
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Polynomial Time Inference of Unions of Tree
Pattern Languages

Arimura, Hiroki
Research Institute of Fundamental Information Science Kyushu University

Shinohara, Takeshi
Research Institute of Fundamental Information Science Kyushu University

Otsuki, Setsuko
Research Institute of Fundamental Information Science Kyushu University

https://hdl.handle.net/2324/3149

出版情報：RIFIS Technical Report. 43, 1991-08-01. Research Institute of Fundamental
Information Science, Kyushu University
バージョン：
権利関係：

RIFIS Technic Report

Polynomial Time Inference of
Unions of Tree Pattern Languages

Hiroki Arimura
Takeshi Shinohara

Setsuko Otsuki

August I , 1991

Research Institute of Fundamental Information Science
Kyushu University 33
Fukuoka 81 2, Japan

E-mail: arim@ai.kyutech.ac.jp Phone: 0948 (29) 7638

POLYNOMIAL TIME INFERENCE OF
UNIONS OF TREE PATTERN LANGUAGES

Hiroki Arimura
arirn@ai.kyutech.ac.jp

Takeshi Shinohara
shino@ai.kyutech.ac.jp

Setsuko Otsuki
otsuki@ai.kyutech.ac.jp

Department of Artificial Intelligence
Kyushu Institute of Technology

680-4, Kawazu, Iizuka 820, JAPAN

Abstract . In this paper we consider the polynomial time inferability from positive
data for unions of two tree pattern languages. A tree pattern is a structured pattern
known as a term in logic programming and term rewriting systems, and a tree pattern
language is the set of all ground instances of a tree pat tern. We present a polynomial
time algorithm to find a minimal union of two tree pattern languages containing given
examples. Our algorithm can be considered as a natural extension of Plotkin's least
generalization algorithm, which finds a minimal single tree pattern language. By
using this algorithm we can realize a polynomial time inference machine for unions
of two tree pattern languages from positive data.

1 Introduction

Inductive inference is a process to guess an unknown rule from its examples. In this paper
a rule we consider is a union of two tree pat tern languages.

A tree pattern is a structured pattern known as a term in logic programming and term
rewriting systems, and a tree pattern language is the set of all ground instances of a tree
pattern. Since the class of tree pattern languages has finite thickness, that is, for any ground
tree there are only finitely many tree pattern languages containing it, an inference machine
that guesses a minimal language explaining examples identifies a target tree pattern from
examples in the limit [2]. For example, assume that a rule is represented by a tree pattern
and the following ground trees are given as its examples:

aPP([I, [I, [I) , aPP([bI, [a], [b,aI), aPP([aI, [I , [a]),

app([l, [a], [all, app([a, bl, [c, 47 [a, b,c, 417 -
Then,

{~PP(X, Y, Z)1
represents a minimal tree pattern language containing all the examples. Such a minimal
tree pattern, called the least generalization by Plotkin in [a], can be computed by using
the least generalization algorithm [6, 81 in polynomial time.

In this paper, we will consider inductive inference where examples are taken from two
tree pattern languages, and pay attention to the problem finding a pair of tree patterns
that represents a minimal union containing given examples. For instance, a pair

of two tree patterns represents a minimal union containing the above examples.
On the other hand, for string pat tern languages, the problem whet her minimal unions

can be computed in polynomial time is open [9, 111. For one-variable pattern languages,
it is shown to be computable in polynomial time [lo].

In this paper we study polynomial time inferability of unions of two tree pattern lan-
guages from positive data. We first prove that the containment problem for unions of n tree
pattern languages is decidable in polynomial time if n is less than the number of symbols
of alphabet.

Wright [ll] proved that a minimal unions containing a sample can be computed in
polynomial time for one-variable pattern languages. However we can not apply his method
directly to unions of tree pattern languages. Because the number of generalizations of a
given finite sample may be exponential for tree patterns, while it is at most polynomial for
one-variable patterns.

We show that it is not necessary to check all partitions of a sample, but it is sufficient
to find a pair of tree patterns reduced with respect to the sample and tighten it. A pair
of tree patterns is said to be reduced with respect to a set S of ground trees if S can not
contained in either of their languages, but is contained in the union. We can find such a
reduced pair in polynomial time of the size of S , by using an algorithm that receives a
pair (w+, w-) of ground trees taken from S and enumerates maximal tree patterns whose
languages include w+ but exclude w-. The point to guarantee polynomial time complexity
of our algorithm is that the number of such pairs (w+, w-) is proportional to the square of
the size of S and the number of maximal tree patterns consistent with (w+, w-) is at most
the square of the size of w+.

By a similar discussion for the classes with finite thickness, we can easily show that a
machine producing a minimal pair of tree patterns as its guess can identify the class of
unions in the limit. Hence, we prove that the class of unions of two tree pattern languages
is polynomial time inferable from positive data.

2 Preliminaries

We start with basic definitions on tree patterns and give a brief review of the articles on
inductive inference from positive data.

2.1 Tree Pattern Languages

C is a finite alphabet associated with a mapping arity from C to nonnegative integers,
whose elements are called functors. We assume that C contains at least one functor with
arity 0. V is a countable set of symbols disjoint from C, whose elements are called variables.

A tree pattern is defined recursively as follows: t is a tree pattern on C U V if t is (1) a
functor a with arity(a) = 0, (2) a variable, or (3) an ordered tree f (t l , . . . , t,), where f is
an n-ary functor labeling the root node and t l , . . . , t, are tree patterns on C U V.

A tree pattern containing no variables is called a constant tree. We denote by TP(C)
the set of all tree patterns on C U V and by I (C) the set of all constant tree patterns on
C. Note that our definition of tree patterns is slightly different from that of KO et al. [5] .
In their definition, the arity of a functor is variable.

A substitution is a homomorphism 0 from tree patterns to themselves such that @(a) = a
for each 0-ary functor a E C. We define a matching relation 5' on tree patterns as p 5' q,
if p = 0(q) for some substitution 6. The language defined by a tree pattern p is the set

A subset L of I (C) is a tree pattern language on C if there is a tree pattern p E TP(C)
such that L = L(p). We denote by I P L (C) the class of tree pattern languages for a given
alphabet C.

Example 1. Suppose that C = {a, b, f) and arity(a) = O,arity(b) = 0 and arity(f) = 2.
Then, f (x ,x) is a tree pattern, and constant trees f (a ,a) and f (f (a ,a) , f (a ,a)) are con-
tained in the tree pattern language L(f (x, x)), but a constant tree f (a, b) is not contained

in L(f (x, 4).

2.2 Inductive Inference from Positive Data
First, we give a basic definitions on inductive inference according to Gold [4].

An indexed family of recursive languages is a class of languages C = {Ll, L2,
L3,. . .) such that there is an effective procedure to decide whether w E Li given a word w
and an index i. For the class I P L (C) of tree pattern languages, a word is a constant tree
and an index of L(p) is a tree pattern p. For a class C and a nonnegative integer m, we de-
fine the class Cm of unions of m languages in C as Cm = {L1 u . . . u L, I L1,. . . , L, E C) .
A positive presentation of L is an infinite sequence wl, w2,. . . such that {wi I i 2 1) = L.
A sample is a nonempty finite set of words.

An inference machine is an effective procedure M that requests a word and produces a
guess from time to time. Let a = wl, w2,. . . be a positive presentation. When M makes
the i-th request, a word wi is added to the sample. Then, M reads the current sample and
adds a guess gi to the sequence of guesses. We say that M on input a converges to g if
there exists a positive integer N such that g; = g for every i 2 N.

An inference machine M is said to be consistent if it always produces a guess gi con-
sistent with the current sample, that is, {wl,. . . , wi) C Lqi for every i > 0. M is said to
be conservative if it continues to produce the same guess while the guess is consistent with
the sample.

A class of languages C = {L1, L2,. . . } is said to be inferable from positive data if there
exists an inference machine M such that M on input 0 converges to g with L, = Li for
any index i and any positive presentation a of Li.

A class C has finite thickness, called Condition 3 by Angluin in [3], if the set {L E
C I w E L) is finite for any word w. Angluin showed that if a class C has finite thickness,
then C is inferable from positive data [3]. Using this condition she proved that the class
of string pattern languages is inferable from positive data.

Wright extended her result to unions of languages [lo]. A class C has infinite elasticity
if there exist two infinite sequences wo, wl, . . . of words and L1, L 2 , . . . of languages in C
such that wi 6 Li and wj E Li if j < i. C has finite elasticity if C does not have infinite
elasticity. Clearly, if a class C has finite thickness then C has finite elasticity.

Theorem 1. ([lo]) If a class C has finite elasticity, then C is inferable from positive data.

He also proved that this property is closed under union of languages. Since the class 'PL
of string pattern languages has finite thickness and finite elasticity is closed under union,
the class P L m of unions of at most rn string pattern languages is inferable from positive
data [lo].

Next we consider the polynomial time inferability.

Definition 1. A class of languages C is said to be polynomial time inferable from positive
data if there exists an inference machine M that infers C consistently and conservatively
from positive data, and it computes the guess g; in polynomial time with respect to IISiII
for every stage i > 0, where S; = {wl,. . . , wi} and llSill is the size of the sample Si as an
expression.

Angluin [l] showed the following sufficient condition for polynomial time inference from
positive data.

Proposition 2. (Angluin [I]) If a class C has finite thickness and both of membership
and MINL calculations for C , that is,

MINL(S) = "Given a finite set S of words, find an index
g such that S 2 Lg , and L i S Lg implies
S Li for any i".

are computable in polynomial time with respect to llSll, then the following procedure M
infers C from positive data in polynomial time, where llSll is the size of S as an expression.

Algorithm 1. (inference machine M)
procedure M;

input: an positive presentation wl, w2, . . . ;
output: an infinite sequence gl, g2, . . . of guesses;

begin
go := none; S := 0; i := 0; { stage 0 }
repeat { stage i)

i := i + 1;
S := S U {w;};
if w; @ Lgi_, then gi := MINL(S) else g; := g;-1;
output g;;

forever;
end.

A fundamental procedure used in the above algorithm is that for MINL calculation.
For sub classes of single string pat tern languages, polynomial time algorithms for MINL
calculation are proposed.

We can easily see that the class TPL(C) of tree pattern languages has finite thickness [I,
31. Thus, the class TPL(C)" of unions of rn tree pattern languages has finite elasticity,
but does not have finite thickness for any rn > 1.

Let us consider how the inference machine M behaves for a class C with finite elasticity.
Let o be a positive presentation of a language Lk in C. Let go,gl,. . . be a subsequence

of distinct
changes of
they show

guesses produced by M on o and wo, wl, . . . be an input data that cause these
guesses. If M on o does not converge, then these two sequences are infinite and
infinite elasticity of C because M is consistent and conservative. Therefore we

can conclude that M converges to some guess g~ at a finite stage N > 0. Thus, LI, 2 Lgi
for any i 2 N because M is consistent. On the other hand, since M outputs an index of a
minimal language Lgi containing a sample Si at any stage i 2 N , Lk 2 Lgi. Hence, for a
class C with finite elasticity, if both of membership and MINL calculations are computable
in polynomial time, then M in algorithm 1 infers C in polynomial time from positive data.

3 Inference of Unions of Tree Pattern Languages

In this section we describe the main procedure in our algorithm to infer a union of two
tree pattern languages from positive data in polynomial time.

3.1 Compactness with respect to Containment

We first observe a basic property of unions of tree pattern languages. This property, com-
pactness with respect to containment, plays an important role to guarantee the correctness
of our algorithm.

Definition 2. Let C be a class of languages and m > 0. The class C m of unions is compact
with respect to containment if for every L, L1,. . . , L, E C ,

L C L I U ... UL, +- L C L i f o r s o m e 1 < i 5 m .

We denote by #S the number of elements in a set S.

Theorem 3. The class TPL(C)" of unions of m tree pattern languages is compact with
respect t o containment i f #C > rn.

Proof. S u p p o s e t h a t # C = s > m a n d L (p) C L(q1)u ... ~ L (~ ,) f o r p , q l , . . . , q , E T P (C) .
Assume here that C consists of s functors fl, . . . , f, and p contains k distinct variables
XI, . . . , xk. We choose a set TO = It l , . . . , t,) C T(C) of s constant trees such that the root
of each constant tree ti is labeled by fi for each 1 5 i 5 s.

Let Oo be the set of all substitutions from variables in p to TO, that is, Oo = (6 I @(xi) E
TO for 1 5 i 5 k}. For a set of substitutions A, we define the direct image A(p) of a
pattern p as A(p) = {d(p) 1 6 E A}. Clearly, Oo(p) is a finite subset of L(p) with sk
elements. Since Oo(p) 2 L(p), Oo(p) C L(ql) U . . . U L(qm). Thus, for some 1 < i 5 n,
one language L(qi) must contain at least l / m of Oo(p). Let O(p) = Oo(p) n L(qi). Since
s > rn, #O(p) 2 sk/rn > sk-l. NOW, consider the following condition.

Condition 1. O satisfies either (1) there is some 1 5 i 5 k such that @(xi) = @'(xi)
for every 6,d' E O, or (2) there is some 1 5 i, j 5 k such that 6(xi) = @(xj) for every
6 E O. (Table 1)

Claim 1. If a subset O of Oo satisfies Condition 1, then #O(p) 5 sk-'.
Proof. If we fix the i-th variable as 6(xi) = t for some tree t , then there are at most

sk-' distinct assignments for other variables. A similar combinatorial argument shows the
result.

Table 1: Two examples of O violating Condition 1 in the proof of Theorem 3

From this claim, O(p) must not satisfy Condition 1. Thus, we can show that ica(O(p)) =
p by using Boomerang Lemma [6], where ica(A) is the least generalization of a set A of
constant trees. Since O(p) 2 L(qi), p = Ica(O(p)) 5' q;. Hence it is followed by the result.

The condition in Theorem 3 that the alphabet C has more than rn functors is necessary
for the class 7PL(C)m (rn > 0). For instance, suppose that C = {a, f) , arity(a) = 0
and arity (f) = 2. Then, L(x) is contained in the union L(a) U L(f (xl, x2)), but L(x) is
contained in neither L(a) nor L(f (xl , x2)).

This theorem also shows that the containment problem for the class 7 P L (C) m of unions
of rn tree pattern languages, that is, given a pair of multisets {MI, . . . , Mm), {Ll , . . . , L,}
of rn tree patterns, the problem whether MI U . . . U Mm L1 U . . . U L, can be computable
in polynomial time.

3.2 Finding a Minimal Union
We describe here a MINL algorithm based on the technique used in [Ill. First we introduce
the notion of reduced unions. For a multiset of tree patterns P = {pl,. . . ,pm), we denote
by L(P) the union L(pl) U . U L(pm) defined by P.

Definition 3. A multiset of tree patterns P = {pl, . . . ,pm) is reduced with respect to a
sample S if (1) the union L(P) contains S, and (2) for any pattern pi E P , L (P - {pi))
does not contains S.

For instance, a pair { f (a, x), f (x, b)) of tree patterns is reduced with respect to { f (a, a),
f (a, b), f (b, b)}, but { f (a , x), f (x, y)} is not. Note that for any tree pattern p and a sample
S a multiset {p, p) is not reduced with respect to S.

The MINL algorithm consists of the following steps. Let C be an alphabet with at least
three functors and S be a sample.

Algorithm 2.
1. Find a reduced pair (po, qo) of tree patterns with respect to S.
2. If it is found, compute the least generalizations p of S - L(qo) and q of
S - L(p). Then output (p,q).
3. If there is not such a (po, qo), compute the least generalization u of S. Then,
output (21, u).

We first compute a reduced pair (po, qo) with respect to S if it exists. This algorithm
runs in polynomial time with respect to the size of S. Note that we can compute the
minimal single tree pattern of a sample by using the least generalization algorithm [6, 81
in polynomial time.

Suppose here that such a pair is found. By similar arguments in proofs of Lemma 2.5
and Lemma 2.8 in [l I], we can obtain the following lemma.

Lemma 4. Suppose that #C 2 3 and a pair (po , qo) of tree patterns is reduced with respect
to S. Let p and q be the least generalizations of S - L(qo) and S - L(p) , respectively.
Then, the union L(p) U L(q) is a minimal union containing S.

Proof. Let p be the least generalization of S - L(qo). Then, both of po and p contain

S - L(qo). Since L(p) is the least tree pattern language containing S - L(qo), L(p) L(p,).
Let q be the least generalization of S - L(p) f 0. Similarly, we have L(q) 2 L(qo).

Assume that S 2 L(p') U L(q') 2 L(p) U L(q). By the compactness with respect to
containment, there are two cases: (1) one of L(p) and L(q) contains both of L(p') and
L(q'); (2) each of L(p) and L(q) contains exactly one of L(p') and L(qr). Since the case (1)
contradicts reducedness of L(p) U L(q), we assume that L(p') C L(p) and L(q') 2 L(q)
without loss of generality. Thus, we have S - L(qo) L S - L(q) 2 S - L(q') 2 L(p') 2 L(p) .
Therefore, both of L(p) and L(p') contain S - L(qo). This shows L(p) = Similarly,
we have L(q) = L(q').

Lemma 5. Let S be a sample and u be the least generalization of S. If S 2 L(p) U
L(q)SL(u) , then (p,q) is reduced with respect to S.

Lemma 4 and Lemma 5 give a necessary and sufficient condition for finding a minimal
union containing S. If we find one of reduced pairs with respect to S, we can get a minimal
union L(p) U L(q) containing S in polynomial time (Step 2 in Algorithm 2). Otherwise, no
smaller union than L(u) can contain S.

As we will see in the next section, Step 1 of Algorithm 2 is computable in polynomial
time. Therefore, Algorithm 2 correctly computes MINL for unions of two tree pattern
languages in polynomial time.

The class of unions of two tree patterns has finite elasticity. Thus, by the discussion in
Section 2.2, we obtain the main result of this paper.

Theorem 6. If #C 2 3, the class l P L (C) 2 of unions of two tree pattern languages is
polynomial time inferable from positive data.

4 Computing a Reduced Pair

In this section we describes the basic idea and the algorithm to find a reduced pair of tree
patterns, which plays an important role to realize our efficient inference machine.

Let S be a sample. The following is a straightforward way to find a pair of tree patterns
reduced with respect to S

Algorithm 3.

procedure;
input: a sample S;
output: a pair of tree patterns reduced with respect to S if exists;

begin
for each partition {Sl, S2) of S do begin

Let pl be the least generalization of Sl;
Let p2 be the least generalization of Sz;
if S L(pl) and S L(p2) then

output (p, q) and exit;
end;

end.

However, this method does not work efficiently because there are exponentially many
different partitions of a sample S. On the contrast, our algorithm can compute a pair
reduced with respect to S in polynomial time. The algorithm is based on the fact that
a candidate tree pattern coilposing a reduced pair with respect to S can be found out of
maximal tree patterns whose languages include w+ and exclude w- for some w+, w- E S.

Definition 4. Let w+, w- be constant trees. A tree pattern p is consistent with a pair
(w+, W-) if w+ E L(p) and w- @ L(p). A consistent tree pattern p is a maximal tree
pattern consistent with (w+, w-) if q g' p for every tree pattern q consistent with (w+, w-).
We denote by MAXTREE(w+, w-) the set of all maximal tree patterns consistent with

(w+,w-).

Example 2. f (x, a) and f (x, x) are maximal tree patterns consistent with a pair (w+, w-) =

(f(a7 4, f(a7 b)) .

Algorithm 4.

procedure;
input: a sample S;
output: a pair of tree patterns reduced with respect to S if exists;

begin
for each w+, w- E S do

for each q E MAXTREE(w+, w-) do begin
Let p be the least generalization of S - L(q);
if (p,q) is reduced with respect to S then

output (p, q) and exit;
end;

end.

Lemma 7. Let p be a maximal tree pattern consistent with (w+, w-). Then, either (1)
or (2) below holds. (See Figure 1)

1. All but at most one leaves of p are mutually distinct variables, and the other nodes
are functors on the same path.

Figure 1: Possible forms of maximal tree patterns consistent with (w+, w-)

2. All leaves of p are variables, and just two of them, say a and P , are the same variable,
and all internal nodes are on either paths from the root to cu or P.

Lemma 8. Given a pair (w+, w-) of constant trees, the set MAXTREE(w+, w-) can be
computable in polynomial time of n and #(MAXTREE(w+, w-)) = O(n2), where n is the
number of nodes in w+.

Proof. Any tree pattern p in MAXTREE(w+, w-) satisfies conditions (1) or (2) of Lemma 7,
and p is a generalization of w+. Let n be the number of nodes in w+. Then, the number
of generalizations of w+ satisfying the conditions (1) and (2) are O(n) and O(n2), respec-
tively. Since the matching relation can be determined in linear time, we can easily select
members of MAXTREE(w+, w-) from such generalizations in polynomial time.

By the following lemmas, Algorithm 4 finds a pair reduced with respect to a sample in
polynomial time.

Lemma 9. Assume that there is at least one pair reduced with respect to S. Then, there
exists two constant trees w+, w- and a tree pattern q such that q E MAXTREE(w+, w-)
and (p, q) is reduced with respect to S, where p is the least generalization of S - L(q).

Proof. Assume that there is a pair (po, qo) reduced with respect to S. Let q be a maximal
tree pattern such that L(q0) C L(q) and S - L(q) f 0. Note that the existence of qo
ensures that of such q. For any tree pattern r, S n L(r) # 0 and S - L(r) f 0 iff r is
consistent with (w+, w-) for some w+, w- in S. Thus, q E MAXTREE(w+, w-). Let p
be the least generalization of S - L(q). Then, we have L(p) L(po) from L(qo) 2 L(q).
Since g L(po), S g L(P).

Lemma 10. For any sample S, Algorithm 4 runs in polynoimial time with respect to I IS1 1,
and it finds a reduced pair with respect to S if exists.

In this paper, we have shown that the class of unions of two tree pattern languages is
polynomial time inferable from positive data. Our algorithm can be considered as a natural
extension of Plotkin's least generalization algorithm.

Some of logic program synthesis systems [7] use a naive algorithm, such as Algorithm 3,
to compute a minimal union explaining given examples by considering all partitions. How-
ever, it is not efficient because they need check exponentially many distinct partitions in
the worst case. Since our algorithm computes one of such minimal unions in polynomial
time, it can be used as a polynomial time generalization procedure in some cases.

References

[I] Angluin, D., Finding common patterns to a set of strings, In Proceedings of the 11th
Annual Symposium on Theory of Computing, pages 130-141, 1979.

[2] Angluin, D., Finding common patterns to a set of strings, Information and Control
21, 46-62, 1980.

[3] Angluin, D., Inductive Inference of Formal Languages from Positive Data, Informa-
tion and Control 45, 117-135, 1980.

[4] Gold, E.M., Languages Identification in the Limit, Information and Control 10,
447-474, 1967.

[5] KO, K-I., Marron, A. and Tzeng, W-G., Learning String Patterns and Tree Patterns
from Examples, In Proceedings of third annual workshop on Computational Learning
Theory, pages 384-391, 1990.

[6] Lassez, J-L., Maher, M.J. and Marriott, K., Unification Revisited, In Minker, J.,
editor, Foundations of Deductive Databases and Logic Programming, pages 149-176.
Morgan Kaufmann, 1988.

[7] Muggleton, S., Machine Invention of first-order predicates by inverting resolution, In
Proceedings of the Fifth International Conference on Machine Learning, pages 339-
352, 1988.

[8] Plotkin, G., A Note on Inductive Generalization, In Meltzer, B. and Mitchie, D.,
editors, Machine Intelligence, volume 5, pages 153-163. Edinburgh University Press,
1970.

[9] Shinohara, T., Inferring Unions of Two Pattern languages, Bulletin of Informatics
and Cybernetics 20, 83-88, 1983.

[lo] Wright, K., Identification of Unions of Languages Drawn From an Identifiable Class,
In Proceedings of the 2nd Annual Workshop on Computational Learning Theory, pages
328-333, 1989.

[ll] Wright, K., Inductive Inference of Pattern Languages, PhD thesis, University of
Pittsburgh, 1989.

About the Authors

Hiroki Arimura ($if$$ t%lkEl) was born in Fukuoka on June 7,

1965. He received the B.S. degree in 1988 in Physics and the

M.S. degree in 1990 in Information Systems from Kyusyu Uni-

versity. Presently, he is an Assistant at Department of Artificial

Intelligence, Kyushu Institute of Technology, Iizuka. His re-

search interests are in logic programming and Inductive Infer-

ence.

Takeshi Shinohara (B E 8) was born in Fukuoka on January

23, 1955. He received the B.S. in 1980 from Kyoto University,

and the M.S. degree and the Dr. Sci. from Kyushu University in

1982, 1986, respectively. Currently, he is an Associate Professor

of Department of Artificial Intelligence, Kyushu Institute of

Technology. His present interests include information retrieval,

string pattern matching algorithms and computational learning

theory.

Setsuko Otsuki (kg %F) was born in Tokushima on july 8,

1932. She gradudated from Department of Physics in 1955, and

the Dr. Engineering. degree in 197 1 in Department of Engneering

from Kyushu University. Presently, she is Professor of Depart-

ment of Artificial Intelligence, Kyushu Institute of Technology.

Her research interests include intelligent tutoring systems, knowl-

edge information processing and natural language understanding.

Research Institute of Fundamental Information Scinece, Kyushu University 33, Fukuoka 81 2, Japan.

