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Abstract : This paper analyses a recurrent behavior of dynamic fuzzy systems 
defined by fuzzy relations on a Euclidean space. By introducing a recurrence for 
crisp sets, we prove probability-t heoretical properties for the fuzzy systems. In the 
contractive case in 151, the existence of the maxiinuin recurrent set is proved. As 
another case, we introduce a inonotonicity for fuzzy relations, which is extended 
froin the linear structure in [ll]. In the monotone case we prove the existence of 
the arcwise connected rnaxiilzal recurrent sets. 

Keyword : Recurrence; dynainic fuzzy systems; fuzzy relations; contraction; mono- 
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1. Introduction and notations 

Limit theorems of a sequence of fuzzy sets defined successively by fuzzy relations are 

first studied by Bellnian and Zadeh [I]. They considered a sequence of fuzzy numbers in 

a finite space and solved a fuzzy relational equation written in matrix form. Kurano et 

al. [5] and Yoshida et al. [ll], under a coiltractive condition, studied the limiting behavior 

of fuzzy sets defined by the dynainic fuzzy system with a compact space. We, in [5], 
proved the existence and uiliclueiless of the solution for the fuzzy relational equation, and 

in [ll], developed, under a 1inea.r structure, a poteiltial theory of fuzzy relations 011 the 

positive ortliant of a Euclidean space. 

Our objective is to study i~iaxii~ial recurrence of the dynainic fuzzy systems defined by 

fuzzy relations on a Euclidean space. We introduce, for every level a E ( O , 1 ] ,  a recurrence 

for crisp sets aiid we call it a-recurrence. In Section 2 we prove, on the a-recurrent crisp 

sets, various probability-theoretical properties in the class of fuzzy sets satisfyiilg a fuzzy 

relational inequality, which is a generalization of the fuzzy relational equations in [5] aiid 

which is also satisfied by optimal fuzzy goals in fuzzy dynamic programming of [I], [2], [lo]. 

Further we establish the balayage theorem, which is well- known regarding Markov cl~aiiis, 

for the dynainic fuzzy system. In Section 3 we introduce a-recurrence and represent 

the union of all a-recurrent sets by the fuzzy relation. In Section 4 we deal with the 

~ontra~ctive case in [5]. We give an explicit solution of the fuzzy relational equation in [5] 

and we prove that the a-cut of the solution is the iliaxii~iuiii a-recurrent set. In Section 

5 we introduce a certain monotonicity for the fuzzy relation, which is a natural extension 

of one-dimensional fuzzy relations wit11 the linear structure in [I I]. Then we prove that  

at most countable iiiaxiinal a-recurrent sets exist and that each maximal a-recurrent set 

is arcwise connected. In Section 6 ~~umerical exai~iples are given to illustrate our idea. 



In tlie remainder of this section, we describe the notations for dynamic fuzzy systems 

defined by fuzzy relations on finite-diniensioiial Euclidean spaces and give some funda- 

mental results for stopping times from Yoshida [ l o ] .  
Let S  be a ilietric space. We write a fuzzy set on S by its membership function 

S : S [ O ,  11 and an ordinary set A(c S )  by its indicator function l a  : S I-+ { O ,  1 ) .  The 

a-cut sla is defined by 

5 a : = { x ~ S / S ( x ) 2 u ) ( a ~ ( 0 , 1 ] )  and S o : = c l { x ~ S / 5 ( x ) > 0 ) ,  

where cl denotes tlie closure of a set. F ( S )  denotes the set of all fuzzy sets S on S satisfying 

the following conditions ( F  .i) and (F.ii) : 

( i )  S E ( S )  for a E [O,1]; 

(F.i i)  s l a 1  = So for a E ( O , l ] ,  
a'<a 

where 
00 

C,, C, are closed subsets of S ( n  = 0 , 1 , 2 , - . .  

We also define 

G ( S )  := { fuzzy sets 9  on S I there exists {Zn)nEN c F ( S )  satisfying 5  = V Sn ), 
neN 

where N := { O ,  1 , 2 , 3 ,  . -) aiicl for a seclueiice of fuzzy sets {Sn)nEN on S we define 

Let a tii~ie space by N and put N := NU {m). Let a state space E be a finite-dimensional 

Euclidean space. \Ve put a path space by 0 := nEo E and we write a sample path by 

w = (w  ( O ) ,  w  ( 1 ) ,  w  ( 2 ) ,  .) E 0 .  We define a map X ,  ( w )  := w  ( n )  and a shift O,(w) := 

( w ( n ) , w ( n  + l ) , w ( n  + 2);-) for n E N and w  = ( w ( O ) , w ( l ) , w ( 2 ) , . . . )  E 0 .  We put 

0-fields by M ,  := o ( X 0 , X 1 ; . . , X n )  ' for n E  N and M := O(UnENMn) 2 .  Let be 

not a point of E and put E A  := E  U { A ) .  We can extend the state space E to EA, setting 

:(A) := 0  for sl E G(Ea) and X,(w) := A for w  E 0 ( [ l o ,  Section 21). Let i j  be an upper 

semi-continuous binary relation on E x E satisfying the following normality condition : 

SUP @ ( x ,  y )  = 1  ( y  E E )  and sup ij(2, y )  = 1  (x E E ) .  
2EE Y€E 

We call ij a fuzzy relation. We define a fuzzy expectation : For an initial state x E E and 

an M -1iieasurable fuzzy set h  E F ( 0 ) ,  

E :  ( W E ~ : W ( O ) = X }  i l ( w ) d B ( w ) ,  

'1t denotes the smallest a-field on SZ relative to which Xo, X I ,  . . . , X, are measurable 
2 ~ t  denotes the smallest a-field generated by UnEN M n .  



where P is the following possibility measure : 

and d P  denotes Sugeno integral (Sugeno [9]). Then the fuzzy expectation has the 

following property. 

Lemma 1.1 ([lo,  Section 31). For a12 ~bf-measurable sequellce {hn)nEN C G(n), it  holds 

that 
V E , ( h , ) = E , ( V h , )  ~ E E .  

n€N n€N 

We need the first entry times (the first hitting times) of a set, which is adapted to the 

dyilainic fuzzy system X := {Xn}nEN, in order to define a recurrence of sets in Section 

3. We define 

£ := {A / A E £(E) and E \ A E E(E)) 

and we call a map T : Q ail E-stopping tiine if 

For example, a constant stopping time i.e. T = no for some no E N, is an £-stopping 

time. For A E £ we put 

where the iiifiinunls of the empty set are understood to be +m. Then the first entry time 

ra of A and the first hitting time oa of A are also £-stopping tililes ( [ lo ,  Lemlna 1.51). 

Define a map P : g(E) H g(E) by 

where we write binary operattioils (I A b := i~lin{u, b )  and a V b := max{a, b )  for a ,  b  E [O, 11. 
We call P a fuzzy transition defined by the fuzzy relation ij. We also define n-steps fuzzy 

transitions P, : G(E) I--+ G(E), n E N, by 

where for n E N 



Further for an E-stopping time T ,  a fuzzy transition P, : G(E) H G(E) is defined by 

P,S := E.(S(XT)) for S E G(E), 

where & := Xn on { T  = n) ,  n E N. 

The fuzzy transition { Pn } n E N  has tlie following property : 

Po = I (identity), Pl = P and P,,+, = PmPn (ns, n E N). 

Further it also has a semi-group property with respect to E-stopping times. 

Leinilla 1.2 ([ lo ,  Corollary 2.11). It holds that 

PUP, = PutTOsc on G(E) for finite E-stopping times a and T.  

2. Transitive closures and P-superharmonic fuzzy sets 

We define a partial order 2 on G(E) : For 5, i. E G(E) 

Definition ([ lo ,  Section 41). A fuzzy set S (E G(E)) is called P-harmonic (P-superharmonic) 

provided that 
9 =  P S  ( 5 2  PS resp.). 

Clearly a constant fuzzy set, S = P for soiiie P E [O, 11, is P-superharmonic. We 

represent the fuzzy set by ,8 simply. 

I11 this section we investigate P-superliarmiionic property regarding fuzzy sets and we 

show the balaya.ge theorem for P-superliarmonic fuzzy sets. Using the results, we give 

a siiliple characterization for hitting possibilities of a set A(E I) by transitive closures. 

First we prove preliminary lemmas for P-superharmonic fuzzy sets, which are well-known 

property in tlie classical probability theory ([8]). 

(i) If and 52 are P-superharmonic, then il A S2 is also P-superharmonic. 

(ii) If {Sn)nEN is a sequence of P-harmonic (P-superharmonic) fuzzy sets, then VnEN -gn 

is also P-harmonic (P-superha.rmonic resp.). 

Proof. (i) We can easily check Sl A S2 E G(E), using [ lo ,  Lemina 1.11. Since the fuzzy 

tralisitioii P preserves tlie order 2 on G(E), we have 



Therefore Sl A S2 is P-superhariiioiiic. 
(ii) It is triviaJ that VnEN Sn E G(E) .  By Lenlnla 1.1, 

Therefore VnEN S, is P-superharrnoiiic~ The P-harmonic case is similar. 

(i) If S is P-superha~monic~ then 

P g S 2  P,S for all E-stopping times a and T such that a 5 T .  

(ii) If 5 is P-harmonic, then 

P,S= P,i for all E-stopping times a and T such that a 5 T < oo. 

Proof. (i) We clieck this leinilla along the proof of [8, Proposition 11-1.91. Let a and 7- 

be £-stopping tiines such that a 5 T 5 a + 1. Let An := {o = n)  n { T  = n + 1) E M ,  
and I?, := { a  = T = 72) E M n  for n E N. By [ lo ,  Theorexn 2.11, for n E N 

Using Leinma 1 .I ,  we obtain 

More generally, for £-stopping times a and r such that a 5 T ,  

Here, from [ lo ,  Lelnrna l . l ( i )] ,  we have the followiilg facts : 

By Lemma 1.1 aiid (2.1), 



for x E E.  Therefore we get (i). We call check (ii) similarly. a 

We show tlie balayage tlieorem for the dynainic,fuzzy system X. The theorem plays 

oiie of iinportant roles to ailalyse recurrence for the fuzzy relation ij in Section 3. 

Theorein 2.1. Let S be P-superliannonic and let a set A E E. Then P-s" is the smallest 
P-superha,rmonic fuzzy set wliich domina.tes l A .  

Proof. We check this theorem along tlie proof of [8, Theorem 11-2.11 for the classical 

Markov chain. It is trivial that P,, S = S 011 A. P,,S is P-superharmonic since PP-S = 

P,, S P,, S by Leiiinias 1.2 and 2.2(i). Therefore P,, S is P-superharmonic and dominates 
S A l a .  Further let F be P-superharmonic such that i. 2 2 A l A .  Then 

Tx) 2. P % l ( ~ )  =E~(GF(X,~)  A1{TA<,}) 2 Ez(S(XTA) A l{Q<,l) = PTAS(x) x E E.  

Thus P,,9 has the desired property and so we get this theorem. 

We define an operator G := VnEN Pn 011 G(E). Then we note that 

This is called a transitive closure ([3, Sectioil 3.31). I11 this paper we also call P G  a 

transitive closure. Now we need to investigate the operator G in order to analyse tlie 

transitive closure P G  := Vn>l - Pn. We have the followiilg properties regarding G. 

Leinrna 2.3 ( [ lo ,  Leiiiina 4.l(ii)]). Let 3 E G(E). Then : 

(i) It holds that 

Gs^= Z V  P(Gs"); 

(ii) GS is the smallest P -superharmonic domina.ting 5- 

Lelnina 2.4. Let .G E G(E). Then .:is P-superha,rmoiiic if and only if 

3 = Gs". 

Proof. Let 9 be P-superliarinonic. Then 

5 -  SV PSV P2.5V e . 0  V P$ for all n E N. 

So we obtain (2.2). The coilverse proof is trivial. 

For A E E(E)  we iiitroduce an operator .IA : g(E) I--+ G(E) by 

IA9 := S A 1, S E G(E). 



We define a sequence of hitting times { ~ r ; } , ~ ~  of a set A(E E) by 

The11 01 ineails the first time to hit A after tiine 02-I ([8]). We investigate an entry 
possibility, P,, , of A, and we give a simple and iilteresting cl~aracterization of a possibility, 

to hit A first n times. 

Proposition 2.1. Let A E E.  Tl~en : 

(i) P,,R= GIAR for P-superharmonic 5; 

(ii) Po;;= (PGIA)"K for P-superllarmonic sTand n E N. 

Proof. (i) From Theorem 2.1 and Leinma 2.3(ii) we obtain 

(ii) We prove the equality by induction on n E N.  It is trivial whei~ n = 0. Froin (i), 
P5,S = PP-S = PGIAS. So (ii) also holds for n = 1. Next for every n E N ,  (PGIA)"+'g 
is P-superharmonic since GIA(PGIA)"S is P-superharmonic by Leinilla 2.3(ii). Therefore 
(PGIA)"S is P-superliarmonic for all n E N .  Let n E N. We suppose that (ii) holds for 
n. Froin (i) and the fact that (PGIA)"S is P-superharmonic, 

Thus we obtain (ii) inductively. 

3. a-recurrent sets 

Definition. Let a E (O,l]. A set A E £ ( E )  is called a-recurrent provided : 

(a) A is non-empty; 

(b) P5;1 2 a on A for all n E N and all non-empty B E £ satisfying B c A. 

The a-recurrence of a set A ixeails that a possibility to transit infinite times froin any 
point of A to ally point of A is greater than a. 

Leinma 3.1. Let ,O(E [O, 11) be a constallt fuzzy set. It holds that 

G(SA P) = G ~ A  ,8 and PG(SA P) = PG5A ,6 for .? E G(E) .  (3-1 ) 

Esp eci ally, 

GIA(P) = GIA A /? and PGIA(P)  = P G I A  A P for A E £ ( E ) .  (3.2) 



Proof. By inductioii we show 

p n ( g ~  P) = P " ~ A  P for S E G(E) and n E N. 

First (3.3) holds clearly when n = 0. Next we have (3.3) for n = 1 since 

Further let n E N. Assumiilg that (3.3) holds for n,  we have 

Thus (3.3) holds for all n E N. Therefore we get (3.1). We also obtain (3.2), taking 
S = l A ( A E E ( E ) ) i n ( 3 . 1 ) .  CI 

We give simple necessary and sufficieilt criteria for a-recurrence by the transitive 
closure PG.  

Propositioil 3.1. Let cu E (0, I] and let non-empty A E £ ( E ) .  Then the following 
statements are equivalent : 

(i) A is a-recurrent; 

(ii) P G I B  2 a A lA for 11011-empty B E £(E) satisfying B c A; 

(iii) PG1{y1 2 a A lA for y E A. 

Proof. First we check 

{y)  E £ for y E E. 

Let y E E .  Then {y) c £(E).  Put B,,(y) := {z E E I d(y,z) 2 l l m }  for m = 1 ,2 , - a* ,  
where cl denotes a ~netric on E. Froill [ lo ,  L e i ~ ~ m a  1.11, E \ {y) = Uz=l  B,(y) E E(E).  
Therefore we obtain (3.4). Next we prove the equivaleilces of (i) - (iii). 

(ii) (i) : Let non-empty B E I sakisfyiilg B c A. By iiiduction we show 

(PGIBjn l  > a A lA for n E N. (3 -5 

Illequality (3.5) is trivial for n = 1. We assuine that (3.5) holds for some n E N. Froin 
Leinina, 3.1, 

So (3.5) holds for all n E N. Therefore we obtain (i), using Propositioii 2.l(ii). 



(iii) (ii) : Let lion-empty B E £(E) satisfying B c A and let y E B. Then 

Therefore we obtain (ii). 

(i) ===+ (iii) : It is trivial from Propositioli 2.1 (ii). 

Thus we coiliplete the proof. 

We gives, by the fuzzy relation 6 a representation of the uiiion of all a-recurrent sets. 

Theorelm 3.1. It holds that 

U for a E (0, I]. 
AEE(E)  : &-recurrent sets 

Proof. Let A E £(E) be a-recurrent. Fro111 Proposition 3.1, for x E A 

Therefore 

Conversely let x E E satisfy supn>, - ijn(x, x) > a .  Then PGl{,} > a A I{,}- Froin 

Propositioli 3.1, {x) is a-recurrent . Therefore 

{x) c u A. 
A E E ( E )  : a-recurrent sets 

Thus we obtain this tlieoreiii. 

4. The contractive case 

I11 this sectioii we consider the coiltractive case in [5] and we give the maximum a- 

recurrent set for the dyiiaillic fuzzy systeiii X. 
Let E, be a compact subset of E .  We deal with a dyliainic fuzzy system restricted 

on the compact space E, according to [5]. Let C(E,) be the set of all closed subsets of 
E, aiid let p be the Hausdorff metric on C(E,). Let p ( E , )  be the set of all fuzzy sets 

on Ec which are upper semi-continuous and satisfy S(x) = 1. Then we note 

.7=("O(E,) c F(E, ) .  Let fi, E p ( E , )  be a fuzzy set. Define a sequence of fuzzy sets 

by 
(y) = sup {Pn(x) A G(x, y)) y E Ec for n > 0. 

, EEc 
(4.1) 

Tlie fuzzy set fi,, in 151, is called an initial fuzzy state and the sequence {pn),"=, is called 
a sequence of fuzzy states. Tlie fuzzy relation ij is also restricted on E, x Ec and it 



is assumed to be coiitiiiuous on Ec x Ec and satisfy i(2, .) E P ( E ) .  Define a map 

,Fa : C(Ec) -+ C(Ec) ( a  E (071)) by 

{Y I @(x,y)  2 a for somez E D) f o r a  > 0, D E C(Ec), D # 0, 
I G(z, y) > O for soiiie x E D) for a = 0, D E C(E,), D # 0, 

f o r O s a s 1 ,  D = @ .  

In the sequel we assume the followiiig contractive property for the fuzzy relation ij (see 

[5, Section 21) : There exists a real iiumber ,O E ( 0 , l )  satisfying 

p(F,(A),G(B)) 5 ,O p(A,B)  for all A , B  E C(Ec) and all a E ((),I). 

Then we have   roved a convergelice of the sequence of fuzzy states {lj,)T=o defined by 

(4.1 j. 

Lelnrna 4.1 ([5, Theorein 11). 

(i) There exists a unique fuzzy state p" E P(E, )  satisfying 

(ii) The sequeilce {li,)T=o converges to a unique solution f i  E P(E , )  of (4.2) indepen- 

dently of the initial fuzzy state fro. A'amel-y, 

lim ?i, = p", 
72-03 

where the converg.ence means SuPaErOlll p(fn1,, li,) -+ 0 (n -+ co) provided A,,, p", 
are a-cuts ( a  E [0, 11) for the fuzzy states li,, p" respectively. 

First we give a solution of (4.2). 

Proposit ion 4.1. Tlle a-cut of the solution p" of (4.2) is 

for cu E (O,1]. 

Proof.  First we prove 

WP Gn(x9 X) 5 P(X) E Ec.  
n > l  

(4-3) 

Let a E ( O , l ]  and z E E, satisfy sup,,, ijn(z, x) 2 a. For each a' < a there exists n' > 1 
- 

such that 
x E :"::({x)), 



where f:, := and := for n 2 1. Then, by induction, we shall check 

x E i$m({z}) for all rn 2 1. (4.4) 

(4.4) is trivial for rn = 1. We assume that (4.4) holds for m = 1,2,  . - . ,1. From the 
definition, 

x E ( { x } )  c u i$l({y)) = f;Y1+l)({x}). 

?I€ ?:: ({x}) 

Therefore we obtain (4.4) inductively. On the other hand, coilsidering a, case of go := 1 
( 2  E E,) in (4.1), from Leinilla 4.l(ii) and [5, Leinma 11, 

i n  ( ( { z } ) ,  ) = 0 for all z E E,. 
n-00 (4.5 

Froin (4.4) and (4.5), we obtain x E jaI for a' < a .  Therefore we get x E Fa, using Leinilla 
4.1 (i) and [5, Leiiiina 3(i,b)]. Thus we get (4.3). 

Let x E E,. Next, coilsideriiig a case of fi0 := I{,} in (4.1), we call easily check 

n ( x , x )  = ( x )  for all n > 1. 

Together with (4.3), we obtain 

By Lemma 4.1 (ii), we get 

for all cu E (0, I]. 

Therefore the proof is completed. 

Finally we prove that the closure of the uilion of all a-recurrent sets equals to a-cuts of 
the limit fuzzy state fi. Now we coinpare (1.1) and (4.1). Using the illverse fuzzy relation 
6 ([3, Sectioil 3.21): 

i ( z , y ) : = i ( y , z )  z , y ~ E , ,  

we find that (4.1) follows 

F,+,(z) = sup { i (x ,  y) A fin(y)} x E E, for n 2 0. 
x EE, 

Therefore we call apply the results in Sectioils 1 - 3 to a dyilamic fuzzy system defined 
by the inverse fuzzy relatioil i .  

U for a E (O,1]. 
A €I (E) : a-recurrent sets 

(4.6) 



Further it is the maximum a-recun*ei?t set for X ,  

Proof. From the definition of tlie inverse fuzzy relatioil 6, we can easily check 

where, in the saine way as {$),>I - of Section 1, we define 

( y) = ( x )  and ~""(x,  y )  := sup {Gn(x, 2) A i ( 2 ,  y)) x, Y E E,, n > 1. 
zEEc 

Froin Proposition 4.1, 

This equality nieans that the closure of the union of all a-recurrent sets for the fuzzy 

relation ij equals to one for the inverse fuzzy relation @, considering Theorem 3.2 for the 

dyilaiiiic fuzzy systeiiis defined by the fuzzy relatioils ij and 4. Therefore we obtain (4.6). 

Finally (4.5) meails that lj, is the liiaximuin a-recurrent. 

5, The monotone case 

In general, there does not always exist the maximum a-recurrent set for the dynamic 

fuzzy syst el11 X , however we call consider the exis teiice of the maximal a-recurrent sets. 

I11 this section we deal with a case when the transition fuzzy relation ij has a certain 

monotone property (see Section 6 for nuiiierical examples). Then we prove the existence 

of at most couiitable arcwise coilllectect maxiilia1 a-recurrent sets. 

I11 this section we use tlie ilotatioils in Sections 1 - 3. Further we iiltroduce the 

followillg ilotations of a-cuts ([5, Section 21) : 

@,(A) := U i.j,(x) for A E £(E) and a E (091]; 
3:EA 

G0(A) : = c l ( U  @@(A)) for A E  £ ( E ) .  
a > O  

For cu E ( O , 1 ]  and x E E we define a seclueilce {C(X)),=~,~, ... : 

~k(.) :=@,(x); and ( x )  = ( ( x ) )  for m = 1 , 2 , . . .  . 

We also need some elerneiltary ilotations in the finite dimensional Euclidean space E:  
x + y denotes tlse suin of x, y E E and yx denotes the product of a real number y and 

x E E .  We put A + B := {x + y I x E A9 y E B )  for A , B  E £ ( E ) .  Then we define a half 

line on E by 

l(x, y )  := {y(y - x) 1 real iiuiilbers y > 0) for x, y E E .  



Defiilition. We call a trailsition fuzzy relation ij unimodal provided that ij,(x) are 

bounded closed coilvex subsets of E for all a E ( O , 1 ]  and all x E E. 

Definition. We call a unii~lodal transition fuzzy relation ij monotone provided that 

q,(y) c g,(x) + l(x,y) for all a E (OJ ]  and all x ,y  E E. 

From now on we deal with only unimodal fuzzy relations @, which is monotone and 

continuous on E x E .  The inoliotonicity is a natural extension of one-dimensional models 

with the linear structure in [11] and ixeans that the fuzzy relations ij keeps the partial 

order of fuzzy numbers (see (C.iii') in Section 6). 

Lernina 5.1. Assume that ij is monotone. Let a E (0,1]. If z E E satisfies x E 

Uz=, c ( x ) ,  then z E @,(x). 

Proof. Let X ( E  E) satisfy x 6 ij,(x). We put 

Since ij is monotone, we can easily cl~eclc C+ is convex and we have 

Here we show 

Let z E UyECt ija(y). Since ij is iilonotone, there exists yl E C+ such that z E ija(x) + 
1 ,  yl ) So there exists y2 E @,(x) such that yl E @,(x) + Z(x, y2). From the definitions, 

there exist zl E ij,(x) and a real number yl 2 0 such that 
' 

and there exist z2 E ij,(x) and a real nuiliber 7 2  2 0 such that 

Y1 = 2 2  + y2(y2 - x). 

Since ij is unimodal, from (5.3) and (5.4) we obtain tha t  

and that z = zl E C+ if yl = 0. Thus we get (5.2). Therefore from (5.1) and (5.2) 

( x )  = u ija(y) c u @,(Y) c c+- 
Y 6 9: (2) 

Y E C t  



Thus using (5.2) inductively, we obtain 

On the other hand we show x @ C+. If x E C+, then there exist z ,  y E i ja(x) and a real 

number y > 0 such that x = z + y (y  - x ) .  Therefore 

This contradicts the assuinption 011 x at the beginning of this proof. Therefore we get 

x $! C+ . Toget her (5.5) ,  this implies 

Thus we obtain this lemma. 

When i j  is monotone, Theorem 3.1 is reduced to the following representation (5.6) ,  
which is easy to calculate. 

Theorem 5.1. Assume that ij is monotone. Let a E (O , l ] .  Then 

u A = { x  E E 1 i j (x ,x )  2 a] .  (5 -6) 
AEE(E)  : a-recurrent sets 

Proof. Let xl E { x  E E I ij(x, x )  > a ) .  Theii P1{,,)(xl) > a. So PGl{,,)  > P1{,,} > 
al{,,}. Therefore { x l )  is a-recurrent and so we obta,in 

{ x  E E  I i j (x ,x )  > a )  C u A.  
A EE(E) : a -recurrent sets 

Coilversely let A ( E  £ ( E ) )  be a-recurrent. Let xl E A. From Proposition 3.1, 

Therefore 
00 

5x1 E U i j z ( x l )  for all a' < a .  
nz=l 

Fronl Leinina 3.2 we obtain 

x1 E ija,(xl) for all a' < a. 

Nainely we get i j(xl ,  x l )  > a' for all a' < a .  So we get ij(x,, x l )  > a .  Therefore 
A c { x  E E 1 @ ( x ,  x )  2 a ) .  Thus we establish this theorem. LI 

We need the followiiig assuiliption on i j ,  which is technical but not so strong. It meails 

that the functioil i j  does ilot have flat areas as a curved surface (Section 6 ) .  



Assumptioi~ (A).  For cu E (O,1), 

where int denotes tlie interior of a set. 

Siiice i j  is continuous, { x  E E / ij(x, x )  2 a) is represented by a disjoint sum of at  

most countable arcwise coilnected closed sets ([4]), we represent it by 

where Fa?, are arcwise coilnected closed subsets of E and we put the index set N ( a )  ( C  N ) .  

Lernina 5.2. We suppose Assumption (A). Let a E (O,1) and n E N ( a ) .  Then Fa?, is 

a-recurrent . 

Proof. We write the interior of Fa?, by F,"?,. First we prove that F,"?, is a-recurrent. Let 

xo E F,09,. Let ~ ( $ 0 )  be an arc in F:?,, which is coniiected from xo to a boundary point 

of Fa!,. We consider along the arc c(xo) .  Tlieii we show 

Let xl be tlie first point arriving at tlie boundary of ij,(xo) along c(xo) .  If either there do 

not exist such points or X I  is a bouiidary point of Fain, then c(xo)  c ij,(xo) and clearly 

(5.7) holds. Therefore it is sufficient to consider a case of X I  E F:,, . Since xo E F,"?,, 
we have xo E (ij,(x0))' and d(xo,  x l )  > 0 froill Ass~~iilptioil (A ) .  Froin E el, n c (xO) ,  
we also define x2 the first point arriving a,t the boundary of ij,(xl) along c(xo).  If either 

there do not exist such points or x2 is a boundary point of Fa,,, then similarly c(xo)  c 
ija(xl) c i j i (xo)  and (5.7) holds. Therefore it is sufficient to consider a case of x2 E F,",,. 
Thus it is sufficient to check a sequence {xl) l=o,l ,~, . . .  which is defined successively in such 

a manner and which has the following three properties (Fig. 5.1) : 

(a) xi E F,"?, n c(x0) ( 1  = 0,1 ,2 ,  - .  .); 

(b)  xi+l is the boundary point of ij,(xr) ( 1  = 0,1 ,2 ,  a ) ;  

Tlieii there exists a liinit point x  = limr,, xi since ij,(xo) is bounded and c (xo)  is so. 

From the property (b) aiid Assuiiiptioii (A), @(xi ,  xi+l) = cu ( 1  = 0 ,1 ,2 ,  a a ) .  Using tlie 

coiltiiiuity of i j  and Assumption (A),  we obtain ij(x, x )  = cu and x  is a boundary point of 
Fan .  Therefore (5.7) also holds for this case. Thus we obtain (5.7) in any cases. Since 

x o ( ~  F,",,) and the arc c (xo)  are arbitrary in (5.7),  we have 

Fly ,  c U ?:(a) for all x E F,"?,. 
nz>l 



This implies that Fz,, is a-recurrent for all a E ( O , 1 )  and all n E N(a). 
Next from the continuity of ij aiid (5.8), for all a E ( O , 1 )  and x E F:,, we obtain 

Fa,, = n .:I,, c 0 u G ( x )  = { Y E  E 1 supGm(x,y) > a ) .  
al<a al<a m > l  m > 1 

Using this result aiid Proposition 2.1(ii), for a E ( 0 , l )  and x E Fa,, = Fzl,, we get 

= { Y  E E I Poly,l(x) 2 a ) .  

This llieans that Fa, is a-recurrent. 

Fig. 5.1. The arcwise connected set Fa,, and the sequence { x ~ ) ~ = ~ , ~ , ~ , . . .  

Theorem 5.2. We suppose Assumption (A). Let a E (0 , l ) .  Then maximal a-recurrent 

sets for X are Fa,, (n  E N(a)) .  

Proof. We show that a-recurrent sets Fa,, (n E N(a)) are maximal. It is sufficient to 

prove that Fa,, U Fa,,/ is not a-recurrent, assuming that N(a) has at least two elements 



n9  n' (n  f n'). Now we suppose that there exist n 9  n' E N(a) (n # n') such that Faq,UFa,,t 

is a-recurrent. Then there exist sequences {xn,)n,,011121... and { x ~ , ) , , ~ , ~ , ~ ,  ... satisfying (a) 

- (d) : 

(a)  x0 E Fa,, and lim,,, x, E Fa,,/; 

(b) sb E Fa,,{ and limn,,, x& E Fa,,; 

We consider the following three cases : 

Case when there exists a point xn,l such that x,,! @ &,(x,l): Then we have 

Since Fa>, and Faq,l are a-recurrent sets, together with (a) - (d), there exists a 

path froin xn,t to itself through Fa,, and Fa,,/, keeping a level of ij greater than 

a .  Therefore {x,~) U Fa,, U F,,,t becomes a-recurrent. By Theorem 5.1, this fact 

contradicts (5.9). 

Case when there exists a point such that x;,, 6 ia(xLlI): We can derive a con- 

tradiction in the same way as the previous case. 

Case when x, E ?ja(xn,) (m = 0,1,2,  . . .) and xk E Ga(x;) (rn = 0,1,2,  . .): Froin the 

assumptioil that Fa>, LJ Fal,t is a-recurrent, there exists m' such that xn,t E Fa7, and 
x,,+~ E Fal,t. Therefore 

There exists a point y 6 Fa,, U Fa>,/ such that y = Ax,/ + (1 - A ) X , ~ + ~  (0 < X < 1) 
since Fa>, and Fa,,/ are arcwise connected, closed and disjoint. Then we may take 

On the other hand, since Q is monotone, we have 

and 

Qa (xnxl) c (y ) S l(y, xml) = Pa ( Y )  l(xml+~ 9 xnll). (5.13) 

From (5.10), (5.12) and (5.13), we obtain 



Further since ija(x,t) is convex, from x,~ E ija(x,t) and (5.10), we have 

From (5.14) and (5.15), we get 

Since Fa,, and Fa9,t are a-recurrent sets, together with (a) - (d), there exists a path 

from y to itself through Fay, and Fa,,/, keeping a level of ij greater than a .  By 
Theorem 5.1, this fact also contradicts (5.11). 

Therefore Fa?, (n E N ( a ) )  are inaxiinal a-recurrent. By Theorem 5.1, we obtain that 
maximal a-recurrent sets are only Fa,, (n E N(a) ) .  

R e m a r k .  When a = 1, Theorem 5.2 does not hold in general. We consider the following 
non-contractive numerical example : Let a one-dimensional state space E = R (the set 
of all real numbers). We give a fuzzy relation by 

Then we have 
{x E R 1 @(x,x) = 1) = R. 

Further we can easily clieck that every one point set {x) (x E R) are maximal 1-recurrent 
sets since {x} = h ( x )  (x E R ) .  

6. Numerical examples 

Let a one-dimensional state space E = R. We consider one-dimensional nuinerical 
examples. In Section 5 we have assui-ned the following coiiditioi~s (C.i) - (C.iv): 

(C.i) i j  is continuous on E x E;  

(C.ii) i j  is unimodal; 

(C.iii) @ is monotone; 

(C.iv) @ satisfies Assumptioil (A). 

When E = R, p ( R )  ilieans all fuzzy nuinbers on R .  Froin (C.ii), &(x) are bounded 
closed intervals of R (a E (0, 11, x E R ) .  So we write ij,(x) = [min ija(x), max ija (x)], 
where inin A (max A) denotes the minilnuin (maximum resp.) point of a interval A c R. 
Then (C.iii) is ecluivalent to the following (C.iii7) : 

( C . )  lnin ija (.) and inax ij, ( a )  are lion-decrea.sing functions on R for all a E (0, 11. 

Next we consider the following partial order 011 p ( R )  (Nanda [6]) : For S, F E P ( R ) ,  



2 F means that nlin S, 5 nlin ib, and max & 5 max ib, for all a E (0, 11. 

Then we can easily find that (C.iii) is ecluivalent to the following (C.iiiV) : 

( i i i )  If 5, F E P ( R )  satisfy S 5 ?, then Q(S) 5 Q(F), 

where Q :  p ( R )  + + P ( R ) ,  see (4.1), is defined by 

QS(y) =max{J(x)Aj (x ,y ) ) ,  y E R  for S E ~ ( R ) .  
XER 

(C.iiiV) means that Q preserves the ~lionotonicity on p ( R )  with respect to the order 5. 
Finally (C.iv) means that the a-level sets {x E R I @(x, x) = a) (a E ( 0 , l ) )  are drawn 

by not areas but curved lines. The linear case of [ll, Fig. 21 clearly satisfies the above 

conditions (C.i) - (C.iv), taking the state space E = (0, oo). 

We give an example of monotone fuzzy relations, which is not contractive and does 

not have the linear structure in [ l l ] .  Then we calculate its maximal a-recurrent sets. 

Example 6.1 (monotone case). We give a fuzzy relation by 

Then @(x, y) satisfies the conditions (C.i) - (C.iv) (see Figure 6.1 for the fuzzy relation 

@(x, y ) and Figure 6.2 for the :-level sets). 

Fig. 6.1 : The lnonotolie fuzzy relation @(x, y ). 



Fig. 6.2. The :-level sets {(x, y) I @(z, y) = 2). 

The11 we have 
g ( ~ , ~ ) = ( 1 - 1 ~ - ~ ~ 1 ) ~ 0 ,  x ~ ~ .  

Therefore N(:) = {O, 1 ,2)  and 

By Theorem 5.2, the maximal 2-recurrent sets are given by three intervals 

Finally we consider the following numerical example, which is not monotone. 

Example 6.2 (aon-monotone case). We consider a fuzzy relation 

Then @(x, y) satisfies the conditions (C.i), (C.ii) and (C.iv) except for (C.iii) (see Figure 
6.3 for the fuzzy relation @(x, y ) and Figure 6.4 for the ;-level sets). 
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Fig. 6.3 : The non-monotone fuzzy relatioil @(x, y).  

Fig. 6.4. The !-level set {(x, y )  I @(x, y )  = i). 
Then 

{x t R 1 ij(x)x) > i) = {x E R 1 sup jn(x,x) > - 
n>l 3' 2 6' 6 2' 3 

We can easily check the maximal :-recurrent sets are 



Therefore, in non-monotone case, Theorem 5.2 does not hold in general. 
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