A P-Complete Language Describable with Iterated Shuffle

Shoudai, Takayoshi
Department of Control Engineering and Science Kyushu Institute of Technology

https://hdl.handle.net/2324/3152
A P-Complete Language Describable with Iterated Shuffle

Takayoshi Shoudai
Department of Control Engineering and Science
Kyushu Institute of Technology
Iizuka 820, Japan

September 6, 1991

Abstract
We show that a P-complete language can be described by using the shuffle operator, shuffle closure, union, concatenation, Kleene star and intersection on a finite alphabet.

1 Introduction
In this paper, we construct a P-complete language by using shuffle operator \triangle, iterated shuffle \uparrow, union \cup, concatenation \cdot, Kleene star $*$ and intersection \cap over a finite alphabet. The shuffle operator was introduced by [10] to describe the class of flow expressions. Formal properties of expressions with these operators have been extensively studied from various points in the literatures [2, 3, 4, 5, 8, 9, 10, 11].

It is known that the complexity of almost classes of languages can be increased by using the iterated shuffle operator. For example, there are two deterministic context-free languages L_1 and L_2 such that $L_1 \triangle L_2$ is NP-complete [9]. Moreover, by allowing the synchronization mechanisms, any recursively enumerable set can be described [1, 3].

In [2, 11], by using the shuffle and iterated shuffle operators together with $\cup, \cdot, *, \cup$, an NP-complete language is described. We employ the same set of operators to describe our P-complete language. In the proof of P-completeness, the intersection operator plays an important role to make the language polynomial-time recognizable. However, we do not know whether the intersection operator is necessary to define a P-complete language as in the case with NP-complete [2, 11].

Recently, P-complete problems have received considerable attentions since they do not seem to allow any efficient parallel algorithms [7]. This paper gives a P-complete problem of a new kind, which is described by a single expression.
2 Preliminaries

Let \(\Sigma \) be a finite alphabet and \(\Sigma^* \) be \(\{a_1 \cdots a_n \mid a_i \in \Sigma \text{ for } i = 1, \ldots, n \text{ and } n \geq 0\} \). A subset of \(\Sigma^* \) is called a language.

Definition 1 For languages \(L, L_1 \) and \(L_2 \), we define the *shuffle operator* \(\triangle \), the *iterated shuffle* \(\uparrow \) and operators, \(*, +\) as follows:

1. \(L_1 \triangle L_2 = \{x_1 y_1 x_2 y_2 \cdots x_m y_m \mid x = x_1 x_2 \cdots x_m \in L_1, y = y_1 y_2 \cdots y_m \in L_2 \text{ and } x_i, y_i \in \Sigma^* \text{ for } i = 1, \ldots, m\} \) (shuffle operator).
2. \(L_1 \uparrow = \{\varepsilon\} \cup L \cup (L \triangle L) \cup (L \triangle L \triangle L) \cup \cdots \) (iterated shuffle).
3. \(L_1 \cdot L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\} \) (abbreviated to \(L_1 L_2 \)).
4. \(L^* = \{\varepsilon\} \cup L \cup (L \cdot L) \cup (L \cdot L \cdot L) \cdots \).
5. \(L^+ = L \cdot L^* \).

We identify a language \(\{w\} \) which consists of only one word with the \(w \). Thus, we will denote \(\{w\}^*, \{w\}^+, \{w\}^\uparrow \) by \(w^*, w^+, w^\uparrow \), respectively.

As the basis of our reduction, we use the circuit value problem (CVP) that was shown \(\text{P-complete} \) [6]. Our definition in this paper slightly different from one in [6].

CIRCUIT VALUE PROBLEM (CVP)

INSTANCE: A circuit \(C = (C_1, \ldots, C_m, C_{m+1}, \ldots, C_n) \), where each \(C_i \) is either (i) \(C_i = \text{true} \) or \(\text{false} \) \((1 \leq i \leq m)\), (ii) \(C_i = \text{NOR}(C_j, C_k) \) \((m + 1 \leq i \leq n \text{ and } j, k < i)\).

PROBLEM: Decide whether the value of \(C_n \) is \(\text{true} \).

In later section, CVP represents the set of all circuits whose output is \(\text{true} \).

Let \(\Sigma \) be a finite alphabet, \(v_1, v_2, \ldots, v_m \) be symbols where \(v_i \in \Sigma \) for \(i = 1, \ldots, m \) and \(w_1, w_2, \ldots, w_{m+1} \) be words on a alphabet \(\Sigma - \{v_1, v_2, \ldots, v_m\} \). By using the iterated shuffle operation, a language \(\{v_1^n v_2^n \cdots v_m^n \mid n \geq 1\} \) can be described as \((v_1 v_2 \cdots v_m)^\uparrow \cap v_1^+ v_2^+ \cdots v_m^+ \). Moreover, we can represent \(\{w_1 v_1^n w_2 v_2^n \cdots w_m v_m^n w_{m+1} \mid n \geq 1\} \) as

\[
(w_1 w_2 \cdots w_{m+1} \triangle (v_1 v_2 \cdots v_m)^\uparrow) \cap w_1 v_1^+ w_2 v_2^+ \cdots w_m v_m^+ w_{m+1}.
\]

We often use this form of languages to define a \(\text{P-complete} \) language. Whenever languages like these are defined in the next section, we will not describe the languages explicitly by using the shuffle operation and the iterated shuffle.
3 A P-complete language

The main result in this paper is the following theorem.

Theorem 1 A P-complete language can be described with operators $\cdot, +, \cup, \cap, \Delta, \dagger$.

3.1 Definition of the language

We will describe a P-complete language \mathcal{L} with the alphabet $\Sigma = \{0, 1, a, b, c, d, u, v, x, y\}$. This language is defined stepwise.

At first, a language L is defined as follows:

\[
L_a = a^+ 0 \cup a^+ 1 = \{a^i\beta \mid i \geq 1 \text{ and } \beta \in \{0, 1\}\},
\]
\[
L_{aba} = (b^+ 1b^+ a^+ 0) \cup (b^+ 0b^+ 1a^+ 1) \cup (b^+ 1b^+ 0a^+ 1) \cup (b^+ 0b^+ 0a^+ 1)
= \{b^i\beta\beta'\beta''\alpha^i\beta \mid i, j, k \geq 1 \text{ and } (\beta', \beta'', \beta) \in \{(1, 1, 0), (0, 1, 1), (1, 0, 1), (0, 0, 1)\}\}
\]
\[
L_b = b^+ 1 = \{b^i 1 \mid i \geq 1\}.
\]

\[
L = cL_a^+ L_{aba}^+ L_b.
\]

The following language T (resp. F) is used for a distribution of true (resp. false) value.

\[
T_x = \{1dx^i u^i \mid i \geq 1\}, \quad T_y = \{1y^i v^i \mid i \geq 1\},
\]
\[
T_{xy} = \{1dx^i u^i y^j v^j \mid i \geq 1\}, \quad T_{yy} = \{1y^j v^j y^j v^j \mid i \geq 1\}.
\]
\[
T_{odd} = T_{xy} T_{yy} * T_y \cap T_{xy} T_{yy}^* = \{1dx^i u^i (1y^j v^j)^j \mid i \geq 1, j \geq 1 \text{ and } j \text{ is odd}\}.
\]
\[
T_{even} = T_{xy} T_{yy} * T_y \cap T_{xy} T_{yy}^* = \{1dx^i u^i (1y^j v^j)^j \mid i \geq 1, j \geq 1 \text{ and } j \text{ is even}\}.
\]

\[
T = T_x \cup T_{odd} \cup T_{even} = \{1dx^i u^i (1y^j v^j)^j \mid i \geq 1 \text{ and } j \geq 0\}.
\]

F is defined in a similar way. We use a symbol 0 instead of 1 which is used to construct the language T.

\[
F = \{0dx^i u^i (0y^j v^j)^j \mid i \geq 1 \text{ and } j \geq 0\}.
\]

Subwords $1y^i v^i$ (resp. $0y^i v^i$) of a word in T (resp. F) are combined with $b^i 0$ (resp. $b^i 1$) of words in L and decides the value of the ith variable. These three languages L, T and F are combined with each other by using the shuffle operation and the iterated shuffle.
\[\mathcal{J} = L \Delta (T \cup F)^t. \]

A language \(\mathcal{K} \) is used for our language to become polynomial time decidable. We construct the language \(\mathcal{K} \) stepwise as follows:

\[
\begin{align*}
A_{11} & = \{a^i11dx^iu^i \mid i \geq 1\}, \\
A_{00} & = \{a^i00dx^iu^i \mid i \geq 1\}, \\
A_{01} & = \{a^i01dx^iu^i \mid i \geq 1\}.
\end{align*}
\]

In a similar way, following languages are defined.

\[
\begin{align*}
B_{01} & = \{b^i01y^i u^i \mid i \geq 1\}, \\
B_{11} & = \{b^i11y^i u^i \mid i \geq 1\}.
\end{align*}
\]

\[
M = (A_{11} \cup A_{00})^+(B_{01}B_{01}A_{01})^+B_{11}.
\]

The language \(M \) has words whose subwords of the form \(dx^iu^i \) corresponding to the \(i \)th gate occurred more than two times a word. We want these subwords to be occurred exactly one time a word.

\[
N_d = (dxudx^2u^2 \Delta (xuxu)^t) \cap (dx^+u^+dx^+u^+) = \{dx^iu^idx^{i+1}u^{n+1} \mid i \geq 1\}.
\]

\[
N = c((dxuN_d^* \cap N_d^*dx^+u^+u^+) \cup (dxuN_d^*dx^+u^+ \cap N_d^*)) = \{cdxudx^2u^2 \ldots dx^iu^i \mid i \geq 1\}.
\]

Then, we define a language \(\mathcal{K} \) which will be used for allowing a language \(\mathcal{J} \) to be in P.

\[
\mathcal{K} = M \cap (N \Delta \Sigma'), \text{ where } \Sigma' = \Sigma - \{d, u, y\}.
\]

Finally, we defined a language \(\mathcal{L} \) as follows:

\[
\mathcal{L} = \mathcal{J} \cap \mathcal{K}.
\]

3.2 Proof of the P-completeness

Theorem 1 follows from a next lemma.
Lemma 1 L is log-space equivalent to CVP, i.e., L is log-space reducible from CVP and CVP is log-space reducible from L.

Proof. We will define a function f from CVP to Σ^*. f is a function which transform $C = (C_1, \ldots, C_n) \in \text{CVP}$ to $f(C) = \gamma w_1 \cdots w_n w_{n+1} \in \Sigma^*$, where

$$w_i = \begin{cases} a^i 11 d x^i u^i & (C_i = \text{true}) \\ a^i 00 d x^i u^i & (C_i = \text{false}) \\ b^i 01 y^i b^j 01 y^j v^k a^i 01 d x^i u^i & (C_i = \text{NOR}(C_j, C_k)) \\ b^i 11 y^i v^n & (i = n + 1). \end{cases}$$

It is easy to see that this function is computable in log-space by using a deterministic Turing machine.

We show following two claims.

Claim 1. $f(C) \in L$, for every $C \in \text{CVP}$.

Proof. Let a word $w = c w_1 \cdots w_m w_{m+1} \cdots w_n w_{n+1}$ be a transformed word from some n-gates instance $C = (C_1, \ldots, C_m, C_{m+1}, \ldots, C_n)$ where C_i is an input gate for $1 \leq i \leq m$, an and gate for $m + 1 \leq i \leq n$ and an output of this circuit is true. This instance has only one tuple of assignments of a boolean value (true or false) to each variables. We describe this assignment as $B = (\beta_1, \ldots, \beta_n)$ such that $\beta_i = 1$ (resp. $\beta_i = 0$) if $C_i = \text{true}$ (resp. $C_i = \text{false}$) for $i = 1, \ldots, n$.

According to $B = (\beta_1, \ldots, \beta_n)$, we divide w_i into two words w_i' and w_i''.

1. For $i = 1, \ldots, m$, $w_i' = a^i \beta_i$, $w_i'' = b^i d x^i u^i$.
2. For $i = m + 1, \ldots, n$, $w_i' = b^i \beta_i$, $w_i'' = b^i d x^i u^i$.

We note that since C_j, C_k and C_i are related with each other by an NOR gate, w_i' is in L_{baa}.

Figure 1: This circuit is transformed to a word w.

\[w = a 1 1 d x^a a^2 1 1 d x^a u^a a^3 0 0 d x^a u^a b^1 0 1 y^b b^2 0 1 y^b v^b v^a 0 1 d x^a u^a \]
\[b^2 0 1 y^b c^3 0 1 y^c v^c a^5 0 1 d x^a u^a b^3 0 1 y^b v^b v^c 0 1 d x^a u^a c^6 0 1 d x^a u^a b^6 1 1 y^b v^c. \]
(3) \(w_{n+1}' = b^n1, \ w_{n+1}'' = 1y^n v^n \).

It is easy to see that a word \(w' = cw_1' \cdots w_{n+1}' \) is in \(L = L_n^+L_{bbn}^+L_h \).

On the other hand, since \(w'' = w_{1}'' \cdots w_{n+1}'' \) is constructed with subwords of the form \(\beta_i dx^i u^i \) or \(\beta_i y^i v^i \) and for each NOR gate, input gate numbers of this gate are always lower than a number of itself, we can describe the word \(w'' \in t_1 \Delta t_2 \Delta \cdots \Delta t_n \), where \(t_i = \beta_i dx^i u^i \beta_i y^i v^i \cdots \beta_i y^i v^i \). Since \(t_i \in T \) or \(F \), for \(i = 1, \ldots, n \), \(f(C) = cw_1 \cdots w_m w_{m+1} \cdots w_n w_{n+1} \in w' \Delta t_1 \Delta \cdots \Delta t_n \subset L \Delta (T \cup F) \) \(= L \).

Since every words \(w \) of \(L \) is contained in \(M \), \(e \) is of the form \(w = cw_1 \cdots w_m w_{m+1} \cdots w_n w_{n+1} \), where, for \(i = 1, \ldots, n + 1 \),

\[
 w_i = \begin{cases}
 a^i \beta_i \beta_i dx^i u^i & (1 \leq i \leq m, \beta_i \in \{0, 1\}) \\
 b^i 01 y^i v^i b^i 01 y^i v^i \cdots a^i 01 dx^i u^i & (m + 1 \leq i \leq n) \\
 b^{n+1} 11 y^{n+1} v^{n+1} & (i = n + 1)
 \end{cases}
\]

We transform a word \(w \in L \) to a circuit \(C = (C_1, \ldots, C_m, C_{m+1}, \ldots, C_n) \) as follows:

1. For \(i = 1, \ldots, m \), if \(\beta_i = 1 \) then \(C_i = \text{true} \) else \(C_i = \text{false} \).
2. For \(i = m + 1, \ldots, n \), \(C_i = \text{NOR}(C_j, C_k) \) where \(j = \ell_i' \) and \(k = \ell_i'' \).

It is easy to see that \(g \) is well-defined function and this function is log-space computable.

Claim 2. \(g(w) \in CVP \), for every \(w \in L \).

Proof. Since \(w \in N \), \(\ell_i = i \) for every \(i = 1, \ldots, n \). Moreover, since some parts of \(w \) are constructed of words which are contained in \(T \) or \(F \), a subword \(y^i v^i \) of \(w \) is never occured before a subword \(dx^i u^i \) of \(w \). Therefore \(j, k \leq i \).

Since \(w \in L \Delta (T \cup F) \) and \(w \) includes \(n \) subwords \(dxu, dx^2 u^2, \ldots, dx^n u^n \), there exist \(n \) words \(t_1, \ldots, t_n \) in \(T \cup F \) which contribute a construction of \(w \) by using the iterated shuffle. Without loss of generality, we assume that \(t_i \) includes \(x^i u^i \) as a subword.

We claim that for \(i = 1, \ldots, n \), \(t_i \in T \) if and only if a value of \(C_i \) is \text{true}. This is shown by the induction. For \(i = 1, \ldots, m \), if \(\beta_i = 1 \), then \(t_i \) must be in \(T \). Thus, by definition of \(g \), \(C_i = \text{true} \). For \(i \geq m + 1 \), suppose that for \(j, k < i \), this claim is true. We only discuss the case of \(t_j \in T \) and \(t_k \in T \). Other case is shown in a similar way. By the assumption, values of \(C_j \) and \(C_k \) is \text{true}. We remove contributions of \(t_j \) and \(t_k \) from \(w_i \). The remaining word is \(b^j 0b^k 0a^j 01 dx^i u^i \). Moreover, \(w_i \) must has a contribution from \(L_{bbn} \). This contribution must be of the form \(b^+ 0b^+ 0a^+ 1 \). Thus, the remaining word after removing this contribution is \(0dx^i u^i \). Therefore, \(t_i \) must be in \(F \). On the other hand, a value of \(C_i = \text{NOR}(C_j, C_k) \) is \text{false}. Thus, we hold this claim.

Since \(t_n \) must be in \(T \), a value of \(C_n \) is \text{true}. Thus, \(g(w) \in CVP \). □

By the discussion above, we can say that \(L \) have a log-space reduction \(f \) from CVP and CVP have a log-space reduction \(g \) (inverse of \(f \)) from \(L \). □
References

