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Abstract 

We define a new framework for rewriting graphs, called a formal graph system (FGS), 
which is a logic program having hypergraphs instead of terms in first-order logic. We 
first prove that a class of graphs is generated by a hyperedge replacement grammar if and 
only if it is defined by an FGS of a special form called a regular FGS. In the same way as 
logic programs, we can define a refutation tree for an FGS. The classes of TTSP graphs 
and outerplanar graphs are definable by regular FGSs. Then, we consider the problem 
of constructing a refutation tree of a graph for these FGSs. For the FGS defining TTSP 
graphs, we present a refutation tree algorithm of 0(log2 n + log m) time with O(n + m) 
processors on an EREW PRAM. For the FGS defining outerplanar graphs, we show that 
the refutation tree problem can be solved in 0(log2 n)  time with O(n + rn )  processors 
on an EREW PRAM. Here, n and m are the numbers of vertices and edges of an input 
graph, respectively. 

Introduction 

The refutation tree problem is to compute refutation trees which is associated with the struc- 
ture of a graph generated by a new formal system, called a formal graph system (FGS). 

We define an FGS by extending an elementary formal system [I, 2, 191, which is a kind of 
logic program dealing with strings, so that it can directly manipulate graphs. FGSs are logic 
programs which use graphs in place of terms in first-order logic. In the same way as logic 
programs, we define a refutation tree for an FGS. A refutation tree of a graph G is a tree 
representing explicitly the decomposition of G. Since an FGS consists of definite clauses which 
explicitly describes how it generates graphs and since the refutation tree problem may allow 
the divide-and-conquer technique, it may be useful for graph problems to employ FGSs in 
designing efficient parallel algorithms. The refutation tree problem for an FGS is to construct 
refutation trees of graphs defined by the FGS and can be regarded as the problem to decide 
whether an input graph is generated by the FGS. 



We consider two classes of graphs. One is the class of two-terminal series parallel (TTSP) 
graphs and the other is the class of outerplanar graphs. We present FGSs defining these 
classes and we devise efficient parallel algorithms solving the refutation tree problem with 
O(n + m) processors on an EREW PRAM, where n (m) is the number of vertices (edges) 
of an input graph. For the class of TTSP graphs, we present an 0(log2 n + logm) time 
algorithm. For the class of undirected outerplanar graphs, Diks et. al. [4] has given an optimal 
parallel algorithm on a CREW PRAM which solves the problem of testing outerplanarity in 
T(n) = O(1og n log* n) time using n/T(n) processors. In this paper, with O(n + m) processors 
on an EREW PRAM, we give an 0(log2 n) time algorithm by employing the algorithm for 
TTSP graphs. These results assert that efficient parallel algorithms may exist for a large 
number of NP-complete problems when these problems are restricted to the classes of TTSP 
graphs and undirected outerplanar graphs. For example, Xin He [9] has presented efficient 
parallel algorithms for solving the following three problems on TTSP graphs: 3-coloring, depth- 
first spanning tree, and breadth-first spanning tree. 

It has been shown that polynomial time algorithms [?, 181 and NC-algorithms [17] exist 
for a number of NP-complete problems when these problems are restricted to the class of 
graphs generated by context-free graph grammars [18]. Context-free graph grammars (CFGG) 
[14, 18, ?] and hyperedge replacement grammars (HRG) 13, 7, 111 have been known as formal 
systems derived by expanding the concept of context-free grammars to graphs. 

We prove that a class of graphs is generated by a HRG due to Lautemann [ll] if and only 
if it is defined by an FGS of a special form called a regular FGS. For a HRG, the refutation 
tree problem can be regarded as the parsing problem of constructing a "parse tree" of a graph 
generated by the HRG. Rytter and Szymacha [17] and Xin He [lo] have presented parallel 
algorithms solving the parsing problem for any class of graphs generated by a CFGG. A parse 
tree of a graph G is, in a sense, a tree which shows a method of decomposing G into a set 
of terminal elements by assigning a right-hand side of a production in the HRG generating G 
to each node in the tree. Therefore, it does not express in a straightforward way how G is 
decomposed into the set of terminal elements. However, since an atom with a subgraph of G 
is assigned to each node of the tree, refutation trees express the structures of graphs directly 
and can also cope with a class of graphs for which no HRG exists. These show that an FGS 
has a richer structure for generating graphs than a HRG, and that refutation tree for an FGS 
is more suitable for expressing the structure of a graph than a parse tree for an HRG. 

2 Formal Graph Systems and Refutation Tree Prob- 
lem 

Let C and A be finite alphabets. A colored-graph g = (V,E,cp,$) over (&A) consists of a 
vertex set V ,  an edge set E, a vertex labeling cp : V -+ C and an edge labeling $ : E -+ A. 
We allow multiple edges in g and g is directed or undirected. We use lower case letters for 
representing colored-graphs. 

Let X be a finite alphabet whose elements are called variables. We denote variables by 
x, y, +. We assume that each variable x in X has the rank, denoted by rank(x), that is a 
nonnegative integer. Assume that C n X = 0 and A n X = 0. 

Definition 1. A directed term graph g = (V, E, y,  $, H,  A, ports) over (C, A, X) consists of 
the following: 

(1) (V, E, cp, $) is a directed colored-graph over (C, A). 

(2) H is a finite set whose elements are called hyperedges. 



Figure 1: Term graphs. A hyperedge is represented by a box with lines to its ports. The order 
of the ports is indicated by numbers at these lines. 

(3) X : H -+ X is a labeling function. For a hyperedge e E H, rank(X(e)) is called the rank 
of e. 

(4) ports : H -+ V* is a mapping such that for every e E H, ports(e) is a list of rank(X(e)) 
distinct vertices. These vertices are called the ports of e. 

We denote term graphs by f ,  g, . *. A term graph is called ground if H = 0. We denote by 
7 ( C ,  A, X) the family of term graphs over (C, A, X) and by I ( C ,  A) the family of all ground 
term graphs. We can define an undirected term graph in the same way. 

We identity directed (or undirected) term graphs without hyperedge with colored-graphs. 

Example 1. We draw directed and undirected term graphs as in Figure 1 (a) and (b), respec- 
t ively. 

Let gl, . . . , gn be term graphs in 7 ( C ,  A, X).  An atom is an expression of the form 
p(gl, . . . , g,), where p is a predicate symbol with arity n. Hereafter we use p, q, . . . to de- 
note predicate symbols. Let A, B1, . . . , Bn be atoms, where n 2 0. Then, a graph rewriting 
rule is a clause of the form A +- B1,. . . , Bn. We call the atom A the head and the part 
B1,. . . , Bn the body of the graph rewriting rule. 

Definition 2. A formal graph system (FGS) is a finite set of graph rewriting rules. 

We give some notions for term graphs and atoms. 

Atermgraphf = (vf,Ef,cpf,$f,Hf,Xf,~~rt~f)i~a~ubgra~hofg = (V,,Eg,cpg,$g,Hg,Xg,ports9) 
if f '  = (Vf , Ef , cpf , $f) is a subgraph of g' = (V,, Eg , cp,, $,), Hf Hg , and Xf (e) = Xg (e) and 
portsf (e) = portsg(e) for all e E Hf.  

Let g, = (Vl,El,cpl,$l,Hl, X1,portsl) and g2 = ( 1 / 2 , E 2 , ( ~ 2 , $ 2 , H 2 , X 2 , ~ 0 7 - t ~ 2 )  be term 
graphs. We say that gl and g2 are isomorphic, denoted by gl 2 g2, if the following conditions 
are satisfied: 

(1) The colored-graphs g: = (Vl, El, cpl,  ql) and gi = (V2, E2, c p 2 , q L ~ ~ )  are isomorphic includ- 
ing vertex and edge labelings. 



(2) Let n : 1/1 --+ V2 be the bijection giving the isomorphism in (1). There is a bijection 
m : H1 t H2 such that for every e E HI, ports2(w(e)) = n*(portsl (e)) and Az(w(e)) = 
Al(e), where n* is defined as .ir*((vl,. . . , v,)) = (n(vl), . . . , n(vm)). 

Let (vl , . . . , v,) and (ul , . . . , u,) be two lists of r distinct vertices of gl and g2, respectively. 
We also say that [gl, (vl, . . . , v,)] and [g2, (ul, . . . , u,)] are isomorphic if (1) and (2) are satisfied 
and n(vi) = ui for each 1 5 i 5 r .  We call a pair [g, a] of a term graph g over (C, A, X) and a 
list a of r distinct vertices in g an r-hypergraph over (C, A, X) .  

For any two a t ~ m s  p(f1,. . fn) and p(g1, - 7  gn), we denote p(f i , .  - 9  fn) 121 p(g1,. gn) 
if fi N gi for each 1 5 i 5 n. 

Let g = (V,, Eg, cpg, $g, H g ,  Ag, ports,) and f = (Vf, Ef, cpf 7 $f 7 Hf, Af , portsf) be term 
graphs, e be a hyperedge in Hf of rank r with ports (ul,.  . . , u,), and [g, a] be an r-hypergraph 
with a = (vl, . . . , v,). The hyperedge replacement e +-- [g, a] is the following operation on f :  
The term graph obtained by the hyperedge replacement e +-- [g, 01 on f ,  denoted by f (e  +-- 

[g, a]) = (V, E, cp, $, H, &ports) is defined in the following way: Let g' = (V,', EA, cp$, $:, Hi, A$, ports;) 
be a copy of g. For a vertex v E V,, we denote the corresponding copy vertex by v'. We attach 
g' to f by removing the hyperedge e from Hf and by identifying the ports ul, . . . , u, of e in f 
with vi, . . . , vt in g', respectively. We set v(ui) = cpf (ui) for each 1 5 i 5 r, i.e., the label of ua 
in f is used for the new term graph f (e +- [g, 01). Let T = {el +-- [gl, a,], . . . , em +-- [g,, am]} 
be a set of hyperedge replacements on f .  We denote by f (T) the term graph obtained by 
applying all hyperedge replacements in 'Y in parallel. 

Let x be a variable in X with rank(x) = r .  Let g = (V,, E,, cp,, &, H,, A,, ports,) be a 
term graph in I ( C ,  A, X )  and [g, a] be an r-hypergraph. We call the form x := [g, a] a binding 
for x. We say that a binding x := [g, a] is trivial if g is a term graph consisting of r vertices 
without any edges such that it has a unique hyperedge e E H with A(e) = x. A substitution 
0 is a finite collection of bindings {xl := [gl , all , . . . , xn := [gn, on]), where xi's are mutually 
distinct variables in X and each gi (1 5 i 5 n) has no hyperedge labeled with a variable in 

1x1, ,xn}. 
Let f = (Vf, Ef, c p ~ ,  $f, Hf, A f ,  portsf) be a term graph and 0 = {xl := [gl, a,], . . . , xn := 

[gn, an]) be a substitution. For Xi, let HA,(xi) = {e E Hf I Af (e) = xi) and Ti = {e +- [gi, ail I 
e E HA, (xi)). Then let Ye = U:=, Ti.  he term graph f 0  called the instance of f by 0 is 
defined by f (Ye). We remark that the set of the hyperedges in f 0 consists of the hyperedges 
in Hf which are not in HA, (xl) u . . . u HA, (a,) and the newly added hyperedges of the graphs 
attached to f by the substitution 0. 

Example 2. Let f ,  g and h be term graphs given in Figure 2, and 0 = {x := [g, (ul, u2)], y := 
[h, (vl , v2)]) be a substitution, where u1 and u2 (resp., vl and v2) are vertices in g (resp., h) . 
Then the instance f 0  is a term graph shown in Figure 2. 

We introduce some notions similar to those in logic programming [12]. Let 0 = {xl := 

[gl, all, . . . , X, := [gn, an]) and r = {yl := [hl, a:], . . . , ym := [h,, ak]) be substitutions. Then 
the composition 87 of 0 and r is the substitution obtained from {xl := [glr, all, . . . , xn := 

[gnr, an], ~1 := [hl, a:], . . . , ym := [h,, a;]} by deleting the following bindings: 

(i) Xi := [gir, ail which is trivial. 

(ii) yj := [hj, a;] with yj = xk for some xk. 

Let 01, . . . , O n  be substitutions. We denote a composition 81 On by n:=l Oi. The substitution 
given by the empty set is called the identity substitution and is denoted by E .  The elementary 
properties of substitutions are given in the following proposition without proofs. 



Figure 2: An example of an instance f 0  with 0 = {x := [g ,  (ul ,  u2)], y := [h, (vl, v2)]) 

Proposition 1. Let 0,  r and y be substitutions. 

(a) BE = ~0 = 0. 

(b) (gr)y = g(7-y) for any term graph g. 

(4 ( 0 7 ) ~  = ~ ( T Y ) .  

For a substitution 0,  we define p ( f l , .  . . , f n ) O  = p ( f l B , .  . . , fnO) and ( A  +- B1,. . . , Bm)B = 
A0 + B18, . BmO. 

Let gl and g2 are two term graphs or atoms. Then a substitution 0 is a unifier of gl and 
g2 if glB 2 g2B. If g1 z g2B and glB1 z g2 for some substitutions 0 and B', g1 is called a variant 
of 92. A goal is a graph rewriting rule of the form +- Bl, . . . , Bm (rn > 0) .  If m = 1, "+- BI7' 
is called a unit goal. If rn = 0,  we denote it "U" and call it an empty goal. We assume a 
computation rule Q to select an atom from a goal. For a graph rewriting rule C, let var(C) 
be the set of all variables labeling the hyperedges of the term graphs in C. 

Let I' be an FGS, and D a goal. A derivation from D is a (finite or infinite) sequence of 
triples (Di, Oi7 Ci) ( i  = 0,1 ,  . . .) that satisfies the following conditions: 

(3) Di is a goal, Bi is a substitution, Ci is a variant of a graph rewriting rule in I', and 
Do = D. 

(4 )  var(Ci) n var(Cj) = 0 (i # j ) ,  and var(Ci) n var(D) = 0 for every i. 
(5) Let Di be +- A17 . . . , Ak and A, be the atom selected by Q. Let Ci be A +- Bl , . . . , B,. 

Then 0, is a unifier of A and A, and Di+1 is the goal +- A1&, . . . , Am-lOi, BIBi, . . . , BqQi, 
Am+lOi, . . . , A&. 

A refutation is a finite derivation ending with the empty goal. 
Let F = {(D,, Qi, Cz))O<i<k - - be a refutation from a unit goal D in T. The refutation tree of 

8' is a tree defined as follows: 

(6) Every vertex is labeled with a unit goal or the empty goal. 

(7) The label of the root is the unit goal Do = D. 
( 8 )  Every leaf is labeled with the empty goal. 



(9)  To is a tree consisting of only one vertex labeled with D. For 0 < i 5 k ,  Ti+1 is a 
tree obtained by applying (Di, Oi, Ci) to the tree Ti as follows: let Di be +- A:, . . . , A&. 
Assume that T, has a leaf labeled with +- A L ~  Let Ci be +- B:, . . . , Bii and Bi be a 
unifier of and the atom A L ~ .  Then T,+l is obtained by adding new qi vertices labeled 
with +- B:Bi, . . . , +- B; Bi as the children of the vertex labeled with + A;( 

Definition 3. Let I' be an FGS. We define the relation I' I- C for a rule C inductively as 
follows: 

(1) If I? 3 C ,  then I' I- C. 
( 2 )  If I? I- C ,  then I' t C8 for any substitution 8. 

(3) I f r t  A + -  Bl , .  . . , B, and t Bi + GI, .  . . , Cm, 
then I' t A  +- B1,. . . ,Bi-l,Cl,. . . ,Cm,Bi+l, . . . ,Bn. 

A rule C is provable from I' if I' I- C. For an FGS I' and its predicate symbol p with arity 
n,  we define GL(I',p) = {(hl , .  . . , h,) E (7(C,A))n  I I' t p(hl,. . . , h,) +-). In case n = 1, 
GL(I',p) defines a subset of 7 ( C ,  A) called a graph language. We say that a graph language 
L 7 ( C ,  A) is definable b y  FGS or an FGS language if such a pair ( I ' , p )  exists. 

Let SS(I ' )  is the set of all ground atoms such that there exists a refutation from +- A  in 
I'. Let P S ( r )  be the set of all ground atoms which are provable from I'. Then we can prove 
the following proposition in the same way as logic programs (see Ref. [12]). 

Proposition 2. For any FGS I', SS(I')  = PS(I'). 

Definition 4. Let I' be an FGS and p be its unary predicate symbol. The refutation tree 
problem for (I', p ) ,  denoted by RT(r,  p ) ,  is defined as follows: 

INSTANCE: A ground term graph g. 
PROBLEM: If there is a refutation from the goal + p ( g )  in I', construct its refutation 

tree. 

3 Regular FGS and Hyperedge Replacement Gram- 
mar 

This section introduces a subclass of FGSs called regular FGSs, and characterizes hyperedge 
replacement grammars 17, 11, 211 by regular FGSs. Hyperedge replacement is one of the 
most elementary and frequently used concepts of graph transformation with the characteristics 
of context-free rewriting. Hyperedge replacement grammars are certain context-free graph 
grammars. 

Definition 5. Let A be a subset of C called a pointer set. A regular term graph with a pointer 
set A is a term graph g = (V, E,  ip,  y5, H,  A, ports) such that there is a t  most one hyperedge 
labeled with x for each x E X and there is at most one vertex labeled with s for each s E A. 

A term graph g = (K, E, ip,  y5, H, A,ports) is a star graph for a variable x if E = 0 and H 
consists of a unique hyperedge e labeled with x such that the set of ports of e is V .  

Definition 6. Let I? be an FGS and Jl be the set of predicate symbols in I?. Then I' is said 
to be regular if every predicate symbol in I' is unary and there is a sequence reg(p) of distinct 
symbols in C for every p E Jl such that each graph rewriting rule po ( g o )  +- pl ( g l ) ,  . . . , p,(g,) 
in I' satisfies the following conditions: 



Figure 3: HRG G = (S ,  R) with R = { S  --+ TO, T --+ [TI, (vi, v2, v3)], 
--+ [T2, ( V I  1 212, %)I) 

(1) Each term graph gi = (V,, Ei, qi, $i, Hi, X i ,  portsi) (0 5 i 5 n )  is a regular term graph 
with respect to A = Uptn{a I a is a symbol of reg(p)}. 

(2) For every label a of vertices in go, if a is in A,  then a is a symbol of reg(po). 

(3 )  For 1 5 i 5 n ,  gi is a star graph for a variable of rank mi such that j th  port (1 5 j 5 mi) 
of the hyperedge in Hi is labeled with the j th  symbol of reg(pi), where mi is the length 
of reg(pi). 

(4 )  Xo(Ho) = U15i5,Xi(Hi) and &(Hi) n Xj(Hj) = 0 for 1 5  i < j 5 n. 

We extend hyperedge replacement grammars in Lautemann [Ill by introducing vertex and 
edge labelings in such a way that these labels do not interfere with hyperedge replacement 
mechanism. 

Let N be a finite alphabet. We call an element of N a nonterminal. Nonterminals are 
denoted by capital letters A, B ,  C,  . *. We assume that each nonterminal A in N has the rank, 
denoted by rank(A) , that is a nonnegative integer. 

Definition 7. A hyperedge replacement grammar (HRG) G = (S ,  R) is defined as follows: 

(1) S is a nonterminal in N with rank(S) = 0, called the start symbol. 

( 2 )  R is a finite set of productions of the form A --+ [g ,  a ] ,  where A is a nonterminal in N 
with rank(A) = r and [g ,  a] is an r-hypergraph over (C, A, N) .  

Example 3. We draw an HRG G = ( S ,  R )  as Figure 3, where R = {S --+ To, T --+ [TI, (vl, v2,v3)], T -+ 

[Tz, ( V I ,  212, v3)I) 

Let 4 = (S ,  R)  be an HRG. For A E N ,  an r-hypergraph [g ,  a] over (C, A, N ) ,  and i  2 1, 
we define the relation A --+i [ g ,  a] inductively as follows: 

(1) We denote A --+' [ g ,  a] if there is a production A -+ [ g ,  a] is in R. 
(2) For i  > 2, we denote A [g ,  a] if there are j, 1 > 1, an r-hypergraph [f, 01, a hyperedge 

e in f of rank s with label B ,  and an s-hypergraph [h, a'] such that j + 1 = i ,  A -tj [ f ,  a ] ,  
B --+' [h, 0% and [ g ,  a] = [ f  (e +- [h, a']), a].  

We write A --t+ [g, a] if A --ti [ g ,  a] for some i  2 1. The graph language generated by  an HRG 
G = (S ,  R)  is the set L(G) = { g  I g is a term graph in I ( C ,  A) and S --++ g} .  A set L of term 
graphs in I ( C ,  A) is called an HR language if L = L(G), for some HRG G.  



Theorem 1. A graph language L is definable by a regular FGS if and only if L is an HR 
language. 

Proof. Let G = (S, R) be an HRG. Let N be the set of nonterminals of g. Let C and A be 
the sets of labels of vertices and edges of the term graphs in R, respectively. 

We define a regular FGS rG in the following way: We regard each nonterminal A in N as a 
unary predicate symbol. For a unary predicate symbol A, let reg(A) be a sequence of rank(A) 
distinct symbols not in C. Then let A = UaEN{a I a is a symbol in reg(A)). 

For each production A -+ [g, (vl, . . . , vr)] of G, let g = (V, E, cp, $, H, &ports) and let 
H = {el, . . . , en). Then I'G contains the graph rewriting rule A(h) +- X(el)(fl), . . . , X(en)(f,), 
where regular term graphs h and fl, . . . , fn with respect to A are defined as follows (see 
Example 4): 

(a) h = (V, E, cp', $, H, XI, ports) is defined by modifying the vertex and hyperedge labelings 
of g as follows: 

(i) For hyperedges el, . . . , en in H, let X1(el), . . . , X1(en) be distinct variables of rank 
rank(X(el)), . . . , rank(X(en)), respectively. 

(ii) For each vertex vj (1 5 j 5 r), vj is labeled with the j th  symbol of reg(A). For 
other vertices in V ,  the same labeling as cp is used for cp'. 

Then h is a regular term graph over (C U A, A, {X1(el), . . . , X1(en))) with respect to A. 
(b) For 1 5 i 5 n, fi is a star graph for a variable X1(ei) such that the j th  port of the 

hyperedge in fi is labeled with the j th  symbol in reg(X(ei)) for 1 5 j 5 rank(X1(ei)). 

It is easy to see that rG consisting of these graph rewriting rules is regular. Then we can 
show that L(G) is definable by the FGS r g .  

Conversely, let (I?, p) be a pair of a regular FGS and its predicate symbol p. Without loss 
of generality, we may assume that p is the only predicate symbol in I' that does not appear in 
the body of any graph rewriting rule in I'. Let C and A be the sets of labels of vertices and 
edges of the term graphs in I', respectively. 

We define an HRG Gr = (p, Rr) in the following way: Let II be the set of predicate symbols 
of I?. Since is regular, every predicate symbol q in II is unary and there is a sequence reg(q) 
of distinct symbols in C such that each graph rewriting rule in I? satisfies the conditions of 
Definition 6. Here we note that reg(p) is the empty sequence. We regard a predicate symbol q 
in II as a nonterminal. For a nonterminal q, let the rank of q be the length of reg(q). Especially, 
p is the start symbol of Gr. 

For each graph rewriting rule qo (go) +- q1 (gl), . . . , qn (gn) of I?, let gi = (V,, Ei, cpi, $i, Hi, Xi, portsi) 
and be the rank of qi for 0 5 i 5 n. Then Rr contains the production qo -+ [h, (vl, . . . , vr0)], 
where a term graph h over (C, A, II) and the sequence (vl, . . . , v,,) of vertices in h are defined 
by modifying the hyperedge labeling of go as follows: 

(i) Let gi (1 5 i 5 n) be the term graph with the hyperedge labeled with Xo(e). Then let 
the new label of e in h be qi. 

(ii) Let (vl,. . . , v,,) be the sequence of vertices in h with (cpo(vl), . . . , vo(~ro) )  = reg(qo). 

Then h is a term graph over (C, A, II) and [h, (vl, . . . , vro)] is an ro-hypergraph. 
Since I' is regular, it is easy to see that Gr = (p, Rr) consisting of the start symbol p 

and these productions is an HRG. Then we can show that GL(r ,p )  is definable by the HRG 
Gr = (p,Rr). 

Example 4. Let G = (S, R) be an HRG given in Figure 3. Then the regular FGS rG obtained 
from G is given in Figure 4. 



Figure 4: FGS rG. 

It is known in Refs. [8], [ll], 1141 that the classes of trees, two-terminal series parallel graphs, 
graphs homeomorphic to a given graph, outerplanar graphs, graphs of cyclic bandwidth 5 2 
and k-decomposable graphs are generated by HRGs. By Theorem 1, these classes are also 
definable by regular FGSs. 

4 Parallel Algorithms for Refutation Tree Problem 
Consider the regular FGSs rsp in Figure 5 and rap in Figure 8. These FGSs define the classes 
of TTSP graphs and outerplanar graphs, respectively. This section gives parallel algorithms 
for constructing refutation trees for rSp and rOP. 

4.1 Parallel Algorithm for TTSP Graphs 

A multidag is a directed colored-graph g = (V, E ,  (D, $) that allows multiple edges and does 
not contain any cycles. For a vertex v E V, indeg(v) denotes the number of edges entering v 
and outdeg(v) denotes the number of edges leaving v. A vertex v with indeg(v) = 0 (resp., 
outdeg(v) = 0) is called a source (resp., a sink). A two-terminal rnultidag is a multidag with 
exactly one source and one sink. 

Definition 8. Two-terminal series parallel (TTSP) graphs are two-terminal multidags over 
( {a ,  s, t ) ,  {b)) defined as follows: 

(1) A directed colored-graph consisting of two vertices u labeled with s and v labeled with 
t, and a single edge (u, v) labeled with b is a TTSP graph. The vertices u and v are the 
source and sink, respectively. 

(2) For i = 1,2, let gi be a TTSP graph with the source ui labeled with s and the sink vi 
labeled with t. Then the graph obtained by either of the following two operations is a 
TTSP graph: 

(a) Parallel composition: Identify u1 with u2, and identify vl with v2. The resulting 
graph has ul (= u2) as the source and vl (= v2) as the sink. 



Figure 5: FGS rsp defining the class of TTSP graphs. 

(b) Series composition: Identify vl with u2. The source and sink of the resulting graph 
are u1 and vz, respectively. The identified vertex vl (= u2) is labeled with a. 

The source and sink of a TTSP graph are labeled with s and t, respectively. Other vertices 
are labeled with a and all edges are labeled with b. 

In this section, we consider directed term graphs over ({a, s, t), {b), X )  and colored-graphs 
over ({a, s, t), {b)), where X consists of variable symbols of rank at  most 2. 

The following lemma is obvious. 

Lemma 1. Let rsp be the regular FGS in Figure 5. Then GL(Tsp,p) is the class of TTSP 
graphs. 

Let g = (V, E, cp, $, H, A, ports) be a directed term graph over ({a, s, t), {b), X )  such that 
the rank of every hyperedge in H is at  most 2. Then we define a directed colored-graph 
jr = (v, &, @, 4 )  over ({a, s, t), {b)) as follows: 

(1) v = V and @ =  cp. 
(2) Let EH be the set of new edges defined from H in the following way: For a hyperedge 

e E H with rank(e) = 2, let ports(e) = (ue, we) Then EH contains a new edge beginning 
a t  u, and ending at  v, for every hyperedge e in H. We define I? = E LJ EH. For an edge 
e E &, we define 4(e) = b. 

The colored-graph g is called the transformed graph of g. We can define the transformed 
graphs for undirected term graphs and undirected colored-graphs in the same way. 

We say that a term graph g over ({a, s, t), {b), X) is a two-terminal term multidag with the 
source u and the sink v if its transformed graph jr is a two-terminal multidag with the source 
u and the sink v. Let g and f be two-terminal term multidags. We say that f is a reducing 
subgraph of g if f is a subgraph of g except the vertex labeling, i.e., the source and sink of f 
are respectively labeled with s and t, but these vertices do not necessarily have the same labels 
in g. Let gi be a reducing subgraph of g with the source ui and the sink vi for 1 5 i 5 k. We 
say that gi and gj (i # j )  are pairwise disjoint if gi and gj share only vertices in { u ~ ,  uj, vi, vj) 
and have no edges and no hyperedges in common. 

Let g = (V, E, cp, $, H ,  A,ports) be a two-terminal multidag with the source u and the sink 
v, and let gi = (V,, Ei, cpi, y!~, , Hi, Xi, portsi) be a reducing subgraph of g with the sink ui and 



the sink vi for 1 5 i 5 k.  Assume that gl, . . . , gk are pairwise disjoint. Then we define a two- 
terminal term multidag f = (Vf , Ef , (of , +f, Hf , X f ,  ports f )  called the reduction of gl, . . . , gk  in 
g as follows: 

(7) Vf = V, - U;=~(V, - {uir vi)). 
(8) Ef = Eg - ~ f = ~  Ei. 

(9) For each 1 5 i 5 k ,  let ei be a new hyperedge with portsf (ei) = (ui, vi). Let Sf = 
{el, . . . , ek). Then Hf = Hg LJ Sf - u:.=, Hi. The hyperedges in Sf are distinctively 
labeled with new variables of rank 2. 

The substitution 

is called the reducing substitution for g1, . . . , gk. 
Let I' be a regular FGS and p be its predicate symbol. Let g be a term graph such that 

its transformed graph ij is in GL(r,p). Let T be a refutation tree from the goal + p(g) in 
I?. We define a decomposition tree T' of g corresponding to T in the following way: Since I' 
is regular, the label of an internal vertex v in T is of the form +-- q ( f ^ ) .  By the definitions of 
a refutation tree and a regular FGS, the colored-graph f ^  is a subgraph of ij where the vertex 
labelings are ignored. Hence there exists a subgraph f of g except the vertex labelings such 
that f ^  is the transformed graph of f .  Let To be a tree obtained from T by replacing the label 
+- q(f) of v with the label + q(f) for each internal vertex v in T. Then TI is obtained from 
To by removing every leaf u from To together with its incident edge if the parent of u is labeled 
with a goal +-- q(h) where h is a star graph for a variable of rank 2. 

Example 5. Let g = (1/, E, (o, +, H, A, ports) be a TTSP graph in Figure 6. This term graph 
can be regarded as a colored-graph since it contains no hyperedge. Figure 6 shows a reducing 
subgraph f of g and its reduction h. Then k is the transformed graph of h. Figure 6 gives a 
refutation tree T of f and a decomposition tree TI of h. 

Theorem 2. Let rsp be a regular FGS in Figure 5 defining the class of TTSP graphs. The 
refutation tree problem for (rSP,p) can be solved in 0(log2 n + log m) time with O(n + m) 
processors on an EREW PRAM, where n and m are the numbers of vertices and edges of an 
input graph, respectively. 

Proof. We give a parallel algorithm ReLTTSP in Figure 7 for solving RT(rsp,p) that uses 
the decomposition technique in Ref. [lo]. We assume that a graph is given by edge list form. 
For a graph g, lgl denotes the number of vertices in g. 

We first show that Ref-TTSP computes a refutation tree T of a given graph g if any exists. 
Let f be the two-terminal term multidag of line 9 and assume that the decomposition is 
successful in line 9. 

Let fl,. . . , fq be the decomposition of f ^  and let fl, . . . , fq be their reducing subgraphs of 
f .  Let fo be the reduction of fl, . . . , fq in f and let fo be the transformed graph of fo provided 
in line 9. He and Yesha [lo] showed that f is a TTSP graph if and only if fo, fl, . . . , fq are 
TTSP graphs. Since the computation starts with g = g and since lines 6, 8 and 9 reject graphs 
other than TTSP graphs, we see that Ref-TTSP recognizes the class of TTSP graphs. 

Now we shall explain how to compute line 15 from W and 6 when a TTSP graph g is given 
as an input. For a decomposition tree S and a substitution r, let ST be the tree obtained from 
S by replacing each vertex label + B of S with +- B r .  Then for the set of decomposition 
trees W  and the substitution 8 ,  let W8 = {SO I S E W } .  We construct a refutation tree T of g 



Figure 6: The graph f is a reducing subgraph of g and h is its reduction. T is a refutation 
tree of f and T' is a decomposition tree of h. 



Ref-TTSP Algorithm 
INPUT: A graph g. 
OUTPUT: A refutation tree T. 

1. U := {g); i := 0; W := 0; 
2. while U f 0 do 

3. 0, := 0; 
4. for each f E U pardo 

5. u := u -  {f}; 

6. if f is not a two-terminal term multidag 

then return "g is not a T T S P  graph" and exit; 

7. case 

8. I f  1 < 12: if f is a T T S P  graph 

then put a decomposition tree of f into W 

else return "g is not a T T S P  graph" and exit 

9. I f  1 2 12: apply the decomposition algorithm by Ref. [lo] to f ;  

if the decomposition is successful 

then let fl, . . . , fq be the decomposition of f ;  

let fl, . . . , fq be the corresponding reducing subgraphs of f ;  

let fo be the reduction of fl, . . . , fq; 

u := u u {fo, fl . , fq); 
put all bindings in the reducing substitution 

for f l , .  . . , f q  into 0, 

else return "g is not a T T S P  graph" and exit 

10. end case 

11. end pardo 

12. i := i + 1; 

13. end do 

14. compute a substitution 0 = niZo Bk; 

15. construct a refutation tree T of g from W and 0. 

Figure 7: Ref-TTSP algorithm 



from W0 in the following way: Initially, let T be a decomposition tree in W0 whose root label 
is +-- p(g). From the definitions of T S p  and W0, it is easy to see that T is unique in W0. For 
each leaf v of T not labeled with the empty goal, we attach the decomposition tree Tv in W0 
whose root label is equal to that of v by identifying its root with v. Again from the definitions 
of rSP and W0, it is clear that Tv is unique in W0. We repeat this procedure for T until all 
leaves of T are labeled with the empty goal. We can see that the resulting decomposition tree 
T is a refutation tree of g. 

We illustrate the complexity of Ref-TTSP. In order to simplify the analysis of Ref-TTSP, 
we reduce an input multidag g to a simple directed colored-graph by performing the following 
operation as initialization: Ref-TTSP counts the number of edges between each pair of vertices 
and replaces them by a single edges. The resulting graph go is a directed colored-graph without 
any multiple edges. We can see that g is a TTSP graph if and only if go is a TTSP graph. 
Moreover, the refutation tree of g can be easily obtained from the refutation tree of go. The 
conversion from g to go takes O(1og rn) time with O(m) processors. Thus without loss of 
generality, we assume that g is a simple directed colored-graph. 

Line 8 requires constant time. Line 9 takes in O(1og n) time using O(n + rn) processors on 
an EREW PRAM by the decomposition technique in Ref. [lo]. Furthermore, we can show in 
the same way as Ref. [lo] that the while loop (lines 2-13) repeats O(1og n) times. We omit 
the detailed argument. 

Let U' be the content of U just after the j th iteration (lines 2-13). Let dj be the number 
of elements in Uj .  Since c;!!? ") dj = O(n), the number of bindings in 0 = n:2lgn) Bk is O(n). 
Therefore, by using the balanced binary tree method 161, 0 can be computed in O(1og n) time 
with O(n) processors. We can construct a refutation tree T of g in O(1ogn) time with O(n) 
processors from W and 0 by executing the above procedure. Therefore, lines 14 and 15 can be 
computed in O(log n) time with O(n) processors. Thus ReLTTSP constructs the refutation 
tree in 0(log2 n + log rn) time with O(n + m) processors. 

4.2 Parallel Algorit hrn for Outerplanar Graphs 

A cutpoint of a colored-graph is a vertex whose removal increases the number of components. 
A nonseparable colored-graph is a connected colored-graph which has at  least two vertices 
and no cutpoints. A block (sometimes called biconnected component) of a colored-graph is a 
maximal nonseparable subgraph. A colored-graph is outerplanar if it can be embedded in the 
plane so that all its vertices lie on the same face. 

Let g be a connected colored-graph with the cutpoints ul, . . . , ul. A block sequence (bl, . . . , bk) 
of g is a sequence of all the blocks of g. A sequence ( fl, vl), . . . , (fk, vk) is called a dividing 
sequence of g with respect to (bl, . . . , bk), if each (fi, vi) satisfies the following conditions for 
l < i < k :  

(1) vi is a vertex of bi with vi E {ul, . . . , u~}. 
(2) fi = (V,, Ei, pi, lLi, Hi, Ai, portsi) is a term graph such that f' = (V,, Ei, pi, $i) is the 

block bi, where the label of vi is ignored and vi is labeled with s. The term graph fi is 
called a dividing component of g with a head attachment vi. 

(3) For each vertex w in V,  n (211,. . . , ul}, if there exists j < i such that bj and bi share 
the vertex w, then Hi contains a hyperedge with the port w labeled with a new distinct 
variable of rank one. 

For each 1 < i 5 k and each e E Hi, let i, be the maximal number less than i such that fie and 
fi share only the port of e. Then let 0, = {Ai(e) := [fie,ports(e)] I e E Hi). The substitution 
6' = n15i5k 0, is called a dividing substitution for g. 

We can see from Theorem 1 that the following lemma holds. 


















