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Abstract . In this paper we consider the polynomial time inferability from positive 
data for unions of two tree pattern languages. A tree pattern is a structured pattern 
known as a term in logic programming and term rewriting systems, and a tree pattern 
language is the set of all ground instances of a tree pat tern. We present a polynomial 
time algorithm to find a minimal union of two tree pattern languages containing given 
examples. Our algorithm can be considered as a natural extension of Plotkin's least 
generalization algorithm, which finds a minimal single tree pattern language. By 
using this algorithm we can realize a polynomial time inference machine for unions 
of two tree pattern languages from positive data. 

1 Introduction 

Inductive inference is a process to guess an unknown rule from its examples. In this paper 
a rule we consider is a union of two tree pat tern languages. 

A tree pattern is a structured pattern known as a term in logic programming and term 
rewriting systems, and a tree pattern language is the set of all ground instances of a tree 
pattern. Since the class of tree pattern languages has finite thickness, that is, for any ground 
tree there are only finitely many tree pattern languages containing it, an inference machine 
that guesses a minimal language explaining examples identifies a target tree pattern from 
examples in the limit [2]. For example, assume that a rule is represented by a tree pattern 
and the following ground trees are given as its examples: 

aPP([I, [I, [I) ,  aPP([bI, [a], [b,aI), aPP([aI, [I ,  [a]), 

app([l, [a], [all, app([a, bl, [c, 47 [a, b,c, 417 - 
Then, 

{~PP(X, Y, Z)1 
represents a minimal tree pattern language containing all the examples. Such a minimal 
tree pattern, called the least generalization by Plotkin in [a], can be computed by using 
the least generalization algorithm [6, 81 in polynomial time. 



In this paper, we will consider inductive inference where examples are taken from two 
tree pattern languages, and pay attention to the problem finding a pair of tree patterns 
that represents a minimal union containing given examples. For instance, a pair 

of two tree patterns represents a minimal union containing the above examples. 
On the other hand, for string pat tern languages, the problem whet her minimal unions 

can be computed in polynomial time is open [9, 111. For one-variable pattern languages, 
it is shown to be computable in polynomial time [lo]. 

In this paper we study polynomial time inferability of unions of two tree pattern lan- 
guages from positive data. We first prove that the containment problem for unions of n tree 
pattern languages is decidable in polynomial time if n is less than the number of symbols 
of alphabet. 

Wright [ll] proved that a minimal unions containing a sample can be computed in 
polynomial time for one-variable pattern languages. However we can not apply his method 
directly to unions of tree pattern languages. Because the number of generalizations of a 
given finite sample may be exponential for tree patterns, while it is at most polynomial for 
one-variable patterns. 

We show that it is not necessary to check all partitions of a sample, but it is sufficient 
to find a pair of tree patterns reduced with respect to the sample and tighten it. A pair 
of tree patterns is said to be reduced with respect to a set S of ground trees if S can not 
contained in either of their languages, but is contained in the union. We can find such a 
reduced pair in polynomial time of the size of S , by using an algorithm that receives a 
pair (w+, w-) of ground trees taken from S and enumerates maximal tree patterns whose 
languages include w+ but exclude w-. The point to guarantee polynomial time complexity 
of our algorithm is that the number of such pairs (w+, w-) is proportional to the square of 
the size of S and the number of maximal tree patterns consistent with (w+, w-) is at most 
the square of the size of w+. 

By a similar discussion for the classes with finite thickness, we can easily show that a 
machine producing a minimal pair of tree patterns as its guess can identify the class of 
unions in the limit. Hence, we prove that the class of unions of two tree pattern languages 
is polynomial time inferable from positive data. 

2 Preliminaries 

We start with basic definitions on tree patterns and give a brief review of the articles on 
inductive inference from positive data. 

2.1 Tree Pattern Languages 

C is a finite alphabet associated with a mapping arity from C to nonnegative integers, 
whose elements are called functors. We assume that C contains at least one functor with 
arity 0. V is a countable set of symbols disjoint from C, whose elements are called variables. 

A tree pattern is defined recursively as follows: t is a tree pattern on C U V if t is (1) a 
functor a with arity(a) = 0, (2) a variable, or (3) an ordered tree f (t l , .  . . , t,), where f is 
an n-ary functor labeling the root node and t l , .  . . , t, are tree patterns on C U V. 



A tree pattern containing no variables is called a constant tree. We denote by TP(C)  
the set of all tree patterns on C U V and by I ( C )  the set of all constant tree patterns on 
C. Note that our definition of tree patterns is slightly different from that of KO et al. [ 5 ] .  
In their definition, the arity of a functor is variable. 

A substitution is a homomorphism 0 from tree patterns to themselves such that @(a) = a 
for each 0-ary functor a E C. We define a matching relation 5' on tree patterns as p 5' q, 
if p = 0(q) for some substitution 6. The language defined by a tree pattern p is the set 

A subset L of I ( C )  is a tree pattern language on C if there is a tree pattern p E TP(C)  
such that L = L(p). We denote by I P L ( C )  the class of tree pattern languages for a given 
alphabet C. 

Example 1. Suppose that C = {a, b, f )  and arity(a) = O,arity(b) = 0 and arity(f) = 2. 
Then, f (x ,x)  is a tree pattern, and constant trees f (a ,a)  and f (f (a ,a) ,  f (a ,a ) )  are con- 
tained in the tree pattern language L( f (x, x)), but a constant tree f (a, b) is not contained 

in L(f  (x, 4). 

2.2 Inductive Inference from Positive Data 
First, we give a basic definitions on inductive inference according to Gold [4]. 

An indexed family of recursive languages is a class of languages C = {Ll, L2, 
L3,. . .) such that there is an effective procedure to decide whether w E Li given a word w 
and an index i. For the class I P L ( C )  of tree pattern languages, a word is a constant tree 
and an index of L(p) is a tree pattern p. For a class C and a nonnegative integer m, we de- 
fine the class Cm of unions of m languages in C as Cm = {L1 u . .  . u L, I L1,. . . , L, E C) .  
A positive presentation of L is an infinite sequence wl, w2,. . . such that {wi I i 2 1) = L. 
A sample is a nonempty finite set of words. 

An inference machine is an effective procedure M that requests a word and produces a 
guess from time to time. Let a = wl, w2,. . . be a positive presentation. When M makes 
the i-th request, a word wi is added to the sample. Then, M reads the current sample and 
adds a guess gi to the sequence of guesses. We say that M on input a converges to g if 
there exists a positive integer N such that g; = g for every i 2 N. 

An inference machine M is said to be consistent if it always produces a guess gi con- 
sistent with the current sample, that is, {wl,. . . , wi) C Lqi for every i > 0. M is said to 
be conservative if it continues to produce the same guess while the guess is consistent with 
the sample. 

A class of languages C = {L1, L2,.  . . } is said to be inferable from positive data if there 
exists an inference machine M such that M on input 0 converges to g with L, = Li for 
any index i and any positive presentation a of Li. 

A class C has finite thickness, called Condition 3 by Angluin in [3], if the set {L E 
C I w E L) is finite for any word w. Angluin showed that if a class C has finite thickness, 
then C is inferable from positive data [3]. Using this condition she proved that the class 
of string pattern languages is inferable from positive data. 

Wright extended her result to unions of languages [lo]. A class C has infinite elasticity 
if there exist two infinite sequences wo, wl, . . . of words and L1, L 2 , .  . . of languages in C 
such that wi 6 Li and wj E Li if j < i. C has finite elasticity if C does not have infinite 
elasticity. Clearly, if a class C has finite thickness then C has finite elasticity. 



Theorem 1. ([lo]) If a class C has finite elasticity, then C is inferable from positive data. 

He also proved that this property is closed under union of languages. Since the class 'PL 
of string pattern languages has finite thickness and finite elasticity is closed under union, 
the class P L m  of unions of at most rn string pattern languages is inferable from positive 
data [lo]. 

Next we consider the polynomial time inferability. 

Definition 1. A class of languages C is said to be polynomial time inferable from positive 
data if there exists an inference machine M that infers C consistently and conservatively 
from positive data, and it computes the guess g; in polynomial time with respect to IISiII 
for every stage i > 0, where S; = {wl,. . . , wi} and llSill is the size of the sample Si as an 
expression. 

Angluin [l] showed the following sufficient condition for polynomial time inference from 
positive data. 

Proposition 2. (Angluin [I]) If a class C has finite thickness and both of membership 
and MINL calculations for C ,  that is, 

MINL(S) = "Given a finite set S of words, find an index 
g such that S 2 Lg , and L i S  Lg implies 
S Li for any i". 

are computable in polynomial time with respect to llSll, then the following procedure M 
infers C from positive data in polynomial time, where llSll is the size of S as an expression. 

Algorithm 1. (inference machine M) 
procedure M; 

input: an positive presentation wl, w2, . . . ; 
output: an infinite sequence gl, g2, . . . of guesses; 

begin 
go := none; S := 0; i := 0; { stage 0 } 
repeat { stage i ) 

i := i + 1; 
S := S U {w;};  
if w; @ Lgi_, then gi := MINL(S) else g; := g;-1; 
output g;; 

forever; 
end. 

A fundamental procedure used in the above algorithm is that for MINL calculation. 
For sub classes of single string pat tern languages, polynomial time algorithms for MINL 
calculation are proposed. 

We can easily see that the class TPL(C) of tree pattern languages has finite thickness [I, 
31. Thus, the class TPL(C)" of unions of rn tree pattern languages has finite elasticity, 
but does not have finite thickness for any rn > 1. 

Let us consider how the inference machine M behaves for a class C with finite elasticity. 
Let o be a positive presentation of a language Lk in C. Let go,gl,. . . be a subsequence 



of distinct 
changes of 
they show 

guesses produced by M on o and wo, wl, . . . be an input data that cause these 
guesses. If M on o does not converge, then these two sequences are infinite and 
infinite elasticity of C because M is consistent and conservative. Therefore we 

can conclude that M converges to some guess g~ at a finite stage N > 0. Thus, LI, 2 Lgi 
for any i 2 N because M is consistent. On the other hand, since M outputs an index of a 
minimal language Lgi containing a sample Si at any stage i 2 N ,  Lk 2 Lgi. Hence, for a 
class C with finite elasticity, if both of membership and MINL calculations are computable 
in polynomial time, then M in algorithm 1 infers C in polynomial time from positive data. 

3 Inference of Unions of Tree Pattern Languages 

In this section we describe the main procedure in our algorithm to infer a union of two 
tree pattern languages from positive data in polynomial time. 

3.1 Compactness with respect to Containment 

We first observe a basic property of unions of tree pattern languages. This property, com- 
pactness with respect to containment, plays an important role to guarantee the correctness 
of our algorithm. 

Definition 2. Let C be a class of languages and m > 0. The class C m  of unions is compact 
with respect to containment if for every L, L1,. . . , L, E C ,  

L C L I U  ... UL, +- L C L i f o r s o m e 1 < i 5 m .  

We denote by #S the number of elements in a set S. 

Theorem 3. The class TPL(C)" of unions of  m tree pattern languages is compact with 
respect t o  containment i f  #C > rn. 

Proof. S u p p o s e t h a t # C = s > m a n d L ( p ) C  L(q1)u ... ~ L ( ~ , ) f o r p , q l ,  . . . , q  , E T P ( C ) .  
Assume here that C consists of s functors fl, . . . , f, and p contains k distinct variables 
XI, . . . , xk. We choose a set TO = It l ,  . . . , t,) C T(C) of s constant trees such that the root 
of each constant tree ti is labeled by fi for each 1 5 i 5 s. 

Let Oo be the set of all substitutions from variables in p to TO, that is, Oo = (6 I @(xi) E 
TO for 1 5 i 5 k}. For a set of substitutions A, we define the direct image A(p) of a 
pattern p as A(p) = {d(p) 1 6 E A}. Clearly, Oo(p) is a finite subset of L(p) with sk 
elements. Since Oo(p) 2 L(p), Oo(p) C L(ql) U . . . U L(qm). Thus, for some 1 < i 5 n,  
one language L(qi) must contain at least l / m  of Oo(p). Let O(p) = Oo(p) n L(qi). Since 
s > rn, #O(p) 2 sk/rn > sk-l. NOW, consider the following condition. 

Condition 1. O satisfies either (1) there is some 1 5 i 5 k such that @(xi) = @'(xi) 
for every 6,d' E O, or (2) there is some 1 5 i, j 5 k such that 6(xi) = @(xj) for every 
6 E O. (Table 1) 

Claim 1. If a subset O of Oo satisfies Condition 1, then #O(p) 5 sk-'. 
Proof. If we fix the i-th variable as 6(xi) = t for some tree t ,  then there are at most 

sk-' distinct assignments for other variables. A similar combinatorial argument shows the 
result. 



Table 1: Two examples of O violating Condition 1 in the proof of Theorem 3 

From this claim, O(p) must not satisfy Condition 1. Thus, we can show that ica(O(p)) = 
p by using Boomerang Lemma [6], where ica(A) is the least generalization of a set A of 
constant trees. Since O(p) 2 L(qi), p = Ica(O(p)) 5' q;. Hence it is followed by the result. 

The condition in Theorem 3 that the alphabet C has more than rn functors is necessary 
for the class 7PL(C)m (rn > 0). For instance, suppose that C = {a, f ) ,  arity(a) = 0 
and arity (f)  = 2. Then, L(x) is contained in the union L(a) U L( f (xl, x2)), but L(x) is 
contained in neither L(a) nor L( f (xl , x2)). 

This theorem also shows that the containment problem for the class 7 P L ( C ) m  of unions 
of rn tree pattern languages, that is, given a pair of multisets {MI, . . . , Mm ), {Ll , . . . , L,} 
of rn tree patterns, the problem whether MI U . . . U Mm L1 U . . . U L, can be computable 
in polynomial time. 

3.2 Finding a Minimal Union 
We describe here a MINL algorithm based on the technique used in [Ill. First we introduce 
the notion of reduced unions. For a multiset of tree patterns P = {pl,. . . ,pm),  we denote 
by L(P) the union L(pl) U . U L(pm) defined by P. 

Definition 3. A multiset of tree patterns P = {pl, . . . ,pm) is reduced with respect to a 
sample S if (1) the union L(P)  contains S, and (2) for any pattern pi E P ,  L ( P  - {pi)) 
does not contains S. 

For instance, a pair { f (a, x), f (x, b)) of tree patterns is reduced with respect to { f (a, a), 
f (a, b), f (b, b)}, but { f ( a ,  x), f (x, y)} is not. Note that for any tree pattern p and a sample 
S a multiset {p, p) is not reduced with respect to S. 

The MINL algorithm consists of the following steps. Let C be an alphabet with at least 
three functors and S be a sample. 

Algorithm 2. 
1. Find a reduced pair (po, qo) of tree patterns with respect to S. 
2. If it is found, compute the least generalizations p of S - L(qo) and q of 
S - L(p). Then output (p,q). 
3. If there is not such a (po, qo), compute the least generalization u of S. Then, 
output (21, u). 

We first compute a reduced pair (po, qo) with respect to S if it exists. This algorithm 
runs in polynomial time with respect to the size of S. Note that we can compute the 
minimal single tree pattern of a sample by using the least generalization algorithm [6, 81 
in polynomial time. 



Suppose here that such a pair is found. By similar arguments in proofs of Lemma 2.5 
and Lemma 2.8 in [l I], we can obtain the following lemma. 

Lemma 4. Suppose that #C 2 3 and a pair (po ,  qo) of tree patterns is reduced with respect 
to S. Let p and q be the least generalizations of S - L(qo) and S - L(p) ,  respectively. 
Then, the union L(p) U L(q) is a minimal union containing S. 

Proof. Let p be the least generalization of S - L(qo). Then, both of po and p contain 

S - L(qo). Since L(p) is the least tree pattern language containing S - L(qo), L(p)  L(p,). 
Let q be the least generalization of S - L(p) f 0. Similarly, we have L(q) 2 L(qo). 

Assume that S 2 L(p') U L(q') 2 L(p) U L(q). By the compactness with respect to 
containment, there are two cases: (1) one of L(p) and L(q) contains both of L(p') and 
L(q'); (2) each of L(p) and L(q) contains exactly one of L(p') and L(qr). Since the case (1) 
contradicts reducedness of L(p) U L(q),  we assume that L(p') C L(p) and L(q') 2 L(q)  
without loss of generality. Thus, we have S - L(qo) L S - L(q) 2 S - L(q') 2 L(p') 2 L(p) .  
Therefore, both of L(p) and L(p') contain S - L(qo). This shows L(p)  = Similarly, 
we have L(q) = L(q'). 

Lemma 5. Let S be a sample and u be the least generalization of S. If S 2 L(p) U 
L(q)SL(u) ,  then (p,q) is reduced with respect to S. 

Lemma 4 and Lemma 5 give a necessary and sufficient condition for finding a minimal 
union containing S. If we find one of reduced pairs with respect to S, we can get a minimal 
union L(p) U L(q) containing S in polynomial time (Step 2 in Algorithm 2). Otherwise, no 
smaller union than L(u)  can contain S.  

As we will see in the next section, Step 1 of Algorithm 2 is computable in polynomial 
time. Therefore, Algorithm 2 correctly computes MINL for unions of two tree pattern 
languages in polynomial time. 

The class of unions of two tree patterns has finite elasticity. Thus, by the discussion in 
Section 2.2, we obtain the main result of this paper. 

Theorem 6. If #C 2 3, the class l P L ( C ) 2  of unions of two tree pattern languages is 
polynomial time inferable from positive data. 

4 Computing a Reduced Pair 

In this section we describes the basic idea and the algorithm to find a reduced pair of tree 
patterns, which plays an important role to realize our efficient inference machine. 

Let S be a sample. The following is a straightforward way to find a pair of tree patterns 
reduced with respect to S 



Algorithm 3. 

procedure; 
input: a sample S;  
output: a pair of tree patterns reduced with respect to S if exists; 

begin 
for each partition {Sl, S2) of S do begin 

Let pl be the least generalization of Sl; 
Let p2 be the least generalization of Sz; 
if S L(pl) and S L(p2) then 

output (p, q) and exit; 
end; 

end. 

However, this method does not work efficiently because there are exponentially many 
different partitions of a sample S. On the contrast, our algorithm can compute a pair 
reduced with respect to S in polynomial time. The algorithm is based on the fact that 
a candidate tree pattern coilposing a reduced pair with respect to S can be found out of 
maximal tree patterns whose languages include w+ and exclude w- for some w+, w- E S.  

Definition 4. Let w+, w- be constant trees. A tree pattern p is consistent with a pair 
(w+, W-) if w+ E L(p) and w- @ L(p). A consistent tree pattern p is a maximal tree 
pattern consistent with (w+, w-) if q g' p for every tree pattern q consistent with (w+, w-). 
We denote by MAXTREE(w+, w-) the set of all maximal tree patterns consistent with 

(w+,w-). 

Example 2. f (x, a)  and f (x, x) are maximal tree patterns consistent with a pair (w+, w-) = 

(f(a7 4, f(a7 b) ) .  

Algorithm 4. 

procedure; 
input: a sample S;  
output: a pair of tree patterns reduced with respect to S if exists; 

begin 
for each w+, w- E S do 

for each q E MAXTREE(w+, w-) do begin 
Let p be the least generalization of S - L(q); 
if (p,q) is reduced with respect to S then 

output (p, q) and exit; 
end; 

end. 

Lemma 7. Let p be a maximal tree pattern consistent with (w+, w-). Then, either (1) 
or (2) below holds. (See Figure 1) 

1. All but at most one leaves of p are mutually distinct variables, and the other nodes 
are functors on the same path. 



Figure 1: Possible forms of maximal tree patterns consistent with (w+, w-) 

2. All leaves of p are variables, and just two of them, say a and P ,  are the same variable, 
and all internal nodes are on either paths from the root to cu or P. 

Lemma 8. Given a pair (w+, w-) of constant trees, the set MAXTREE(w+, w-) can be 
computable in polynomial time of n and #(MAXTREE(w+, w-)) = O(n2), where n is the 
number of nodes in w+. 

Proof. Any tree pattern p in MAXTREE(w+, w-) satisfies conditions (1) or (2) of Lemma 7, 
and p is a generalization of w+. Let n be the number of nodes in w+. Then, the number 
of generalizations of w+ satisfying the conditions (1) and (2) are O(n) and O(n2), respec- 
tively. Since the matching relation can be determined in linear time, we can easily select 
members of MAXTREE(w+, w-) from such generalizations in polynomial time. 

By the following lemmas, Algorithm 4 finds a pair reduced with respect to a sample in 
polynomial time. 

Lemma 9. Assume that there is at least one pair reduced with respect to S.  Then, there 
exists two constant trees w+, w- and a tree pattern q such that q E MAXTREE(w+, w-) 
and (p, q) is reduced with respect to S, where p is the least generalization of S - L(q). 

Proof. Assume that there is a pair (po, qo) reduced with respect to S.  Let q be a maximal 
tree pattern such that L(q0) C L(q) and S - L(q) f 0. Note that the existence of qo 
ensures that of such q. For any tree pattern r, S n L(r) # 0 and S - L(r) f 0 iff r is 
consistent with (w+, w-) for some w+, w- in S. Thus, q E MAXTREE(w+, w-). Let p 
be the least generalization of S - L(q). Then, we have L(p) L(po) from L(qo) 2 L(q). 
Since g L(po), S g L(P). 

Lemma 10. For any sample S, Algorithm 4 runs in polynoimial time with respect to I IS1 1, 
and it finds a reduced pair with respect to S if exists. 



In this paper, we have shown that the class of unions of two tree pattern languages is 
polynomial time inferable from positive data. Our algorithm can be considered as a natural 
extension of Plotkin's least generalization algorithm. 

Some of logic program synthesis systems [7] use a naive algorithm, such as Algorithm 3, 
to compute a minimal union explaining given examples by considering all partitions. How- 
ever, it is not efficient because they need check exponentially many distinct partitions in 
the worst case. Since our algorithm computes one of such minimal unions in polynomial 
time, it can be used as a polynomial time generalization procedure in some cases. 
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