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Abstract 

The extension, one of the most important notions in Reiter's default logic, is 
not computable in general. This paper proposes new notions of sub-extension and 
approximate extension which can successively be constructed from a given default 
theory. By introducing a time-bound into them, we show that every step of our 
construction terminates in a finite time. We also prove that the set of approximate 
extensions contains the set of extensions in Reiter's sense. 

1 Introduction 

In order to apply A1 systems in more unrestricted domains, more efficient and flexible 

methods for representing and inferring their knowledge are required. Reiter's default 

theory [3] gives a theoretical foundation to meet such a requirement. His default reasoning 

can informally be described as the process of jumping to conclusions based on what is 

normally the case. An extension, an important notion to describe default theories, is a 

maximal set of results reasoned from a default theory. 

The extension, however, can not successively be constructed, because it is defined 

by using itself in applying the defaults. To solve this problem, Yuasa and Arikawa([S]) 

introduced the notion of pseudo extension which can successively be constructed from a 

given default theory. Since the termination of derivations is not generally guaranteed in 

first order logic, the pseudo extensions are still not computable. In order to effectively 

construct the extensions, we need to restrict the time allowed for every construction step. 

In this paper, we pay attention to the termination of construction steps. Based on 

our time-bounded reasoning 15, 71, we propose the notions of approximate extensions and 

finite sub-extensions, and show that such extensions can be successively constructed and 

every construction step terminates in a finite time. We also prove every Reiter's extension 

is an approximate extension. 

In Section 3, we introduce the time-bound into the construction of extensions, and 

discuss the reliability of knowledge in extensions and the influence of time-bound on the 



correctness of reasoned results. In Section 4, we give the definitions of the i-th finite 

sub-extensions and approximate extensions which can successively be constructed and 

terminate every construct step in a finite time, and show that every extension is an 

approximate extension. Section 5 illustrates the construction on the sub-extensions and 

approximate extensions by some examples. Section 6 gives the concluding remarks of this 

paper. 

2 Preliminaries 

2.1 Default reasoning and extensions 

Let L be a first order language. Well-formed formulas (wff for short) are formed in the 

usual way. A wff is closed if it does not contain any free variable. Then a default rule(or 

default) is a rule of the form 
: M,&,. - 7  M,L?rn 

7 
W 

where a, a,. . . , &, w are wffs in L, We call a a prerequisite, PI, .  . . , ,Om justifications, and 

w a consequence. M is a meta-operator which can be read as "it is consistent to assume". 

The default is closed if a, &, . . . , ,Om, w are closed wffs. 

Let D be a set of defaults, and W be a set of closed wffs. Then A = (D, W) is called 

a default theory. A default theory A is closed if every default in D is closed. 

For a set D of default rules, we define Co?zs(D), the set of all consequences of D,  by 

For a set S of closed wffs and a closed wff w, we use S I- w to denote that w is derived 

from S, and S tj w to denote that w is not derived from S.  We also define the set Th(S) 

by 
Th(S) = {w I w is a closed wff and S I- w} 

Definition 2.1 (Reiter [3]) Let A = (D, W) be a closed default theory, S L be a set of 

closed wffs, and r(S) be the smallest set satisfying the following three conditions: 

3 If 
a :  MW,...,MPm 

E D, a E r(S), . . , 1Prn $! S then w E I'(S). 
W 

A set E C L satisfying r(E) = E is an extension of A. 

An intuitive characterization of the extensions is given by the following theorem: 



Theorem 2.1 (Reiter [3]) Let A = (D, W )  be a closed default theory, E 5 L be a set of 

closed wffs, and Ei(i 2 0 )  be sets of closed wffs defined as follows: 

Then E is an extension of A if and only if 

We can use the above theorem to check whether a given set of closed wRs is an 

extension or not, but since Reiter used E in the definition of itself, we can not use the 

theorem to construct extensions from a given closed default theory. 

2.2 Pseudo extensions 

In order to avoid the self-recursive definition in Theorem 2.1, Yuasa and Arikawa intro- 

duced a new kind of extensions called pseudo extensions. 

Definition 2.2 (Yuasa and Arikawa [9]) Let A = (D, W )  be a closed default theory and 

Fi(i 2 0 )  be sets of closed wffs defined as follows: 

where DFi is a subset of 

such that DFi f 4 if the above set is not empty. Then we call 

a pseudo extension of the theory A. 

By using F, instead of E at checking MP,, the pseudo extensions can successively be 

constructed from a given closed default theory. There is the following relation between 

Reiter's extensions and pseudo extensions, which shows that every extension is a pseudo 

extension. 

Theorem 2.2 (Yuasa a,nd Arikawa [9]) Let E be the set of all extensions of a closed 

default theory A, and F be the set of all pseudo extensions of A. Then ELF. 



3 Reliability and correctness 

Although the pseudo extensions can successively be constructed, there still remain two 

problems: 

(a) We can not know how long it takes to compute an Fi from &-I, since the termination 

of computation of Th, Fi I- a, and Fi If 1 P  in first order logic are generally not 

guaranteed. 

(b) We can not know when the sequence of Fl, F2, . . . converges. 

The problem (a) should be more serious than (b) when we successively construct some 

extensions or parts of them. 

In order to solve the first problem (a), we introduce the time-bounded reasoning[5, 71 

into the computation of extensions. That is, we use "I-," instead of "I-". 

Let a be a closed wff, S, At,  A2, . . . , Ak be sets of closed wffs. We define the following 

notations: 

(1) S I-, a: a is derived from S in time n. 

(2) S If, a: a cannot be derived from S in time n. 

(3) S If: a: all derivations of a from S are fail in time n. 

(4) S If: a: whether or not a is derived from S cannot be decided in time n. 

(5) Th,(S) = {a I a is a closed wff and S t-, a }  

(6) Th',(Al U A2 U . U Ak) = Thn(Al U A2 U . . . U Ak) - Th,(Al U . . U Ak-t) 

Then, clearly 

SIfna a ( ~ l f f a  or sIf;*), 

3.1 Default theories and reliability 

A default theory A = (D, W) consists of a complete knowledge part W (such as a first 

order theory) and an incomplete knowledge part D (such as a commonsense knowledge). 

They are different in reliability. Generally, the closed wffs in an extension E can be 

divided into knowledge and beliefs. A closed wff is knowledge of theory A if it belongs 

to every extension of theory A. A closed wff is a belief of theory A if it belongs to some 

extensions of theory A. Obviously, the closed wffs in Th(W) are knowledge , and every 

knowledge is a belief. 

Theorem 2.1 and Definition 2.2 do not distinguish the results inferred only from W 

from those from both D and W. When we pay attention only to one extension, such a 

distinction is not important. However, when we consider the set of extensions, or introduce 

the time-bound to the computation of extensions, the classification of them becomes very 



important. An extension may be taken as a possible belief set of the agent. If a E Th(W), 

then a is true in every possible belief set. But a E E just means that a is true in the 

possible belief set E. 

Furthermore, because the defaults, i.e., commonsense knowledge, are incomplete, the 

use of defaults may cause some invalid results [4, 11; that is to say, there may be some 

beliefs in some extensions that do not match with our intuition. 

Thus, it is necessary to distinguish the results inferred only from W from those 

inferred from both D and W. 

3.2 Time-bound and correctness 

In order to make every step of successive construction finish in a finite time, we introduce 

a time-bound n into the computation of extensions. Thus, we need to interpret MPj 
in defaults as SEi-l l P j  or SEi-1 Y i  lP j ,  where SEi-1 is the (i - 1)-st finite sub- 

extension; that is, we weaken the justificakions of defaults as follows 

Reiter 's Yuasa's ours 

To a default rule 
a :  M B , . . . , M P ,  

7 w 

we can take M A ,  . . . , MP, as the justifications of a implying w.  Then, weakening the 

justifications leads to decrease the level of correctness of the consequences; that is, n and 

w are different in the level of correctness. Thus, we need to classify them. 

4 Sub-extensions and approximate extensions 

Now we define the notion of the "i-th finite sub-extension" as follows. 

Definition 4.1 Let A = (D, W) be a closed default theory, the time-bound be n .  Then 

we divide the i-th finite sub-extension SEi,  a set of closed wffs, into three parts: 

which are constructed as follows: 



where DI is an empty set or a singleton set ( 5 )  such that 

a ! :  MP1, ... ,MP,  
6 = 

W 
E D,  

w I ,  I and 

and Dy is an empty set or a singleton set (5) such that 

a ! :  M A ,  ..., MP, 
S =  

W 
E D,  

LJ $ I !+,  u Bi+, B i  G n and 

16, Bi,  and Gi are called the knowledge part, the belief part, and the guess part of 

SEi , respectively. 

Proposition 4.1 Let SEi = U Bi U Gi ( i  = 1,2, .) be a sequence of sub-extensions 

constructed b y  Definitions 4.1. Then, 

Definition 4.2 Let A = (D, W )  be a closed default theory, SEi  = I(i U Bi U Gi (i = 

1,2, .) be any sequence of finite sub-extensions constructed b y Definitions 4.1. Then, 

AE = Ii" u B u G ,  an approximate extension of the theory A, is a set of closed wfls, where 

The wffs in I( is called knowledge, whose reliability is the highest. The wffs in B is 

called belief, whose reliability is medium. The wffs in G is called guess, whose reliability 

is the lowest. By Definition 4.1 and Definition 4.2, there exists a unique fixpoint I( for 

I(, ( i  = 1,2, . a ) ,  but there may be many fixpoints for Bi and Gi (i  = 1,2, . . .) by the 

selection of D j  and Dy. Obviously, I( = Ug"=,I(, = T h ( W )  is a minimal approximate 

extension which ignores the part of defaults. 

Theorem 4.2 Let A = (D, W )  be a closed default theory, E L be a set of closed wffs, 

and El(i >_ 0) be sets of closed wffs defined as follows: 

where 



is a default which satisfies E;'-, k a, E l j  l h , .  . . , 1Pm.  Then, E is an extension of A 

if and only if 

i=O 

Proof. Trivial from the definitions. 

Theorem 4.3 Let E be any extension of closed default theory A. Then, there exists an 

approximate extension AE of A such that AE = E .  

Proof. Assume that E = Ugo E: is any extension, 6; is the default used in defining E:, 
and the time bound is n. Then, we have 

For the default 
a; : MA, .. . ,Mpm s;= 1 

W; 

we easily have E:-, I- a;, and E l j  la, . . . , 7Pm. 
From 6, we can construct Dj and Dj' as follows: 

(6;) i f  W; 6 Icj-l, Bj-1 kn and 
D: = I j  / 9  ( 1  = 1, . .  . ,m).  

otherwise 

(6;) i f  W ~ $ I ( , U B ~ , S E ~ - ~ ~ , L Y ; , U ~ ~  

0; = SEj-1 I f n  7 / 9 1 ,  ( 1  = 1,. . . ,m). 
4 otherwise 

Obviously, D$ and Dj' satisfy Definition 4.1, Dj n Dj' = 4, and 

(6;) i f  W; 6 Ii,, SE,-, k ,  ai, and 
D~UD: = SEj-, Yn 1Pl7 ( 1  = ,m)-  

4 otherwise 

(1) We prove the sequence of SEX, SE2, .  . . can be constructed by using the defaults in 

the same order as in the construction of Ei, Ei, a .  

(Base step): 

Consider Ei and 61. From the assumption, we have a1 E T h ( W ) ,  that is, there exists 

a number Nl such that a E ThN,  (W) .  Since 

ThN,  ( W )  = Thn(Thn( -  ( T h n ( W )  . . a ) ) )  = Th,(Krh,_,)  

and I(r+l-l C SEr+l-l, we have SEr+l-l kn  a,. At the same time, since E l j  1 P l  
and SErjv+l-, C_ E, we have SEr%l-l l jn 1Pi ( 1  = 1,2, .  . , m ) .  Therefore, exactly one of 

D;+l-l 
and DffN is ( ~ 5 ~ ) )  that is, wl E SE,+l if wl E Ei.  

r+i-1 



Figure 1 : The construction of the sequence of SE1, SE2, . . 

(Induction step) 

Assume wi E SEji for wi E E: (i 5 k). Then, we can show that w k + l  E SEj,+, if 
is used in E[+l and wk+l E EL+1. 

From wk+l E EL+1, we have EL I- a k + l  and E l j  la, . . . , -$,. If EL I- a k + ~ ,  there 

exists a number Nk+1 such that a k + l  E ThN,+, (W U {wl, . . , wk}). By the assumption of 

induction and the monotonicity of SEj, we have (W U {wl, . . , wk}) SEj,. Then, by 

the same discussions as in the base step, we can prove wk+l E SEj,+, . Therefore, wi E AE 

if wi E E. That is, 
00 00 

Such a construction of the sequence SEl, SE2, . . . , SE,.+l, . . . is depicted in Figure 

(2) Furthermore, we show that any closed wff of E is in some SEj. 

The closed wff in an extension can be divided into those derived from defaults and 

those derived from Th-operator. Since a E E and E = Uzo El, there exists a k such 

that a E EL. Hence, a E Th(W U {wl,w2,.~.,wk}). Then, there exists an N such 

that (W u {wl, w2, , wk)) I-N a. On the other hand, the above construction method 

guarantees that there exists a j such that ( W U {wl , wz, - . , wk}) G SE,. Therefore, we 



have 

CY E T h n ( T h n (  . ( T h n ( S E j )  . a))) A E ,  

which means 
00 00 

From (1) and (2) above, we have A E  = E .  CI 

Corollary 4.4 Let E be the set of all extensions of a closed default theory A, and AE 
be the set of all approximate extensions of A. Then, EGAE. 

5 Some examples 

In this section, we give some examples to illustrate the construction procedure of sub- 

extensions and approximate extensions. 

Example 5.1 Let Al = ( D ,  W )  be a default theory with 

and a time-bound be 3. 

Though there are no extensions for Ax, we can successively construct seven approxi- 

mate extensions from Al by Definition 4.1 and 4.2 as shown in Table 1. 

Table 1: The approximate extensions of Al 

Example 5.2 Let A2 = ( D ,  W )  be a default theory with 



and a time-bound be 3. There are two extensions {-B, 1 D )  and {-A, -C)  for A2. 

On the other hand, we can construct the following nine approximate extensions from A2 

by Definition 4.1 and 4.2 as shown in Table 2. Obviously, we have A E ( ~ )  = A E ( ~ )  and 

A E ( ~ )  = AE(') that are all the extensions of h2. 

Table 2: The approximate extensions of A2 

Furthermore, we can show that { l A ,  i B ,  -C, dl), {TA, l B ,  -C),  and {-A, 4 3 , l D )  

are pseudo extensions of the default theory h2 (Yuasa[8]), but they are not the approx- 

imate extensions. The converse is not true. In fact, AE(') is not a pseudo extension. 

Hence, from this example, we have F g  AE and AEgF. 

Example 5.3 Let A3 = (D, W) be a default theory with 

and a time-bound be 3. There are two extensions E(') and E ( ~ )  for A3 as shown in Table 

3. 

Table 3: The extensions of h3 

We can successively construct three approximate extensions as in Table 4. 

10 

~ ( 1 )  

adult (Bob) +- student (Bob) ., 
student(Bob), adult(Bob), 

imarried(Bob) 

~ ( 2 )  

adult (Bob) +- student (Bob). , 
student(Bob), adult(Bob), 

married(Bob) 



A,@(') 

A E ( ~ )  

Table 4: The approximate extensions of A3 

A E ( ~ )  

A E ( ~ )  is a minimal approximate extension which is equal to Th(  W) . A E ( ~ )  and A E ( ~ )  

are the same as the extensions E(') and ~ ( ~ 1 ,  respectively. 

SE!) 

adult(Bob) t student(Bob). 

student (Bob) 

adult(Bob) t student(Bob). 

student(Bob) 

Example 5.4 Let A4 = (D, W) be a default theory with 

adult(Bob) t student(Bob). 
student(Bob) 

W = {num(s(X)) c- num(X)., even(s(s(X))) c- even(X)., even(O). , num(s(O))} 

and a time-bound be 3. This default theory has a unique extension E: 

S E ~  

adult(Bob) +- student(Bob). 
student(Bob), adult(Bob) 

adult(Bob) +- student(Bo6). 

student(Bob), adult(Bob) 
lrnarried(Bob) 

Since this default theory is infinite, there are infinitely many possible approximate exten- 

sions. Here we just show the part of approximate extension AE(". 

SE;') 

adult(Bob) +- student(Bob). 

student(Bob), adult(Bob) 

adult(l3ob) +- student(Bob). 

student(Bob), adult(Bo6) 
-.rnarried(Bob) . , 

adult(Bob) + student(Bo6). 

student(Bob), adult(Bob) 
rnarried(Bob) 

From these examples above, we can see the following: all approximate extensions 

have T h ( W )  as its knowledge part I<(= Uzo 16). However, the belief part B(= Ugo B;) 

and the guess part G(= Ug0 Gi) in an approximate extension depends on the order of 

selected defaults. 

. , 

adult(Bob) t student (Bob). 

student(Bob), adult(Bob) 
rnarried(Bob) 



6 Concluding remarks 

Reiter's default theories has a difficulty that the extensions can not be constructed suc- 

cessively. Since the extensions should be candidates of possible belief sets, it is important 

to construct the extensions. Many efforts to attack this problem have been made by 

many researchers. For example, Murakami et al. [2], and Yuasa et al. [9] have provided 

two new kinds of non-recursive extension and pseudo extension which can successively 

be constructed, and showed that the pseudo extensions include the extensions. However, 

their methods are still not computable. Particularly, the termination of every step of 

construction is not guaranteed in the first order default logic. 

As a solution to such a problem, we have introduced the notions of sub-extensions 

and approximate extensions which can successively be constructed and every construction 

step terminates in a finite time. Furthermore, our approximate extensions include Reiter's 

extension. 

In the first order default reasoning systems, there are another two problems which 

should be addressed: (a) An infinite extension of a default theory. (b) The termination 

problem of derivation in the first order logic. We can not have an infinite amount of 

time to compute an illfinite extension. What we can do is just to compute approximately 

some finite parts of extensions by using the time-bounded reasoning. Such finite parts are 

useful and important, since they approximately represent a part of possible belief sets in 

some way. Our sub-extensions are just such finite parts. Classifying AE,  we can infer the 

results more efficiently within the time- bound. 

Furthermore, the notion of time-bounded reasoning will change many concepts such 

as consistency, beliefs, reliability, queries, and so on. In another paper [6], we will discuss 

these concepts and show the notions of sub-extension and approximate extension help in 

the default knowledge base systems. 
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