
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Language Learning by Inverse Resolution on
Elementary Formal Systems

Zeng, Chao
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

Arikawa, Setsuo
Research Institute of Fundamental Information Science Kyushu University

https://hdl.handle.net/2324/3178

出版情報：RIFIS Technical Report. 79, 1994-01-10. Research Institute of Fundamental
Information Science, Kyushu University
バージョン：
権利関係：

S T echnica

Language Learning by Inverse Resolution

on Elementary Formal Systems

Chao Zeng and Setsuo Arikawa

January 10,1994

Research l nstitute of Fundamental Information Science

Kyushu University 33

Fukuoka 812, Japan
E-mail: zeng@rifis.sci.kyushu-u.ac.jp Phone: 092-641 -11 01 ex.2329

Language Learning
by Inverse Resolution

on Elementary Formal Systems

Chao Zeng* and Setsuo ~ r i k a w a t

Abstract

The inverse resolution is a procedure to produce new clauses by applying
the resolution principle in the opposite direction. It has mainly been studied
in terms of logic. The elementary formal systems(EFS for short) invented by
Smullyan proved suitable for a unifying framework for language learning.

In this paper we consider the problem of how to construct an EFS system
from some given examples in the desired language. We first discuss a realiza-
tion of the inverse resolution in the framework of EFS for language learning
from positive examples. We also consider an efficient learning procedure for
an EFS language class which is a subclass of regular languages.

1 Introduction

Inductive learning is mainly studied in the context of logics and formal languages.
A lot of learning methods have been discovered. One of them is proposed by
Muggleton[l2] [13], which uses the mechanism of inverting the resolution procedure
in logic programming to construct clauses from given examples and some back-
ground knowledge. Many practical methods have been studied based on the inverse
resolution(Muggleton [I 21 [13], Ling[lO] [l 1] , Wirth [l9] [20]), and they have received
much attention as more practical approaches than those methods in the criterion
of identification in the limit by Gold[7]. The inverse resolution is expected to be
a promising mechanism in inductive learning as is the resolution principle in logic
programming.

A new framework for inductive inference of languages proposed by Arikawa et
al. [5][6] named as EFS has been proved useful and powerful in language learning
from positive data by Shinohara[l8] in the criterion of Gold's identification in the
limit.

In this paper we attempt to give another practical methods to EFS language
learning based on the idea of Muggleton's inverting resolution. The main difference
between logic programs and EFSs is in the definition of term; in logic programs,

"Interdisciplinary Graduate School of Engineering Sciences, Kyushu University 39, Kasuga 816,
Japan E-mail: zeng@rifis.sci. kyushu-u.ac.j p

t ~esea rch Institute of Fundamental Information Sciences, Kyushu University 33, Fukuoka 812,
Japan E-mail: arikawa@rifis.sci. kyushu-u.ac.j p

the terms are defined as the combinations of function symbols with variables and
constants with some other auxiliary symbols such as parentheses, while in EFSs,
terms are just defined as patterns, that is, elements in (C U X) + . From this difference,
a lot of difficults and intractabilities make their appearance. As pointed out by
Shinohara[l8], in EFS framework the given examples are just for a special predicate
and any other information should not be given for intermediate predicates that are
also needed for constructing the EFS. Therefore, the construction of EFS is more
difficult than that of logic programs.

In this paper we also discuss the problem which may arise in introducing inverse
resolution to EFS framework, and attempt to give its solutions. By solving the
problem, we give the definition of EFS counterpart of inverse substitution and a
non-deterministic algorithm to compute EFS languages. Lastly, we consider an
efficient learning method for a special class of EFS languages. We give an algorithm
to learn languages in the class.

2 Preliminaries

2.1 Elementary Formal Systems

Suppose C , X and ll be mutually disjoint sets. Let C be a finite set, X a set
of variables, and II a set of predicate symbols. We call C as alphabet, denote its
elements by a, b, c, . . ., and X as variable, denote its elements by x, y, z, xl, yl, . . .
and each element of ll as predicate symbol, denote by p, q, pl, p,, . . ., where each
of them has an arity. Let C* be the set of all words over C , and C+ be the set of all
nonempty words. Let S be an EFS that is defined below.

We suppose all of the predicate symbols with arity one and get the following
definitions. For general case see Arikawa[G] .

Definition 1 A term of S is an element of (C U X) + . Each term is denoted by a ,
r, nl, n2, . . ., rl, r2, A ground term of S is an element of C+. Terms are also
called patterns or strings.

Definition 2 A n atomic formula(or atom for short) of S is an expression of the
form p(a), where p is a predicate symbol in ll with arity one and n is a term of S.
The atom is ground i f .ir is ground.

A definite clause is a clause of the form

Definition 3 A n elementary formal system(EFSfor short) S is a triplet (C , II, I?),
where r is a finite set of definite clauses. The definite clauses i n I? are called axioms
of S.

We denote a substitution 0 by 1x1 := 7-1,. . . , x, := rn), where xi are mutually
distinct variables, and q(r)0 = q(r0) and

for an atom q(r) and a clause p c pl , . . . , p,.

Definition 4 Let S = (C , II, I?) be an EFS. W e define the relation r t C for a
clause C of S inductively as follows:

(1) If I' 3 C, then I' t C.
(2) If I? t C , then I? I- C 8 for any substitution 8.
(3) If r t p + p l , . . .)pn+l and r t p n + l , then r t- p t - p l) . . ,pn.

C is provable from r if r t C.

Definition 5 For an EFS S=(C, II, I?) and p E II, we define

L(S,p) is a language over C . A language L 2 C+ is definable by EFS or an EFS
language if such an S and a p exist.

Let I a I denotes the length of a term a, and o (x , a) denotes the number of all
occurrences of a variable x in term x. For an atom p (n) , we define I p (a) I=I n- 1 ,
and o (x , p(n-)) = o (x , n-). A definite clause p +- pl , . . . , pn is lengh-bounded if

for any substitution 8. An EFS r is length-bounded if all definite clauses in are
lengt h-bounded.

Let u (p) be the set of all variables in an atom p. A definite clause p + pl , . . . , pn
is variable-bounded if u (p) 2 Y (pi) (i = 1, . . . , n), and an EFS is variable-bounded if
its axioms are all variable-bounded.

Definition 6 A length-bounded EFS S=(C, I T , r) is simple if each axiom in I? is of
the form

where X I , . . . , xn are mutually distinct variables.

Definition 7 A term a is regular if o (x , a) 5 1 for any variable x. A simple EFS
S=(C, I I , r) is regular if the term in the head of each definite clause i n is regular.

Lemma 1 [6] A clause p t- pl , . . . , pn is length-bounded if and only if

for any variable x.

Theorem 1 [18] For any n 2 1, the class Ln = { l (r , p) I I' is length-bounded , p is
unary, #I' 5 n, L (r , p) # 4) is inferable from positive data.

2.2 Some Classes of EFS languages

Definition 8 A regular EFS S=(C, IT , I?) is right-linear (left-linear) if each axiom
in r is one of the following forms:

p (a) +,
p (u x) + q (x) (p (x u) + q (x)) ,

where a is a regular term and u E C+.

A Regular EFS is called one-sided linear i f it is right- or left-linear. Next we
give a restricted form o f one-sided linear EFS as follows.

Definition 9 A n one-sided linear EFS S=(C, I I , I?) is called r-stratified i f for any
predicate symbol p i n IT there are no clauses i n I? which make a circle about p as
following.

Definition 10 Let EFS S=(C, I I , I?) be a I?-stratified right-linear (left-linear) EFS.
Then S is called restricted i f the following conditions are satisfied.
(1) For any two unit clauses

if both C l and C 2 are in r then u=v, that is, term u and v are identical.
(2) For any two clauses

c1 = Pl (u x) + q1(x), C2 = Pl (v y) + ql (y)
(Cl = P ~ (X U) + q1(x), C2 = PI (X Y) + q1 (Y)),

if both Cl and C2 are in then u=v, that is, term u and v are identical.

Definition 11 A n one-side linear EFS S=(C, I T , I?) is one-loop definable if there
just only one, or no clause with same predicate symbol i n head and body exists i n r.

W e denote the classes o f all languages defined b y r-stratified, restricted, and
one-loop definable one-side linear EFSs as r-stratified-OSL-EFS, R-OSL-EFS and
OLD-OSL-EFS, respectively. W e give some examples o f these language classes.

Example 1 L (S , p) = {a3n I n > 1) E R-OSL-EFS.

Example 2 L (S , p) = ab{aba)+bba E R- OSL-EFS.

Example 3 L(S,p) = ab(aa + bb)aba+ E OLD-OSL-EM .

3 Inverse Substitution in EFS

Substitution is essential in Prolog programming. Substitution makes a general clause
special. So we can use it to specialize our knowledge to solve more specific prob-
lems. Muggleton[l3] [14] has introduced the opposite concepts that are the inverse
substitution and the inverse resolution. Here we attempt to give an EFS version
of inverse substitution which is considerably different from the original one in logic
programming due to the difference of terms. First we need some preparations for
pattern matching.

3.1 Common Strings of a Set of Patterns

A term in EFS is defined as an element in (C U X)+. So when we consider the prob-
lem of inference in EFS, we need some methods to get more general patterns from a
single pattern or a set of patterns. Many such algorithms have been discovered for
getting common patterns in the area of pattern matching.

The problem we are concerned with is described as follows.

PROBLEM 1: Given a set of strings S = {pl,p2,. . . ,pm), and suppose pi =
ata!. . . aYm(ai E C), return the set Sc0,,, of all their common substrings.

For answering this problem we suppose, without loss of generality, that pl =
a:aT . . . a;' is the shortest and p, = aka;. . . a 2 the longest string in S, and SSP,
is the subset of all the substrings of pl. Then the set Scommm should be a subset of
SSP,. We know that I SSP, I 5 n;.

The following Knuth-Morris-Pratt algorithm [1] [8] solves the problem that given
a pattern p and a text t, answer 'yes' if p occurs as a substring in t, 'no' otherwise,
in time O(m+n), where m is the length of p and n is the length of t .

Algorithm Knut h-Morris-Pratt
input p = ala2 . . . a,, t = tlt2 . . . tn
output ANSWER
begin

i:=l; j:=l
while i < m and j < n do
begin

while i>O and ai f tj do i:=hi
i:=i+l; j:=j+l

end
if i>m then return ANSWER='~~S' else return ANSWER='~O'

end

Using the former Knuth-Morris-Pratt algorithm we can get the following naive
algorithm for solving the PROBLEM 1.

Algorithm Find-Common- String
input S = {pl, p2, . . . , pm}, pi = a:.,' . . . ayyi = 1, . . . , m)
output Scommon

begin
Scommon := 4
for i=l to nl do
begin

for h=i to nl do
begin

j:=1
while j 5 rn do

begin
p:=ai . . . a:; S:=pj
call Knuth-Morris-Pratt(p, s)
if ANSWER='~O' then goto next:
j:=j+l
end

.-
Scommon a- Scommon U {P)

next: end
end

end

Analyzing the time complexity of the Find-Common-String algorithm, we have
the following theorem.

Theorem 2 The Find-Common-String algorithm takes O((s + l)ms2) to solve the
PROBLEM 1, where m is the number of patterns in S, and s, 1 are the lengths of the
shortest and longest pattern in S, respectively.

We see that the shortest and longest patterns in the given pattern set control
the complexity of the problem. We point out that the the shortest pattern also take
an important role in learning EFS languages.

3.2 Inverse Substitutions for Single Ground Term

In inductive learning, generalization mechanism is essential for getting general rules
by generalizing examples. As EFS is a framework for studying formal language, the
examples given in the learning should be some patterns from the desired language.
In order to establish the generalization mechanism in EFS, first we apply the Find-
Common-String algorithm to finding inverse substitutions of a single term which is
to make the term more general.

In a term there may be many places where one of its subterm appears. For
example, consider

Obviously, a is a subterm of r and there are three appearances of term a in r. Hence
when we want to use some other term to replace some particular appearances of a
in r, appointing which of them would be replaced is needed. So giving out concrete
address for each appearance becomes to be necessary. We give the definition here.
From now on we sometimes denote a term by a string.

Definition 12 Let a, r be strings. The address AD&) of a in r is defined as the
following ordered set

where Ii are positive numbers, and Il < I2 < . . . < In. This ordered set means
that there are n appearances of a in r, and I, is the place of the j-th appearance. If
AD,(a) =<>, it means that there are no appearances of r in T.

From [8], we know that 11, 12, . . . , In can be computed by Knuth-Morris-Pratt algo-
rithm in O(I a 1 + 1 r I) time.

Example 4 For the above example, we have

From the former example, we find out that in some case the address ADT(a)
is not executable. In another word it is impossible to substitute all a in ADT(r)
with some other term simultaneously unlike in logic programming. This problem is
special to EFS framework. In the above example, the fourth a in r is also needed
in the second and fourth appearances of a . So when we substitute the second and
fourth a in r with some other string, the substitution will fail. We call this kind
of non-executable contradiction as intra-contradiction since, it just concerns with
a single substring. For dealing with the intra-contradiction we give the following
restricted definition of address.

Definition 13 a, r are strings. a is a substring of r. A disjoint address

of T in r is a subset of ADT(a), which satisfies the following conditions.
(1) 15 j1 < j2 < ... < j m < n
(2) (Iji+l - Iji) 21 a I , for every i = 2, . . . , rn,

where 1 a 1 is the length of string a.

Obviously, there just only one AD&) exists for strings n and r , but many
DAD,(n)s should exist for strings n and 7. An example follows.

Example 5 Consider n=aba, r=aabababbbabab. Then we have

and DAD&) =< 2 >, < 4 >, < 10 >, < 2,10 >, < 4,10 > are disjoint addresses.
< 2,4 > is not a disjoint address, since the fourth a in r is also needed in the second
and fourth appearances of n, which is a contradiction.

We have the following proposition which guarantees the executability of substi-
t ution based on disjoint addresses.

Proposition 1 Let n, r be two strings,and let DAD&) be a disjoint address. Then
any substitution based on DAD,(n) is executable without contradiction.

Proof is trivial.

In the rest of this section, we give the definition of inverse substitution in EFS.

Definition 14 A substitution 0

is a ground substitution if xi are mutually distinct variables, and ri E C+ are ground
terms.

Definition 15 Let t be a term, vars(t) be the set of all the variables appeared in t.
Then the inverse substitution 0-I of term t is defined as the following finite set

where ni are disjoint ground subterm of t, Xi are disjoint variables not in vars(t).

We have succeeded in avoiding the intra-contradiction by introducing the con-
cept of disjoint address. However there still remain another problem. When we
consider the executability of inverse substitution, we must deal with more than one
substrings. A new contradiction may arise when different substrings use the same
characters simultaneously. We call this kind of contradiction an inter-contradiction.
We give the following example for explaining the possible inter-contradiction when
executing inverse substitution.

Example 6 Consider

a1 = aba,n2 = abb, t = aabababbbabab, DAD&) =< 4,10 >, DADt(n2) =< 6 >.

Then the following inverse substitution is not executable.

The inverse substitution makes an attempt on replacing the fourth aba with xl and
sixth abb with 2 2 , but the fourth aba and sixth abb overlap each other with sixth
character a in t. So the attempt turns out a failure.

Definition 16 A n inverse substitution

is called rational inverse substitution if it does not include any inter-contradictions.

About inter-contradiction, immediately we have the following proposition.

Proposition 2 The inverse substitution

is rational if the substrings a, (i = 1, ..., n) have no common characters.

Here we give a necessary and sufficient condition for an inverse substitution to
be executable.

Theorem 3 Giving inverse substitution

here DADt(ai) =< Iz 31' 12 3 2 7 " ') 12 3mi > (i = 1 ,..., n) . Suppose DADt(al ,..., an) =

< I 1 7 . 7 Irnl Irn,+l, . . 7 Imx+rnz, . - 7 Irnl+rnz+--.+rn,-l+l, - 9 Irnl+rnz+...+rn,-l+m, >
is an increasingly ordered set of DADt(al), DADt (a2), . . . , DADt (a,). Inverse sab-
stitution 0-I is rational if and only if DADt (al, . . . , .ir,) satisfies the following con-
dition.

(Ij+l - 1,) 21 a{Ij} I , for every j = 2 , . . . , ml + + + rn,,
where a{Ij} is the .ir, of DADt@,) such that Ij E {Ijl, Ij2, . . . , I! .?mi }.

Note that in the above theorem we can assume that

since if there are two I,, and I, = then it is obviously that we have the
inverse substitution 0-I is not rational.

The above theorem gives us a method to avoid the inter-contradiction when
using inverse substitution.

3.3 Inverse Substitution for a Set of Ground Terms

In the previous section we have given the concept of inverse substitution for a single
term. It is necessary to consider inverse substitution for a set of terms. When
we want to learn some EFS rule from a set of examples(i.e. ground patterns in
C+), it is also necessary to get some more general patterns from these examples for
constructing new EFS rules. In order to get such general patterns, in this section
we introduce a notion of inverse substitution for set of ground terms.

Definition 17 Let S = {pl , p2, . . . , pm} be a set of strings, and sl , s2, . . . , sn be
common substrings in Scommon. Then the inverse substitution 06' for S is defined
as the following finite set

[sn (DADp, (3,) , . ., DADpm (sn))] := xn) 7

where X I , x2, . . . , xn are disjoint variables.

We define the set {s l , s2,. . . , sn) as the substituted set, 1x1, x2,. . . , xn) as the
substituting set of a given inverse substitution 8g1, and denote them by S D S (B ~ ~) ,
SGS(~; ') respectively. Obviously there should be many inverse substitutions for a
set. An example follows.

Example 7 Let S = {pl = aabaabaaabba,pz = bbaaaabaabb),and sl = ab, s2 = ba
be two common substrings of S. Then

are two inverse substitutions for S, and

s0.ij1 [l] = {axlaax2aabba, bx2aaxlaxl b),
S8g1[2] = {aax2xlaaabx2, bx2aaxlaabb).

But

is a bad inverse substitution because it causes contradiction and SO;' is not exe-
cutable.

Definition 18 An inverse substitution is called bad if it causes some contradictions
that make the execution of substitution impossible .

From the theorem 3, we can get the following necessary and sufficient condition
for an inverse substitution not to be bad.

Theorem 4 Suppose S = {pl,p2,. . . ,pm) is a set of strings, sl, ~ 2 , . . . , sn are com-
mon substrings in Scommm. Then the inverse substitution 06'

{['I 7 (DADp, (' I) , . . ., (' I))] := X I

[SZ (DADp, (3 2) . ' 7 (' a))] := ~2

[sn, (DADp, (sn), . - 7 DADpm (sn))] := xn),
is not bad if and only if the following inverse substitutions for single term are all
rational.

3.4 Algorithm for Computing Inverse Substitutions

Now we give a non-deterministic algorithm for computing inverse substitutions of a
ground term set. As pointed out in the previous sections, some inverse substitutions
would cause contradiction, so that these inverse substitutions are not executable. In
order to avoid the creation of this kind of useless inverse substitutions, we suppose
that there is a procedure Check(input : Om'; output : CONTRA) for checking whether
8-I is a bad inverse substitution.

Algorithm Compute-IS
input S = {sl, ~ 2 , . . . , s,), Si = S ~ S ? . . . sY(i = 1 , . . . , rn)
output 0,'
begin

call Find-Common-String(S)
get T = {tl, - tk) C Seammon

ex: for i=l to k step 1 do
begin
for j=l to m step 1 do choose DAD,, (ti)
0,' := 0,' u {[ti, (DADs, (ti), . , DADsm (ti)] := xi)

end
call ~heck(8,')
if coNTRa=yes then goto ex:
output 0,'

end

The algorithm Compute-IS(S) give inverse substitution once at a time non-
determinately. From the Algorithm, we see that choosing the DADsj (ti) is non-
determinate.

Example 8 Let S = {pl = aabaabaaabba,p2 = bbaaaabaabb). Then using the
Find-Common-String algorithm we get ScoMMoN = {a, ab, ba, aba, abb, bba, . . .).
Also let T=ab, ba. Then by executing the algorithm, we get the following inverse
substitutions.

0,'[l] = {[ab,(< 2 >,< 6,9 >)] :=xl,[ba,(< 6 >,< 2 >)] := x2),
8g1[2] = {[ab, (< 5 >, < 6 >)] := XI, [ba, (< 3,11 >,.< 2 >)] := x2),
0g1[3] = {[ab, (<>, < 6 >)] := XI, [ba, (< 6 >, < 2 >)] := x2),
0g1[4] = {[ab, (< 5 >, < 6 >)] := xl, [ba, (< 3 >, o)] := x2)

4 An Non-determinist ic Algorithm for Learning
OSL Languages

In this section we will use the inverse substitution defined in the previous section to
introduce some operators for generating new rules. Here we introduce an absorption-
like operator which learns rules from ground examples of the desired language. Using
it we give an algorithm for learning some EFS languages.

4.1 Operator GROUND-ABS

Figure 1: one step resolution

Figure 1 is just one step resolution that C is derived from a ground example Cl and
a clause C2 with one predicate symbol in its body. We can write it as the following
formula.

where L1 is a positive literal in Cl, L2 is a negative literal in Cz, and GO1 = Lz02.
We construct an operator GROUND-ABS(C, Cl) to perform the inverse of Fig-

ure 1. It inversely derives clause C2 from clauses C and Cl. Formula (1) can be used
to compute clause C based on the selection of substitutions O1 and 02. For com-
puting C2 from formula (I) , we can use the concept of inverse substitution defined
in the previous section. Next we consider a special case to construct GROUND-
ABS(C, Cl).

Let C and Cl be ground unit clauses. Then $1 is empty set, Cl = L1. From
formula (I) , we can get following formula for C2.

where 8,' is a inverse substitution of 0 2 . Using L2 = K0;l to replace L2 in formula
(2), we can get the following formula (3).

C2 = (C U {G})O;l (3)

Since there may be a lot of inverse substitutions of $2 , the computation of O2 is
non-deterministic. We call the formula (3) as GROUND-ABS({C, GI}). In the next
section we consider algorithm to compute it.

Example 9 Suppose
C = p(bbcc) +-,
c1 = p(bc) +,
L1 = p(bc),

and the following inverse substitution of $2 is chosen.

Then according to formula (3), we get

C2 = GRO UND-ABS({C, Cl }) = (C U {K})O,'
= (p(bbcc) +- p(bc))8,1 = p(bxc) +- p(x).

Hence, using the operator GROUND-ABS(S), we can learn a rule from ground ex-
amples.

4.2 Algorithm for Computing GROUND-ABS

In the previous section, we have given the rule-generating operator GROUND-
ABS(S) which learns some rules from an example set S. From the formula (3) we
know that the main problem for computing GROUND-ABS(S) is how to compute
the inverse substitution 8,'. In this section, we give a general algorithm for com-
puting GROUND-ABS (8).

Suppose S is a given set of ground terms. We consider algorithm for computing
GROUND-ABS(S). For convenience, we assume that there is a procedure GET-
STRING(S) to return us a string in S. Since GROUND-ABS(S) is one step inverse
resolution, we can assume that the substituted set of 6;' computed by Compute-
IS(S) has just one term. We have the following non-deterministic algorithm.

Algorithm General
input S = {pl, pz, . . . , p,), pi = pip: . . . py (i = 1, . . . , n)
output CLAUSES

begin
call Compute-IS (S)
n-=GET-STRING(S)
get SDS(B,~) = {t); SGS(O,~) = {x)
create T = ~ { [t , DADT(t)] := x)
create clause p (~) +- p(x)
output CLAUSES={~(T) +-p(x),

~ (t) +I
end

Algorithm General(S) computes operator GROUND-ABS(S), and returns us a
set of clauses. The execution of algorithm General(S) is non-determinate since it
call procedure Compute-IS(S) to compute an inverse substitution for S.

Example 10 Suppose S={bc, bbcc, bbbccc, bbbbcccc), and the inverse substitution

is computed by algorithm Compute-IS(S). Getting n- = bbcc, then

T = ~{[bc , DAD,(bc)] := x) = bxc,

then we get the output

CLAUSES = {p(axc) + p(x),p(bc) +).

The above algorithm General(S, CLAUSES) also gives us a non-deterministic method
to learn an one-side linear EFS language from a given example set, though there
are so many non-deterministic features and some key examples should be included
in the example set. In the next section we will consider how to deal with these
intractabilities by introducing some bias to our language classes.

4.3 Repetition-reducing Operators

If a grammar generates infinite language, then it necessarily includes some repetitive
structures. It is the case for our EFSs.

When we consider learning of EFS languages, some examples of the desired
language will be given.

By observing and analyzing the examples, we should be able to find out the
features that the desired language has. This is what we call an intellectual activity,
and in general it is a difficult activity even for us human being. If we want to make
our learning system able to do such an activity, some mechanisms for discovering
this kind of features from the known examples should be given to the system. Before
we can teach the method to the system, first we should understand the spirits of
the method. In this section we consider such repetitions as a key point for learning
EFS languages. We give a repetition-reducing operator which helps our system
to analyze the given examples to find out the repetitive part for constructing the
desired grammars. First we give definitions of two kinds of repetitions about terms.

Definition 19 Given term a. The subterm r with place < i > of a is said to have
a global repetition i n a i f term rr is also in a and has < i > or < i- 1 r I> as its
place in a. If a = rr r for several r , we say that a is a complete global repetition
of r.

Definition 20 Given term a. The subterm r = rlr2 with place < i > of a is said
to have a partial repetition in a if term rlr1r2r2 is also in a and has < i- (r1 (>
as its place in a.

The above two kinds of repetitions are different inherently. We give examples
to describe the above definitions of global and partial repetitions.

Example 11 Suppose a = ababab. r = ab is a subterm of n with place < 3 >.
Then r has a global repetition i n a since rr = abab with place < 1 > is also i n a.
From the definition we see that each of the three place's ab has a global repetition i n
a but has no partial repetition.

Example 12 Suppose a = aaabbb. r = ab, here 1-1 = a and 7 2 = b, is a subterm
of a with place < 3 >. Then r has a partial repetition in a since Tlqr272 = abab
with place < 2 > is also in a. From the definition we see that r = ab has no global
repetition in n.

Note that there may happen a case where two kinds of repetitions exist simul-
taneously in a term with respect to the same subterm or different subterms.

Now we introduce the following operators, called a repetition-reducing operator,
which reduce the repetition of some subterm from the given term. According to the
classification of repetitions above we have the following two kinds of repetition-
reducing operators.

Definition 21 Given term a. Suppose subterm r with place < i > of a has a global
repetition in a. W e define the G-operator which makes the global repetition rr in
place < i > or < i- I r I> to just a single r in T.

Definition 22 Given term a . Suppose subterm r = 7172 with place < i > of a has
a partial repetition i n a . W e define the P-operator which makes the partial repetition
7171r2?-2 in place < i- 1 rl I > to 7 1 7 2 i n a .

Next we will consider the problem of how to find out the repetition subterms in
a given particular term. Our purpose is, through analyzing the repetition subterms
of the given examples, to get some hints for learning the EFS(grammar) which
generates our desired language. That is, the learned EFS(grammar) can explain all
the given examples and give expectation to the future results of experimentations.

Given any term a, and any one of its subterm r . The address
AD,@) =< 11, 12, . , In >

gives the all appearances of r in a with their places in turn. We are interesting in
the appearances which are repetitions in the term a. First we should check out the
appearances which have a global or partial repetition in the given term a . We give
the following algorithm which checks out the repetition appearances of the subterm
r in a. For convenience we give the following notations.

Definition 23 Given term a = ala2 a,. W e use a(i, k) to denote the subterm
aiai+l ai+k-l of a starting from ai with length k. If i is less than 1 then a(i , k)
is defined as ala2 . . ak, and if i + k - 1 is greater than n then a(i, k) is defined as
UiUi+l . . a,.

Now we give the following procedure to check the repetition.

Procedure RE-CHECK
input: term a , one of subterms r of a and AD,(r) =< 11, 12,. . . ,In >
output: a subset of RE-AD&) of AD&)
begin
for i=l to n do
begin

(global repetition check)
i fa(i ,2* Ir I) = r r ora(i - I T 1,2* I T 1) = r r then
RE-AD&-) =RE-AD&) + {i)
else

(partial repetition check)
for j=l to 1 r 1 do
if ~ (1 , j) r (l , j) r (j + 1, I 7- I -Mj + 1, I I 3)

= a(i- I r(1, j) 1,2* 1 r 1) then
RE-AD&) =RE-AD&) + {i)

end
output RE-AD, (r)
end

RE-AD&) gives all the possible repetition subterms and their places that
should be considered as the candidates of the repetitive parts of the desired rules.
For fixing which are the real repetition, some other additional information is needed.
We will reduce our language classes to make the fixing easy.

5 Learning Restricted OSL Languages
In this section, we consider learning of the restricted one-side linear(R-OSL) lan-
guages.

Learning the axioms r of an EFS to define the desired language just from giving
examples should be the most primitive and natural setting of learning language.
The learnt EFS should be able to explain all the given examples. There are a lot of
learning systems in use of background knowledge. In this paper we do not use such
background knowledge but just use the given examples in the desired language from
the restricted one-side linear language class. We may just consider the case of right-
linear languages, because the left-linear languages are equivalent to the right-linear
one.

From the definition of R-OSL EFS languages, the repetition feature can easily
extracted from the given examples. Since the restricted one-side linear EFSs have
at most one clause with the same predicate symbol in both head and body, the
essential parts of repetition in the given examples of R-OSL language should appear
in just one place.

We need some notations before we introduce the algorithm Suppose L is the R-
OSL EFS language that we want to learn. Given alphabet E, and a set of examples
EX(L) is a subset of L. The algorithm produces a set of clauses r. II is the predicate
symbols used in I?. Predicate symbol p is a special one in IT. We give the following
definition.

Definition 24 Let S = (C , II,r) Then language L(S, p) is called a proper EFS
language for L i f the following holds.

There should be many proper EFS languages for a given EX(L). The following
algorithm gives us an output which is a proper EFS language for the desired language
L. The algorithm learns the desired language using some bottom-up like method to
avoid unnecessary over-generalization to lead to trivial EFS languages. For giving
EX(L), we suppose s is the shortest example in EX(L). Since the desired language
is in restricted OSL EFS class, the real repetition part should be a substring of all
elements in EX(L). We define a series of string sets based on s and EX(L).

Definition 25 Given example set EX(L) and the shortest string s i n it. W e define
EX@) as following from s and EX(L).

EX1(L) = {t I r E EX(L), t is the tail of r deleting s(1, 1) from the leftmost of r }

Generally we have the definition of EXk(L)(l 5 k 51 s I) as

EXk(L) = {t I r E EX(L), t is the tail of r deleting s(1, k) from the leftmost of r}.

Similarly we have the definition of E X k (~) (l 5 k <I s I) as follows.

E X ~ L) = {t I r E EX(L), t is the head of r deleting s(l s I -k + 1, k) from the
rightmost of r}

The main task that the algorithm should do is how to find out the repetition part
from the given EX(L). We will utilize the set series of EXk(L) and E X k (~) to help
finding out the repetition place. We define EXo(L) = EXo(L) = EX(L).

Definition 26 Suppose E X is a set of strings and s is a single string. If every
element i n E X is a complete global repetition of s, we say that set E X is a complete
global repetition set of string s. W e denote the complete global repetition as CGR.

Algorithm M A I N
input: example set EX(L) of desired language L
output: clause set I? s.t. L(S, p) is proper for L, where S = (C, H, I?) and

p is a predicate symbol in r
begin
set I' = a; select string s as the shortest one in EX(L)
for k=O to 1 s 1 do
begin

create EXk(L);
for i=O to 1 s 1 do

begin
create EX; (L);
check s(k + 1, I s I -k - i) and EX;(L)
if EXi(L) is a complete global repetition set of s(k + 1, I s I -k)
then do

begin
create clauses

CI =pl(s(l s I - i + l , i) t
C2 = p2(s(k + 1, I s I -k - i)x) t p,(x)
C3 = ~ 2 (s (k + 1) I s I -k - i)x) t p2(x)
C4 = ~ (~ (1 7 k)x) + p2(x)

add CI, c 2 , c3, c4 to r
output I" goto exit
end

end
end
exit :
end

We have the following lemma to guarantee that the learnt EFS is a proper EFS
language of the desired language.

Lemma 2 The MAIN algorithm computes a proper EFS language for any restricted
one-side linear EFS language by giving an example set including the shortest example
of the desired language .

Our criterion of successful learning, i.e. the properness, is very weak, and hence there
may allow undesired ones. But the EFS language learnt by MAIN is considerably a
good EFS for the desired language.

We give some concrete executing examples of algorithm MAIN.

Example 13 Suppose the desired language L is ab{aba}+bba E R-OSL-EFS, and
the given example set is

E X (L) = {abababba, ababaabaababba, ababaabaabaababba, ababaabaabaabaababba).

W e trace the execution of MAIN to learn the EFS language for L.

step 1: set I' = a, select s=abababba. k =(s I= 8.
step 2: k=O: create E X o (L) = E X (L) =

{abababba, ababaabaababba, ababaabaabaababba, ababaabaabaabaababba}.
i=O: create EX:(L) = E X (L) =

{abababba, ababaabaababba, ababaabaabaababba, ababaabaabaabaababba).
check EX:, a CGR of s (l , 8) = abababba ?no

i=l: create EX,'(L) =
{abababb, ababaabaababb, ababaabaabaababb, ababaabaabaabaababb}.

check EX,', a CGR of s (l , 7) = abababb ? no
check as above, case of i=2, 3, 4, 5, 6, 7, 8 return no

step 3: k=l: create E X l (L) =
{bababba, babaabaababba, babaabaabaababba, babaabaabaabaababba}.

do the same for i=O to 8, the answers are all no
step 4: k=2: create E X 2 (L) =

{ababba, abaabaababba, abaabaabaababba, abaabaabaabaababba}.
for i=O, 1, 2, the answers are all no
i=3: create E X i (L) =
{aba, abaabaaba, abaabaabaaba, abaabaabaabaaba}.

check E X i (L) , a CGR of s(3,5) = aba ? yes
step 5: create clauses

Cl = pl(s(1 s I -i + 1 , i) +-= pl(bba) +-

C2 = p , (s (k + l , I s I - k - i) x) + - P I (~) =pz(abax) +-p l (x)
C3 = p2(s(k + 1, I s I -k - i) x) +- p2(x) = p2(abax) +- p2(x)
C4 = ~ (~ (1 7 k) x) +- p,(x) = p(abx) +- P ~ (x)

step 6: addCl,C2,C3,C4 to I'
step 7: output I' and terminate the execution

W e get the following EFS S = (C , II, I') with

r = p2 (abax) +- p, (x) ,
p2 @ax) +- p1 (x),
p1(bba) +-

W e have E X (L) c L (S , p) = { a E C+II' t ~ (a)) .

Example 14 Suppose the desired language L is {a3" I n > 1) E R-OSL-EFS.
Obviously for an EFS S = (C , TI, I') with

L (S , p) i s a trivial proper ~ F S language for L.
Suppose the given example set is

E X (L) = {aaa, aaaaaaaaa, aaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaa).

We trace the execution of MAIN to learn the EFS language for L.

step 1: set r = @, select s=aaa. k =I s (= 3.
step 2: k=O: create EXo(L) = EX(L) =

{aaa,aaaaaaaaa,aaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaa}.
i=O: create EX;(L) = EX(L) =

{aaa, aaaaaaaaa, aaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaauaaaa} .
check EX:, a CGR of s(l,3) = aaa? yes

step 3: create clauses
Cl =pl(s(l s I -i+l,i) +=pI(c) +

C2 = p2 (s(k + 1, I s I -k - i)x) + pl (x) = p2 (aaax) + pl(x)
C3 = p2 (~(k + 1, I s I - k - i)x) +- p2 (x) = p2 (aaax) + p2 (x)
C4 = ~(~(17 k)x) + P~(x) = P(X) + PZ(X)

step4: addCl,C2,C3,C4 tor
step 5: output and terminate the execution

We get the following EFS S = (C, II, I?) with
P(X) + P~(x),
p2(aaax) + p2 (x), P(X) + p2 (4,

r=
~2 (aaax) + p1 (x) , p2 (aaax) + p2 (2)

PI(€) +

p2(aaa) +

We have EX(L) c L(S,p) = {a E C+(r I-- ~(0)).

We give one more example.

Example 15 Suppose the desired language L is I n 2 1) E R-OSL-EFS.
The desired EFS for L is S = (C, ll, I?) with

p(aax) + P~(x),
~l(aax) + P~(x)
pl(a) +

Suppose the given example set is

EX (L) = {aaa, aaaaaaaaa, aaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaa}.

We trace the execution of MAIN to learn the EFS language for L.

step 1: set r = Q, select s=aaa. k =I s I= 3.
step 2: k=O: create EXo(L) = EX(L) =

{aaa, aaaaaaaaa, aaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaa}.
i=O: create EX;(L) = EX(L) =

{aaa,aaaaaaaaa,aaaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaaa}.
check EX:, a CGR of s(l,3) = aaa? yes

step 5: create clauses
CI = pl(s((s (-i + 1, i) += pl(t) +

C2 = ~2(s(k + 1, I s I -k - i)~) + pl (x) = p2(aaax) + pl(x)
c3 = p2(s(k + 1 7 I s I -k - 2) ~) +p2(x) =p2(aaax) +- pz(x)
C4 = p(s(l, k)x) + p2(x) = p(x) + p2(x)

step 6: addCl,C2,C3,C4 tor
step 7: output F and terminate the execution

We get the following EFS S = (C, II, I?) with

Although it is not the desired one we want, we have EX(L) c L(S,p) = {a E

C F pa)}. That is, MAIN learns an EFS language that can explain all the
known examples. The reason that MAIN did not compute the desired one is in the
lack of examples for the learning. So we add some new examples to MAIN and run
MAIN again. Then we get the desired E W language for L in the following way.

Suppose the given example set is

EX(L) =
{aaa, aaaaa, aaaaaaa, aaaaaaaaa, aaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaa).

We trace the execution of MAIN to learn the EFS language for L.

step 1: set I? = @, select s=aaa. k = I s I= 3.
step2: k=O: createEXo(L)=EX(L)=

{aaa, aaaaa, aaaaaaa, aaaaaaaaa, aaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaa}.
i=O: create EXt(L) = EX(L) =

{aaa, aaaaa, aaaaaaa, aaaaaaaaa, aaaaaaaaaaaaaaa, aaaaaaaaaaaaaaaaaaaaa).
check EX:, a CGR of s(l,3) = aaa? no

i=l: create EX;(L) =
{aa,aaaa,aaaaaa,aaaaaaaa,aaaaaaaaaaaaaa,aaaaaaaaaaaaaaaaaaaa}.

check EX;, a CGR of s(l,2) = abababb? yes
step 3: create clauses

Ci = pi(s(1 s I -i + 1, i) += pl(a) +

c2 = p2(s(k + 1 7 I I -k-i)x) +pi(x) =pa(aax) -pl(z)
C3 = ~2(s(k + 1, I s I -k - i)x) +- p2(x) = p2(aax) t p2(.)
C4 = ~(~(17 k)x) - p2(x) = p(x) - p2(x)

step 4: addC1,C2,C3,c4 tor
step 5: output and terminate the execution

We get the following EFS S = (C, II, T) with
(P(X) - ~2 (4 7 I

6 Conclusion and Discussion
We discussed the inverse resolution in the framework of EFSs(e1ementary formal
systems). In EFS, there are no auxiliary symbols like a pair of parentheses in the
ordinary logic programming languages, or more exactly the terms in EFS framework
are just defined as patterns of symbols and variables. This gives rise to a lot of
difficult and intractable problems when we discuss inverse resolution on EFS. In this
paper, we have pointed out that these problems can be captured by the concepts of

the intra- and inter-contradictions in the inverse substitutions, and given a method to
avoid these contradictions. Based on the method we have given a non-deterministic
algorithm to compute some classes of EFS languages.

We also considered an efficient learning algorithm for a small class of EFS
languages called a restricted EFS language class. The algorithm can compute an
EFS for any desired language in the class just by using examples in the language but
not using any background knowledge or oracle's help. It uses a kind of bottom-up
mechanism to avoid over-generalization.

This paper considered the learning of a relatively small EFS language class.
Using it as a basis, the larger language classes will be considered using a hierarchical
learning concept as we discussed in 1231.

References

[I] A.V. Aho (1990) : Algorithms for Finding Pattern in Strings. in J . van
Leeuwen(managing editor) : Handbook of Theoretical Computer Science, Vol-
ume A, Algorithms and Complexity, Elsevier Science Publishers B .V., 1990, pp.
256-300.

[2] A.V. Aho, J.E. Hopcroft and J.D. Ullman (1974) : The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, Mass.

[3] D. Angluin (1980) : Finding Pattern Common to a Set of Strings. Journal of
Computer and System Sciences, 21: pp. 46-62, 1980.

[4] D. Angluin and C.H. Smith (1983) : Inductive Inference : Theory and Methods.
in ACM computing Surveys 15, 237-269.

[5] S. Arikawa (1970) : Elementary Formal Systems and Formal Languages-Simple
Formal Systems. Memories of Fac.Sci., Kyushu Univ. Ser. A., Math. 24: pp.
47-75, 1970.

[6] S. Arikawa, T. Shinohara and A. Yamamoto (1989) : Elementary Formal Sys-
tem as a Unifying Framework for Language Learning. In Proceedings of the
Second Annual Workshop on Computational Learning Theory(COLT'89), pp.
312-327.

[7] E. Gold (1967) : Language Identification in the Limit. Inform. and Control 10,
pp. 47-474.

[8] D.E. Knuth, J.H. Morris and V.R. Pratt (1977) : Fast Pattern Matching in
Strings. SIAM J . Comput. 6(2), 1977, pp. 323-350.

[9] P.D. Laird (1988) : Learning from Good and Bad Data. Kluwer Academic Pub-
lishers, 1988.

[lo] X. Ling (1989) : Inventing Theoretical Terms in Inductive Learning of Func-
tions - Search and Constructive Method. In Z.W. Ras, editor, Methodologies
for Intelligent Systems, 4, pp. 332-341. North-Holland, October, 1989.

[ll] X. Ling (1989) : Learning and Invention of Horn Clause Theories - a Con-
structive Method. In Z. W. Ras, editor, Methodologies for Intelligent Systems,
4, pp. 323-331. North-Holland, October, 1989.

[12] S. Muggleton (1987) : Duce, an Oracle Based Approach to Constructive Induc-
tion. In IJCAI-87, Kaufmann, pp. 287-292.

[13] S. Muggleton and W. Buntine (1988) : Towards Constructive Induction in first-
order predicate calculus. Turing Institute Working Paper.

[14] S. Muggleton and W. Buntine (1988) : Machine Invention of First-Order Pred-
icates by Inverting Resolution. In Machine Learning 5 , Kaufmann, pp. 339-352,
1988.

[15] S. Muggleton and C. Feng (1990) : Eficient Induction of Logic Programs. In
Proceedings of the First Conference on Algorithm Learning Theory, Ohmsha,
Tokyo, 1990.

[16] J.R. Quinlan (1991) : Determinate Literals in Inductive Logic Programming.
In proceedings of the Eighth International Workshop on Machine Learning,
Ithaca, New york, 1991, Morgan Kaufmann.

[17] Y. Sakakibara (1989) : On Learning Elementary Formal Systems: Towards an
Eficient Learning for Context-Sensitive Languages. Research Report 97, IIAS-
SIS, FUJITSU LIMITED, 1989.

[18] T. Shinohara (1990) : Inductive Inference from Positive Data is Powerful. In
Proceedings of the Third Annual Workshop on Computational Learning The-
ory(C0LT790), pp. 97-110.

[19] R. Wirth (1988) : Learning b y Failure to Prove. in Proceedings of the Third
European Working Session on Learning, Biddles Ltd, Guildford and King's
Lynn, 1988.

[20] R. Wirth (1989) : Completing Logic Programs by Inverse Resolution. in Pro-
ceedings of the Fourth European Working Session on Learning, Pitman, Morgan
Kaufmann, 1989.

1211 A. Yamamoto (1989) : Elementery Formal System as a Logic Programming Lan-
guage. Technical Report RIFIS-TR-CS-12, Research Institute of Fundamental
Information Science, Kyushu University.

[22] C. Zeng and S. Arikawa (1991) : Suficiency of Operators Identification and
Inter-construction in Inverting Resolution. Bulletin of Informatics and Cyber-
netics, Vol. 24, No. 3 ~ 4 , 1991.

[23] C. Zeng (1991) : Inductive Learning with Inverse Resolution. master thesis,
Kyushu University (in Japanese).

