九州大学学術情報リポジトリ Kyushu University Institutional Repository

The Recurrence of Dynamic Fuzzy Systems

Yoshida, Yuji Faculty of Economics, Kitakyushu University

https://hdl.handle.net/2324/3179

出版情報:RIFIS Technical Report. 80, 1994-02-10. Research Institute of Fundamental Information Science, Kyushu University

バージョン: 権利関係:

RIFIS Technical Report

The Recurrence of Dynamic Fuzzy Systems

Yuji Yoshida

February 10, 1994

Research Institute of Fundamental Information Science Kyushu University 33 Fukuoka 812, Japan

E-mail: yoshida@rifis.sci.kyushu-u.ac.jp Phone: 092-641-1101 ex.4484

THE RECURRENCE OF DYNAMIC FUZZY SYSTEMS

Yuji YOSHIDA

Faculty of Economics, Kitakyushu University, Kitaqata, Kokuraminami, Kitakyushu 802, Japan

Abstract: This paper analyses a recurrent behavior of dynamic fuzzy systems defined by fuzzy relations on a Euclidean space. By introducing a recurrence for crisp sets, we prove probability-theoretical properties for the fuzzy systems. In the contractive case in [5], the existence of the maximum recurrent set is proved. As another case, we introduce a monotonicity for fuzzy relations, which is extended from the linear structure in [11]. In the monotone case we prove the existence of the arcwise connected maximal recurrent sets.

Keyword: Recurrence; dynamic fuzzy systems; fuzzy relations; contraction; monotonicity; superharmonic property.

1. Introduction and notations

Limit theorems of a sequence of fuzzy sets defined successively by fuzzy relations are first studied by Bellman and Zadeh [1]. They considered a sequence of fuzzy numbers in a finite space and solved a fuzzy relational equation written in matrix form. Kurano et al. [5] and Yoshida et al. [11], under a contractive condition, studied the limiting behavior of fuzzy sets defined by the dynamic fuzzy system with a compact space. We, in [5], proved the existence and uniqueness of the solution for the fuzzy relational equation, and in [11], developed, under a linear structure, a potential theory of fuzzy relations on the positive orthant of a Euclidean space.

Our objective is to study maximal recurrence of the dynamic fuzzy systems defined by fuzzy relations on a Euclidean space. We introduce, for every level $\alpha \in (0,1]$, a recurrence for crisp sets and we call it α -recurrence. In Section 2 we prove, on the α -recurrent crisp sets, various probability-theoretical properties in the class of fuzzy sets satisfying a fuzzy relational inequality, which is a generalization of the fuzzy relational equations in [5] and which is also satisfied by optimal fuzzy goals in fuzzy dynamic programming of [1], [2], [10]. Further we establish the balayage theorem, which is well-known regarding Markov chains, for the dynamic fuzzy system. In Section 3 we introduce α -recurrence and represent the union of all α -recurrent sets by the fuzzy relation. In Section 4 we deal with the contractive case in [5]. We give an explicit solution of the fuzzy relational equation in [5] and we prove that the α -cut of the solution is the maximum α -recurrent set. In Section 5 we introduce a certain monotonicity for the fuzzy relation, which is a natural extension of one-dimensional fuzzy relations with the linear structure in [11]. Then we prove that at most countable maximal α -recurrent sets exist and that each maximal α -recurrent set is arcwise connected. In Section 6 numerical examples are given to illustrate our idea.

In the remainder of this section, we describe the notations for dynamic fuzzy systems defined by fuzzy relations on finite-dimensional Euclidean spaces and give some fundamental results for stopping times from Yoshida [10].

Let S be a metric space. We write a fuzzy set on S by its membership function $\tilde{s}: S \mapsto [0,1]$ and an ordinary set $A(\subset S)$ by its indicator function $1_A: S \mapsto \{0,1\}$. The α -cut \tilde{s}_{α} is defined by

$$\tilde{s}_{\alpha} := \{x \in S \mid \tilde{s}(x) \ge \alpha\} \ (\alpha \in (0,1]) \quad \text{and} \quad \tilde{s}_{0} := \operatorname{cl}\{x \in S \mid \tilde{s}(x) > 0\},$$

where cl denotes the closure of a set. $\mathcal{F}(S)$ denotes the set of all fuzzy sets \tilde{s} on S satisfying the following conditions (F.i) and (F.ii):

(F.i)
$$\tilde{s}_{\alpha} \in \mathcal{E}(S)$$
 for $\alpha \in [0,1]$;

(F.ii)
$$\bigcap_{\alpha' < \alpha} \tilde{s}_{\alpha'} = \tilde{s}_{\alpha}$$
 for $\alpha \in (0, 1]$,

where

$$\mathcal{E}(S) := \left\{ A \mid A = \bigcup_{n=0}^{\infty} C_n, \ C_n \text{ are closed subsets of } S \ (n = 0, 1, 2, \cdots) \right\}.$$

We also define

$$\mathcal{G}(S) := \{ \text{ fuzzy sets } \tilde{s} \text{ on } S \mid \text{ there exists } \{\tilde{s}_n\}_{n \in \mathbb{N}} \subset \mathcal{F}(S) \text{ satisfying } \tilde{s} = \bigvee_{n \in \mathbb{N}} \tilde{s}_n \},$$

where $\mathbf{N} := \{0, 1, 2, 3, \cdots\}$ and for a sequence of fuzzy sets $\{\tilde{s}_n\}_{n \in \mathbb{N}}$ on S we define

$$\bigwedge_{n \in \mathbf{N}} \tilde{s}_n(x) := \inf_{n \in \mathbf{N}} \tilde{s}_n(x) \quad \text{and} \quad \bigvee_{n \in \mathbf{N}} \tilde{s}_n(x) := \sup_{n \in \mathbf{N}} \tilde{s}_n(x) \qquad x \in S.$$

Let a time space by \mathbb{N} and put $\overline{\mathbb{N}} := \mathbb{N} \cup \{\infty\}$. Let a state space E be a finite-dimensional Euclidean space. We put a path space by $\Omega := \prod_{k=0}^{\infty} E$ and we write a sample path by $\omega = (\omega(0), \omega(1), \omega(2), \cdots) \in \Omega$. We define a map $X_n(\omega) := \omega(n)$ and a shift $\theta_n(\omega) := (\omega(n), \omega(n+1), \omega(n+2), \cdots)$ for $n \in \mathbb{N}$ and $\omega = (\omega(0), \omega(1), \omega(2), \cdots) \in \Omega$. We put σ -fields by $\mathcal{M}_n := \sigma(X_0, X_1, \cdots, X_n)^{-1}$ for $n \in \mathbb{N}$ and $\mathcal{M} := \sigma(\bigcup_{n \in \mathbb{N}} \mathcal{M}_n)^{-2}$. Let Δ be not a point of E and put $E_{\Delta} := E \cup \{\Delta\}$. We can extend the state space E to E_{Δ} , setting $\tilde{s}(\Delta) := 0$ for $\tilde{s} \in \mathcal{G}(E_{\Delta})$ and $X_{\infty}(\omega) := \Delta$ for $\omega \in \Omega$ ([10, Section 2]). Let \tilde{q} be an upper semi-continuous binary relation on $E \times E$ satisfying the following normality condition:

$$\sup_{x \in E} \tilde{q}(x, y) = 1 \ (y \in E) \quad \text{and} \quad \sup_{y \in E} \tilde{q}(x, y) = 1 \ (x \in E).$$

We call \tilde{q} a fuzzy relation. We define a fuzzy expectation: For an initial state $x \in E$ and an \mathcal{M} -measurable fuzzy set $h \in \mathcal{F}(\Omega)$,

$$E_x(h) := \int_{\{\omega \in \Omega: \omega(0) = x\}} h(\omega) \, d\tilde{P}(\omega),$$

¹It denotes the smallest σ -field on Ω relative to which X_0, X_1, \dots, X_n are measurable.

²It denotes the smallest σ -field generated by $\bigcup_{n \in \mathbb{N}} \mathcal{M}_n$.

where \tilde{P} is the following possibility measure :

$$\tilde{P}(\Lambda) := \sup_{\omega \in \Lambda} \bigwedge_{n \in \mathbb{N}} \tilde{q}(X_n \omega, X_{n+1} \omega) \qquad \Lambda \in \mathcal{M}$$

and $\int d\tilde{P}$ denotes Sugeno integral (Sugeno [9]). Then the fuzzy expectation has the following property.

Lemma 1.1 ([10, Section 3]). For an \mathcal{M} -measurable sequence $\{h_n\}_{n\in\mathbb{N}}\subset\mathcal{G}(\Omega)$, it holds that

$$\bigvee_{n \in \mathbf{N}} E_x(h_n) = E_x(\bigvee_{n \in \mathbf{N}} h_n) \qquad x \in E.$$

We need the first entry times (the first hitting times) of a set, which is adapted to the dynamic fuzzy system $X := \{X_n\}_{n \in \mathbb{N}}$, in order to define a recurrence of sets in Section 3. We define

$$\mathcal{E} := \{ A \mid A \in \mathcal{E}(E) \text{ and } E \setminus A \in \mathcal{E}(E) \}$$

and we call a map $\tau: \Omega \mapsto \overline{\mathbf{N}}$ an \mathcal{E} -stopping time if

$$\{\tau = n\} \in \mathcal{M}_n \cap \mathcal{E}(\Omega) \qquad n \in \mathbb{N}.$$

For example, a constant stopping time i.e. $\tau = n_0$ for some $n_0 \in \mathbb{N}$, is an \mathcal{E} -stopping time. For $A \in \mathcal{E}$ we put

$$\tau_A(\omega) := \inf\{n \in \mathbf{N} \mid X_n(\omega) \in A\} \quad \omega \in \Omega;$$

$$\sigma_A(\omega) := \inf\{n \in \mathbf{N} \mid n \ge 1, X_n(\omega) \in A\} \quad \omega \in \Omega,$$

where the infimums of the empty set are understood to be $+\infty$. Then the first entry time τ_A of A and the first hitting time σ_A of A are also \mathcal{E} -stopping times ([10, Lemma 1.5]).

Define a map $P: \mathcal{G}(E) \mapsto \mathcal{G}(E)$ by

$$P\tilde{s}(x) := E_x(\tilde{s}(X_1)) = \sup_{y \in E} {\{\tilde{q}(x,y) \land \tilde{s}(y)\}} \quad x \in E \quad \text{for } \tilde{s} \in \mathcal{G}(E),$$
(1.1)

where we write binary operations $a \wedge b := \min\{a, b\}$ and $a \vee b := \max\{a, b\}$ for $a, b \in [0, 1]$. We call P a fuzzy transition defined by the fuzzy relation \tilde{q} . We also define n-steps fuzzy transitions $P_n : \mathcal{G}(E) \mapsto \mathcal{G}(E)$, $n \in \mathbb{N}$, by

$$P_n \tilde{s} := E.(\tilde{s}(X_n)) = \sup_{y \in E} {\{\tilde{q}^n(\cdot, y) \land \tilde{s}(y)\}} \text{ for } \tilde{s} \in \mathcal{G}(E),$$

where for $n \in \mathbb{N}$

$$\tilde{q}^1(x,y):=\tilde{q}(x,y) \ \text{ and } \ \tilde{q}^{n+1}(x,y):=\sup_{z\in E}\{\tilde{q}^n(x,z)\wedge \tilde{q}(z,y)\} \quad x,y\in E.$$

Further for an \mathcal{E} -stopping time τ , a fuzzy transition $P_{\tau}:\mathcal{G}(E)\mapsto\mathcal{G}(E)$ is defined by

$$P_{\tau}\tilde{s} := E_{\cdot}(\tilde{s}(X_{\tau})) \quad \text{for } \tilde{s} \in \mathcal{G}(E),$$

where $X_{\tau} := X_n$ on $\{\tau = n\}, n \in \overline{\mathbf{N}}.$

The fuzzy transition $\{P_n\}_{n\in\mathbb{N}}$ has the following property:

$$P_0 = I$$
 (identity), $P_1 = P$ and $P_{m+n} = P_m P_n$ $(m, n \in \mathbb{N})$.

Further it also has a semi-group property with respect to \mathcal{E} -stopping times.

Lemma 1.2 ([10, Corollary 2.1]). It holds that

 $P_{\sigma}P_{\tau} = P_{\sigma + \tau \circ \theta_{\sigma}}$ on $\mathcal{G}(E)$ for finite \mathcal{E} -stopping times σ and τ .

2. Transitive closures and P-superharmonic fuzzy sets

We define a partial order \geq on $\mathcal{G}(E)$: For $\tilde{s}, \tilde{r} \in \mathcal{G}(E)$

$$\tilde{s} > \tilde{r} \iff \tilde{s}(x) > \tilde{r}(x) \quad x \in E.$$

Definition ([10, Section 4]). A fuzzy set \tilde{s} ($\in \mathcal{G}(E)$) is called P-harmonic (P-superharmonic) provided that

$$\tilde{s} = P\tilde{s} \quad (\tilde{s} \ge P\tilde{s} \text{ resp.}).$$

Clearly a constant fuzzy set, $\tilde{s} = \beta$ for some $\beta \in [0,1]$, is P-superharmonic. We represent the fuzzy set by β simply.

In this section we investigate P-superharmonic property regarding fuzzy sets and we show the balayage theorem for P-superharmonic fuzzy sets. Using the results, we give a simple characterization for hitting possibilities of a set $A \in \mathcal{E}$ by transitive closures. First we prove preliminary lemmas for P-superharmonic fuzzy sets, which are well-known property in the classical probability theory ([8]).

Lemma 2.1.

- (i) If \tilde{s}_1 and \tilde{s}_2 are P-superharmonic, then $\tilde{s}_1 \wedge \tilde{s}_2$ is also P-superharmonic.
- (ii) If $\{\tilde{s}_n\}_{n\in\mathbb{N}}$ is a sequence of P-harmonic (P-superharmonic) fuzzy sets, then $\bigvee_{n\in\mathbb{N}} \tilde{s}_n$ is also P-harmonic (P-superharmonic resp.).

Proof. (i) We can easily check $\tilde{s}_1 \wedge \tilde{s}_2 \in \mathcal{G}(E)$, using [10, Lemma 1.1]. Since the fuzzy transition P preserves the order \geq on $\mathcal{G}(E)$, we have

$$\tilde{s}_1 > P\tilde{s}_1 > P(\tilde{s}_1 \wedge \tilde{s}_2)$$
 and $\tilde{s}_2 \geq P\tilde{s}_2 \geq P(\tilde{s}_1 \wedge \tilde{s}_2)$.

Therefore $\tilde{s}_1 \wedge \tilde{s}_2$ is P-superharmonic.

(ii) It is trivial that $\bigvee_{n \in \mathbb{N}} \tilde{s}_n \in \mathcal{G}(E)$. By Lemma 1.1,

$$\bigvee_{n \in \mathbf{N}} \tilde{s}_n \ge \bigvee_{n \in \mathbf{N}} P \tilde{s}_n = P(\bigvee_{n \in \mathbf{N}} \tilde{s}_n).$$

Therefore $\bigvee_{n \in \mathbb{N}} \tilde{s}_n$ is P-superharmonic. The P-harmonic case is similar. \square

Lemma 2.2.

(i) If \tilde{s} is P-superharmonic, then

 $P_{\sigma}\tilde{s} \geq P_{\tau}\tilde{s} \quad \text{for all \mathcal{E}-stopping times σ and τ such that $\sigma \leq \tau$.}$

(ii) If \tilde{s} is P-harmonic, then

 $P_{\sigma}\tilde{s} = P_{\tau}\tilde{s}$ for all \mathcal{E} -stopping times σ and τ such that $\sigma \leq \tau < \infty$.

Proof. (i) We check this lemma along the proof of [8, Proposition II-1.9]. Let σ and τ be \mathcal{E} -stopping times such that $\sigma \leq \tau \leq \sigma + 1$. Let $\Lambda_n := \{\sigma = n\} \cap \{\tau = n + 1\} \in \mathcal{M}_n$ and $\Gamma_n := \{\sigma = \tau = n\} \in \mathcal{M}_n$ for $n \in \mathbb{N}$. By [10, Theorem 2.1], for $n \in \mathbb{N}$

$$E_x(\tilde{s}(X_{\sigma}) \wedge 1_{\Lambda_n}) \ge E_x(P\tilde{s}(X_n) \wedge 1_{\Lambda_n}) = E_x(\tilde{s}(X_{n+1}) \wedge 1_{\Lambda_n}) = E_x(\tilde{s}(X_{\tau}) \wedge 1_{\Lambda_n}) \quad x \in E.$$

Using Lemma 1.1, we obtain

$$P_{\sigma}\tilde{s}(x) = \bigvee_{n \in \mathbf{N}} (E_{x}(\tilde{s}(X_{\sigma}) \wedge 1_{\Lambda_{n}}) \vee E_{x}(\tilde{s}(X_{\sigma}) \wedge 1_{\Gamma_{n}}))$$

$$\geq \bigvee_{n \in \mathbf{N}} (E_{x}(\tilde{s}(X_{\tau}) \wedge 1_{\Lambda_{n}}) \vee E_{x}(\tilde{s}(X_{\tau}) \wedge 1_{\Gamma_{n}}))$$

$$= P_{\tau}\tilde{s}(x) \quad x \in E.$$

More generally, for \mathcal{E} -stopping times σ and τ such that $\sigma \leq \tau$,

$$P_{\sigma}\tilde{s} \ge P_{(\sigma+1)\wedge\tau}\tilde{s} \ge \dots \ge P_{(\sigma+n)\wedge\tau}\tilde{s} \ge \dots \quad \text{for } n \in \mathbf{N}.$$
 (2.1)

Here, from [10, Lemma 1.1(i)], we have the following facts:

$$\{\tau \leq \sigma + n < \infty\} = \bigcup_{l,m \in \mathbb{N}: l \leq m+n} (\{\tau = l\} \cap \{\sigma = m\}) \in \mathcal{E}(\Omega);$$
$$\{\tau < \infty\} = \bigcup_{l \in \mathbb{N}} \{\tau = l\} \in \mathcal{E}(\Omega);$$
$$\bigcup_{n \in \mathbb{N}} \{\tau \leq \sigma + n < \infty\} = \{\tau < \infty\}.$$

By Lemma 1.1 and (2.1),

$$P_{\sigma}\tilde{s}(x) \ge \bigvee_{n \in \mathbf{N}} P_{(\sigma+n) \wedge \tau}\tilde{s}(x) \ge \bigvee_{n \in \mathbf{N}} E_{x}(\tilde{s}(X_{\tau}) \wedge 1_{\{\tau \le \sigma+n < \infty\}}) = E_{x}(\tilde{s}(X_{\tau}) \wedge 1_{\{\tau < \infty\}}) = P_{\tau}\tilde{s}(x)$$

for $x \in E$. Therefore we get (i). We can check (ii) similarly. \square

We show the balayage theorem for the dynamic fuzzy system X. The theorem plays one of important roles to analyse recurrence for the fuzzy relation \tilde{q} in Section 3.

Theorem 2.1. Let \tilde{s} be P-superharmonic and let a set $A \in \mathcal{E}$. Then $P_{\tau_A}\tilde{s}$ is the smallest P-superharmonic fuzzy set which dominates $\tilde{s} \wedge 1_A$.

Proof. We check this theorem along the proof of [8, Theorem II-2.1] for the classical Markov chain. It is trivial that $P_{\tau_A}\tilde{s} = \tilde{s}$ on A. $P_{\tau_A}\tilde{s}$ is P-superharmonic since $PP_{\tau_A}\tilde{s} = P_{\sigma_A}\tilde{s} \leq P_{\tau_A}\tilde{s}$ by Lemmas 1.2 and 2.2(i). Therefore $P_{\tau_A}\tilde{s}$ is P-superharmonic and dominates $\tilde{s} \wedge 1_A$. Further let \tilde{r} be P-superharmonic such that $\tilde{r} \geq \tilde{s} \wedge 1_A$. Then

$$\tilde{r}(x) \ge P_{\tau_A} \tilde{r}(x) = E_x(\tilde{r}(X_{\tau_A}) \wedge 1_{\{\tau_A < \infty\}}) \ge E_x(\tilde{s}(X_{\tau_A}) \wedge 1_{\{\tau_A < \infty\}}) = P_{\tau_A} \tilde{s}(x) \quad x \in E.$$

Thus $P_{\tau_A}\tilde{s}$ has the desired property and so we get this theorem. \Box

We define an operator $G := \bigvee_{n \in \mathbb{N}} P_n$ on $\mathcal{G}(E)$. Then we note that

$$PG1_{\{y\}}(x) = \bigvee_{n>1} P_n 1_{\{y\}}(x) = \sup_{n\geq 1} \tilde{q}^n(x,y) \qquad x,y \in E.$$

This is called a transitive closure ([3, Section 3.3]). In this paper we also call PG a transitive closure. Now we need to investigate the operator G in order to analyse the transitive closure $PG := \bigvee_{n>1} P_n$. We have the following properties regarding G.

Lemma 2.3 ([10, Lemma 4.1(ii)]). Let $\tilde{s} \in \mathcal{G}(E)$. Then :

(i) It holds that

$$G\tilde{s} = \tilde{s} \vee P(G\tilde{s});$$

(ii) $G\tilde{s}$ is the smallest P-superharmonic dominating \tilde{s} .

Lemma 2.4. Let $\tilde{s} \in \mathcal{G}(E)$. Then \tilde{s} is P-superharmonic if and only if

$$\tilde{s} = G\tilde{s}. \tag{2.2}$$

Proof. Let \tilde{s} be P-superharmonic. Then

$$\tilde{s} = \tilde{s} \vee P\tilde{s} \vee P_2\tilde{s} \vee \cdots \vee P_n\tilde{s}$$
 for all $n \in \mathbb{N}$.

So we obtain (2.2). The converse proof is trivial. \Box

For $A \in \mathcal{E}(E)$ we introduce an operator $I_A : \mathcal{G}(E) \mapsto \mathcal{G}(E)$ by

$$I_A \tilde{s} := \tilde{s} \wedge 1_A \qquad \tilde{s} \in \mathcal{G}(E).$$

We define a sequence of hitting times $\{\sigma_A^n\}_{n\in\mathbb{N}}$ of a set $A(\in\mathcal{E})$ by

$$\sigma_A^n := \left\{ \begin{array}{ll} 0 & \text{if } n = 0 \\ \sigma_A^{n-1} + \sigma_A \circ \theta_{\sigma_A^{n-1}} & \text{if } n \ge 1. \end{array} \right.$$

Then σ_A^n means the first time to hit A after time σ_A^{n-1} ([8]). We investigate an entry possibility, P_{τ_A} , of A, and we give a simple and interesting characterization of a possibility, $P_{\sigma_A^n}$, to hit A first n times.

Proposition 2.1. Let $A \in \mathcal{E}$. Then:

- (i) $P_{\tau_A}\tilde{s} = GI_A\tilde{s}$ for P-superharmonic \tilde{s} ;
- (ii) $P_{\sigma_A^n} \tilde{s} = (PGI_A)^n \tilde{s}$ for P-superharmonic \tilde{s} and $n \in \mathbb{N}$.

Proof. (i) From Theorem 2.1 and Lemma 2.3(ii) we obtain

$$P_{\tau_A}\tilde{s} = G(\tilde{s} \wedge 1_A) = GI_A\tilde{s}.$$

(ii) We prove the equality by induction on $n \in \mathbb{N}$. It is trivial when n = 0. From (i), $P_{\sigma_A}\tilde{s} = PP_{\tau_A}\tilde{s} = PGI_A\tilde{s}$. So (ii) also holds for n = 1. Next for every $n \in \mathbb{N}$, $(PGI_A)^{n+1}\tilde{s}$ is P-superharmonic since $GI_A(PGI_A)^n\tilde{s}$ is P-superharmonic by Lemma 2.3(ii). Therefore $(PGI_A)^n\tilde{s}$ is P-superharmonic for all $n \in \mathbb{N}$. Let $n \in \mathbb{N}$. We suppose that (ii) holds for n. From (i) and the fact that $(PGI_A)^n\tilde{s}$ is P-superharmonic,

$$P_{\sigma_A^{n+1}}\tilde{s} = P_{\sigma_A}P_{\sigma_A^n}\tilde{s} = PP_{\tau_A}(PGI_A)^n\tilde{s} = PGI_A(PGI_A)^n\tilde{s} = (PGI_A)^{n+1}\tilde{s}.$$

Thus we obtain (ii) inductively.

3. α -recurrent sets

Definition. Let $\alpha \in (0,1]$. A set $A \in \mathcal{E}(E)$ is called α -recurrent provided:

- (a) A is non-empty;
- (b) $P_{\sigma_B^n} 1 \ge \alpha$ on A for all $n \in \mathbb{N}$ and all non-empty $B \in \mathcal{E}$ satisfying $B \subset A$.

The α -recurrence of a set A means that a possibility to transit infinite times from any point of A to any point of A is greater than α .

Lemma 3.1. Let $\beta \in [0,1]$ be a constant fuzzy set. It holds that

$$G(\tilde{s} \wedge \beta) = G\tilde{s} \wedge \beta$$
 and $PG(\tilde{s} \wedge \beta) = PG\tilde{s} \wedge \beta$ for $\tilde{s} \in \mathcal{G}(E)$. (3.1)

Especially,

$$GI_A(\beta) = G1_A \wedge \beta$$
 and $PGI_A(\beta) = PG1_A \wedge \beta$ for $A \in \mathcal{E}(E)$. (3.2)

Proof. By induction we show

$$P^{n}(\tilde{s} \wedge \beta) = P^{n}\tilde{s} \wedge \beta \quad \text{for } \tilde{s} \in \mathcal{G}(E) \text{ and } n \in \mathbf{N}.$$
 (3.3)

First (3.3) holds clearly when n = 0. Next we have (3.3) for n = 1 since

$$P(\tilde{s} \wedge \beta)(x) = \sup_{y \in E} (\tilde{q}(x, y) \wedge \tilde{s}(y) \wedge \beta) = \left(\sup_{y \in E} \tilde{q}(x, y) \wedge \tilde{s}(y)\right) \wedge \beta = P\tilde{s}(x) \wedge \beta \qquad x \in E.$$

Further let $n \in \mathbb{N}$. Assuming that (3.3) holds for n, we have

$$P^{n+1}(\tilde{s} \wedge \beta) = PP^n(\tilde{s} \wedge \beta) = P(P^n \tilde{s} \wedge \beta) = P^{n+1} \tilde{s} \wedge \beta.$$

Thus (3.3) holds for all $n \in \mathbb{N}$. Therefore we get (3.1). We also obtain (3.2), taking $\tilde{s} = 1_A \ (A \in \mathcal{E}(E))$ in (3.1). \square

We give simple necessary and sufficient criteria for α -recurrence by the transitive closure PG.

Proposition 3.1. Let $\alpha \in (0,1]$ and let non-empty $A \in \mathcal{E}(E)$. Then the following statements are equivalent:

- (i) A is α -recurrent;
- (ii) $PG1_B \geq \alpha \wedge 1_A$ for non-empty $B \in \mathcal{E}(E)$ satisfying $B \subset A$;
- (iii) $PG1_{\{y\}} \ge \alpha \wedge 1_A$ for $y \in A$.

Proof. First we check

$$\{y\} \in \mathcal{E} \quad \text{for } y \in E.$$
 (3.4)

Let $y \in E$. Then $\{y\} \subset \mathcal{E}(E)$. Put $B_m(y) := \{z \in E \mid d(y,z) \geq 1/m\}$ for $m = 1, 2, \dots$, where d denotes a metric on E. From [10, Lemma 1.1], $E \setminus \{y\} = \bigcup_{m=1}^{\infty} B_m(y) \in \mathcal{E}(E)$. Therefore we obtain (3.4). Next we prove the equivalences of (i) — (iii).

(ii) \Longrightarrow (i): Let non-empty $B \in \mathcal{E}$ satisfying $B \subset A$. By induction we show

$$(PGI_B)^n 1 \ge \alpha \wedge 1_A \quad \text{for } n \in \mathbf{N}.$$
 (3.5)

Inequality (3.5) is trivial for n = 1. We assume that (3.5) holds for some $n \in \mathbb{N}$. From Lemma 3.1,

$$(PGI_B)^{n+1}1 = (PGI_B)^n(PG1_B) \ge (PGI_B)^n(\alpha \wedge 1_A) = (PGI_B)^n(\alpha) = (PGI_B)^n \wedge \alpha = \alpha \wedge 1_A.$$

So (3.5) holds for all $n \in \mathbb{N}$. Therefore we obtain (i), using Proposition 2.1(ii).

(iii) \Longrightarrow (ii): Let non-empty $B \in \mathcal{E}(E)$ satisfying $B \subset A$ and let $y \in B$. Then

$$PG1_B \ge PG1_{\{y\}} \ge \alpha \wedge 1_A$$
.

Therefore we obtain (ii).

 $(i) \Longrightarrow (iii)$: It is trivial from Proposition 2.1(ii).

Thus we complete the proof.

We gives, by the fuzzy relation \tilde{q} , a representation of the union of all α -recurrent sets.

Theorem 3.1. It holds that

$$\bigcup_{A \in \mathcal{E}(E) \colon \alpha - \text{recurrent sets}} A = \left\{ x \in E \mid \sup_{n \geq 1} \tilde{q}^n(x, x) \geq \alpha \right\} \qquad \text{for } \alpha \in (0, 1].$$

Proof. Let $A \in \mathcal{E}(E)$ be α -recurrent. From Proposition 3.1, for $x \in A$

$$PG1_{\{x\}} \ge \alpha \wedge 1_A \ge \alpha \wedge 1_{\{x\}}.$$

Therefore

$$A \subset \left\{ x \in E \mid PG1_{\{x\}} \ge \alpha \land 1_{\{x\}} \right\} = \left\{ x \in E \mid \sup_{n \ge 1} \tilde{q}^n(x, x) \ge \alpha \right\}.$$

Conversely let $x \in E$ satisfy $\sup_{n\geq 1} \tilde{q}^n(x,x) \geq \alpha$. Then $PG1_{\{x\}} \geq \alpha \wedge 1_{\{x\}}$. From Proposition 3.1, $\{x\}$ is α -recurrent. Therefore

$$\{x\} \subset \bigcup_{A \in \mathcal{E}(E): \alpha - \text{recurrent sets}} A.$$

Thus we obtain this theorem. \Box

4. The contractive case

In this section we consider the contractive case in [5] and we give the maximum α -recurrent set for the dynamic fuzzy system X.

Let E_c be a compact subset of E. We deal with a dynamic fuzzy system restricted on the compact space E_c according to [5]. Let $\mathcal{C}(E_c)$ be the set of all closed subsets of E_c and let ρ be the Hausdorff metric on $\mathcal{C}(E_c)$. Let $\mathcal{F}^0(E_c)$ be the set of all fuzzy sets \tilde{s} on E_c which are upper semi-continuous and satisfy $\sup_{x \in E_c} \tilde{s}(x) = 1$. Then we note $\mathcal{F}^0(E_c) \subset \mathcal{F}(E_c)$. Let $\tilde{p}_0 \in \mathcal{F}^0(E_c)$ be a fuzzy set. Define a sequence of fuzzy sets $\{\tilde{p}_n\}_{n=0}^{\infty}$ by

$$\tilde{p}_{n+1}(y) = \sup_{x \in E_c} \left\{ \tilde{p}_n(x) \land \tilde{q}(x,y) \right\} \quad y \in E_c \quad \text{for } n \ge 0.$$
(4.1)

The fuzzy set \tilde{p}_0 , in [5], is called an initial fuzzy state and the sequence $\{\tilde{p}_n\}_{n=0}^{\infty}$ is called a sequence of fuzzy states. The fuzzy relation \tilde{q} is also restricted on $E_c \times E_c$ and it

is assumed to be continuous on $E_c \times E_c$ and satisfy $\tilde{q}(x,\cdot) \in \mathcal{F}^0(E)$. Define a map $\tilde{r}_{\alpha}: \mathcal{C}(E_c) \to \mathcal{C}(E_c)$ ($\alpha \in (0,1)$) by

$$\tilde{r}_{\alpha}(D) := \begin{cases} \{y \mid \tilde{q}(x,y) \geq \alpha \text{ for some } x \in D\} & \text{for } \alpha > 0, \ D \in \mathcal{C}(E_c), \ D \neq \emptyset, \\ \operatorname{cl}\{y \mid \tilde{q}(x,y) > 0 \text{ for some } x \in D\} & \text{for } \alpha = 0, \ D \in \mathcal{C}(E_c), \ D \neq \emptyset, \\ E_c & \text{for } 0 \leq \alpha \leq 1, \ D = \emptyset. \end{cases}$$

In the sequel we assume the following contractive property for the fuzzy relation \tilde{q} (see [5, Section 2]): There exists a real number $\beta \in (0,1)$ satisfying

$$\rho(\tilde{r}_{\alpha}(A), \tilde{r}_{\alpha}(B)) \leq \beta \ \rho(A, B)$$
 for all $A, B \in \mathcal{C}(E_c)$ and all $\alpha \in (0, 1)$.

Then we have proved a convergence of the sequence of fuzzy states $\{\tilde{p}_n\}_{n=0}^{\infty}$ defined by (4.1).

Lemma 4.1 ([5, Theorem 1]).

(i) There exists a unique fuzzy state $\tilde{p} \in \mathcal{F}^0(E_c)$ satisfying

$$\tilde{p}(y) = \max_{x \in E_c} \{ \tilde{p}(x) \land \tilde{q}(x, y) \} \qquad y \in E_c.$$
(4.2)

(ii) The sequence $\{\tilde{p}_n\}_{n=0}^{\infty}$ converges to a unique solution $\tilde{p} \in \mathcal{F}^0(E_c)$ of (4.2) independently of the initial fuzzy state \tilde{p}_0 . Namely,

$$\lim_{n\to\infty}\tilde{p}_n=\tilde{p},$$

where the convergence means $\sup_{\alpha \in [0,1]} \rho(\tilde{p}_{n,\alpha}, \tilde{p}_{\alpha}) \to 0 \ (n \to \infty)$ provided $\tilde{p}_{n,\alpha}, \tilde{p}_{\alpha}$ are α -cuts $(\alpha \in [0,1])$ for the fuzzy states \tilde{p}_n, \tilde{p} respectively.

First we give a solution of (4.2).

Proposition 4.1. The α -cut of the solution \tilde{p} of (4.2) is

$$\tilde{p}_{\alpha} = \operatorname{cl}\left\{x \in E_c \mid \sup_{n \ge 1} \tilde{q}^n(x, x) \ge \alpha\right\} \quad \text{for } \alpha \in (0, 1].$$

Proof. First we prove

$$\sup_{n\geq 1} \tilde{q}^n(x,x) \leq \tilde{p}(x) \qquad x \in E_c. \tag{4.3}$$

Let $\alpha \in (0,1]$ and $x \in E_c$ satisfy $\sup_{n \geq 1} \tilde{q}^n(x,x) \geq \alpha$. For each $\alpha' < \alpha$ there exists $n' \geq 1$ such that

$$x \in \tilde{r}_{\alpha'}^{n'}(\{x\}),$$

where $\tilde{r}_{\alpha'}^1 := \tilde{r}_{\alpha'}$ and $\tilde{r}_{\alpha'}^{n+1} := \tilde{r}_{\alpha'}(\tilde{r}_{\alpha'}^n)$ for $n \geq 1$. Then, by induction, we shall check

$$x \in \hat{r}_{\alpha'}^{n'm}(\{x\}) \quad \text{for all } m \ge 1.$$
 (4.4)

(4.4) is trivial for m=1. We assume that (4.4) holds for $m=1,2,\cdots,l$. From the definition,

$$x \in \tilde{r}_{\alpha'}^{n'l}(\{x\}) \subset \bigcup_{y \in \tilde{r}_{\alpha'}^{n'l}(\{x\})} \tilde{r}_{\alpha'}^{n'l}(\{y\}) = \tilde{r}_{\alpha'}^{n'(l+1)}(\{x\}).$$

Therefore we obtain (4.4) inductively. On the other hand, considering a case of $\tilde{p}_0 := 1_{\{z\}}$ ($z \in E_c$) in (4.1), from Lemma 4.1(ii) and [5, Lemma 1],

$$\lim_{n \to \infty} \rho(\tilde{r}_{\alpha'}^n(\{z\}), \tilde{p}_{\alpha'}) = 0 \quad \text{for all } z \in E_c.$$
 (4.5)

From (4.4) and (4.5), we obtain $x \in \tilde{p}_{\alpha'}$ for $\alpha' < \alpha$. Therefore we get $x \in \tilde{p}_{\alpha}$, using Lemma 4.1(i) and [5, Lemma 3(i,b)]. Thus we get (4.3).

Let $x \in E_c$. Next, considering a case of $\tilde{p}_0 := 1_{\{x\}}$ in (4.1), we can easily check

$$\tilde{q}^n(x,x) = \tilde{p}_n(x)$$
 for all $n \ge 1$.

Together with (4.3), we obtain

$$\tilde{p}_m(x) \le \sup_{n \ge 1} \tilde{q}^n(x, x) \le \tilde{p}(x)$$
 $x \in E_c$ for all $m \ge 1$.

By Lemma 4.1(ii), we get

$$\tilde{p}_{\alpha} = \operatorname{cl}\left\{x \in E_c \mid \sup_{n \ge 1} \tilde{q}^n(x, x) \ge \alpha\right\}$$
 for all $\alpha \in (0, 1]$.

Therefore the proof is completed.

Finally we prove that the closure of the union of all α -recurrent sets equals to α -cuts of the limit fuzzy state \tilde{p} . Now we compare (1.1) and (4.1). Using the inverse fuzzy relation \hat{q} ([3, Section 3.2]):

$$\hat{q}(x,y) := \tilde{q}(y,x)$$
 $x,y \in E_c$,

we find that (4.1) follows

$$\tilde{p}_{n+1}(x) = \sup_{x \in E_c} \left\{ \hat{q}(x,y) \land \tilde{p}_n(y) \right\} \quad x \in E_c \quad \text{for } n \ge 0.$$

Therefore we can apply the results in Sections 1 – 3 to a dynamic fuzzy system defined by the inverse fuzzy relation \hat{q} .

Theorem 4.1.

$$\tilde{p}_{\alpha} = \operatorname{cl}\left\{x \in E_{c} \mid \sup_{n \geq 1} \tilde{q}^{n}(x, x) \geq \alpha\right\} = \operatorname{cl}\left(\bigcup_{A \in \mathcal{E}(E) : \alpha - \text{recurrent sets}} A\right) \qquad \text{for } \alpha \in (0, 1].$$

$$(4.6)$$

Further it is the maximum α -recurrent set for X.

Proof. From the definition of the inverse fuzzy relation \hat{q} , we can easily check

$$\hat{q}^n(x,x) = \tilde{q}^n(x,x) \quad x \in E_c, \ n \ge 1,$$

where, in the same way as $\{\tilde{q}^n\}_{n\geq 1}$ of Section 1, we define

$$\hat{q}^{1}(x,y) := \hat{q}(x,y)$$
 and $\hat{q}^{n+1}(x,y) := \sup_{z \in E_{c}} \{\hat{q}^{n}(x,z) \land \hat{q}(z,y)\}$ $x,y \in E_{c}, n \ge 1.$

From Proposition 4.1,

$$\tilde{p}_{\alpha} = \operatorname{cl}\left\{x \in E_c \mid \sup_{n > 1} \tilde{q}^n(x, x) \ge \alpha\right\} = \operatorname{cl}\left\{x \in E_c \mid \sup_{n > 1} \hat{q}^n(x, x) \ge \alpha\right\} \quad \text{for } \alpha \in (0, 1].$$

This equality means that the closure of the union of all α -recurrent sets for the fuzzy relation \tilde{q} equals to one for the inverse fuzzy relation \hat{q} , considering Theorem 3.2 for the dynamic fuzzy systems defined by the fuzzy relations \tilde{q} and \hat{q} . Therefore we obtain (4.6). Finally (4.5) means that \tilde{p}_{α} is the maximum α -recurrent. \square

5. The monotone case

In general, there does not always exist the maximum α -recurrent set for the dynamic fuzzy system X, however we can consider the existence of the maximal α -recurrent sets. In this section we deal with a case when the transition fuzzy relation \tilde{q} has a certain monotone property (see Section 6 for numerical examples). Then we prove the existence of at most countable arcwise connected maximal α -recurrent sets.

In this section we use the notations in Sections 1-3. Further we introduce the following notations of α -cuts ([5, Section 2]):

$$\begin{split} \tilde{q}_{\alpha}(x) &:= \{ y \in E \mid \tilde{q}(x,y) \geq \alpha \} \quad \text{for } x \in E \text{ and } \alpha \in (0,1]; \\ \tilde{q}_{\alpha}(A) &:= \bigcup_{x \in A} \tilde{q}_{\alpha}(x) \quad \text{for } A \in \mathcal{E}(E) \text{ and } \alpha \in (0,1]; \\ \tilde{q}_{0}(A) &:= \text{cl}(\bigcup_{\alpha > 0} \tilde{q}_{\alpha}(A)) \quad \text{for } A \in \mathcal{E}(E). \end{split}$$

For $\alpha \in (0,1]$ and $x \in E$ we define a sequence $\{\tilde{q}^m_\alpha(x)\}_{m=1,2,\cdots}$:

$$\tilde{q}^1_{\alpha}(x) := \tilde{q}_{\alpha}(x);$$
 and $\tilde{q}^{m+1}_{\alpha}(x) := \tilde{q}_{\alpha}(\tilde{q}^m_{\alpha}(x))$ for $m = 1, 2, \cdots$.

We also need some elementary notations in the finite dimensional Euclidean space E: x + y denotes the sum of $x, y \in E$ and γx denotes the product of a real number γ and $x \in E$. We put $A + B := \{x + y \mid x \in A, y \in B\}$ for $A, B \in \mathcal{E}(E)$. Then we define a half line on E by

$$l(x,y) := \{\gamma(y-x) \mid \text{real numbers } \gamma \geq 0\} \quad \text{for } x,y \in E.$$

Definition. We call a transition fuzzy relation \tilde{q} unimodal provided that $\tilde{q}_{\alpha}(x)$ are bounded closed convex subsets of E for all $\alpha \in (0,1]$ and all $x \in E$.

Definition. We call a unimodal transition fuzzy relation \tilde{q} monotone provided that

$$\tilde{q}_{\alpha}(y) \subset \tilde{q}_{\alpha}(x) + l(x,y) \quad \text{for all } \alpha \in (0,1] \text{ and all } x,y \in E.$$

From now on we deal with only unimodal fuzzy relations \tilde{q} , which is monotone and continuous on $E \times E$. The monotonicity is a natural extension of one-dimensional models with the linear structure in [11] and means that the fuzzy relations \tilde{q} keeps the partial order of fuzzy numbers (see (C.iii') in Section 6).

Lemma 5.1. Assume that \tilde{q} is monotone. Let $\alpha \in (0,1]$. If $x \in E$ satisfies $x \in \bigcup_{m=1}^{\infty} \tilde{q}_{\alpha}^{m}(x)$, then $x \in \tilde{q}_{\alpha}(x)$.

Proof. Let $x \in E$ satisfy $x \notin \tilde{q}_{\alpha}(x)$. We put

$$C_{+} := \bigcup_{y \in \tilde{q}_{\alpha}(x)} \{ \tilde{q}_{\alpha}(x) + l(x,y) \}.$$

Since \tilde{q} is monotone, we can easily check C_+ is convex and we have

$$\tilde{q}_{\alpha}^{2}(x) = \bigcup_{y \in \tilde{q}_{\alpha}(x)} \tilde{q}_{\alpha}(y) \subset C_{+}. \tag{5.1}$$

Here we show

$$\bigcup_{y \in C_+} \tilde{q}_{\alpha}(y) \subset C_+. \tag{5.2}$$

Let $z \in \bigcup_{y \in C_+} \tilde{q}_{\alpha}(y)$. Since \tilde{q} is monotone, there exists $y_1 \in C_+$ such that $z \in \tilde{q}_{\alpha}(x) + l(x, y_1)$. So there exists $y_2 \in \tilde{q}_{\alpha}(x)$ such that $y_1 \in \tilde{q}_{\alpha}(x) + l(x, y_2)$. From the definitions, there exist $z_1 \in \tilde{q}_{\alpha}(x)$ and a real number $\gamma_1 \geq 0$ such that

$$z = z_1 + \gamma_1(y_1 - x) \tag{5.3}$$

and there exist $z_2 \in \tilde{q}_{\alpha}(x)$ and a real number $\gamma_2 \geq 0$ such that

$$y_1 = z_2 + \gamma_2(y_2 - x). (5.4)$$

Since \tilde{q} is unimodal, from (5.3) and (5.4) we obtain that

$$z = z_1 + \gamma_1(z_2 + \gamma_2(y_2 - x) - x) = z_1 + (\gamma_1 + \gamma_1\gamma_2)(\frac{\gamma_1z_2 + \gamma_1\gamma_2y_2}{\gamma_1 + \gamma_1\gamma_2} - x) \in C_+ \quad \text{if } \gamma_1 > 0$$

and that $z = z_1 \in C_+$ if $\gamma_1 = 0$. Thus we get (5.2). Therefore from (5.1) and (5.2)

$$\tilde{q}_{\alpha}^{3}(x) = \bigcup_{y \in \tilde{q}_{\alpha}^{2}(x)} \tilde{q}_{\alpha}(y) \subset \bigcup_{y \in C_{+}} \tilde{q}_{\alpha}(y) \subset C_{+}.$$

Thus using (5.2) inductively, we obtain

$$\bigcup_{m=1}^{\infty} \tilde{q}_{\alpha}^{m}(x) \subset C_{+}. \tag{5.5}$$

On the other hand we show $x \notin C_+$. If $x \in C_+$, then there exist $z, y \in \tilde{q}_{\alpha}(x)$ and a real number $\gamma \geq 0$ such that $x = z + \gamma(y - x)$. Therefore

$$x = \frac{z + \gamma y}{1 + \gamma} \in \tilde{q}_{\alpha}(x).$$

This contradicts the assumption on x at the beginning of this proof. Therefore we get $x \notin C_+$. Together (5.5), this implies

$$x \notin \bigcup_{m=1}^{\infty} \tilde{q}_{\alpha}^{m}(x).$$

Thus we obtain this lemma. \Box

When \tilde{q} is monotone, Theorem 3.1 is reduced to the following representation (5.6), which is easy to calculate.

Theorem 5.1. Assume that \tilde{q} is monotone. Let $\alpha \in (0,1]$. Then

$$\bigcup_{A \in \mathcal{E}(E): \alpha - \text{recurrent sets}} A = \{ x \in E \mid \tilde{q}(x, x) \ge \alpha \}. \tag{5.6}$$

Proof. Let $x_1 \in \{x \in E \mid \tilde{q}(x,x) \geq \alpha\}$. Then $P1_{\{x_1\}}(x_1) \geq \alpha$. So $PG1_{\{x_1\}} \geq P1_{\{x_1\}} \geq \alpha 1_{\{x_1\}}$. Therefore $\{x_1\}$ is α -recurrent and so we obtain

$$\{x \in E \mid \tilde{q}(x,x) \geq \alpha\} \subset \bigcup_{A \in \mathcal{E}(E) : \alpha - \text{recurrent sets}} A.$$

Conversely let $A \in \mathcal{E}(E)$ be α -recurrent. Let $x_1 \in A$. From Proposition 3.1,

$$PG1_{\{x_1\}} \ge \alpha 1_A \ge \alpha 1_{\{x_1\}}.$$

Therefore

$$x_1 \in \bigcup_{m=1}^{\infty} \tilde{q}_{\alpha'}^m(x_1)$$
 for all $\alpha' < \alpha$.

From Lemma 3.2 we obtain

$$x_1 \in \tilde{q}_{\alpha'}(x_1)$$
 for all $\alpha' < \alpha$.

Namely we get $\tilde{q}(x_1, x_1) \geq \alpha'$ for all $\alpha' < \alpha$. So we get $\tilde{q}(x_1, x_1) \geq \alpha$. Therefore $A \subset \{x \in E \mid \tilde{q}(x, x) \geq \alpha\}$. Thus we establish this theorem. \square

We need the following assumption on \tilde{q} , which is technical but not so strong. It means that the function \tilde{q} does not have flat areas as a curved surface (Section 6).

Assumption (A). For $\alpha \in (0,1)$,

int
$$\{(x,y) \in E \times E \mid \tilde{q}(x,y) \ge \alpha\} = \{(x,y) \in E \times E \mid \tilde{q}(x,y) > \alpha\},\$$

where int denotes the interior of a set.

Since \tilde{q} is continuous, $\{x \in E \mid \tilde{q}(x,x) \geq \alpha\}$ is represented by a disjoint sum of at most countable arcwise connected closed sets ([4]), we represent it by

$$\{x \in E \mid \tilde{q}(x,x) \ge \alpha\} = \bigcup_{n \in \mathbf{N}(\alpha)} F_{\alpha,n} \text{ for } \alpha \in (0,1),$$

where $F_{\alpha,n}$ are arcwise connected closed subsets of E and we put the index set $\mathbf{N}(\alpha)$ ($\subset \mathbf{N}$).

Lemma 5.2. We suppose Assumption (A). Let $\alpha \in (0,1)$ and $n \in \mathbf{N}(\alpha)$. Then $F_{\alpha,n}$ is α -recurrent.

Proof. We write the interior of $F_{\alpha,n}$ by $F_{\alpha,n}^o$. First we prove that $F_{\alpha,n}^o$ is α -recurrent. Let $x_0 \in F_{\alpha,n}^o$. Let $c(x_0)$ be an arc in $F_{\alpha,n}^o$, which is connected from x_0 to a boundary point of $F_{\alpha,n}$. We consider along the arc $c(x_0)$. Then we show

$$c(x_0) \cap F^o_{\alpha,n} \subset \bigcup_{m>1} \tilde{q}^m_\alpha(x_0). \tag{5.7}$$

Let x_1 be the first point arriving at the boundary of $\tilde{q}_{\alpha}(x_0)$ along $c(x_0)$. If either there do not exist such points or x_1 is a boundary point of $F_{\alpha,n}$, then $c(x_0) \subset \tilde{q}_{\alpha}(x_0)$ and clearly (5.7) holds. Therefore it is sufficient to consider a case of $x_1 \in F_{\alpha,n}^o$. Since $x_0 \in F_{\alpha,n}^o$, we have $x_0 \in (\tilde{q}_{\alpha}(x_0))^o$ and $d(x_0, x_1) > 0$ from Assumption (A). From $x_1 \in F_{\alpha,n}^o \cap c(x_0)$, we also define x_2 the first point arriving at the boundary of $\tilde{q}_{\alpha}(x_1)$ along $c(x_0)$. If either there do not exist such points or x_2 is a boundary point of $F_{\alpha,n}$, then similarly $c(x_0) \subset \tilde{q}_{\alpha}(x_1) \subset \tilde{q}_{\alpha}^2(x_0)$ and (5.7) holds. Therefore it is sufficient to consider a case of $x_2 \in F_{\alpha,n}^o$. Thus it is sufficient to check a sequence $\{x_l\}_{l=0,1,2,\cdots}$ which is defined successively in such a manner and which has the following three properties (Fig. 5.1):

- (a) $x_l \in F_{\alpha,n}^o \cap c(x_0) \ (l = 0, 1, 2, \cdots);$
- (b) x_{l+1} is the boundary point of $\tilde{q}_{\alpha}(x_l)$ $(l=0,1,2,\cdots)$;
- (c) $d(x_l, x_{l+1}) > 0$ $(l = 0, 1, 2, \cdots)$.

Then there exists a limit point $x = \lim_{l\to\infty} x_l$ since $\tilde{q}_{\alpha}(x_0)$ is bounded and $c(x_0)$ is so. From the property (b) and Assumption (A), $\tilde{q}(x_l, x_{l+1}) = \alpha$ $(l = 0, 1, 2, \cdots)$. Using the continuity of \tilde{q} and Assumption (A), we obtain $\tilde{q}(x, x) = \alpha$ and x is a boundary point of $F_{\alpha,n}$. Therefore (5.7) also holds for this case. Thus we obtain (5.7) in any cases. Since $x_0 \in F_{\alpha,n}^o$ and the arc $c(x_0)$ are arbitrary in (5.7), we have

$$F_{\alpha,n}^{\circ} \subset \bigcup_{m>1} \tilde{q}_{\alpha}^{m}(x) \quad \text{for all } x \in F_{\alpha,n}^{\circ}.$$
 (5.8)

This implies that $F_{\alpha,n}^o$ is α -recurrent for all $\alpha \in (0,1)$ and all $n \in \mathbf{N}(\alpha)$. Next from the continuity of \tilde{q} and (5.8), for all $\alpha \in (0,1)$ and $x \in F_{\alpha,n}^o$ we obtain

$$F_{\alpha,n} = \bigcap_{\alpha' < \alpha} F^o_{\alpha',n} \subset \bigcap_{\alpha' < \alpha} \bigcup_{m \ge 1} \tilde{q}^m_{\alpha'}(x) = \{ y \in E \mid \sup_{m \ge 1} \tilde{q}^m(x,y) \ge \alpha \}.$$

Using this result and Proposition 2.1(ii), for $\alpha \in (0,1)$ and $x \in F_{\alpha,n} = \bigcap_{\alpha' < \alpha} F_{\alpha',n}^o$ we get

$$F_{\alpha,n} = \bigcap_{\alpha' < \alpha} F_{\alpha',n}$$

$$\subset \bigcap_{\alpha' < \alpha} \{ y \in E \mid \sup_{m \ge 1} \tilde{q}^m(x,y) \ge \alpha' \}$$

$$= \{ y \in E \mid \sup_{m \ge 1} \tilde{q}^m(x,y) \ge \alpha \}$$

$$= \{ y \in E \mid PGI_{\{y\}}1(x) \ge \alpha \}$$

$$= \{ y \in E \mid P_{\sigma_{\{y\}}}1(x) \ge \alpha \}.$$

This means that $F_{\alpha,n}$ is α -recurrent. \square

Fig. 5.1. The arcwise connected set $F_{\alpha,n}$ and the sequence $\{x_l\}_{l=0,1,2,\dots}$

Theorem 5.2. We suppose Assumption (A). Let $\alpha \in (0,1)$. Then maximal α -recurrent sets for X are $F_{\alpha,n}$ $(n \in \mathbf{N}(\alpha))$.

Proof. We show that α -recurrent sets $F_{\alpha,n}$ $(n \in \mathbf{N}(\alpha))$ are maximal. It is sufficient to prove that $F_{\alpha,n} \cup F_{\alpha,n'}$ is not α -recurrent, assuming that $\mathbf{N}(\alpha)$ has at least two elements

 $n, n' \ (n \neq n')$. Now we suppose that there exist $n, n' \in \mathbf{N}(\alpha) \ (n \neq n')$ such that $F_{\alpha,n} \cup F_{\alpha,n'}$ is α -recurrent. Then there exist sequences $\{x_m\}_{m=0,1,2,\dots}$ and $\{x'_m\}_{m=0,1,2,\dots}$ satisfying (a) – (d):

- (a) $x_0 \in F_{\alpha,n}$ and $\lim_{m\to\infty} x_m \in F_{\alpha,n'}$;
- (b) $x'_0 \in F_{\alpha,n'}$ and $\lim_{m\to\infty} x'_m \in F_{\alpha,n}$;
- (c) $x_{m+1} \in \tilde{q}_{\alpha}(x_m) \ (m = 0, 1, 2, \cdots);$
- (d) $x'_{m+1} \in \tilde{q}_{\alpha}(x'_m) \ (m = 0, 1, 2, \cdots).$

We consider the following three cases:

Case when there exists a point $x_{m'}$ such that $x_{m'} \notin \tilde{q}_{\alpha}(x_{m'})$: Then we have

$$x_{m'} \notin \{x \mid \tilde{q}(x, x) \ge \alpha\}. \tag{5.9}$$

Since $F_{\alpha,n}$ and $F_{\alpha,n'}$ are α -recurrent sets, together with (a) – (d), there exists a path from $x_{m'}$ to itself through $F_{\alpha,n}$ and $F_{\alpha,n'}$, keeping a level of \tilde{q} greater than α . Therefore $\{x_{m'}\} \cup F_{\alpha,n} \cup F_{\alpha,n'}$ becomes α -recurrent. By Theorem 5.1, this fact contradicts (5.9).

Case when there exists a point $x'_{m'}$ such that $x'_{m'} \notin \tilde{q}_{\alpha}(x'_{m'})$: We can derive a contradiction in the same way as the previous case.

Case when $x_m \in \tilde{q}_{\alpha}(x_m)$ $(m = 0, 1, 2, \cdots)$ and $x'_m \in \tilde{q}_{\alpha}(x'_m)$ $(m = 0, 1, 2, \cdots)$: From the assumption that $F_{\alpha,n} \cup F_{\alpha,n'}$ is α -recurrent, there exists m' such that $x_{m'} \in F_{\alpha,n}$ and $x_{m'+1} \in F_{\alpha,n'}$. Therefore

$$x_{m'+1} \in \tilde{q}_{\alpha}(x_{m'}) \cap \tilde{q}_{\alpha}(x_{m'+1}).$$
 (5.10)

There exists a point $y \notin F_{\alpha,n} \cup F_{\alpha,n'}$ such that $y = \lambda x_{m'} + (1-\lambda)x_{m'+1}$ $(0 < \lambda < 1)$ since $F_{\alpha,n}$ and $F_{\alpha,n'}$ are arcwise connected, closed and disjoint. Then we may take

$$y \notin \{x \mid \tilde{q}(x,x) \ge \alpha\}. \tag{5.11}$$

On the other hand, since \tilde{q} is monotone, we have

$$\tilde{q}_{\alpha}(x_{m'+1}) \subset \tilde{q}_{\alpha}(y) + l(y, x_{m'+1}) = \tilde{q}_{\alpha}(y) + l(x_{m'}, x_{m'+1})$$
 (5.12)

and

$$\tilde{q}_{\alpha}(x_{m'}) \subset \tilde{q}_{\alpha}(y) + l(y, x_{m'}) = \tilde{q}_{\alpha}(y) + l(x_{m'+1}, x_{m'}).$$
 (5.13)

From (5.10), (5.12) and (5.13), we obtain

$$x_{m'+1} \in (\tilde{q}_{\alpha}(y) + l(x_{m'}, x_{m'+1})) \cap (\tilde{q}_{\alpha}(y) + l(x_{m'+1}, x_{m'})) = \tilde{q}_{\alpha}(y). \tag{5.14}$$

Further since $\tilde{q}_{\alpha}(x_{m'})$ is convex, from $x_{m'} \in \tilde{q}_{\alpha}(x_{m'})$ and (5.10), we have

$$y = \lambda x_{m'} + (1 - \lambda) x_{m'+1} \in \tilde{q}_{\alpha}(x_{m'}). \tag{5.15}$$

From (5.14) and (5.15), we get

$$x_{m'+1} \in \tilde{q}_{\alpha}(y)$$
 and $y \in \tilde{q}_{\alpha}(x_{m'})$.

Since $F_{\alpha,n}$ and $F_{\alpha,n'}$ are α -recurrent sets, together with (a) – (d), there exists a path from y to itself through $F_{\alpha,n}$ and $F_{\alpha,n'}$, keeping a level of \tilde{q} greater than α . By Theorem 5.1, this fact also contradicts (5.11).

Therefore $F_{\alpha,n}$ $(n \in \mathbf{N}(\alpha))$ are maximal α -recurrent. By Theorem 5.1, we obtain that maximal α -recurrent sets are only $F_{\alpha,n}$ $(n \in \mathbf{N}(\alpha))$.

Remark. When $\alpha = 1$, Theorem 5.2 does not hold in general. We consider the following non-contractive numerical example: Let a one-dimensional state space $E = \mathbf{R}$ (the set of all real numbers). We give a fuzzy relation by

$$\tilde{q}(x,y) = (1 - |y - x|) \lor 0, \quad x, y \in \mathbf{R}.$$

Then we have

$$\{x \in \mathbf{R} \mid \tilde{q}(x,x) = 1\} = \mathbf{R}.$$

Further we can easily check that every one point set $\{x\}$ $(x \in \mathbf{R})$ are maximal 1-recurrent sets since $\{x\} = \tilde{q}_1(x)$ $(x \in \mathbf{R})$.

6. Numerical examples

Let a one-dimensional state space $E = \mathbf{R}$. We consider one-dimensional numerical examples. In Section 5 we have assumed the following conditions (C.i) — (C.iv):

- (C.i) \tilde{q} is continuous on $E \times E$;
- (C.ii) \tilde{q} is unimodal;
- (C.iii) \tilde{q} is monotone;
- (C.iv) \tilde{q} satisfies Assumption (A).

When $E = \mathbf{R}$, $\mathcal{F}^0(\mathbf{R})$ means all fuzzy numbers on \mathbf{R} . From (C.ii), $\tilde{q}_{\alpha}(x)$ are bounded closed intervals of \mathbf{R} ($\alpha \in (0,1], x \in \mathbf{R}$). So we write $\tilde{q}_{\alpha}(x) = [\min \tilde{q}_{\alpha}(x), \max \tilde{q}_{\alpha}(x)]$, where $\min A$ ($\max A$) denotes the minimum (maximum resp.) point of a interval $A \subset \mathbf{R}$. Then (C.iii) is equivalent to the following (C.iii'):

(C.iii') min $\tilde{q}_{\alpha}(\cdot)$ and max $\tilde{q}_{\alpha}(\cdot)$ are non-decreasing functions on **R** for all $\alpha \in (0,1]$.

Next we consider the following partial order \leq on $\mathcal{F}^0(\mathbf{R})$ (Nanda [6]): For $\tilde{s}, \tilde{r} \in \mathcal{F}^0(\mathbf{R})$,

 $\tilde{s} \leq \tilde{r}$ means that $\min \tilde{s}_{\alpha} \leq \min \tilde{r}_{\alpha}$ and $\max \tilde{s}_{\alpha} \leq \max \tilde{r}_{\alpha}$ for all $\alpha \in (0,1]$.

Then we can easily find that (C.iii) is equivalent to the following (C.iii"):

(C.iii") If
$$\tilde{s}, \tilde{r} \in \mathcal{F}^0(\mathbf{R})$$
 satisfy $\tilde{s} \leq \tilde{r}$, then $Q(\tilde{s}) \leq Q(\tilde{r})$,

where $Q: \mathcal{F}^0(\mathbf{R}) \mapsto \mathcal{F}^0(\mathbf{R})$, see (4.1), is defined by

$$Q\tilde{s}(y) = \max_{x \in \mathbf{R}} {\{\tilde{s}(x) \land \tilde{q}(x,y)\}}, \quad y \in \mathbf{R} \quad \text{for } \tilde{s} \in \mathcal{F}^0(\mathbf{R}).$$

(C.iii") means that Q preserves the monotonicity on $\mathcal{F}^0(\mathbf{R})$ with respect to the order \leq . Finally (C.iv) means that the α -level sets $\{x \in \mathbf{R} \mid \tilde{q}(x,x) = \alpha\}$ ($\alpha \in (0,1)$) are drawn by not areas but curved lines. The linear case of [11, Fig. 2] clearly satisfies the above conditions (C.i) – (C.iv), taking the state space $E = (0, \infty)$.

We give an example of monotone fuzzy relations, which is not contractive and does not have the linear structure in [11]. Then we calculate its maximal α -recurrent sets.

Example 6.1 (monotone case). We give a fuzzy relation by

$$\tilde{q}(x,y) = (1 - |y - x^3|) \lor 0, \quad x, y \in \mathbf{R}.$$

Then $\tilde{q}(x,y)$ satisfies the conditions (C.i) – (C.iv) (see Figure 6.1 for the fuzzy relation $\tilde{q}(x,y)$ and Figure 6.2 for the $\frac{3}{4}$ -level sets).

Fig. 6.1: The monotone fuzzy relation $\tilde{q}(x,y)$.

Fig. 6.2. The $\frac{3}{4}$ -level sets $\{(x,y) \mid \tilde{q}(x,y) = \frac{3}{4}\}$.

Then we have

$$\tilde{q}(x,x) = (1 - |x - x^3|) \lor 0, \quad x \in \mathbf{R}.$$

Therefore $N(\frac{3}{4}) = \{0, 1, 2\}$ and

$$\begin{cases} x \in \mathbf{R} \mid \tilde{q}(x,x) \geq \frac{3}{4} \end{cases} = F_{\frac{3}{4},0} \cup F_{\frac{3}{4},1} \cup F_{\frac{3}{4},2} \\ \approx [-1.10716, -0.837565] \cup [-0.269594, 0.269594] \cup [0.837565, 1.10716].$$

By Theorem 5.2, the maximal $\frac{3}{4}$ -recurrent sets are given by three intervals

$$\begin{array}{ll} F_{\frac{3}{4},0} & \approx [-1.10716, -0.837565], \\ F_{\frac{3}{4},1} & \approx [-0.269594, 0.269594], \\ F_{\frac{3}{4},2} & \approx [0.837565, 1.10716]. \end{array}$$

Finally we consider the following numerical example, which is not monotone.

Example 6.2 (non-monotone case). We consider a fuzzy relation

$$\tilde{q}(x,y) = \max\left\{\left(1-2\left|y-\frac{1}{4}x\right|\right)\vee 0, \min\left\{\left(1-\frac{1}{4}\left|y-\frac{1}{4}x\right|\right)\vee 0, \frac{3}{2}|x|\wedge 1\right\}\right\}, \quad x,y\in\mathbf{R}.$$

Then $\tilde{q}(x,y)$ satisfies the conditions (C.i), (C.ii) and (C.iv) except for (C.iii) (see Figure 6.3 for the fuzzy relation $\tilde{q}(x,y)$ and Figure 6.4 for the $\frac{3}{4}$ -level sets).

Fig. 6.3: The non-monotone fuzzy relation $\tilde{q}(x, y)$.

Fig. 6.4. The $\frac{3}{4}$ -level set $\{(x,y) \mid \tilde{q}(x,y) = \frac{3}{4}\}$.

Then

$$\left\{ x \in \mathbf{R} \mid \tilde{q}(x,x) \ge \frac{3}{4} \right\} = \left\{ x \in \mathbf{R} \mid \sup_{n \ge 1} \tilde{q}^n(x,x) \ge \frac{3}{4} \right\} = \left[-\frac{4}{3}, -\frac{1}{2} \right] \cup \left[-\frac{1}{6}, \frac{1}{6} \right] \cup \left[\frac{1}{2}, \frac{4}{3} \right].$$

We can easily check the maximal $\frac{3}{4}$ -recurrent sets are

$$\left[-\frac{1}{6}, \frac{1}{6}\right]$$
 and $\left[-\frac{4}{3}, -\frac{1}{2}\right] \cup \left[\frac{1}{2}, \frac{4}{3}\right]$.

Therefore, in non-monotone case, Theorem 5.2 does not hold in general.

Acknowledgements

The author is grateful to Prof. M. Kurano for his useful comments and suggestions.

References

- [1] R.E.Bellman and L.A.Zadeh, Decision-making in a fuzzy environment, *Management Sci. Ser B.* 17 (1970) 141-164.
- [2] A.O.Esogbue and R.E.Bellman, Fuzzy dynamic programming and its extensions, TIMS / Studies in Management Sci. 20 (North-Holland, Amsterdam, 1984) 147-167.
- [3] G.J.Klir and T.A.Folger, Fuzzy Sets, Uncertainty, and Information (Prentice-Hall, London, 1988).
- [4] K.Kuratowski, Topology II (Academic Press, New York, 1966).
- [5] M.Kurano, M.Yasuda, J.Nakagami and Y.Yoshida, A limit theorem in some dynamic fuzzy systems, Fuzzy Sets and Systems 51 (1992) 83-88.
- [6] S.Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems 33 (1989) 123-126.
- [7] J.Neveu, Discrete-Parameter Martingales (North-Holland, New York, 1975).
- [8] D.Revuz, Markov Chains (North-Holland, New York, 1975).
- [9] M.Sugeno, Fuzzy measures and fuzzy integral: a survey in M.M.Gupta, G.N.Saridis and B.R.Gaines, Eds., Fuzzy Automata and Decision Processes (North-Holland, Amsterdam, 1977) 89-102.
- [10] Y.Yoshida, Markov chains with a transition possibility measure and fuzzy dynamic programming, submitted to Fuzzy Sets and Systems.
- [11] Y.Yoshida, M.Yasuda, J.Nakagami and M.Kurano, A potential of fuzzy relations with a linear structure: The contractive case, to appear in Fuzzy Sets and Systems.