
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Inferring a Tree from Walks

Maruyama, Osamu
Department of Information Systems, Kyushu University

Miyano, Satoru
Research Institute of Fundamental Information Science Kyushu University

https://hdl.handle.net/2324/3156

出版情報：RIFIS Technical Report. 51, 1991-12-05. Research Institute of Fundamental
Information Science, Kyushu University
バージョン：
権利関係：

RIFIS Technical Report

Inferring a Tree from Walks

Osamu Maruyama

Satoru Miyano

December 5,1991

Revised: March 24, 1995

Research l nstitute of Fundamental Information Science

Kyushu University 33

Fukuoka 812, Japan
E-mail: maruyama@rifis. kyushu-u.ac.jp Phone: +81-92-641-1101 ex.4478

Inferring a Tree from walks§

Osarnu Maru-yarnat,* and Sat oru Miyano$
$ ~ e ~ a r t m e n t of Information Systems, Kyushu University 39, Kasuga 816, Japan

l~esea rch Institute of Fundamental Information Science

Kyushu University 33, Fukuoka 812, Japan

Abstract

A walk in an undirected edge-colored graph G is a path containing all
edges of G. The tree inference from a walk is, given a string x of colors,
finding the smallest tree that realizes a walk whose sequence of edge-colors
coincides with x. We prove that the problem is solvable in O(n) time, where
n is the length of a given string, We furthermore consider the problem of
inferring a tree from a finite number of partial walks, where a partial walk in
G is a path in G. We show that the problem turns to be NP-complete even
if the number of colors is restricted to 3. It is also shown that the problem of
inferring a linear chain from partial walks is NP-complete, while the linear
chain inference from a single walk is known to be solvable in polynomial
time.

1. Introduction
A walk in an undirected edge-colored graph G is a path that contains all edges
of G. For a walk w, the trace of w is the string of edge-colors seen in w. Aslam
and Rivest [3] asked: Given a string x of colors and a positive integer k , what is
an undirected, degree-bound k , edge-colored graph G with the minimum number
of edges such that G realizes a walk with trace x? Rudich [14] has discussed
a problem closely related to the graph inference. He considered the problem of
inferring a Markov chain from its output, and developed algorithms that for the
binary output of a Markov chain, in the limit, reconstruct the underlying Markov
chain structure as well as the associated transition probabilities. Aslam and Rivest
[3] settled the problem of inferring graphs of bounded degree 2 (linear chains and
cycles) from a walk, by proving that a certain set of rewriting rules satisfies the
Church-Rosser or confluence property. They established O(n3) and O(n5) time

§A preliminary version of this work was presented at the Sevenfeenth Symposium on Malhe-
matical Foundations of Computer Science (MFCS '92), Prague, Czechoslovakia, 1992.

* Corresponding author. Research Institute of Fundament a1 Information Science, Kyushu Uni-
versity 33, Fukuoka 812, Japan. Email: maruyama@rifis.kyushu-u.ac .j p . This author is a Re-
search Fellow of the Japan Society for the Promotion of Science (JSPS).

algorithms for finding the smallest linear chain and cycle consistent with a given
string of colors, respectively, where n is the length of the string. The latter bound
has been improved by Raghavan [13] to O(n log n) time. However, he additionally
showed that for all k 2 3, the problem of inferring a graph of bounded degree k
with the minimum number of nodes is NP-complete.

This paper solves the problem for trees of unbounded degree. The tree inference
f rom a walk is the problem of finding the smallest undirected edge-colored tree that
has a trace coinciding with a given string of colors. We give an O (n) time algorithm
for the problem. Recently, Maruyama and Miyano [9] have shown that the problem
of inferring a tree of bounded degree k from a walk is NP-complete for k > 3 even
if the number of colors is k $- 1.

A partial walk in an undirected edge-colored graph G is a path in G, while a
walk in G must contain all edges of G. We then ask: Given a finite set S of strings,
what is an undirected edge-colored tree T with the minimum number of edges such
that, for each x S, T has some partial walk with trace x. We call this problem
the tree inference f rom partial walks. In contrast with the case of a single walk, we
prove that the tree inference from partial walks turns to be NP-complete even if
all strings of S are written over an alphabet of size 3.

We next consider the problem of inferring a linear chain from partial walks.
Similarly, we show that this problem is also NP-complete even if the size of alphabet
is 3, while the linear chain inference from a single walk is solvable in polynomial
time [3, 131.

Given a finite set of strings over an alphabet of size at most 2, we show that
the tree inference from partial walks and the linear chain inference from partial
walks are solvable by the same algorithm in linear time. In order to show the NP-
hardness of the linear chain inference from partial walks, we give a reduction from
the shortest common superstring problem [5]. It is interesting that although the
shortest common superstring problem is NP-complete even if the size of alphabet
is restricted to 2, yet the linear chain inference from partial walks is solvable in
linear time if the size of alphabet is 2.

The problem of identifying the smallest finite automaton consistent with given
input/output behaviors, which is shown to be, in general, NP-complete by Angluin
[I] and Gold [7], is a problem similar to these graph inference problem. The iden-
tification problem can be regarded as the case that a directed edge-colored graph is
to be inferred from strings. Moreover, Pitt and Warmuth [12] have shown an inter-
esting negative result on approximation algorithms for the problem. We show that
there is an approximation algorithm for the tree inference from partial walks which
is constructed by employing an algorithm that approximately solves the minimum
common supertree problem [15]. We next give polynomial-time approximation al-
gorithms for the linear chain inference from partial walks which employ algorithms
that approximate the problem of shortest superstrings with flipping [$I. We fur-
thermore show that these inference problems are MAXSNP-hard, which implies
that there are no polynomial-time approximation schemes for the problems unless
P=NP [2].

This paper is organized as follows. In Section 2, we introduce some basic
definitions to be used throughout the paper. In Section 3, it is proved that the tree

inference from a walk is solvable in O(n) time. In Section 4, we show that the tree
inference from partial walks is NP-complete and the linear chain inference from
partial walks is also NP-complete. Finally, we give results on approximabilities of
these intractable problems in Section 5 .

2. Preliminaries

Let C be a finite alphabet. The set of all strings over C is denoted by C*. For a
string x, the length of x is denoted by 1x1 and the reversal of x is written as xR.
The concatenation of strings x and y is written as x y, or simply x y. For strings
X I , . . . , x,, nrZ1 xi denotes 21x2 xn. If S is a set, IS1 denotes the cardinality of
S .

A color is a symbol in C. In this paper we consider undirected edge-colored
graphs G = (V, E, c), where c : E -+ C is called the edge-coloring of G. Hereafter
a graph means an undirected edge-colored graph without any notice. For graphs
G and GI, if G and G' are isomorphic including edge labels, we identify G with G'
without any notice. A graph G is said to be proper if no two adjacent edges have
the same color. A linear chain is a graph 1 = (T/, E, c) with V = {vi I i = 1,. . . , rn)
and E = { { ~ ~ , v ~ + ~ } I i = 1, ..., rn - I) , and the label of l is defined as the
string JJg;l c({vi, v ~ + ~)) . Note that for any string x, a linear chain with label x
is identified with a linear chain with label xR. We denote the classes of linear
chains, trees and graphs of bounded degree k by Linearchain, Tree and k-Deg,
respectively.

A partial walk in a graph G is a path in G. If a partial walk in G contains all
edges of G, it is called a walk in G. For the sequence el, e2, . . . , en of edges in a
partial walk w in G = (V, E , c), the trace of w is defined as the string n;=, c(ei).
Let x be a string. If w is a (partial) walk with trace x, w is called a (partial) walk
for x. For a graph G, we say that G realizes a walk for x if there is a walk for x in
G. Similarly, for a graph G and a finite set S of strings, we say that G realizes all
partial walks for S if for each x E S, there is a partial walk for x in G.

Let -+ be a binary relation on a set D and S= be the transitive and reflexive
closure of -+. For x, y E D, if x y and there is no z E D such that y -+ z then
y is called a -+-normal form of x.

Definition. Let TI = (V,E, c) be a tree which includes adjacent edges el =
{vll v2) and e2 = {v2, v3) with c(el) = c(e2) (see Fig. 1 (a)). Let T2 be the
tree obtained from TI by identifying vs with vl together with the adjacent edges el
and e2 (see Fig. 1 (b)). Then we say that T2 is an edge-folding of TI. The binary
relation --+F on the set of trees is defined to be the set of pairs (TI, T2) such that
T2 is an edge-folding of TI.

Fact 1. For trees Tl and T2, suppose that Tl -+F T2. The following facts hold
trivially :

1. T2 is smaller than TI.

2. If TI realizes a walk for a string x, then T2 realizes a walk for x.

Figure 1: tl, t2 and t3 in (a) and (b) are arbitrary trees and a is an arbitrary color.

3. If TI realizes all partial walks for a set S of strings, then T2 realizes all partial
walks for S.

4. For a tree T , an jF-normal form of T is proper.

3. Inferring a tree from a walk
In this section, we give a linear-time algorithm for finding the smallest tree realizing
a walk for a given string. The tree inference from a walk is defined as follows:

Instance: A string x over a finite alphabet C.

Problem: Find a tree T with the minimum number of edges such that T realizes
a walk for x.

Theorem 1. The tree inference from a walk is solvable in O (n) time, where n is
the length of a given string.

Assume that a tree T realizes a walk for a string x. If T is not proper, then
there is an edge-folding T' of T. We can see by Fact 1 that T' is smaller than T
and realizes a walk for x. Thus we can have the following lemma:

Lemma 1. For a string x, any of the smallest trees realizing a walk for x is proper.

Given a string I, one way to make a proper tree that realizes a walk for x is
repeating the following procedure: Let vi be the end node of a walk for the prefix of
x with length i realized in the resulting proper tree just after the ith iteration. If vi
does not have any adjacent edge labeled xi+l, where xi+l is the i + 1st symbol of x,
then, using a new node u, the edge {u, vi} labeled xi+l is created and let vi+l := u.
Otherwise, let vi+l := u, where {u, vi} is an edge labeled x;+l. Obviously, the tree
produced in this procedure is a proper tree realizing a walk for x. Moreover, we
can easily check the following lemma:

Lemma 2. For any string x, a proper tree realizing a walk for x is unique.

Note that this result implies that for a string x, an ---+F-normal form of a linear
chain with label s is unique. The following algorithm, called EDGE-FOLD, is based
on the above idea. The tree produced by the algorithm is represented by an array

T indexed on the vertices and the colors. We can consider that the vertices and
the colors are coded into the numbers.

/* x = $1. xn (xi E C) */
begin

u := 1; v := 1;
for i := 1 to n

if T[u, xi] = 0 then
v := v + 1;
T[u, xi] = V; T[v, xi] := U; /* {u, V) is an edge labeled xi */
U := v;
else u := T[u, xi]

endif
end;
return T

end;

Algorithm : EDGE-FOLD

It is clear that the algorithm EDGE-FOLD always produces a proper tree re-
alizing a walk for a given string. Thus, by Lemmas 1 and 2, the tree produced
by EDGE-FOLD is the smallest tree that realizes a walk for a given string. The
number of steps executed by every iteration of the loop of EDGE-FOLD is bounded
by a constant. Thus EDGE-FOLD runs in O(n) time.

4. Inferring a graph from partial walks

Instead of dealing with a single walk, we consider in this section, the problem of
inferring a tree from a finite number of partial walks. We consider the following
decision problem:

Definition. Let C be a class of graphs. The graph inference from partial walks
for C, denoted by GIPWS(C), is defined as follows:

Instance: A finite set S of strings over a finite alphabet C and a positive integer
K.

Question: Is there a graph G in C with at most K edges such that G realizes all
partial walks for S?

The tree inference from partial walks is defined as GIPWS(Tree). The main
result in this section is the following theorem:

Theorem 2. The tree inference from partial walks is NP-complete. Furthermore,
this problem is NP-complete even if the size of alphabet is restricted to 3.

Proof. It is easy to see that GIPWS(Tree) is in NP. We first reduce the vertex
cover problem [6] to GIPWS(Tree), where the vertex cover problem (VC) is to
decide if, given a graph G = (V, E) and a positive integer I<, there is a vertex

cover of size at most K for G, that is, a subset C z V with ICI 5 K such that for
each edge {u, v} E E at least one of u and v belongs to C. After that, we modify
the reduction so as to show that the problem remains NP-complete if the size of
alphabet is restricted to 3.

Let G = (V,E) be a graph with IVI = n and K be a positive integer. For G
and K , We define an alphabet C as C = V u {ao, al, . . . , ay,/zl) u {bl, b2, . . . , bn+1}.
In order to define a set S of strings over C, we introduce the following notations
for strings:

[a1 = arn/21 • • • a1a0al . • arn/21
[b] = b l** .bn+ l .

Note that [aIR = [a]. Then S consists of the following strings:

base-string : u[a] [b] for u E V,
edge-string : u[a]v for {u, v} E E .

Finally, let K' = 2 n + 2 b / 2 1 + 2 + K. This transformation can be done in
polynomial time. We claim that G has a vertex cover of size at most K if and only
if there is a tree with at most K' edges which realizes all partial walks for S.

Suppose that G has a vertex cover C with ICI 5 K. For a subset U =
{vi, . . . , vi} of V, let T(U) be the tree in Fig. 2. It is obvious that T(C) re-

Figure 2: V = {v1,. . . , vn} and U = {vi, . . . , v;} V.

alizes all partial walks for S. It can be easily checked that T contains at most I<'
edges since ICI 5 K.

Conversely, suppose that there is a tree T with at most K' edges realizing all
partial walks for S. Note that for x E S, any tree realizing a walk for x is isomorphic
to a linear chain with label x. Without loss of generality, we can assume that T is
proper by Fact 1. Note that if T is proper then any subgraph of T is proper.

We first consider the base-strings, each of which includes exactly one [a][b] as
a substring.

Claim 1. Let Tb be the tree in Fig. 3. Any proper tree with at most K' edges
that realizes all partial walks for the set of the base-strings is isomorphic to the
tree Tb.

Tb

Figure 3: V = {vl, . . . , v,).

Proof. It can be easily checked that if such a tree is not isomorphic to Tb then it
contains at least 1 [a] [b] I + I [b] 1 + IVI = 3n + 2 b/21 $ 3 edges. This contradicts the
assumption that the number of edges in T is at most Kt.

In a similar way, we can see the following:

Claim 2. For a tree T', T' is a proper tree with at most Kt edges realizing all
partial walks for S if and only if T' is isomorphic to the tree T(Ct) where C' s V.

Then we can assume that for some C' 2 V, the tree T is isomorphic to T(Ct).
It is obvious that lei is at most I< since T contains at most Kt edges. It should
be clear that C' gives a vertex cover of G whose size has been shown at most I<.

We next modify the reduction into another one to show that the tree inference
from a walk remains NP-complete if the size of alphabet is restricted to 3. Let
C = {0,1, #). For convenience, we asssume that V = (0,. . . , n - 1). For a
nonnegative integer i, we denote by i j the j th bit of the binary representation of i
such that i = i020 + i121 + + i,-12m-1 for some rn 2 Llog ij $1. Let = 1 if
i j = O and = O otherwise. For a pair (h, i) of integers with O 5 i 5 2h - 1, the
strings bl (h, i), b2(h, i) and b3(h, i) are defined as follows:

bl (h, i) = #io#il #ih-l.

b2(h, i) = #ioG#ilG* #ih-lih-l.

b3(h, i) = #ioGio#illi;il . #ih-lih-lih-l.

Let q = [log nl . Using these strings, we make the strings [i] for O 5 i 5 2q - 1, [a]
and [b] as follows:

[i] = b l (q , i) f o r 0 5 i 5 2 q - 1 .
29-1

i? = n #O101b2(q, i).
i-0

[a] = i?#O#zlR.
29-1

[b] = n O1010101b3(2q, i)#.
i=O

Note that 1 [a] I = 2q+1 (3q + 5) + 3 and 1 [b] 1 = 2q(8q + 9). The strings of S are defined
as follows:

base-string: [i][i][a][b] for i E V.
branch-string : [i] [a] [iIR f o r O < i < 2 q - 1 .
edge-string: [i][i][a][j]R[j]R f o r { i , j) ~ E .

Finally, let K' = 2q(n + K) -+ 2q(l4q + 27) - 6. This transformation can be done in
polynomial time. We claim that G has a vertex cover of size at most K if and only
if there is a tree with at most K' edges which realizes all partial walks for S (see
Fig.4). This claim can be proven in a similar way of the case that any restriction
is not put on the size of alphabet. We leave it for the reader to verify the claim.

C1

Figure 4: For the graph G, the tree T would be constructed

The linear chain inference from partial walks is defined as GIPWS(LinearChain).

Theorem 3. The linear chain inference from partial walks is NP-complete even if
the size of alphabet is restricted to 3.

Proof. We give a reduction from the shortest common superstring problem [5],
where the shortest cornmon superstring problem is to decide if, given a finite set S
of strings over a finite alphabet C and a positive integer K , there is a superstring
for S with length at most K , that is, a string s E C* with Is1 < K such that each
string x E S is a substring of s. It is known that the problem is NP-complete even
if IC I = 2 [5]. Let S be a finite set of strings over the alphabet C = {O, 1) and K
be a positive integer. We first define an alphabet C' as C' = C U {#), where #
is a new symbol not in C. For a string b = blbz - bm with bl, b2,. . . , bm E C, we
create a string

Then let Sf be the set of the strings bt for all b E S. Finally, let Kf = 51c + 2. This
transformation can be done in polynomial time.

Note that the linear chain realizing a walk for a string xf E St is the only linear
chain 1,~ with label x' (see Theorem 5 of [3]). It is clear that there is a superstring
s for S with Is1 5 K if and only if all partial walks for St are realized in a linear
chain with K' edges or less. CI

Theorem 4. The tree inference from partial walks is solvable in linear time if the
size of alphabet is at most 2.

Proof. Let C be an alphabet of size at most 2. A string x over C is said to be
alternate if the ith bit of x, denoted by xi, is different from xi+l. By Lemma 1, the
smallest tree realizing a walk for x is a linear chain and the label of it is alternate.
We denote the alternate string for x by a(x). For a finite set S of strings over C,
let a(S) be the set of a(x)'s for all x E S. It is obvious that a(S) can be obtained
by algorithm EDGE-FOLD in linear time.

Let 1 be the label of the smallest linear chain that realizes all partial walks
for S. The string 1 is the longest string in a(S) with the exception that the two
distinct alternate strings with length 2k + 1 for some k are the longest strings, in
which I is the alternate string with length 2k + 2.

From the proof of Theorem 4, it can be seen that the linear chain inference
from partial walks is solvable in linear time if the size of alphabet is at most 2.

5. Approximabilit ies
As we have shown in Sections 3 and 4 that the graph inferences from partial
walks for trees and linear chains are computationally hard, while the inferences
from a walk allow polynomial time algorithms. In this section, we discuss the
approxirnabilities of these intractable problems.

First, we yield polynomial-time approximation algorithms for the graph infer-
ences from partial walks for trees and linear chains. An approximation algorithm
for the tree inference from partial walks is easily constructed by employing an
approximation algorithm for the smallest supertree problem [15]. The approxima-
tion ratio of the algorithm for the tree inference depends on that for the smallest
supertree problem. Approximation algorithms for the linear chain inference are
also constructed by employing approximation algorithms for the shortest common
superstring with flipping [$I. Their approximation ratios depend on the ratios of
the employed algorithms.

Second, by slightly modifying the reduction in the proof of Theorem 2, the tree
inference from partial walks is shown to be MAXSNP-hard, which implies that
there is no polynomial- time approximation scheme for the tree inference unless
P = NP by the result due to Arora et al. [2]. We can also see that the linear
chain inference from partial walks is MAXSNP-hard as a trivial consequence of
the reduction in the proof of Theorem 3.

The tree inference from partial walks has the following approximation algorithm
that is analyzed in terms of the compression in the tree constructed, that is, in

terms of Ic - 1, where Ic is the total length of given strings and 1 is the number of
edges of the tree.

Theorem 5. There is a polynomial-time approximation algorithm to find a tree
T realizing all partial walks for a set S of strings such that C 2 C,/(ISI - I),
where C is the compression in T and C, is the maximum compression for S.

In approximately solving the tree inference from partial walks, the observation
in the following lemma is a key to our approach.

Lemma 3. Let T be the smallest tree realizing all partial walks for a set S of
strings. Then for each x E S, the smallest tree realizing a walk for x is a subgraph
of T.

This lemma is trivial from Lemma 1. For a finite set R of edge-colored trees, an
edge-colored tree T is called a supertree for R if for t E R, the tree t is a subgraph
of T. For a string x, we denote the smallest tree realizing a walk for x by st(x).
For a finite set S of strings, st(S) is the set of st(x)'s for all x E S. Given a finite
set S of strings, if we could find the smallest supertree for st(S), it would be the
required tree in the tree inference from partial walks by Lemma 3. Though the
problem of finding the smallest supertree is easily seen to be NP-complete from the
proof of Theorem 2, there is an approximation algorithm which, given a finite set
R of trees, constructs a supertree T for R satisfying C 2 C,/(IRI - I), where C
is the compression in T and C, is the maximum compression for R [15]. Thus, by
employing the algorithm, the algorithm in Theorem 5 can be given. Notice that for
each x E S if the smallest tree realizing a walk for x is isomorphic to a linear chain
with label x, we cannot expect any merit by constructing st(S) in the algorithm
of Theorem 5.

We can similarly discuss an approximation algorithm of the linear chain infer-
ence from partial walks because we have the following lemma:

Lemma 4. Let 1 be the smallest linear chain realizing all partial walks for a set S
of strings. Then for each x E S, the smallest linear chain realizing a walk for x is
a subgraph of 1.

This can be easily shown by using binary relations introduced in [3]. A string
s is called a superstring for a set S of strings with flipping if for each string x E S,
either x or xR is a substring of s. In a similar way, the compression in a superstring
with flipping can be defined. Since there is an approximation algorithm which,
given a finite set S of strings, find a superstring s with flipping for S such that
C 2 C,/2 where C is the compression in s and C, is the maximum compression
for S [8], the following approximation algorithm for the linear chain inference from
partial walks is given:

Theorem 6. There is a polynomial-time approximation algorithm to find a linear
chain 1 realizing all partial walks for a set S of strings such that C 2 C,/2, where
C is the compression in 1 and C, is the maximum compression for S.

Jiang et. al. [8] also developed an approximation algorithm that constructs a
superstring s with flipping with length at most 3 opt, where opt is the maximum
length.

Theorem 7. There is a polynomial-time algorithm to find a linear chain with at
most 3 opt($) edges which realizes all partial walks for a finite set S of strings,
where opt(S) is the number of edges in the smallest linear chain realizing all partial
walks for S.

We next show that the tree and linear chain inferences from partial walks are
MAXSNP-hard. Let 111 and 112 be two optimization (maximization or minimiza-
tion) problems. We say that 111 L-reduces to 112 if there are polynomial time
algorithms f and g and constants a and P > 0 such that:

1. Given an instance Il of 111 with optimal cost opt(Il), the algorithm f pro-
duces an instance I2 of 112 with optimal cost opt(12) that satisfies opt(12) <
cu . opt(.&), and

2. Given any feasible solution s 2 of I2 with cost cost(s2), the algorithm g pro-
duces a solution sl of Il with cost cost(sl) such that lcost(sl) - opt(Il)l <
P I cost(s2) - opt(&) 1

Some basic facts about L-reductions are: First, the composition of two L-
reductions is also an L-reduction. Second, if problem 111 L-reduces to problem 112
and 112 can be approximated in polynomial time with relative error 6, then 111 can
be approximated with relative error cups. In particular, if 112 has a polynomial-
time approximation scheme, then so does Itl. The class MAXSNPo is the class
of maximization problems defined syntactically in Papadimitriou and Yannakakis
[lo, 111. It is known that every problem in this class can be approximated within
some constant factor. MAXSNP is defined as the class of all optimization problems
that are L-reducible to a problem in MAXSNPO. A problem is MAXSNP-hard if
every problem in MAXSNP can be L-reduced to it.

Theorem 8. The tree inference from partial walks is MAXSNP-hard.

Proof. For an integer k, let k-DEGREE VERTEX COVER be the VC restricted
to graphs of bounded degree k. It is known that 4-DEGREE VERTEX COVER is
MAXSNP-complete [lo, 111. We can take the reduction in the proof of Theorem 2
as the algorithm f of an L-reduction from 4-DEGREE VERTEX COVER. Then
the first condition is satisfied with cu = 15 since b/51 < opt(G), where opt(G) is
the size of minimum covers of G.

We next define the algorithm g as follows: We can assume that a feasible
solution of GIPWS(Tree) is, given a finite set S of strings, a proper tree which
realizes all partial walks for S. Let s 2 be a feasible solution of GIPWS(Tree). If s 2

has at most 372 + 2[n/21 $ 2 edges, then s 2 is a tree isomorphic to T(C) for some
C C V, which is defined in the proof of Theorem 2. In the case, the algorithm g
returns C. Otherwise, g returns V. Then it is trivial that the second condition
holds with ,8 = 1.

By the fact that the shortest common superstring problem is MAXSNP-hard
[4] and the fact that the reduction in the proof of Theorem 3 is an L-reduction,
the following holds:

Theorem 9. The linear chain inference from partial walks is MAXSNP-hard.

Acknowledgments

We would like to thank Ayumi Shinohara for a great amount of helps and sug-
gestions in attacking problems discussed in this paper. We are also grateful to all
referees for useful comments. This work is partly supported by Grant-in-Aid for
Scientific Research on Priority Areas "Genome Informatics" from the Ministry of
Education, Science and Culture, Japan. The first author's research is partly sup-
ported by Grants-in-Aid for JSPS research fellows from the Ministry of Education,
Science and Culture, Japan.

References

[I] D. Angluin. On the complexity of minimum inference of regular sets. Inform.
Control, 39:337-350, 1978.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verifi-
cation and hardness of approximation problems. In Proc. 33rd IEEE Symp.
Foundations of Computer Science, pages 14-23, 1992.

[3] J. A. Aslam and R. L. Rivest. Inferring graphs from walks. In Proc. 3rd
Workshop on Computational Learning Theory, pages 359-370, 1990.

[4] A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear approximation
of shortest superstrings. J. Comput. System Sci., 41:630-647, 1994.

[5] J. Gallant, D. Maier, and J. A. Storer. On finding minimal length superstrings.
J. Comput. System Sci., 20:50-58, 1980.

[6] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[7] E. M. Gold. Complexity of automaton identification from given data. Inform.
Control, 37:302-320, 1978.

[8] T. Jiang, M. Li, and D. Du. A note on shortest superstrings with flipping.
Inform. Process. Lett., 44:195-199, 1992.

[9] 0. Maruyama and S. Miyano. Graph inference from a walk for trees of bounded
degree 3 is np-complete. Technical report, Research Institute of Fundamental
Information Science, Kyushu University, RIFIS-TR-CS 94, 1994.

[I 01 C . Papadimitriou and M. Yannakakis. Optimization, approximation and com-
plexity classes. J. Comput. System Sci., 43(3):425-440, 1991.

[I 11 C. H. Papadimitriou. Computational Complexity. Addison- Wesley Publishing
Company, 1994.

[12] L. Pitt and M. K. Warmuth. The minimum consistent DFA problem cannot be
approximated within any polynomial. J. Assoc. Comput. Mach., 4095-142,
1993.

[13] V. Raghavan. Bounded degree graph inference from walks. J. Comput. System
Sci., 49:108-132, 1994.

[I41 S. Rudich. Inferring the structure of a markov chain from its output. In Proc.
26th IEEE Symp. Foundations of Computer Science, pages 321-326, 1985.

[15] A. Yamaguchi and S. Miyano. Approximating minimum common supertrees
for complete ic-ary trees. Technical report, Research Institute of Fundament a1
Information Science, Kyushu University, RIFIS-TR-CS 66, 1993.

About Authors

Osarnu Maruyarna was born in Fukuoka on August 14, 1967. He received
the B.S. in 1991 from Department of Physics and the M.S. degree in 1993 from
Department of Information Systems, Kyushu University He is now studying com-
put ational complexity and approximation algorithms.

Satoru Miyano was born in Oita on December 5, 1954. He received the B.S.
in 1977, the M.S. degree in 1979 and the Dr. Sci. in 1984 all in Mathematics
from Kyushu University. Presently, he is a Professor of Research Institute of Fun-
damental Information Science, Kyushu University. His present interests include
genome informatics, parallel algorithms , comput ational complexity and comput a-
tional learning theory.

