stage i + 1. 

Then, by the construction, two infinite sequences WO, wl, wz,. and Lj,, Lj,, . satisfy 

the following condition: For i 2 1, 

That is, C has infinite elasticity. This contradicts the assumption. II 

If a class with both finite elasticity and M-finite thickness has a computable function 

econs, (cf. Definition 4.3), then an inference machine can refute the class when there is no 

minimal concept of the target concept within the class. 



Corollary 5.1 1. Let C be a class with both finite elasticity and M-finite thickness. Then if 

the function econs, for C is recursive, then C is refutably minimally inferable from positive 

data. 

Proof. Assume that the function econs, for C is recursive. Then let us consider the procedure 

in Figure 5.2. 

Procedure RIIM M; 

begin 

T = 4 ;  n = 0 ;  

repeat 

read the next fact and store it in T; 

n = n + l ;  

if econs,(T) = 0 then refute the class and stop; 

search for the least index i < n such that 

(1) T L;, and 

(2) \ ~ j  < n, [T L, =+- L?) L!")]; 

if such an index i is found then output i else output n; 

forever; 

end. 

Figure 5.2: An RIIM which refutably minimally infers a class 

Assume that we feed a positive presentation o of a nonempty concept L to the procedure. 

Claim: There is an n 2 1 such that econs,(o[n]+) = 0, if and only if there is no minimal 

concept of L within C. 

Proof of the claim. (I) The 'if7 part. Assume that there is no minimal concept of L within 

C. Then, by Lemma 5.5 (a), for any L; E C, L $-& L; holds. Therefore, by Lemma 5.10, there 

is a finite set T C: L such that for any L; E C, T $-& L;. Hence for any positive presentation 

0 of L, there is an n 2 1 such that T C o[n]+, and it follows that econs,(o[n]+) = 0. 

(I[) The 'only if' part. Assume that there is a minimal concept of L within C. It is easy 

to see that for any positive presentation o of L and any n 2 1, econs,(o[n]+) = 1. 



By this claim and the proof of Theorem 5.6, it is easy to see that the procedure is an 

RIIM which refutably minimally infers C from positive data. 

By a similar discussion to that in Corollary 5.9, we have the following Corollary 5.12. 

Corollary 5.12. Let C be a class with finite thickness. Then if the function econs, for C 

is recursive, then C is refutably minimally inferable from positive data. 

5.3. Separations 

In this section, we show that there are differences between the powers of strong-minimal 

inferability, refutably minimal inferability, reliably minimal inferability and inferability in 

the limit from positive data. 

First we present a class which is refutably minimally inferable but not strong-minimally 

inferable from positive data. 

Example 5.5. Let C = {a) be a finite alphabet, and let PAT' be the class of pattern 

languages over E each of which does not contain the string 'a', that is, PAT' = PAT \ 

{L(x ) ,  L(a)} (cf. Example 5.4). 

Then it is easy to see that this class has finite thickness. Furthermore we define the 

function econs, for C as follows: 

1, if T does not contain the string 'a', 
econs,(T) = 

0, otherwise. 

It is easy to see that this function econs, agrees with Definition 4.3 and it is recursively com- 

putable. Thus, by Corollary 5.12, this class is refutably minimally inferable from positive 

data. 

However there is no minimal concept of the concept C+ within PAT', it follows that 

this class is not strong-minimally inferable from positive data. 

Next, we present a class which is reliably minimally inferable but not refutably minimally 

inferable from positive data. 



Example 5.6. We consider the class F C ,  of all nonempty finite concepts on the universal 

set U .  As shown in Example 5.3, this class is reliably minimally inferable from positive 

data. 

On the other hand, this class is not refutably minimally inferable from positive data. In 

fact, suppose that there is an RIIM M which refutably minimally infers FC, from positive 

data. Then let L C U be an infinite concept, and let a be an arbitrary positive presentation 

of L. Since there is no minimal concept of L within FC,,  M refutes the class FC, from 

a[n] for some n. Let w be the last element in a[n], let T = a[n]+ be a finite set, and put 

6 = a[n], w, w, . .. Since T is in FC, and 6 is a positive presentation of T ,  M should infer 

T w.r.t. F C ,  in the limit from 6. This is a contradiction. 

Finally, the following Theorem 5.13 shows that there is a class which is inferable in the 

limit but not minimally inferable from positive data. 

Theorem 5.13 (Kapur[lG]) . There is an indexed family C of  recursive concepts such that 

C is inferable in the h i t  but not minimafly inferable from positive data. 

Proof. Let MI, M2, be an enumeration of all inference machines, and let c : N x N -+ N 

be Cantor's pairing function. For j > 1, let pj be the j-th prime number, and put 9 = 

-3.4 pj,pj,pj, .. For j, n 2 1, let M ,  (aj) be the last guess of Mj executed in n steps on input 

aj . 

For j , k  > 1, let 

{pj, P:+'), if there is an m 2 1 such that @:m)(o-j) = c(j, k) , 
-(m> 

LC( j,k) = 
where n = min{m I Mj  (aj) = c( j ,  k)}, 

{ ~ j  1 7  otherwise. 

Then let C = {LiIiEN This class is an indexed family of recursive concepts. In fact, for 

any i, q 2 1, we can decide whether q E Li or not as follows: Let j ,  Ic be integers such that 

i = c(j, k). 

(i) In case q = pj. Then q is in Li. 

(ii) In case q = py+l for some n > 1. Then we execute Mj in n steps on input aj. If it 

outputs i (= c ( j ,  k))  for the first time at just n-th step, then q (= py+l) is in Li. Otherwise 

q is not in Li. 



(iii) Otherwise q is not in L;. 

Thus this class is an indexed family of recursive concepts. 

(I) This class C is inferable in the limit from positive data. This is because this class 

consists of finite concepts (cf. Corollary 2.7). 

(II) This class is not minimally inferable from positive data. In fact, suppose that there 

is an IIM Mj which minimally infers C from positive data. Therefore Mj should converge 

to an index i for oj such that L; is a minimal concept of {pj) within C. 

Since pj E Li7 it is easy to see that there is a k 2 1 such that i = c(j, k). Furthermore 

-(m> since Mj outputs i, there is an rn 2 1 such that M j  ( ~ j )  = i (= c(j, k)). Let n = rnin{rn I 
-(m> (oj) = c(j, k)). Then, by definition, Li = = {pj,p7+1) holds. 

However there is a kt 2 1 such that Lc(j,k,) = {pj). In fact, suppose the converse. Then 

for any kt 2 1, Lc(j,k,) # {pj). By the construction, this means that Mj changes its mind 

infinitely many times for o;., which contradicts the fact that Mj converges to the index i 

for oj . 

This means that L; is not a minimal concept of {pj) within C, which contradicts the 

assumpt ion. rn 

The separations so far known are summarized as follows: 

C is strong-minimally inferable from positive data, 

Ik  
C is refutably minimally inferable from positive data, 

C is reliably minimally inferable from positive data, 

I (k?) 

C is minimally inferable from positive data, 

C is inferable in the limit from positive data, 

i t  
C is semi-reliably inferable from positive data. 



It is unknown at present whether the classes that are minimally inferable from positive 

data are reliably minimally inferable from positive data or not. 

5.4. Discussion 

We have introduced the notion of minimal inferability for a class of recursive concepts and 

showed some sufficient conditions and separations. 

Using only positive data, it is natural to consider a minimal concept of a target concept 

within the class concerned, because a minimal concept explains all obtained facts and, in a 

sense, it is one of the best concept within the class. Moreover we can regard it as a natural 

extension of ordinary inferability from positive data, because minimal inferability directly 

leads to inferability of the class in the ordinary sense. 

As stated in Section 5.1, if we consider an inference of a minimal concept, finite tell-tales 

turn to be of no use. However various conditions, properties and notions introduced to show 

uniform and recursive enumerability of finite tell-tales seem to be valid to some degree. I 

think this is because these notions, including finite tell-tales, more or less lead to how to 

avoid overgeneralization, that is, how to identify a minimal concept. In order to work finite 

tell-tales intendedly, the target concept should be in the class (cf. Proposition 5.1). 

In Section 5.2 we showed some sufficient conditions for minimal inferability. These 

conditions are so general and practical that by using them we can show that the classes 

definable by length-bounded EFS's with at most n axioms are (refutably or strong-) mini- 

mally inferable from positive data (cf. Section 6.3). As far as I know, these classes are one 

of the largest classes that are inferable in the limit from positive data. 



Chapter 6. 

Inferability of EFS Definable Classes 

In the previous chapters, we have discussed characterizations, comparisons and some other 

properties of indexed families of recursive concepts under various inference criteria. In this 

chapter we fix our attention to the classes of models or languages definable by elementary 

formal systems (EFS's, for short) and discuss their inferability under the criteria of finite 

identification, refutable identification and minimal identification. 

The EFS's were originally introduced by Smullyan[48] to develop his recursion theory. 

In a word, EFS's are a kind of logic programming language which uses patterns instead of 

terms in first order logic[52], and they are shown to be natural devices to define languages[4]. 

The classes of models or languages definable by EFS7s are regarded as indexed families 

of recursive concepts, if we put a syntactical restriction of so-called length-bounded on 

EFS7s, which we will define later. 

In Section 6.1 we recall definitions and properties of EFS7s, and review results on 

inferability of the classes definable by length-bounded EFS's from positive data due to 

Shinohara[45]. 

In Section 6.2 we discuss refutable inferability of the classes definable by length-bounded 

EFS7s from complete data. In Chapter 4 we have discussed refutable inferability of a class 

from positive data or complete data, and showed that the refutably inferable classes from 

positive data are very small. Here we show that there are rich hypothesis spaces that are 

refutably inferable from complete data. 

In Section 6.3 we also discuss minimal inferability of the classes definable by length- 

bounded EFS's from positive data. In Chapter 5 we have shown that the classes both finite 

elasticity and M-finite thickness are minimally inferable from positive data. Here we check 



that the classes definable by length-bounded EFS's with at most n axioms have both finite 

elasticity and M-finite thickness for n > I. This result is a natural extension of the above 

mentioned results due to Shinohara[45]. 

This chapter is based on Mukouchi&Arikawa[30] and Mukouchi[31]. 

6.1. EFS's and Their Inferability 

In this thesis we briefly recall EFS's. For detailed definitions and properties of EFS7s, please 

refer to Smullyan [48], Arikawa[4], Arikawa et a1. [5, 61 and Yamamoto [52]. 

Let C ,  X and 17 be mutually disjoint nonempty sets. We assume that C and 17 are 

finite, and fix them throughout this chapter. Elements in C ,  X and 17 are called constant 

symbols, variables and predicate symbols, respectively. By p, q, pl , pa, . ., we denote predi- 

cate symbols. Each predicate symbol is associated with a positive integer which we call an 

arit y. 

Definition 6.1. A term, or a pattern, is an element in (27 U X)+, that is, it is a nonnull 

string over (C U X). By n, nl, n2,. . ., we denote terms. A term n is said to be ground, if 

n E C+. By w,zul, w2, s o . ,  we denote ground terms. 

An atomic formula (atom, for short) is an expression of the form p(nl, , .rr,), where p 

is a predicate symbol with arity n, and TI, . , nn are terms. By A, B, Al, A2, ., we denote 

atoms. An atom p(nl,. . - , .rr,) is said to be ground, if TI,. , n, are ground terms. 

We define well-formed formulas and clauses in the ordinary ways (cf. Lloyd[22]). 

Definition 6.2. A definite clause is a clause of the form 

where n > 0, and A, B1, . . , Bn are atoms. The atom A above is called the head of the 

clause, and the sequence B1, . . . , Bn is called the body of the clause. By C, D, Cl, C2, - +, 

we denote definite clauses. Then an EFS is a finite set of definite clauses, each of which is 

called an axiom. 



A substitution is a homomorphism from terms to terms which maps each symbol a E C 

to itself. 

In the world of EFS's, the Herbrand base (HB, for short) is the set of all ground atoms. 

A subset I of HB is called an Herbrand interpretation. We also define Herbrand model, and 

the least Herbrand model in the ordinary ways[22]. 

For an EFS I', the least Herbrand model is denoted by M ( r ) .  For an EFS I' and a 

predicate symbol p with arity n, we define the set of n-tuples of ground terms as follows: 

In case the arity of p is 1, i.e. p is unary, we regard L(I',p) as a language over C. 

Definition 6.3. A clause C is said to be provable from an EFS I' (abbreviated to I' I- C), 

if C is obtained from I' by finitely many applications of substitutions and modus ponens. 

That is, we define the relation t inductively as follows: 

(i) If C E r, then I' I- C. 

(ii) If I' I- C, then for any substitution 8, r t- C8. 

(iii) If I' t A t B1, , Bn, Bn+1 and I' I- Bn+1, then I' t A + B1, . , Bn- 

The provable set of I' (abbreviated to PS(I')) is the set of all ground atoms that are 

provable from r,  that is, 

Ps(r) = {A E HB I r I- A}. 

Now we put a syntactical restriction on EFS's, because the least Herbrand model M ( r )  

for an unrestricted EFS I' may not be recursive, that is, for a given ground atom A, we 

can not recursively decide whether A E M ( r )  or not. 

For a term T, llrll denotes the length of r, and o(x, r) denotes the number of all occur- 

rences of a variable x in T. For an atom P ( T ~ ,  - .  . , %), we define the length of the atom and 

the number of variable's occurrences in the atom as follows: 



Definition 6.4. A clause A t- B1,. . , Bn is said to be length-bounded, if 

IIA6ll 2 IlBlsll+ + I1Bn6II 

for any substitution 6. 

An EFS I' is said to be length-bounded, if all axioms of r are length-bounded. 

The notion of length-bounded clauses is characterized by the following Lemma 6.1. 

Lemma 6.1 (Arikawa et a1. [5, 61). A clause A t- B1, , Bn is length-bounded, if and 

only i f  11 All 2 IIBl 11 + . . . + llBn 11 and O(X, A) 2 O(X, Bl) + . + O(Z, B,) hold for any variable 

2. 

From now on, we only consider length-bounded EFS's. For length-bounded EFS's, the 

following Theorem 6.2 and 6.3 hold. 

Theorem 6.2 (Arikawa et a1. [5, 61, Yarnamoto[52]). For any length-bounded EFS r ,  the 

least Herbrand model M ( r )  is recursive, that is, for any ground atom A, whether A E M ( r )  

or not is recursively decidable. 

Theorem 6.3 (Arikawa et a1. [5, 61, Yamamoto[52]). For any length-bounded EFS r, M (r) 
= Ps(r) holds. 

By the above Theorem 6.3, we need not to distinguish M ( r )  from PS(r). 

Furthermore the following Theorem 6.4 shows the power of length-bounded EFS's. 

Theorem 6.4 (Arikawa et a1.[5, 61). A language L C+ is context-sensitive, if and only 

if L is definable by a length-bounded EFS. 

We denote by . C B [ ~ ~ ]  the class of all length-bounded EFS's with at most n axioms. 

Then M(LB[<"]) denotes the class of the least Herbrand models of EFS's in .CB['"], and 

L(LB[~"]) denotes the class of all languages defined by EFS's in .CB~~"] with a fixed unary 

predicate symbol p E 17. 



Here we note that for a given EFS r E LB['"] and a given predicate symbol p, whether 

L(r ,  p) = 4 or not is not recursively decidable. Thus in this chapter, we do not care the case 

where the empty concept is chosen as a target concept, when we are discussing inferability 

from positive data. 

Definition 6.5 (Shinohara[45]). Let T c HB be a nonempty finite set. Then an EFS I' 

is said to be reduced w.r. t. T, if T C M ( r )  and T M ( r l )  hold for any I" 2 r .  For 

a class EC of EFS7s and a nonempty finite set T 2 HB, let RED(T, EC) = {I' E EC I 

I' is reduced w.r.t. T). 

Lemma 6.5 (Shinohara[45]). Let I' be a length-bounded EFS, and let C = A +- Bl, . . . , Bn 

be a clause such that I' I- C.  Then the head of  every axiom used to  prove C is not longer 

than the head A of C. 

Proof. This proof is given by mathematical induction on the number of applications of 

inference rule. We note that all clauses that are provable from I' are length-bounded by 

Definition 6.3 and 6.4. 

(I) In case we can prove a clause C by only one application of inference rule. The clause 

C itself is an axiom of T. 

(11) Otherwise. The rule lastly used to prove C should be an application of a substitution 

or modus ponens. (i) In case C = DO for some provable clause D and some substitution 8. 

The head of D is not longer than the head of C. Thus, by induction hypothesis, we have 

the assertion. (ii) In case C = A +- B1,. . . ,Bn, where I' t D = A + B1,- - - ,Bn,Bn+l  

and T t- Bnil. The head A of D and B,+, are not longer than the head A of 6. Thus, by 

induction hypothesis we have the assertion. 

Hence we have the lemma. 

Lemma 6.6 (Shinohara[45]). For any n 2 1 and any nonempty finite set T E HB, 

#RED(T, CB['"]) is finite. 

Proof. Let T = {Al, , Ak) be a finite subset of HB, and let I' E RED(T, CB['"]) be a 

length-bounded EFS. 



Here suppose that there is an axiom C = A + B1, . . , B, E r such that 11 All > 

max{llAlll,..., IIAkll). By Lemma 6.5 and Theorem 6.3, we see that T C_ M ( r  \ {C)), 

which contradicts the assumption that r is reduced w.r.t. T. 

Thus for any axiom A + Bl, . , Bn E I', 11 All 5 max{llA1 11, . , IIAk 1 1 )  holds. Since 

the number of patterns shorter than a fixed length is finite, it follows that the number 

of length-bounded clauses whose heads are shorter than a fixed length is finite. Therefore 

there are finitely many length-bounded EFS's with at most n axioms that are reduced w.r.t. 

Theorem 6.7 (Shinohara[45]) . For any n 2 1, the classes M (LB['"]) and L ( L B [ ~ ~ ] )  have 

finite elasticity, respectively. Therefore M (LBL'"]) and L ( L B [ ~ ~ ] )  are inferable in the limit 

from positive data, respectively. 

Proof. First, we show that M(LB['"]) has finite elasticity for any n 2 1. This proof is 

given by mathematical induction on n. 

(I) In case n = 1. Assume A E M ( r )  and #r = 1. Then r = {B +), where B is an 

atom such that A = B8 for some substitution 8. By a similar discussion to that in Example 

2.1, we can show that M(L13['11) has finite thickness, and thus it has finite elasticity. 

(11) In case n 2 2. Assume that for any m with 1 5 m < n, M(cB['"~) has finite 

elasticity. Then suppose that M (LO['"]) has infinite elasticity. Thus there are two infinite 

sequences Ao, Al, A2,. . of ground atoms and TI, r 2 , .  E L B [ ~ ~ ~  of length-bounded EFS's 

such that for any i > 1, 

Let h be the function defined as follows: 

h(i) = min{j 5 i I I?. is reduced w.r.t. {Ao, . , Aj} or j = i). 

We consider the following two cases. 

(1) In case the infinite sequence h(l), h(2), has a finite bound jo such that for any 

i 1, hi) j .  For any i 2 jo, Ti should be reduced w.r.t . {Aa, , Ajo }. This means 



that there are infinitely many EFS's in M(LB['"]) that are reduced w.r.t. {Ao, , Aj,}, 

which contradicts Lemma 6.6. 

(2) Otherwise. There is an infinite sequence il, i2, with i1 < i2 < such that 

h(il) < h(i2) < a. 

Claim: For any j 2 1, there is an EFS T:, ,!j Tij such that {Ao, , Ah(ij)-1) c M(T2:) 

but Ah(i,) $ M(C\). 

Proof of the claim. (i) In case Ti, is reduced w.r.t. {Ao, . . . , Ah(i,)). By definition, for any 

l-ii 5 Ti,, {Ao, , Ah(G 1) M (l-;) holds. Since Ti, is not reduced w.r. t . {Ao, , Ah(i,)-l), 

there is an EFS T2\ 5 Ti, such that {Ao, . , Ah(i,)-l) M(I'lj), and it follows that 

Ah(i,) $ M(-r&). 

(ii) Otherwise. By definition of h, it is easy to see that h(ij) = ij. This means that 

T,; is not reduced w.r.t. {Ao, .. , Ak)  for any k with 0 < k < ij. Thus it is also not 

reduced w.r.t. {Ao, , Ah(ij)-l), and it follows that there is an EFS T', 5 Ti, such that 

{Ao, , Ah(ij)-l) C M(T:.). On the other hand, by (*), we have Ah(ij) = Aij $ M(Tij). 

Then, by monotonicity of the least Herbrand model, we see that for any Ti; E Ti,, AAh) = 

A,, $ M(T2;). Hence we have the claim. 

By this claim, we see that two infinite sequences AO, Ah(il), Ah(ia), and M(Ti1), 

M(c\ ) ,  . . satisfy that for any j 2 1, 

This contradicts the assumption that M (LB[~"-~])  has finite elasticity, because for any 

j 1, T E CB[~"-'] holds. 
2, 

Since we can show a contradiction in each case (1) or (2), we have the assertion for n. 

This concludes the proof for M (LB['"]). 

Next, we proceed to show that L(LB['"]) has finite elasticity for any n 2 1. Suppose that 

L(LB[~"]) has infinite elasticity. Then there are two infinite sequences wo, wl, w2, E Ct 

and TI, r2, . . . E CB[~"] such that for any i 2 1, 



Therefore for any i 2: 1, 

Thus M(LB[~"]) also has infinite elasticity, which contradicts the above result. Hence 

L(LB[<"]) has finite elasticity. II 

In Chapter 3, we have seen that the class of pattern languages is finitely inferable from 

complete data, but for any n 2 0, this class is not inferable within n mind changes from 

positive data (cf. Example 3.3 and Corollary 3.8). Furthermore the class of unions of at most 

n pattern languages is shown not to be finitely inferable from complete data (cf. Example 

3.4). This directly leads to the following Proposition 6.8. 

Proposition 6.8. (a) For any n 2 1 and any m 2 0, the classes M(cB[~"~) and L(LB[~"~) 

are not inferable within m mind changes from positive data. 

(b) For any n > 2, the classes M (LB[<"]) and L(LB['"]) are not finitely inferable from 

complete data. 

Concerning inferability with bounded mind changes from complete data, it is unknown 

at present whether or not the class M(LB['"]) or L(cB[~"]) is inferable within m mind 

changes from complete data for n, rn > 2. 

Then we adapt the definitions of inferability to the case of EFS's as follows, but as easily 

seen, the essential part is kept unchanged from Definition 2.4. In what follows, we assume 

that outputs from an IIM or an RIIM are EFS's. 

Definition 6.6. For an atom A, pred(A) denotes the predicate symbol of A. For a set 

I&, C II  and a set S of atoms, Slno denotes the set of atoms restricted to a, that is, 

A predicate-restricted positive presentation of a set I G H B  w.r.t. f i  G II is an infinite 

sequence A1, A2, of elements in H B  In, such that {A1, A2, .} = I la. A predicate- 

restricted complete presentation of a set I C HB w.r.t. no C II is an infinite sequence 



(Al,tl), (A2,t2), of elements in HBlno x {+, -) such that {Ai / ti = +, i 2 1) = Ilno 

and {A; I t i =  -, i 2 I} =HBIII, \IJrr, 

An IIM M or an RIIM M is said to converge t o  an EFS I' for a presentation a, if there 

is an n 2 1 such that for any m 2 n, M(a[m]) = r .  

Let EC be a class of EFS's. For an EFS r E EC and a predicate-restricted positive 

or complete presentation a of M ( r )  w.r.t. 170 c 17, an IIM M or an RIIM M is said to 

infer the E M  r w.r.t. EC in the limit from a, if M converges to an EFS I" E EC with 

M(r1)ln0 = M(r)lno for a .  

A class EC is said to be theoretical-term-freely inferable i n  the limit from positive data 

(resp., complete data), if for any nonempty finite subset ITo of IT, there is an IIM M which 

infers r w.r.t. EC in the limit from a for any EFS I' E EC and any predicate-restricted 

positive presentation a (resp., any predicate-restricted complete presentation a) of M ( r )  

w.r.t. a. 

A class I C  is said to be theoretical-term-freely and refutably inferable from positive data 

(resp., complete data), if for any nonempty finite subset 170 of 17, there is an RIIM M which 

satisfies the following condition: For any set I C HB and any predicate-restricted positive 

presentation a (resp., any predicate-restricted complete presentation a) of I w.r. t . IT0, (i) 

if there is an EFS r E EC such that M(r)lll, = Ilno, then M infers r w.r.t. EC in the 

limit from 0, (ii) otherwise M refutes the class EC from 0. 

In a similar way, we also define theoretical-term-free and (refutably, reliably or strong-) 

minimal inferability from positive data or complete data. 

Theoretical terms are supplementary predicates that are necessary for defining some 

goal predicates. In the above definition, the phrase 'theoretical-term-freely inferable' means 

that from only the facts on the goal predicates, an IIM or an RIIM generates some suitable 

predicates and infers an EFS which explains the goal predicates. 

In a similar way to the proof of Theorem 6.7, we can show the following Corollary 6.9. 

Definition 6.7. For a class EC of EFS's and a set 2 17, let M(EC) Ino = {M(r)llr, I 
r E EC}.  



Corollary 6.9. For a n y n  2 1 and any& C 17, the class M ( L B [ ' ~ ~ ) ~ ~ ,  has finite elasticity. 

Therefore for any n 2 1, the class LB['"] is theoretical-term-freely inferable in the limit 

from positive data. 

6.2. Refutable Inferability from Complete Data 

In this section we show that for any n 2 0, the class L B [ ' ~ ~  is theoretical-term-freely and 

refutably inferable from complete data. 

Here we note that for any n 2 1, the class LB[~"] is not theoretical-term-freely and 

refutably inferable from positive data, because it contains infinite concepts (cf. Lemma 

4.10). 

Definition 6.8. For two EFS's I' and I", and a set Do 2 17, we write I' =no I", if we 

can make I" identical to r by renaming predicate symbols other than those in Do and by 

renaming variables in each axiom. We assume some canonical form of an EFS w.r.t. a, 
and canon(I', Do) denotes the representative EFS for the set of EFS's {P I I' rno I"). 

For an EFS I', HPRED(I') (resp., BPRED(r)) denotes the set of all predicate symbols 

appearing in the heads (resp., the bodies) of the axioms of I', and PRED (I ')  denotes the 

set HPRED(I') U BPRED(I'). We also define various sets and classes as follows: 

CB["] = {I' I I' is a length-bounded EFS with n axioms), 

LBinl [a] = {canon (I', Do) I r E LB["~), 

M LBLnl [&] = {I' E CB["] [&I I BPRED (I ')  2 HPRED (I ')  } , 

where 1, n > 0, and lTo 17. 

M Larn1 [&] (1) = I' E M LB["I [ITo] 
the head's length of each axiom 

of I' is not greater than 1. 





Lemma 6.13. For any 1, n > 0 and any ITo c 17, the set MLB["] [Ll0] (1) is a uniformly 

and recursively generable finite set. 

Proof. As easily seen, for any EFS I' E MISB["] [ITo] (1), the number of predicate symbols 

appearing in I' is at most n and the arities of those predicate symbols are at most 1. 

Put PA(1,m) = { { q ~ ' ) , . . . , q ~ ) )  I 0 5 k 5 m and 15 jl 5 5 jk 5 l), where for 

a predicate symbol qjt), the superscript t represents its arity. Then put PR(1, n, ITO) = 

(17' LJ 17" 1 17' c 170 and 17" E PA(1, n - fl17')). By the above observation, it is sufficient 

for us to generate EFS's I' with PRED(r) E PR(1, n, ITo), because we do not distinguish 

two EFS's that are identical except for renaming of predicate symbols other than those in 

Do. 

As easily seen, the above PR(1, n, l&) is a uniformly and recursively generable finite set. 

Furthermore the set of all terms shorter than a fixed length is a uniformly and recursively 

generable finite set, where we do not distinguish two terms that are identical except for 

renaming of variables (cf. Example 2.1). 

Roughly speaking, we recursively generate EFS7s in M I S B [ ~ ]  [no] (1) as follows: We com- 

bine sets of predicate symbols in PR(1, n, I&,) and terms whose lengths are not greater than 

I ,  rearrange variables in each axiom, make canonical form w.r.t. ITo of them and check 

whether each obtained EFS is in M LBLnl [llo] (1) or not by using Lemma 6.1. 

Theorem 6.14. For any n > 0,  the class CB['"] is theoretical-term-freely and refutably 

inferable from complete data. 

Proof. Let us consider the procedure in Figure 6.1, where the procedure readstore is the 

same one as in Figure 2.1. 

Let IT0 be a nonempty finite subset of IT, and let Ibme C be a set of ground atoms. 

Then assume that we feed a predicate-restricted complete presentation 0 of Ibme w.r.t. ITo 

to the procedure. 

(A) In case there is an EFS rbme E CB['"] such that Ib,.ln,, = M(rb,,)lDo. 

Claim: In the procedure, for any m with 0 5 m 5 n, if T, and l?, are defined, then 

(T,, F,) is not consistent with M(I')In, for any E F S  r E M C B [ " ~ [ L I ~ ] .  



Procedure RIIM M(n, Do); 

begin 

T = $ ;  F=$;  

readstore(T, F); 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  while T = 4 do  begin (1) 
output the empty EFS; 

readstore(T, F) ; 

end; 

T o = T ;  Fo=F; 

for m = I to n d o  begin 

1, = max{llAll I A E Tm-1); 
recursively generate M L B [ ~ ]  [Do] (l,), and set it to S; 

for each I' E S do  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (2) 
while (T, F) is consistent with M(I')lno do  begin . . . . . . . . . . . . . . . . . .  (3 )  

output r; 
readstore(T, F); 

end; 

T,=T; Fm=F; 

end; 

refute the class LB['"] and stop; 

end. 

Figure 6.1: An RIIM for the class ,CB[~"] 

Proof of the claim. This proof is given by mathematical induction on rn. 

(I) In case m = 0. It is clear because To is nonempty and the least Herbrand model of 

the empty EFS is empty. 

(II) In case m 2 1. We assume the claim for m - 1, and assume that T, and F, 

are defined. Then we see that Tm-l and F,-l are also defined, and by the induction 

hypothesis, (TmW1, Frn-1) is not consistent with M ( r )  1, for any EFS I' E M C B [ ~ - ~ I  [Do]. 

Therefore by Lemma 6.12, (Tmml, Frnm1) is not consistent with M ( r )  for any EFS I' E 

MCBrrn1 [ITo] \ MLB["] [ITo] (1,). Thus (T,, F,) is not consistent with M ( r )  I n o  for any EFS 

I' E M C B [ ~ ~ [ & ]  \ M C B [ ~ ~ [ ~ ~ ] ( Z , ) ,  because Trn-1 c Tm and FmP1 2 Fm hold. 

Furthermore, since the for-loop (2) terminates, we see that (T,, F,) is also not consistent 



with M (T) Ino for any EFS I' E M C B [ ~ ]  [IIo] (lm). 

Hence we have the claim for rn. 

By Lemma 6.11, there is an EFS r E MLB['"] [ITo] such that M ( r )  In, = M(rbme) Ino (= 

Ib,,ln0). Therefore we see by the above claim that T, and Fn are never defined. By Lemma 

4.13, this means that the procedure outputs an EFS r with M(r)l, = Ib,,ln0 and never 

terminates the while-loop (1) or (3). 

(B) In case there is no EFS r E CB['"] such that Ibmelrr, = M(r)llTo. By using Lemma 

4.13 n times, we see that the procedure refutes the class LB['"] from 0. 

By Corollary 4.5, we see that if the number of axioms is not bounded by a constant 

number, then this class is not refutably inferable, because it contains all finite concepts on 

-ffBln,- 

The following Corollary 6.15 is obvious from Theorem 6.14. 

Corollary 6.15. For any n > 0,  the classes M (cB['"]) and L ( L B [ ~ ~ ] )  are refutably infer- 

able from complete data, respectively. 

6.3. Minimal Inferability from Positive Data 

In this section we show that for any n 2 1, the class CBL'"] is theoretical-term-freely and 

refutably minimally inferable from positive data. This proceeds by showing that for any 

n 2 1 and any C II, M(IsB[ '"~)~~ has M-finite thickness. 

We prepare some lemmas. 

Definition 6.9. For a nonempty finite set T c HB and an EFS r, let TR-RED(T, r) = 

{T' 2 r I r' is reduced w.r.t. T). 

For any nonempty finite set T C HB and any EFS I', if T C M ( r ) ,  then TR-RED(T, r) 
is a nonempty finite set. 

Lemma 6.16 (Sato&Moriyama[39]). For a n y n  > 1 and any I&, c 17, the class M(LB['"])~~, 

satisfies MEF-condition. 



Proof. Suppose that M(LB['"~)~~, does not satisfy MEF-condition. By Definition 5.2, 

there are a nonempty finite set T G HI? and an EFS To E CB['"] such that 

(i) l-' G M(ro)lno, and 

(ii) for any EFS I' E LB['"], M (r) In, is not a minimal concept of T within M (LB['"]) 1 no 

such that M (T) 1 nb G M(ro)  1 no. 

Let r', E TR-RED(T, To) be an EFS, and define rj i7s (i > 2) inductively by the 

following stages: 

Stage i (2 2): 

Since M (I",-, ) 1 rr, 2 M(ro) I,, we see by (ii) that M (I",-, ) 1 is not a minimal concept 

of T within M ( L B [ ' ~ ~ ) ~ ~ ~ .  Therefore there is an EFS r E Ll?[<"l such that T C 

M(r)lno 5 M(rji-,)lrr, Let rji E TR-RED(T, r) be an EFS, and goto Stage i + 1. 

It is clear that I?', , rj,, are all distinct and reduced w.r.t. T, which contradicts Lemma 

6.6. 6 

Lemma 6.17 (Sato&Moriyama[39]). Foranyn 2 1 and any170 c 17, the class M ( c B [ ~ ~ ] ) ~ ~ ,  

satisfies MFF-condition. 

Proof. Let T C HI? be a nonempty finite set such that T M(r)lDo for some EFS I' E 

LB['"~. Then, by Lemma 6.16, there is an EFS r' E LB['"] such that M ( P )  In, is a minimal 

concept of T within M(LB[~"]) In, with M ( r l )  In, M ( r )  Ino. If r1 is not reduced w.r.t. 

T, then there is an EFS r" E RED(T, ,CB['"]) such that I"' 5 r'. However M(rl)  In, = 

M(r") 1, holds, because M ( r f )  1, is a minimal concept of T within M(ISB['"]) In,. This 

means that #{M(r) l n b  I M ( r )  is a minimal concept of T within M(LB['"]) In,) is not 

greater than #RED (T, LB['"]), which is finite by Lemma 6.6. Thus M(LB['"]) In, satisfies 

MFF-condition. 6 

Theorem 6.18. For any n > 1, the class ,Cl?['"I is theoretical-term-freely and refutably 

minimally inferable from positive data. 



Proof. We define the function econs, as follows: For a finite set T H B ,  

I, if the number of distinct predicate symbols 

econs,(T) = appearing in T is not greater than n, 

( 0, otherwise. 

It is easy to see that this function econs, agrees with Definition 4.3 and it is recursively 

computable. 

Thus, by Theorem 6.7, Lemma 6.16, Lemma 6.17 and Corollary 5.11, we see that LB['"] 

is theoretical-term-freely and refutably minimally inferable from positive data. II 

By the above Theorem 6.18, we have the following Corollary 6.19 and 6.20. 

Corollary 6.19. For any n 2 1, the class M (LB['"]) is refutably minimally inferable from 

positive data. 

Since L(LB[~"]) contains the universal set U = C+ as its member, we have the following 

Corollary 6.20. 

Corollary 6.20. For any n 2 1, the class L(cB~'"~) is strong-minimally inferable from 

positive data. 

6.4. Discussion 

We have shown that for any n 2 1, the classes definable by length-bounded EFS's with at 

most n axioms are refutably inferable from complete data as well as (refutably or strong-) 

minimally inferable from positive data. 

In 1990, Shinohara[46] introduced a more generalized framework called monotonic for- 

mal systems. A monotonic formal system is a triplet (U, E, M),  where U is a universal set, 

E is a set of expressions and M is a semantic mapping from 2E to 2U such that for any 

sets TI, r2 of expressions, rl C r2 implies M (TI) 5 M(r2) .  For example, we can deal with 

the class of context-sensitive languages in the framework of a monotonic formal system, 

where U = C+, E is the set of all context-sensitive productions, and for a context-sensitive 

grammar G, M(G) is the context-sensitive language accepted by G. Using this framework, 



Shinohara[46] showed that the classes definable by monotonic formal systems with bounded 

finite thickness are inferable in the limit from positive data. By this results, the classes 

definable by weakly reducing EFS7s[52] (or max-length bounded EFS's in [25]) or linear 

prolog programs[42] (or weakly reducing logic programs in [7] )  with at most n axioms, and 

the class of languages definable by context-sensitive grammars with at most n productions 

are shown to be inferable in the limit from positive data for any n > 1. 

We can apply the technique in the proof of Theorem 6.14 to showing that the classes 

definable by monotonic formal systems that satisfy certain conditions are refutably inferable 

from complete data. Furthermore we can show that the classes definable by monotonic 

formal systems with bounded finite thickness are also (refutably or strong-) minimally 

inferable from positive data. By these results, the above various classes are also shown 

to be refutably inferable from complete data as well as (refutably or strong-) minimally 

inferable from positive data. 

As a future work, I am very interested in searching for an algorithm which infers EFS's 

or prolog programs taking full advantage of structures of programs or clauses, like the model 

inference system due to Shapiro[41]. 
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