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Abstract 

A walk in an undirected edge-colored graph G is a path containing all 
edges of G. The tree inference from a walk is, given a string x of colors, 
finding the smallest tree that realizes a walk whose sequence of edge-colors 
coincides with x. We prove that the problem is solvable in O(n) time, where 
n is the length of a given string, We furthermore consider the problem of 
inferring a tree from a finite number of partial walks, where a partial walk in 
G is a path in G. We show that the problem turns to be NP-complete even 
if the number of colors is restricted to 3. It is also shown that the problem of 
inferring a linear chain from partial walks is NP-complete, while the linear 
chain inference from a single walk is known to be solvable in polynomial 
time. 

1. Introduction 
A walk in an undirected edge-colored graph G is a path that contains all edges 
of G. For a walk w, the trace of w is the string of edge-colors seen in w. Aslam 
and Rivest [3] asked: Given a string x of colors and a positive integer k ,  what is 
an undirected, degree-bound k ,  edge-colored graph G with the minimum number 
of edges such that G realizes a walk with trace x? Rudich [14] has discussed 
a problem closely related to the graph inference. He considered the problem of 
inferring a Markov chain from its output, and developed algorithms that for the 
binary output of a Markov chain, in the limit, reconstruct the underlying Markov 
chain structure as well as the associated transition probabilities. Aslam and Rivest 
[3] settled the problem of inferring graphs of bounded degree 2 (linear chains and 
cycles) from a walk, by proving that a certain set of rewriting rules satisfies the 
Church-Rosser or confluence property. They established O(n3) and O(n5)  time 
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algorithms for finding the smallest linear chain and cycle consistent with a given 
string of colors, respectively, where n is the length of the string. The latter bound 
has been improved by Raghavan [13] to O(n  log n) time. However, he additionally 
showed that for all k 2 3, the problem of inferring a graph of bounded degree k 
with the minimum number of nodes is NP-complete. 

This paper solves the problem for trees of unbounded degree. The tree inference 
f rom a walk is the problem of finding the smallest undirected edge-colored tree that 
has a trace coinciding with a given string of colors. We give an O ( n )  time algorithm 
for the problem. Recently, Maruyama and Miyano [9] have shown that the problem 
of inferring a tree of bounded degree k from a walk is NP-complete for k > 3 even 
if the number of colors is k $- 1. 

A partial walk in an undirected edge-colored graph G is a path in G, while a 
walk in G must contain all edges of G. We then ask: Given a finite set S of strings, 
what is an undirected edge-colored tree T with the minimum number of edges such 
that, for each x S, T has some partial walk with trace x. We call this problem 
the tree inference f rom partial walks. In contrast with the case of a single walk, we 
prove that the tree inference from partial walks turns to be NP-complete even if 
all strings of S are written over an alphabet of size 3. 

We next consider the problem of inferring a linear chain from partial walks. 
Similarly, we show that this problem is also NP-complete even if the size of alphabet 
is 3, while the linear chain inference from a single walk is solvable in polynomial 
time [3, 131. 

Given a finite set of strings over an alphabet of size at most 2, we show that 
the tree inference from partial walks and the linear chain inference from partial 
walks are solvable by the same algorithm in linear time. In order to show the NP- 
hardness of the linear chain inference from partial walks, we give a reduction from 
the shortest common superstring problem [5]. It is interesting that although the 
shortest common superstring problem is NP-complete even if the size of alphabet 
is restricted to 2, yet the linear chain inference from partial walks is solvable in 
linear time if the size of alphabet is 2. 

The problem of identifying the smallest finite automaton consistent with given 
input/output behaviors, which is shown to be, in general, NP-complete by Angluin 
[I] and Gold [7], is a problem similar to these graph inference problem. The iden- 
tification problem can be regarded as the case that a directed edge-colored graph is 
to be inferred from strings. Moreover, Pitt and Warmuth [12] have shown an inter- 
esting negative result on approximation algorithms for the problem. We show that 
there is an approximation algorithm for the tree inference from partial walks which 
is constructed by employing an algorithm that approximately solves the minimum 
common supertree problem [15]. We next give polynomial-time approximation al- 
gorithms for the linear chain inference from partial walks which employ algorithms 
that approximate the problem of shortest superstrings with flipping [$I. We fur- 
thermore show that these inference problems are MAXSNP-hard, which implies 
that there are no polynomial-time approximation schemes for the problems unless 
P=NP [2]. 

This paper is organized as follows. In Section 2, we introduce some basic 
definitions to be used throughout the paper. In Section 3, it is proved that the tree 



inference from a walk is solvable in O(n)  time. In Section 4, we show that the tree 
inference from partial walks is NP-complete and the linear chain inference from 
partial walks is also NP-complete. Finally, we give results on approximabilities of 
these intractable problems in Section 5 .  

2. Preliminaries 

Let C be a finite alphabet. The set of all strings over C is denoted by C*. For a 
string x, the length of x is denoted by 1x1 and the reversal of x is written as xR. 
The concatenation of strings x and y is written as x y, or simply x y. For strings 
X I , .  . . , x,, nrZ1 xi denotes 21x2 xn. If S is a set, IS1 denotes the cardinality of 
S .  

A color is a symbol in C. In this paper we consider undirected edge-colored 
graphs G = (V, E, c), where c : E -+ C is called the edge-coloring of G. Hereafter 
a graph means an undirected edge-colored graph without any notice. For graphs 
G and GI, if G and G' are isomorphic including edge labels, we identify G with G' 
without any notice. A graph G is said to be proper if no two adjacent edges have 
the same color. A linear chain is a graph 1 = (T/, E, c) with V = {vi I i = 1,. . . , rn) 
and E = { { ~ ~ , v ~ + ~ }  I i = 1, ..., rn - I) ,  and the label of l is defined as the 
string JJg;l c({vi, v ~ + ~ ) ) .  Note that for any string x, a linear chain with label x 
is identified with a linear chain with label xR. We denote the classes of linear 
chains, trees and graphs of bounded degree k by Linearchain, Tree and k-Deg, 
respectively. 

A partial walk in a graph G is a path in G. If a partial walk in G contains all 
edges of G, it is called a walk in G. For the sequence el, e2, . . . , en of edges in a 
partial walk w in G = (V, E ,  c), the trace of w is defined as the string n;=, c(ei). 
Let x be a string. If w is a (partial) walk with trace x, w is called a (partial) walk 
for x. For a graph G, we say that G realizes a walk for x if there is a walk for x in 
G. Similarly, for a graph G and a finite set S of strings, we say that G realizes all 
partial walks for S if for each x E S, there is a partial walk for x in G. 

Let -+ be a binary relation on a set D and S= be the transitive and reflexive 
closure of -+. For x, y E D, if x y and there is no z E D such that y -+ z then 
y is called a -+-normal form of x. 

Definition. Let TI = (V,E, c) be a tree which includes adjacent edges el = 
{vll v2) and e2 = {v2, v3) with c(el) = c(e2) (see Fig. 1 (a)). Let T2 be the 
tree obtained from TI by identifying vs with vl together with the adjacent edges el 
and e2 (see Fig. 1 (b)). Then we say that T2 is an edge-folding of TI. The binary 
relation --+F on the set of trees is defined to be the set of pairs (TI, T2) such that 
T2 is an edge-folding of TI. 

Fact 1. For trees Tl and T2, suppose that Tl -+F T2. The following facts hold 
trivially : 

1. T2 is smaller than TI. 

2. If TI realizes a walk for a string x, then T2 realizes a walk for x. 



Figure 1: tl, t2 and t3 in (a) and (b) are arbitrary trees and a is an arbitrary color. 

3. If TI realizes all partial walks for a set S of strings, then T2 realizes all partial 
walks for S. 

4. For a tree T ,  an jF-normal form of T is proper. 

3. Inferring a tree from a walk 
In this section, we give a linear-time algorithm for finding the smallest tree realizing 
a walk for a given string. The tree inference from a walk is defined as follows: 

Instance: A string x over a finite alphabet C. 

Problem: Find a tree T with the minimum number of edges such that T realizes 
a walk for x. 

Theorem 1. The tree inference from a walk is solvable in O ( n )  time, where n is 
the length of a given string. 

Assume that a tree T realizes a walk for a string x. If T is not proper, then 
there is an edge-folding T' of T. We can see by Fact 1 that T' is smaller than T 
and realizes a walk for x. Thus we can have the following lemma: 

Lemma 1. For a string x, any of the smallest trees realizing a walk for x is proper. 

Given a string I, one way to make a proper tree that realizes a walk for x is 
repeating the following procedure: Let vi be the end node of a walk for the prefix of 
x with length i realized in the resulting proper tree just after the ith iteration. If vi 
does not have any adjacent edge labeled xi+l, where xi+l is the i + 1st symbol of x, 
then, using a new node u, the edge {u, vi} labeled xi+l is created and let vi+l := u. 
Otherwise, let vi+l := u, where {u, vi} is an edge labeled x;+l. Obviously, the tree 
produced in this procedure is a proper tree realizing a walk for x. Moreover, we 
can easily check the following lemma: 

Lemma 2. For any string x, a proper tree realizing a walk for x is unique. 

Note that this result implies that for a string x, an ---+F-normal form of a linear 
chain with label s is unique. The following algorithm, called EDGE-FOLD, is based 
on the above idea. The tree produced by the algorithm is represented by an array 



T indexed on the vertices and the colors. We can consider that the vertices and 
the colors are coded into the numbers. 

/* x = $1. xn (xi E C) */ 
begin 

u := 1; v := 1; 
for i := 1 to n 

if T[u, xi] = 0 then 
v := v + 1; 
T[u, xi] = V; T[v, xi] := U; /* {u, V )  is an edge labeled xi */ 
U := v; 
else u := T[u, xi] 

endif 
end; 
return T 

end; 

Algorithm : EDGE-FOLD 

It is clear that the algorithm EDGE-FOLD always produces a proper tree re- 
alizing a walk for a given string. Thus, by Lemmas 1 and 2, the tree produced 
by EDGE-FOLD is the smallest tree that realizes a walk for a given string. The 
number of steps executed by every iteration of the loop of EDGE-FOLD is bounded 
by a constant. Thus EDGE-FOLD runs in O(n)  time. 

4. Inferring a graph from partial walks 

Instead of dealing with a single walk, we consider in this section, the problem of 
inferring a tree from a finite number of partial walks. We consider the following 
decision problem: 

Definition. Let C be a class of graphs. The graph inference from partial walks 
for C, denoted by GIPWS(C), is defined as follows: 

Instance: A finite set S of strings over a finite alphabet C and a positive integer 
K.  

Question: Is there a graph G in C with at most K edges such that G realizes all 
partial walks for S? 

The tree inference from partial walks is defined as GIPWS(Tree). The main 
result in this section is the following theorem: 

Theorem 2. The tree inference from partial walks is NP-complete. Furthermore, 
this problem is NP-complete even if the size of alphabet is restricted to 3. 

Proof. It is easy to see that GIPWS(Tree) is in NP. We first reduce the vertex 
cover problem [6] to GIPWS(Tree), where the vertex cover problem (VC) is to 
decide if, given a graph G = (V, E) and a positive integer I<, there is a vertex 



cover of size at most K for G, that is, a subset C z V with ICI 5 K such that for 
each edge {u, v} E E at least one of u and v belongs to C. After that, we modify 
the reduction so as to show that the problem remains NP-complete if the size of 
alphabet is restricted to 3. 

Let G = (V,E) be a graph with IVI = n and K be a positive integer. For G 
and K ,  We define an alphabet C as C = V u {ao, al, . . . , ay,/zl) u {bl, b2, . . . , bn+1}. 
In order to define a set S of strings over C, we introduce the following notations 
for strings: 

[a1 = arn/21 • • • a1a0al . • arn/21 
[b] = b l** .bn+ l .  

Note that [aIR = [a]. Then S consists of the following strings: 

base-string : u[a] [b] for u E V, 
edge-string : u[a]v for {u, v} E E .  

Finally, let K' = 2 n  + 2  b / 2 1  + 2 + K. This transformation can be done in 
polynomial time. We claim that G has a vertex cover of size at most K if and only 
if there is a tree with at most K' edges which realizes all partial walks for S.  

Suppose that G has a vertex cover C with ICI 5 K.  For a subset U = 
{vi, . . . , vi} of V, let T(U) be the tree in Fig. 2. It is obvious that T(C) re- 

Figure 2: V = {v1,. . . , vn} and U = {vi, . . . , v;} V. 

alizes all partial walks for S.  It can be easily checked that T contains at most I<' 
edges since ICI 5 K. 

Conversely, suppose that there is a tree T with at most K' edges realizing all 
partial walks for S. Note that for x E S, any tree realizing a walk for x is isomorphic 
to a linear chain with label x. Without loss of generality, we can assume that T is 
proper by Fact 1. Note that if T is proper then any subgraph of T is proper. 

We first consider the base-strings, each of which includes exactly one [a][b] as 
a substring. 

Claim 1. Let Tb be the tree in Fig. 3. Any proper tree with at most K' edges 
that realizes all partial walks for the set of the base-strings is isomorphic to the 
tree Tb. 



Tb 

Figure 3: V = {vl, . . . , v,). 

Proof. It can be easily checked that if such a tree is not isomorphic to Tb then it 
contains at least 1 [a] [b] I + I [b] 1 + IVI = 3n + 2 b/21 $ 3  edges. This contradicts the 
assumption that the number of edges in T is at most Kt. 

In a similar way, we can see the following: 

Claim 2. For a tree T', T' is a proper tree with at most Kt edges realizing all 
partial walks for S if and only if T' is isomorphic to the tree T(Ct) where C' s V. 

Then we can assume that for some C' 2 V, the tree T is isomorphic to T(Ct). 
It is obvious that lei is at most I< since T contains at most Kt edges. It should 
be clear that C' gives a vertex cover of G whose size has been shown at most I<. 

We next modify the reduction into another one to show that the tree inference 
from a walk remains NP-complete if the size of alphabet is restricted to 3. Let 
C = {0,1, #). For convenience, we asssume that V = (0,. . . , n  - 1). For a 
nonnegative integer i, we denote by i j  the j th  bit of the binary representation of i 
such that i = i020 + i121 + + i,-12m-1 for some rn 2 Llog ij $1. Let = 1 if 
i j  = O and = O otherwise. For a pair (h, i) of integers with O 5 i 5 2h - 1, the 
strings bl (h, i),  b2(h, i) and b3(h, i) are defined as follows: 

bl (h, i) = #io#il #ih-l. 

b2(h, i) = #ioG#ilG* #ih-lih-l. 

b3(h, i) = #ioGio#illi;il . #ih-lih-lih-l. 

Let q = [log nl . Using these strings, we make the strings [i] for O 5 i 5 2q - 1, [a] 
and [b] as follows: 

[i] = b l ( q , i ) f o r 0 5 i 5 2 q - 1 .  
29-1 

i? = n #O101b2(q, i). 
i-0 

[a] = i?#O#zlR. 
29-1 

[b] = n O1010101b3(2q, i)#. 
i=O 



Note that 1 [a] I = 2q+1 (3q + 5) + 3 and 1 [b] 1 = 2q(8q + 9). The strings of S are defined 
as follows: 

base-string: [i][i][a][b] for i E V. 
branch-string : [i] [a] [iIR f o r O < i < 2 q - 1 .  
edge-string: [i][i][a][j]R[j]R f o r { i , j ) ~ E .  

Finally, let K' = 2q(n + K)  -+ 2q(l4q + 27) - 6. This transformation can be done in 
polynomial time. We claim that G has a vertex cover of size at most K if and only 
if there is a tree with at most K' edges which realizes all partial walks for S (see 
Fig.4). This claim can be proven in a similar way of the case that any restriction 
is not put on the size of alphabet. We leave it for the reader to verify the claim. 

C1 

Figure 4: For the graph G, the tree T would be constructed 

The linear chain inference from partial walks is defined as GIPWS(LinearChain). 

Theorem 3. The linear chain inference from partial walks is NP-complete even if 
the size of alphabet is restricted to 3. 

Proof. We give a reduction from the shortest common superstring problem [5], 
where the shortest cornmon superstring problem is to decide if, given a finite set S 
of strings over a finite alphabet C and a positive integer K ,  there is a superstring 
for S with length at most K ,  that is, a string s E C* with Is1 < K such that each 
string x E S is a substring of s. It is known that the problem is NP-complete even 
if IC I = 2 [5]. Let S be a finite set of strings over the alphabet C = {O, 1) and K 
be a positive integer. We first define an alphabet C' as C' = C U {#), where # 
is a new symbol not in C. For a string b = blbz - bm with bl, b2,. . . , bm E C, we 
create a string 



Then let Sf be the set of the strings bt for all b E S. Finally, let Kf  = 51c + 2. This 
transformation can be done in polynomial time. 

Note that the linear chain realizing a walk for a string xf E St is the only linear 
chain 1,~ with label x' (see Theorem 5 of [3]). It is clear that there is a superstring 
s for S with Is1 5 K if and only if all partial walks for St are realized in a linear 
chain with K' edges or less. CI 

Theorem 4. The tree inference from partial walks is solvable in linear time if the 
size of alphabet is at most 2. 

Proof. Let C be an alphabet of size at most 2. A string x over C is said to be 
alternate if the ith bit of x, denoted by xi, is different from xi+l. By Lemma 1, the 
smallest tree realizing a walk for x is a linear chain and the label of it is alternate. 
We denote the alternate string for x by a(x). For a finite set S of strings over C, 
let a(S) be the set of a(x)'s for all x E S. It is obvious that a(S) can be obtained 
by algorithm EDGE-FOLD in linear time. 

Let 1 be the label of the smallest linear chain that realizes all partial walks 
for S. The string 1 is the longest string in a(S) with the exception that the two 
distinct alternate strings with length 2k + 1 for some k are the longest strings, in 
which I is the alternate string with length 2k + 2. 

From the proof of Theorem 4, it can be seen that the linear chain inference 
from partial walks is solvable in linear time if the size of alphabet is at most 2. 

5. Approximabilit ies 
As we have shown in Sections 3 and 4 that the graph inferences from partial 
walks for trees and linear chains are computationally hard, while the inferences 
from a walk allow polynomial time algorithms. In this section, we discuss the 
approxirnabilities of these intractable problems. 

First, we yield polynomial-time approximation algorithms for the graph infer- 
ences from partial walks for trees and linear chains. An approximation algorithm 
for the tree inference from partial walks is easily constructed by employing an 
approximation algorithm for the smallest supertree problem [15]. The approxima- 
tion ratio of the algorithm for the tree inference depends on that for the smallest 
supertree problem. Approximation algorithms for the linear chain inference are 
also constructed by employing approximation algorithms for the shortest common 
superstring with flipping [$I. Their approximation ratios depend on the ratios of 
the employed algorithms. 

Second, by slightly modifying the reduction in the proof of Theorem 2, the tree 
inference from partial walks is shown to be MAXSNP-hard, which implies that 
there is no polynomial- time approximation scheme for the tree inference unless 
P = NP by the result due to Arora et al. [2]. We can also see that the linear 
chain inference from partial walks is MAXSNP-hard as a trivial consequence of 
the reduction in the proof of Theorem 3. 

The tree inference from partial walks has the following approximation algorithm 
that is analyzed in terms of the compression in the tree constructed, that is, in 



terms of Ic - 1, where Ic is the total length of given strings and 1 is the number of 
edges of the tree. 

Theorem 5. There is a polynomial-time approximation algorithm to find a tree 
T realizing all partial walks for a set S of strings such that C 2 C,/(ISI - I), 
where C is the compression in T and C, is the maximum compression for S. 

In approximately solving the tree inference from partial walks, the observation 
in the following lemma is a key to our approach. 

Lemma 3. Let T be the smallest tree realizing all partial walks for a set S of 
strings. Then for each x E S, the smallest tree realizing a walk for x is a subgraph 
of T. 

This lemma is trivial from Lemma 1. For a finite set R of edge-colored trees, an 
edge-colored tree T is called a supertree for R if for t E R, the tree t is a subgraph 
of T. For a string x, we denote the smallest tree realizing a walk for x by st(x). 
For a finite set S of strings, st(S) is the set of st(x)'s for all x E S. Given a finite 
set S of strings, if we could find the smallest supertree for st(S), it would be the 
required tree in the tree inference from partial walks by Lemma 3. Though the 
problem of finding the smallest supertree is easily seen to be NP-complete from the 
proof of Theorem 2, there is an approximation algorithm which, given a finite set 
R of trees, constructs a supertree T for R satisfying C 2 C,/(IRI - I), where C 
is the compression in T and C, is the maximum compression for R [15]. Thus, by 
employing the algorithm, the algorithm in Theorem 5 can be given. Notice that for 
each x E S if the smallest tree realizing a walk for x is isomorphic to a linear chain 
with label x, we cannot expect any merit by constructing st(S) in the algorithm 
of Theorem 5. 

We can similarly discuss an approximation algorithm of the linear chain infer- 
ence from partial walks because we have the following lemma: 

Lemma 4. Let 1 be the smallest linear chain realizing all partial walks for a set S 
of strings. Then for each x E S, the smallest linear chain realizing a walk for x is 
a subgraph of 1. 

This can be easily shown by using binary relations introduced in [3]. A string 
s is called a superstring for a set S of strings with flipping if for each string x E S, 
either x or xR is a substring of s. In a similar way, the compression in a superstring 
with flipping can be defined. Since there is an approximation algorithm which, 
given a finite set S of strings, find a superstring s with flipping for S such that 
C 2 C,/2 where C is the compression in s and C, is the maximum compression 
for S [8], the following approximation algorithm for the linear chain inference from 
partial walks is given: 

Theorem 6. There is a polynomial-time approximation algorithm to find a linear 
chain 1 realizing all partial walks for a set S of strings such that C 2 C,/2, where 
C is the compression in 1 and C, is the maximum compression for S. 



Jiang et. al. [8] also developed an approximation algorithm that constructs a 
superstring s with flipping with length at most 3 opt, where opt is the maximum 
length. 

Theorem 7. There is a polynomial-time algorithm to find a linear chain with at 
most 3 opt($) edges which realizes all partial walks for a finite set S of strings, 
where opt(S) is the number of edges in the smallest linear chain realizing all partial 
walks for S. 

We next show that the tree and linear chain inferences from partial walks are 
MAXSNP-hard. Let 111 and 112 be two optimization (maximization or minimiza- 
tion) problems. We say that 111 L-reduces to 112 if there are polynomial time 
algorithms f and g and constants a and P > 0 such that: 

1. Given an instance Il of 111 with optimal cost opt(Il), the algorithm f pro- 
duces an instance I2 of 112 with optimal cost opt(12) that satisfies opt(12) < 
cu . opt(.&), and 

2. Given any feasible solution s 2  of I2 with cost cost(s2), the algorithm g pro- 
duces a solution sl of Il with cost cost(sl) such that lcost(sl) - opt(Il)l < 
P I cost(s2) - opt(&) 1 

Some basic facts about L-reductions are: First, the composition of two L- 
reductions is also an L-reduction. Second, if problem 111 L-reduces to problem 112 
and 112 can be approximated in polynomial time with relative error 6, then 111 can 
be approximated with relative error cups. In particular, if 112 has a polynomial- 
time approximation scheme, then so does Itl. The class MAXSNPo is the class 
of maximization problems defined syntactically in Papadimitriou and Yannakakis 
[lo,  111. It is known that every problem in this class can be approximated within 
some constant factor. MAXSNP is defined as the class of all optimization problems 
that are L-reducible to a problem in MAXSNPO. A problem is MAXSNP-hard if 
every problem in MAXSNP can be L-reduced to it. 

Theorem 8. The tree inference from partial walks is MAXSNP-hard. 

Proof. For an integer k, let k-DEGREE VERTEX COVER be the VC restricted 
to graphs of bounded degree k. It is known that 4-DEGREE VERTEX COVER is 
MAXSNP-complete [lo, 111. We can take the reduction in the proof of Theorem 2 
as the algorithm f of an L-reduction from 4-DEGREE VERTEX COVER. Then 
the first condition is satisfied with cu = 15 since b/51 < opt(G), where opt(G) is 
the size of minimum covers of G. 

We next define the algorithm g as follows: We can assume that a feasible 
solution of GIPWS(Tree) is, given a finite set S of strings, a proper tree which 
realizes all partial walks for S.  Let s 2  be a feasible solution of GIPWS(Tree). If s 2  

has at most 372 + 2[n/21 $ 2  edges, then s 2  is a tree isomorphic to T(C) for some 
C C V, which is defined in the proof of Theorem 2. In the case, the algorithm g 
returns C. Otherwise, g returns V. Then it is trivial that the second condition 
holds with ,8 = 1. 



By the fact that the shortest common superstring problem is MAXSNP-hard 
[4] and the fact that the reduction in the proof of Theorem 3 is an L-reduction, 
the following holds: 

Theorem 9. The linear chain inference from partial walks is MAXSNP-hard. 
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