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Abstract. The Vapnik-Chervonenkis (VC) dimension is known to be the 
crucial measure of the polynomial-sample learnability in the PAC-learning 
model. This paper investigates the complexity of computing VC-dimension 
of a concept class over a finite learning domain. We consider a decision prob- 
lem called the discrete VC-dimension problem which is, for a given matrix 
representing a concept class 3 and an integer K, to determine whether the 
VC-dimension of 3 is greater than K or not. We prove that (1) the dis- 
crete VC-dimension problem is polynomial-time reducible to the satisfiabil- 
ity problem of length J with 0(log2 J) variables, and (2) for every constant 
C, the satisfiability problem in conjunctive normal form with m clauses and 
C log2 m variables is polynomial-time reducible to the discrete VC-dimension 
problem. These results can be interpreted, in some sense, that the problem 
is "complete" for the class of no(logn) time computable sets. 

1 Introduction 

The PAC learnability due to Valiant [8] is to estimate the feasibility of learning a 
concept probably approximately correctly, from a reasonable amount of examples 
(polynomial-sample) , within a reasonable amount of time ( polynomial-time) . It is 
well-known that the Vapnik-Chervonenkis Dimension (VC-dimension) which is a 
combinatorial parameter of a concept class plays the key role to determine whether 
the concept class is polynomial-sample learnable or not [2, 3, 51. 

This paper settles a complexity issue on VC-dimension of a concept class over a 
finite learning domain. We remark that the complexity of computing VC-dimension is 
of independent interest from the polynomial-time learnability, since it is not directly 
related to the running time of learning algorithms. 

Linial et al. [3] showed that the VC-dimension of a concept class over a finite 
learning domain can be computed in n0(logn) time, where n is the size of a given 
matrix which represents the concept class. Nienhuys-Cheng and Polman [6] gave 
another n0(l0gn)-time algorithm, although they have not analyzed its running time. 
On the other hand, Linial et al. [3] pointed out that the decision version of the 
problem called the discrete VC-dimension problem may have some connection with 
the problem of finding a minimum dominating set in a tournament, which is shown 
by Megiddo and Vishkin [4] to be a kind of "complete" problem for the class of 
n*(log "1 time computable sets. 

Along this line, we show that the discrete VC-dimension problem is also "com- 
plete" for the class of no(logn) time computable sets in the same sense. That is, 



we give the following two reductions: (1) The discrete VC-dimension problem is 
reducible in polynomial time to the satisfiability problem of a boolean formula of 
length J with 0(log2 J) variables. (2) On the other hand, for every constant C ,  
the satisfiability problem in conjunctive normal form with m clauses and C log2 m 
variables is polynomial-time reducible to the discrete VC-dimension problem. There- 
fore we can interpret that the discrete VC-dimension problem is one of the natural 
problems which seem to be neither NP-complete, nor in P .  

2 Preliminaries 

For a matrix M,  let Mij denote the element on row i and column J' of M ,  and the size 
of M is the number of elements in M. The length of a boolean formula $, denoted 
by 1 $ 1 ,  is the total number of variable occurrences in $. For a boolean formula $, we 
denote [$, 11 = $ and [+, 01 = 7$. For any integers i > 1 and t > 1, let b(i, t) denote 
the t-th binary digit of (i - I) ,  that is, i = '' 2t-1 - b(i, t)  + 1. For example, 
b(7,l) = 0, b(7,2) = 1, and b(7,3) = 1. 

Let U be a finite set called a learning domain. We call a subset f of U a concept. 
A concept f can be regarded as a function f : U -, (0, I ) ,  where f (x) = 1 if x is in 
the concept and f (x) = 0 otherwise. A concept class is a nonempty set F E 2U. We 
represent a concept class F over a finite learning domain U, by a IUI x IF1 matrix 
M with Mij = fj(xi). Each column represents a concept in F. For a (0,l)-valued 
matrix M ,  let FM denote the concept class which M represents. 

Definition 1. We say that 3' shatters a set S U if for every subset T C S 
there exists a concept f f F which cuts T out of S, i-e., T = S n f .  The Vapnik- 
Chervonenkis dimension of F ,  denoted by VC-dim(F), is the maximum cardinality 
of a set which is shattered by F .  

Lemma 2. [5] For any concept class F ,  VC-dim(F) 5 log 13-1. 

By this lemma, Linial et al. [3] immediately claimed that a simple algorithm which 
enumerates all possible sets to be shattered shall terminate in n0(l0gn) time, where 
n is the size of a given matrix. 

Definition 3. [3] The discrete VC-dimension problem is, given a (0, 1)-valued ma- 
trix M and integer K 2 1, to determine whether VC-dim.FM > K or not. 

Definition4. [4] The classes SATlog* and  SAT,",!?^ for k > 1 are defined as 
follows: 

(1) A set L is in SATlogkn if there exists a Turing machine M ,  a polynomial p(n), 
and a constant C,  such that for every string I of length n, M converts I within 
p(n) time into a boolean formula PI (whose length is necessarily less than p(n)) 
with at most C logk n variables, so that I E L if and only if PI is satisfiable. 

(2) The definition of SAT,",!F~ is essentially the same as that of SATlOg~, except 
that the formula PI is in conjunctive normal form. 

From the definitions, it is easy to see that for each k > 1, 

SATlog*, NP. 



3 Discrete VC-dimension Problem is in SATl,,z, 

In this section, we show that the discrete VC-dimension problem is polynomial-time 
reducible to the satisfiability problem of a boolean formula of length J with 0(log2 J )  
variables. 

Theorem 5. The discrete VC-dimension problem is  in SATog2 , . 

Proof. Let M be an m x r matrix and K be an integer. By Lemma 2, we can assume 
that K 5 log r without loss of generality. Moreover, we can also assume that m = 2' 
for some integer 1; if m < 2' for l = [log ml ,  then we enlarge M by duplicating the 
last row of M until the row size reaches 2'. It is easy to see that the size of the 
enlarged matrix M' is less than twice as large as that of the original matrix M ,  and 
VC-dim(&!) = VC-dim(FM). 

We now construct a boolean formula PM which contains K.1 variables vkt (1 5 
k < K,  1 5 t 5 1)  as follows: 

Note that the length of !i?~ is 

where n = m . r is the size of the given matrix M. Also note that PM can be 
constructed in polynomial time with respect to n. 

Let U = {xl, 2 2 ,  . . . , x,) be the learning domain and FM = {Ifi, f2, .  . , f,) 2u 
be the concept class which M represents. We will show that the formula PM is 
satisfiable if and only if FM shatters a set S C U of cardinality K. 

For a formula $ and a truth assignment a to the variables of $, let a($) denote 
the truth value of q!~ evaluated under a. We denote truth values by 0 and 1. For each 
assignment a ,  we define a set S, C U as follows: 

1 

= {x (u ,~ )  I 1 5 k 5 K),  where (a, k) = 2t-1.a(vkt) + 1. 
t=l 

It should be noticed that the cardinality of S, is not always equal to K ,  since there 
may be two distinct kl and k2 with (a, kl) = (a, k2) in general. 

We now show through a sequence of equivalences that an assignment a satisfies 
PM if and only if IS, I = K and S, is shattered by FM.  



First, for any k E (1,. . . , K )  and any i E (1,. . . , m), 

a($ki) = 1 

a a([vkt, b(i, t)]) = 1 for each t E (1,. . . ,l} 

1 i f b ( i , t ) = l  = for each t E (1,. . . ,1) 0 ifb(i , t )=O 

a b(i, t )  = a(vkt) for each t E {I, . . . , 1 )  
1 1 

Next, for any k E (1,. . . , K )  and any j E (1,. . . , r ) ,  

a(akj) = 1 

e a ( $ k i )  = 1 and Mij = 1 for some i E (1, . . . , m) 
a i = (a, k) and xi E f j  

For an integer s E {I,.  . . , 2K), the s-th subset s!] of S, is defined by s!] = 

{z(,,~) I b(s, k) = 1, 1 < k < K). For example, SF1 = 0, SF1 = {x(,,,)} and 
[GI - S, - {x(,~,), x ( , ~ ~ ) ) .  Then, for any s E (1, . . . , 2K) and any j E (1, . . . , r ) ,  

~ ( P s j )  = 1 
a ~ ( [ a k j ,  b(s, k)]) = 1 for each k E (1,. . . , K )  

1 if b(s,k) = 1 
( ~ = j  a(akj)  = for each k E (1,. . . , K} 

0 if b(s,k) = 0 

x(,,k) E f j  if b(s, k) = 1 a for each k E (1, ... , K )  

{x(,,k) I b ( ~ ,  k) = 1, 1 5 k < K )  C f j  and 

{ ~ ( * , k )  1 b(s,k) = 0, 15 ,I < K} G U - f j  

So n f j  = St] and 

b(~~iE.1) # b(s, k2) implies (a,kl) If (a,k2) for any kl, k2 E {I , .  . . , K}. 

Finally, we get the following equivalence: 

a(@M) = 1 
T 

o(V Psi) = 1 for any s E (1,. . . ,2K) 
j=1 

a for each s E (1,. . . ,2K), 

there exists f j  E FM with S, n f j  = SE~ and 

b(s, kl) # b(s, k2) implies (a, El) # (a, k2) - kl # k2 implies (a, kl) If (a, k2), and 

for each s E (1, . . . , 2K} there exists f j  E FM with S, n f j  = St] 
IS, 1 = K and S, is shattered by FM 



Thus the formula PM is satisfiable if and only if VC-dimFM 2 K.  

4 Discrete VC-dimension Problem is SA~$?'-hard 
This section shows that every set in sAT:tFn is reducible to the discrete VC- 

dimension problem in polynomial time, i.e., the problem is ~ ~ T E y $ ~ - h a r d .  

Theorem 6. Every L E S A ~ ~ T ~  is polynomial-time reducible to the discrete VC- 
dimension problem. 

We use the following lemma in the proof of Theorem 6. 

Lemma 7. Let F be a concept class over a learning domain U ,  and S be a subset of 
U with IS1 = d 2 2. If S is shattered by F, then for any two distinct x and y in  S, 
the number of concepts which contain exactly one of either x or y is at least 2d-1, 
z.e., 

Proof. Let FZy = {f E F I f (x)  = 0, f(y) = I), and Fxg = {f E F I f(x)  = 
1, f(y) = 0). Then {f E F I f(x) # f(y)} = F E ' , , U F x g 7  and Fz,nFxg = 0. It is 
easy to see that if S is shattered by F then the set S - {x, y ) is shattered by both 
FEY and Fxg By Lemma 2, IS - {x, y)l 5 log IFZy[ and IS - { x ,  y)l 5 log lFxgl. 
Thus lFZyl 2 2d-2 and lFxgl 2 zdm2, which yield l{f E F I f(x) # f(y)}l = 
IFz,I + IFxgl 2 2d-2 + 2d-2 = 2d-1. 

Proof of Theorem 6. Let L E  SAT,",^$^. Then there is a constant CL and a poly- 
nomial pL(n) such that every string I of length n can be reduced in pL(n) time 
to a boolean formula in conjunctive normal form with at most CL log2 n variables, 
whose satisfiability coincides with the membership I E L. Therefore we have only 
to show that, for any C,  there is a polynomial-time reduction from the satisfia- 
bility problem in conjunctive normal form with at most Clog2n variables to the 
discrete VC-dimension problem. Let 9 = El A - - A E, (m 2) be a boolean 
formula where each Ei is a disjunction and the total number of distinct variables 
occurring in 9 is not greater than C log2 m. Without loss of generality, we can as- 
sume that m is a power of 2. We can also assume that the number of variables 
is exactly C log2 m, and let us rename them, for convenience, with double indices 
vst (1 < s < logm, 1 < t < Clogm). We first construct a matrix which 
has (mC + 1) logm rows and m2 + m(1ogm - 1) columns, and then prove that 
VC-dim(FMIli) = 2 log m if and only if 9 is satisfiable. 

The learning domain 77 corresponding to 9 is defined as U = X U Y  with X n Y  = 
0, where Y = {y, I 1 5 u < logm) and X = {xSl I 1 5 s < logm, 1 5 1 5 
mC). Let X, = { x S r  E X I 1 < 1 < mC) for each s E { l , . .  . ,logm), and let 
xik] = U X, for each k E {I , .  . . , m). The i-th subset Y [ ~ ]  of Y is defined by 

s~{slb(k,s)=l} 
Yii] = {y, E Y I b(i ,u)  = 1) for each i E {I, ..., m). 

The concept class F 2u is defined as the union of distinct subclasses Fl , . . . , F, , 
and G. Here, the structure of G depends only on the number m: 



Fig. 1. Structure of the matrix MP reduced from a boolean formula P = El A Ez /\ . - A E8 
with C = 1. In this case, K = 21og8 = 6. The only elements marked '*' depend on the 
structure of each clause Ei in P. 

On the other hand, each concept in Fi reflects the structure of the clause Ei in P: 

Fi = {fij 11 5 j 5 logm}, where f i j  = yLi] U ( X  - Xj) uX;(Ei )  with 

Figure 1 illustrates the structure of the matrix Mp. 
Clearly the cardinality of learning domain, i.e., the row size of the matrix M 

representing F' is 

xjl E Xj  

and the cardinality of the concept class .?', i-e., the column size of M is 

Ei contains a positive literal vjt with b(1, t) = 1, or 
Ei contains a negative literal lv j t  with b(1, t) = 0 . 
for some t E {I,.  . . , clog-m) 1 

Moreover, it is easy to see that can be constructed in polynomial time with 
respect to the length of given formula P .  

Now we prove that if the formula P is satisfiable then VC-dim(.?') = 2 log m. For 
an assignment a which satisfies P ,  we consider the set So = Y u Xu with 

C log m 

Xu = {2,,(,,,) E X I 1 5 s 5 logm), where (a,s)  = 2t-1 -a(vSt) + 1. 
t=l 

It is clear that IS, I = lY 1 + /Xu I = 2 log m. We will show that S, is shattered 
by .?=, i.e., for every T & S,, there exists an f E F' with S, f l f = T .  Let iT = 
zyutTnY 2U-1 + 1- It is easy to see that iT E {I , .  . . , m) and T n Y = yiiTI. 
According to T n Xu = X, or not, we have the following two cases. 



(1) In case of T n Xu $ Xu: Let kT = 2'-' + 1. Then we can see that 
X 8 , ( , , 3 )  ETnXo 

k~ E {I, . . . , m - 1) and T n Xu = x["] n Xu. Therefore the concept giT,kT E 
G C F cuts T out of So as follows: 

(2) In case of T n Xu = Xu: Since a satisfies !P, the disjunction EiT in !P is also 
satisfied by 0. That means EiT contains either positive literal vst with a(vst) = 1, 
or negative literal lust  with a(vst) = 0, for some s and t. Let us take such an s 
(not necessarily unique), and let jT = s. Then by the definition of (O,jT), we see 
b((a, j ~ ) ,  t )  = ~(v , , ,~ )  for each t. Thus xjT,(,,jT) is included in X;T (EiT ), and 
moreover, X;T (EiT) nXu  = {xjT ,(,, jT) }. Therefore the concept fiT ,jT E FiT C F 
cuts T out of S, as follows: 

In each case, T is shown to be cut out of S, by some concept in F. Therefore S, is 
shuttered by F .  

Now we show the converse. Suppose that VC-dim(F) = 2 logm. Then there is a 
set S 2 U of cardinality 2 log m which is shattered by F .  

Claim 1 S contains exactly one element from each X, (1 5 s < logm), and all 
elements from Y. 

Proof of Claim 1. Case m = 2: The learning domain is U = {yl) U X1 and the 
concept class is F = {fll,gll f21,g21). Since IF1 = 4 and gll(x) = ga1(x) = 0 for 
any x E XI, no two elements from X1 can be included in S which is to be shattered 
by F. Moreover, since lYl = l{yl)l = I ,  the claim holds. 

Case m > 3: Let s E {I,.  . . , logm) be fixed arbitrarily, and xi, x2 be distinct 
elements in X,. Suppose that S contains both xl and 2 2 .  Then by Lemma 7, 

I{h E I  XI) # h(x2))I > 2 
2logm-i - - 

2 
On the other hand, let us consider a concept h E F with h(xl) # h(x2). Since 
gik(x1) = gia(x2) = b(k, S) for any gik E G, the concept h is not in G. Moreover, 
since fij  (xi) = fij(x2) = 1 for any fij E Fl U . . . U Fm with j # s ,  thus h must be 
one of the concepts from { fls, f2s, . . . , fms). Therefore 

I{h E F I h(x1) # h(x2))l I I{fls, f2s, . . . , fm,)l = m, 

which yields a contradiction since % > m for any m > 3. Thus S can contain 
at most one element from X, for each s E (1, . . . , log m). Since IS1 = 2 log m and 
IYI = logm, the set S must contain exactly one element from each Xs and all 
elements from Y. 



Therefore for each s E {1, . . . , logm), there is a unique 1 = l(s) E {I , .  . . , mC} 
such that x,,l(,) E S, and we can assume that S = Y LJ X( l ) ,  where X(1) = {x,,~(,) I 
1 < s < logm). Let as be an assignment corresponding to S with 

Now we show that as satisfies all disjunctions Ei in !P. Let i E (1,. . . , m) be fixed 
arbitrarily. Since S is shattered by F ,  for the subset Ti = Y['] LJ X(1) of S there is a 
concept hi E F with S n hi = Ti. Since S n hi = (Y n hi) U (X(1) n hi), the concept 
hi must satisfy the following two conditions: 

Note that no concept in G satisfies the condition (2), and no concept in Fi, with 
i' # i satisfies the condition (1). Therefore such an hi E F is in Fi, and thus we can 
assume hi = fij for some j E (1,. . . , logm). The above condition (2) requires that 
fij contains all elements from X(r). Especially, remark that xj,l(j). E X(1) is included 
in fij for the above j. By the definition of f i j 7  the element xi,l(j) is in X;(Ei). Thus 
the clause Ei satisfies either (a) or (b): 

(a) Ei contains a positive literal vjt with b(l(j),t) = 1. 
(b) Ei contains a negative literal iv j t  with b(l(j), t) = 0. 

By the definition of as, we see aS(vjt) = 1 in case of (a), and us(vjt) = 0 in case of 
(b). In each case, us(Ei) = 1. Therefore as satisfies every disjunction Ei in !P. Thus 
G? is satisfiable. 

5 Conclusion 

We showed that the discrete VC-dimension problem is in SATlOg2, and SAT;!:,- 
hard. Therefore we may interpret that the discrete VC-dimension problem is, in 
some sense, "complete" for the class of no(l0gn) time computable sets. It remains 
open that the discrete VC-dimension problem is in SAT:!?,, or SATlogz ,-hard. 

As a dual to the VC-dimension, Romanik [7] defined the testing dimension of a 
concept class F as the minimum cardinality of a set S U which is not shattered 
by F. We can see that testing dimension problem is also in SATlog2 ,, by a similar 
reduction in the proof of Theorem 5 .  It is open whether the problem is  SAT;:^^- 
hard or not. It is also interesting to evaluate the complexity of computing another 
various dimensions of the class of multi-valued functions introduced in [I]. 
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