
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Learning Algorithm for Elementary Formal
Systems and its Experiments on Identification
of Transmembrane Domains

Arikawa, Setsuo
Research Institute of Fundamental Information Science Kyushu University

Kuhara, Satoru
Graduate School of Genetic Resources Technology, Kyushu University

Miyano, Satoru
Research Institute of Fundamental Information Science Kyushu University

Shinohara, Ayumi
Department of Artificial Intelligence, Kyushu Institute of Technology | Research Institute of
Fundamental Information Science Kyushu University

他

https://hdl.handle.net/2324/3147

出版情報：RIFIS Technical Report. 40, 1991-06-05. Research Institute of Fundamental
Information Science, Kyushu University
バージョン：
権利関係：



RIFIS Technica Report 

A Learning Algorithm for Elementary Formal Systems and 
its Experiments on Identification of Transmembrane Domains 

Setsuo Arikawa 
Satoru Ku hara 
Satoru Miyano 

Ayumi Shinohara 
Takeshi Shinohara 

June 5,1991 

Research Institute of Fundamental Information Science 
Kyushu University 33 
Fukuoka 81 2, Japan 

E-mail: miyano@rifis.sci.kyushu-u.ac.jp Phone: 092 (641)1101 Ex. 4471 



A Learning Algorithm for Elementary Formal Systems and its 
Experiments on Identification of Transmembrane Domains 

Setsuo Arikawat Satoru I<uharat Satoru Miyanot 
Ayumi Shinoharat Takeshi Shinohara* 

t Research Institute of Fundamental Information Science, Kyushu University 33, Fukuoka 812, Japan. 

t Graduate School of Genetic Resources Technology, Kyushu University 46, Fukuoka 812, Japan. 

* Department of Artificial Intelligence, I<yushu Institute of Technology Iizuka 820, Japan. 

Abstract amino acid sequences. Given positive and negative ex- 
We propose a naethod for algorithnaic learning of 

transmembrane domai~zs based 01% eleme?ztary formal 
systems. An  elementary formal systenz (EFS, for 
short) is a kind of a logic progmnx consisting of i f-  
th,en rules. With this fran~ework, we have imple- 
mented the algorithnz for identifying transmembrane 
domai~as in amino acid sequences. Because of the linz- 
itatio~zs on computational resources, we restrict ca~zdi- 
date hypotheses to 3FSs  defined b y  collections of reg- 
ular patterns. From 70 transmembrane sequences and 
a similar amount of negative exanzples which are not 
trans~ne~nbrane sequences, our algorithm has produced 
several reasonable hypotheses of small size. Experi- 
ments with the database PIR  show that one of thena 
recognizes 95% of 689 tra~as~nembra~ze sequences and 
95% of 19256 negative examples which consist of non- 
transmembrane sequelzces of length around 30 ran- 

amples , t he algorithm finds a hypothesis represented 

by an EFS of a specified form. Since an EFS has a 

structure of logic prograin, the resulting hypothesis 

explains the given examples reasonably in the sense 

that what kind of facts and rules are used to  produce 

given 11 osit ive examples while excluding negative ex- 

amples. 

Sinitli and Sinit11 [I93 present an efficieilt method 

for extracting patterns fro111 amino acid sequences. In 

contrast, our approach using EFSs has the following 

features. First, we use both positive and negative data 

domly chosen from PIR. while the approach in [I91 is to  find information com- 

n1o11 to  positive data. Second, EFSs include patterns 

or regular expressions as special instances and have 
In [lo] we have shown that some subclasses of el- 

inucll expressive ability. EFSs may give a chance to 
einentary formal systems are polynomial- time PAC- 

find unknown inotifs whicli can not be described with 
learnable [3, 12, 211. A11 eleineiltary forinal systen? 

regular expressions. Therefore the learnability of EFSs 
(EFS, for short) introduced by [20] is a kind of a logic 

from positive and negative examples is an import ant 
program consisting of if-then rules that can define a, 

problein to be discussed. 
set of words. Its descriptive ability is quite large even 

in some restricted cases [2] and its semantics has been We have implemented the basic idea in [lo] as a 

thoroughly studied [23]. EFSs also liave received con- learning algoritllin and ma,de some computational ex- 

siderable attentions from inductive inference [2, 181. periinents using positive a,nd negative data. Based on 

In this paper we apply the learizing algorithm for the accepted assumption that membrane proteins con- 

EFS to  identification of transmeml~rane doina,ins in tain transmeinbrane domains, we consider the prob- 



lem of identifying them. Tlle algorithm in [lo] runs of predicate symbols. We assume that C ,  X ,  and 11 

in polynomial time for some subclasses of EFSs. But, are mutually disjoint. Let C* be the set of all words, 

unfortunately, the running time is beyond practical C+ the set of all ilonempty words, 225" the set of all 

use. However, by restricting a target hypothesis to words of length n or less for n 2 0 over C. 

an EFS consisting of regular patterns [16, 171 of spe- A pattern is an element of (C U X)+ .  A pattern 

cia1 forms, our implemented algorith~n can cope with n- is called regular if each variable in n- occurs ex- 

this problem in reasoilable time and space. As posi- actly once in n-. An atom is an expression of the form 

tive training examples, we use 70 transmembrane do- p(r l ,  . . . , T,), where p is a predicate symbol in Il with 

main sequences. Negative training examples are 100 arity n and 7-1, . . . , Tn are patterns. A definite clause 

sequences of length around 30 which are not trans- is a clause of the form 

membrane sequences. The strategy of our algorithm 

is to find a hypothesis that covers positive exaainples 

and excludes negative examples. It has found soine 

hypotheses consisting of just a t  i i~ost seven regular 

patterns with a few variables. We examined these 

hypotheses by using already known membrane pro- 

tein data  from PIR databaase [13]. By experii~~ents on 

689 positive and 19256 negative examples, they cover 

90% transmembrane domain sequences and excludes 

75% - 77% negative examples. The accuracy rate for 

positive examples is ascceptable but that for i~ega~tive 

examples may be ui1a.ccepta.ble. 

In [I] we pointed out the importance of negative 

examples. Inspired by the results in [I], we cha.nged 

the strategy in a way that the algorithm searches a hy- 

pothesis which covers negative examples and excludes 

positive examples. As a result, we have found a sin- 

gle regular pattern that can recognize both positive 

and negative exa~nples with accuracy more than 95% 

although transmembrane domains have seemed to be 

difficult to  define as a simple expression when the view 

point was focussed on positive examples. 

A+- B1 , . . . ,  B,, 

where rn > 0 a.nd A, B1, . . . , B, are atoms. The atom 

A is called the head and the part B1, .  . . B, the body 

of the definite clause. A11 elementary formal system 

(EFS) is a finite set of definite clauses. 

Example 1. Consider the following EFS with C = 

The pat3tern bbxby is regular but xaxb is not. I11 the 

definite clause p(x) +- q(x), r(x),  the head is the atom 

p(x) and the astoins q(x) and ~ ( x )  form the body. 

A substitution 6 is a homomorphism from patterns 

to patterns such taliat @(a) = a for each symbol a E 

C. A substitution which maps soine variables to the 

empty string e is called an e-substitution, and it is 

not allowed without extra notice. By TO we denote 

the image of a pattern T by a substitution O. For an 

atom A = p(n-1,. . . , n-,) and a definite clause C = 

A +-- B1,.  . . , B,, we define A0 = p(rlO,.  . . , n-,0) and 

2 Elementary formal systerns and cQ = A0 +-- BlQ, . . . , Bn,B. 
learnability A definite clause C is provable from an EFS I?, de- 

Let C be a finite alphabet, X = {x, y, z ,  X I ,  2 2 , .  . a )  noted by r t- C ,  if C is obtained from r by finitely 

a set of variables, and II = {p, q ,  T,  s ,  pl , p2, . . .) a set many applica.tions of substitutioi~s and modus ponens. 



That  is, we define the relation I' t C inductively as length-bounded hereditary EFSs with at  most m def- 

follows : inite clauses such that the nuiliber of variable occur- 

(1) If I' 3 C then I't- C. 
rences in the head of each clause is bounded by k. Ob- 

viously the class LB-H-EFS(m,k) contains infinitely 

(2) If I' I- C then I' t CO for any substitution 0. many languages for any m and I % .  Any context-free 

language is in LB-H-EFS(m,2) for some m 2 1 and 
(3) If I' I- A t- B1, .. . , B,, B,,+I and I' t B,+l 

any regular language is in LB-H-EFS(rn,l) for some 
then I't A t -  B1, . . . ,  B, 

m > 1. Moreover, LB-H-EFS(rn,k) contains union of 

For p E II with arity one, we define L(I',p) = {w E rn pattern languages which are definable by patterns 

C+ I I' I- p(w) -1. A lal~guage L C+ is definable by with at most k variable occurrences. 

EFS or an EFS language if such I' a,nd p exist. For a The following a,re examples of languages and 

pattern n-, the pattern language L(T) is the set {w E length-bounded hereditary EFSs which define them. 

C+ I w = n-6 for some 0). I t  should be noticed tlmt 
Example 2. {anbn / n > 1) E LB-H-EFS(2,l). 

a pattern language L(T) is an EFS language L(I',p) 

with I' = (p(n-) - ). 
Let 171-1 denote the length of a pattern n-. For an 

atom p(n-1, . . . , n-,), we define I (p(rl, . . . , n-,) 1 1  = 1x1 I+ Example 3. {onbncn I n 2 1) E LB-H-EFS(3,3). 

. . + ln-, 1.  A definite clause A c- B1, . . . B,, is length- 

bounded if llA0)I > llB1611 +.  . - + llBmOll for any sub- 

~(xY.) +- q(s,  Y ,  4 
r = {  q(ox, by, cz) + q(x, Y ,  2) 

q(a, b ,  c) + I 
stitution 6. It is known tha,t a clefinite clause is length- We call a subset c of C* a concept. A concept c 

boullded if and if I IAI I 2 I I B1 I I + ' ' + I IBn, I I call be regarded as a function c : C* + {O, I),  where 
for each variable X i ,  the number of occurrences of xi ,,,) = illlplies i: is ill collcept alld c(z) = 
in the body is not greater than that in the head. For A concept class is a llonempty set 

exam~le, t"edefi l l i teclauseq(bx)~q( 'x) is lel lgt l l -  2c*ofconcepts .  ~ ~ ~ ~ ~ ~ ~ ~ l ~ ~ f a , c o l ~ c e p t c i ~ a ~ ~ i ~  

bounded ,wh i l ep (x )cq (x ) , r (x ) i s i i o t .AnEFSI ' i s  ( x , c ( X ) ) f o r x E C * .  

length-bounded if all definite clauses in I' are length- A concept class C is polynomial-time learnable [3, 
bounded. 

We say that a definite clause 
121 if there exists an algorithm A which satisfies the 

following conditions: 

q(n-1, ..., n-n) t- q1(~1 ,  ..., rtl) ,  - - + , q ~ ( ~ t ~ - ~ + l ,  rtl) (1) A runs in polyiiomial time with respect to the 

lengtli of the input. 
is hereditary if, for each j = 1, ..., t i ,  pattern 7-j con- 

tains a.t least one variable and rj is a. subword of some (2) There exists a. polynomial p(., ., .) such that for 

Xi. An EFS I' is hereditary if each definite clause a,ny integer 1-2 > 0, any concept c E C, any real 

in I' is hereditary. For example, the definite clause number E ,  S (0 < E ,  S < I ) ,  and any probability 

q(bx) t q(ax) is not hereditary. For rn, k > 1, LB-H- distribution P on CSn, if A takes p(n, $, i) exam- 

EFS(m,k) denotes the class of langua,ges definable by ples which are generated randomly according to  



P, then A outputs a representation of a hypoth- 

esis h such that P(c  @ h) < t7 with probability at  

least 1 - 6 .  

Theorem. 1. [lo] LB-H-EFS(m,k) is polynomial- 

time learnable for any rn, k > 1. 

Proof. I t  has been shown [3, 121 thak a concept class 

C is polynomial-time learnable if a,nd only if C is of 

polynomial dimension [ l l ,  121 and there is a random- 

ized polynomial-time hypothesis finder [3] for C. 

First we show that LB-EFS(n2) is of polynoinial 

dimension for any m. 2 1. Let LB-EFS(?n.), = {L n 

CSn I L E LB-EFS(nz)} for n 2 0. We evaluate the 

cardina.lity of LB-EFS(?n), . Let I' and p be a, length- 

bounded EFS and a predicate syinbol with arit,y one 

defining a language L ( r  , p). Let C = A + B1, . . . , Bl 

be a definite clause in I'. Note tha,t if llAll > n t4hen 

L ( r ,  p) n EL" = L(I' - { C ) ,  p) n ~ 5 " .  Therefore we 

need to  consider only length-bounded EFSs consist- 

ing of a t  most m definite clauses whose l~ea~ds are of 

length a t  most n. We also have 1 5 12. The number 

of such length-bounded EFSs is roughly bounded by 

7n(n+ljm(l~I + n)(2nz+71- ljm. Hence ~ ~ ~ ? . L B - E F S ( ~ Z ) ~  

is O(n2 log n). Thus the diinensioil of LB-EFS(m) is 

polynomial. 

whose head ha,s a t  n~os t  k occurrences of variables, 

and 

(2) L ( r ,  p) is consistent with S and T, 

then without loss of generality we can add the follow- 

ing condition: 

(3) (I?, p) is reduced with respect to  S, i.e., S C 
L(I',p) and S $?= L(r",p) for any I" J 1'. 

Claim 1. Let S;(rn,k, S )  be the set of pairs (1 ' ,p)  

which satisfies (1)-(3). Then IS;(m, k, S )  I is bounded 

by some polyi~oinial in CsES Is1 

Proof.  Let (I',p) be a pair in S;(rn,k,S) and 

 TI, ..., nn) +- q l ( ~ 1 ,  .+., rt1), q2(rt1+1 7 rt2), . - . ,  
q1 (rt ,  -, + I ,  . . . , rt, ) , be a clause in I'. Since each Tj con- 

tains a t  least one variable and the head contains at  

most k varia,ble occurrences, it follows from the length- 

boundedness that t l  _< k. Let II(k, S) be the set of 

patterns n up to renaming of variables such that it 

coiltains a t  inost k vasiable occurrences and ntj is a 

subword of some .s E S for some substitution 0. Then 

III(k, S )  I 5 CsE,((ls12)"+'!). Since (I?, p) is reduced, 

we ca.n see tl1a.t for any definite clause q(nl, ..., n,) c- 

ql(r1, - 3 . 7  r t l ) ,  q 2 ( ~ t ~ + l ,  -.-, ~tz) r  - - . , ~ ~ ( ~ t ~ - ~ + l l  . - * r  ~ t , ) ,  

there exists a substitution 6 such that all n16, ..., nnO 

are subwords of some w E S .  Therefore all patterns 

sri and rj are in II(k, S) .  Since I' is reduced and 

Now it suffices to show that there is a polynoinia.1- has at  most 7n ~la~uses ,  there are at  inost rn distinct 

time hypothesis finder for LB-H-EFS(nz, k). Let S be predicate syinbols i11 r. Thus we have IS;(m, k, S)l _< 

a set of positive examples and T be a set of negative (In(k, ~)1~~1n'+')" '+' .  Since m and k are constants, 

examples. If S is empty, we choose a word w E C+ 15;(nz, k, S) I is bounded by a polynomial. 

not in T and take a length-bounded hereditary EFS Claim 2. There is an algorithm that,  given a word 

consisting of a single definite clause p(w) -. Then w in C+ and a length-bounded hereditary EFS I' satis- 

obviously it is consistent with S and T. Therefore, fying ( I ) ,  decides whether w E L ( r , p )  in polynomial- 

we can assume that S is not empty. If there is a pair time with respect to Iwl + II'l, where Irl represents 

(I',p) of a hereditary EFS I' and a predicate symbol p the length of 2' a.s an expression and p is a specified 

such that predica.te symbol in I'. 

(1) I? contains a t  most nz definite clauses each of Proof.  We first consider the family r ( w )  of the 



definite clauses that can be obtained from the definite 

clauses in I' by replacing all variables by nonempty 

subwords of w. Since the number of variable occur- 

rences is bounded by Ic and since the nuinber of defi- 

nite clauses in I? is also bounded by m,  I'(w) contains 

a t  most polynomially many definite clauses. I11 order 

to check whether w is in L(I?,p), we repeaat a,pplica- 

tions of modus ponens to I'(w) until p(w) t- is derived. 

This procedure works correctly since I? is hereditary. 

I t  is not hard to  see that the total algorithm can be im- 

plemented in polynomia.1 time with respect t o  IwI+lI'l. 

The polynomial-time algorithm tha,t finds the re- 

quired length-bounded hereditary EFS runs as follows: 

The algorithm enumerates pairs (I?, p) in S ( m ,  k, S). 

Then it checks by using the polynoi~lial-tiille algo- 

rithm of Claim 2 whether s E L(I' ,  p )  for s E S a.nd 

t $! L ( r , p )  for t E T. If such pasir is found, the algo- 

rithm outputs it as a hypothesis.[r] 

able occurrences and the number m of definite clauses 

smaller. Moreover, we do not know in advance how 

small the number m can be. However, if we deal with 

an EFS consisting of only patterns with a few vari- 

ables, there is a way of solving this problem in feasible 

time. 

Given a set Pos of positive examples and a set 

Neg of negative examples, we first compute a set S 

of patterns which produce some of positive examples 

but exclude almost all negative examples. Then we 

compute a subset l? of S which covers all positive ex- 

amples in Pos. It is preferable that the size of I' is as 

small as possible. But it is known that the minimum 

set cover problem is NP-complete [5]. Therefore, in- 

stead, we use a iniilirnal subset I? of S in the sense 

that no proper subset of I' covers Pos. The following 

algorithm sketches our implementation. 

input Pos, Ne y; I t  should be noticed that if the number of defi- 
:= 0: 1 := Pas: := N ~ ~ :  

nite clauses is not bounded by a constant m then the foreach pattern with rg= w for some w E 1 and 0; 
if r excludes almost all exa(mp1es in E 

resulting concept class is not of polynomial diinen- then S := S U {TI ;  
Find a subset I' of S cbvkring I which is minimal 

sion since all finite sets call be defined. hiloreover, with respect to set-inclusion; 

we showed in [lo] that the problem of finding a. reg- 

ular pattern which is consistent wit11 given positive 

and negative examples is NP-coi~lplete. Therefore it 

is reasonable to make restrictions on the nuinber rn 

of definite clauses and the number k of variable occur- 

rences in order to  achieve polynomial-tii~le learnability 

with respect to domain dimension. 

The learning algorithin sketched in the proof of 

Theorem 1 requires unavailable amount of time and 

space if it is applied to LB-H-EFS(m,k) for m, k > 10. 

This is because the running time is polynomial but 

expoilential wit11 respect to nz and k although they 

are fixed constants. Therefore it seems necessary for 

feasible learning to make both the number k of va.ri- 

output r;- 
Algorithm 1 

The approximation algorithm for the ininiinum 

set cover problem by Johnson [7] is useful to find a 

ininiina,l subset ill Algorithm 1. It finds very effi- 

ciently a set cover of size a t  most M log M ,  where M 

is the size of a minimum set cover. 

3 Experiments on transmembrane do- 
mains of proteiils 

The final purpose of this approach is to establish 

an algorithm which cla.ssifies proteins into the follow- 

ing three categories by simply searching amino acid 

sequences : 

C1. Membrane proteiils 



C2. Secretary proteins sequences. Instead of dealing with twenty symbols 

of amino acids, we classify these symbols into three 
C3. Cytosolic proteins 

classes by the hydropatby indices of amino acids [8]. 

More precisely, we transform symbols by Table 1. Figure 1 shows an example of an amino acid se- 

quence of a membrane protein. 

MDVVN~LVAGGQFRVVKE(PLGFVKVLQWVFAIFAFATCGSY~ 
TGELRLSVECANKTESALNIEVEFEYPFRLHQVYFDAPSCVKG 
GTTKIFLVGDYSSSAE(FFVTVAVFAFLYSMGALATYIFL~QN 
KYRENNK(GPMMDFLATAVFAFMWLVSSSAWA~KGLSDVKMAT 
DPENIIKEMPMCRQTGNTCKELRDPVTS(GLNTSVVFGFLNLV 
LWVGNLWFVF)KETGWAAPFMRAPPGAPEKQPAPGDAYGDAGY 
GQGPGGYGPQDSYGPQGGYQPDYGQPASGGGGYGPQGDYGQQG 
YGQQGAPTSFSNQM 

Amino Acids Hydropathy New Symbol 
A M C F L V I  1.8 -- 4.5 * 
P Y W S T G  - 1 . 6 ~ - 0 . 4  + 
R K D E N Q H -4.5 M -3.2 - 

Table 1 : Transformation rules 

This transforinatioil from 20 symbols to  just 3 

synlbols reduces the search space of hypotheses and 

Figure 1: Protein which contains four transmembrane may make learning from a small number of examples 
domains shown by the parenthesized parts. 

possible. The sequence in Figure 2 is the result of this 

However, it is coinputationally rather hard to tra.nsformation from the sequence in Figure 1. 

find an appropriate EFS which describes each cate- 
*-**--***++-*-**--(+*+**-**-+********+*+++I 

gory since these sequences are too long to apply the ++-*-*+*-**--+-+**-*-*-*-++*-*--*+*-*++**-+ 
+++-****+-++++*-(***+*******++*+***++***)-- 

learning algorithm in [lo] using reasonable a,nlount of -+----- (++**-***+****+*+**+++*+*)-+*+-*-**+ 
-+--**--*+**--++-+*--*--+*++(+*-++***+**-** 

c~mputa~t ional  resources. There is a tendency to a,s- *+,+-,+,,*) --+++,++**-*+++*+---+*++-*++-*++ 

sume that  a membrane protein has transmembrane do- ........................................... 
++--+*+++*+--* 

mains each of which constitutes a,n a-helix structure. 

The reported length of a transineinhra,ile dolllain is Figure 2: The sequence obtained by the transforma- 
t ion 

not large, usually, 20 -- 30. If a sequence correspond- 

ing to  a transmembrane dolllain is found in a protein, As is seen, this t ransforination makes the charac- 

the probability that it is a membrane protein ma,y be teristics of a trallsmembra,lle domain inore vivid, Fig- 

larger. ure 3 gives some of the sequences obtained by this 

Therefore i t  is important to give an algorit hi11 traiisforination from the transmernbrane domains cho- 

which identifies transmembrane domains in an ainino sen from our 37 examples. 

acid sequence. Since the length of a transineinbrane A posi t ive  e x a m p l e  is a sequence which is already 

domain is not so large, our learning algorithin inay know11 to be a transmembrane domaill. A negat ive  

work for learning EFSs consisting of regular patterns example  is a sequence of length around 30 which is 

which describe the sequences of tra.nsmeinbrane do- cut out from the part other than transinembrane do- 

mains. We used 37 membrane proteins from the mains. Hence, for a protein which is not a membrane 

database of PIR. protein, all sequences of length around 30 are negative 

A hydropathy plot [4, 8, 151 11a.s been used gener- examples. We use the exa.mples in Figure 3 as positive 

ally to predict transmembrane doma.ins from primary training examples. As negative training examples, we 



Figure 3: Examples of transformed transniei~ibra~ne 
domains 

have chosen randomly 100 negative examples shown 

in Table 4. 

The approach we have taken for tl-tis problem is 

to find a collection of regular patterns vrrhich covers +++*++--+*+--*--++-+- -+-+-+**-++*-***-----****-+++* 

almost all positive training examples and excludes a.1- 
Figure 4: Negative training examples 

iiiost all negative training examples. 

We restrict the forms of patterns to the following: 
wliich consists of a finite number of regular patterns 

in the a,bove forms. 

We have iinplemented Algorithm 1 so that it can 

x a 1 ~ a 2 z  cope with the above number of positive and nega- 

tive training examples. Our implemented algorithm 

In the above forms, al, a 2 ,  a3 are strings in {*, +, -It 
found 2.44 inillion patterns that meet our conditions. 

Then the algoritliin produced some reasonable hy- 

constructbed from positive training e~a~inples  and potheses froin them. The total computation time on 

Z, y1, y2, z are distinct variables, where we allow E- Sun SPARC station 2 is about three hours. Table 2 

substitutions to the variables x ,  z .  We consider EFSs shows the hypotheses and their success rates that our 



learning algorithm has produced. (82% - 84%). But only 75% 77% of negative ex- 

Pa.t terns 

+*+X*+*X+** 
**-**X*X**+ 
*-X***+** 
**X*+*+*X*+ 

total 

(PO) Each pattern is consistent with all positive and 
negative training examples. 

/patterns I Positive I M B  I A L L  I 

A L L  
1050 ( 5.5%) 
1209 ( 6.3%) 
700 ( 3.6%) 

1019 ( 5.3%) 
729 ( 3.8%) 
674 (3.5%) 
687 ( 3.6%) 

4367 (22.7%) 

Positive 
403 (58.5%) 
273 (39.6%) 
153 (22.2%) 
130 (18.9%) 
58 ( 8.4%) 
75 (10.9%) 
94 (13.6%) 

625 (90.7%) 

M B  
19 ( 3.0%) 
32 ( 5.0%) 
29 ( 4.6%) 
24 ( 3.8%) 
21 ( 3.3%) 
11 (1.7%) 
11 ( 1.7%) 

113 (17.8%) 

(P I )  Each pattern is consistent with a,ll positive t,rain- 
ing examples and inconsistent with at  most one nega- 
tive training example. 

****+** 
total 

Table 2: Collections of regular patterns produced by 
our learning algorithm from 70 positive and 100 neg- 
ative training examples. The leftmost and rightmost 
variables are extracted for simplicity. The symbol X 
represents a position where the variable occurs. The 
second column shows the number of the positive ex- 
amples from 689 positive exarnples that the pattern 
in the first column covers. The third (fourth) column 
shows the number of the negative exainples from &lB 
(ALL) that the pattern in the first coluinn generakes. 

We verified these hypotheses (PO), (P I )  by ex- 

302 (43.8%) 
632 (91.7%) 

periments. As the total space of positive exa,inples, 

we use the set POS of all transmembrane sequences 

10 ( 1.G%) 
101 (15.9%) 

(689) from PIR database. We consider two kinds 

621 ( 3.2%) 
4823 (25.0%) 

of total spaces M B  and ALL for negative exainples. 

M B  coilsists of randomly chosen 634 negative exam- 

amples in ALL can. be recognized as negative. 

4 Finding patterns from negative 
training examples 

In Section 3 ,  we were interested in collections of 

regular patterns which cover positive examples and 

exclude negative examples. In contrast, this section 

deals with collections of regular patterns which ex- 

clude positive examples and cover negative examples. 

The strategy is first to  generate regular patterns from 

izega.tive training exarnples instead of positive train- 

ing examples and then to apply Algorithm 1 in which 

stateiiients I := Pos; El := Neg; are replaced with 

I := Neg; El := Pos;. As training examples, we use 

the same set of positive exarnples and randomly cho- 

sen 50 negative exarnples in M B .  

We made experiments in the same way as in Sec- 

tion 3 using POS for positive exarnples and M B  and 

ALL for negative exarnples. Table 3 shows the results, 

As is seen, hypotheses (NO) and ( N l )  are very small 

and the success rakes for both positive and negative 

examples are quite good. From these observations, we 

(NO) Each pattern is consistent with all positive and 
nega,t!ive training exa,mples. 

ples taken from rnenzbrane proteins. ALL is the set (N1) Ea,ch pattern is consistent with all negative train- 
ing exatmples and inconsistent with at  most two posi- 

of negative examples consisting of 19276 negative ex- tive 

Pattern 
-x*x-- 
*+X*X++- 
total 

ainples randomly chosen from all proteins from PIR. 

The success rates for positive are more tllall 90%. TIle 3: Collectiolls of patterns ~ r ~ d u c e d  by 
our learning algoritl~m from 50 negative and 70 posi- 

rates rejecting negative examples in M B  are not had tive traillillg exalnples. 

Positive 
36 ( 5.2%) 
27 ( 3.9%) 
61 (' 8.9%) 

M B  
535 (84.4%) 
253 (39.9%) 
581 (91.6%) 

A L L  
16103 (83.6%) 

6538 (34.0%) 
17302 (89.9%) 



can say that the approach from nega.tive exa~nples is 

much better than that  from positive examples in the 

last section. 

After recognizing the importance of negative ex- 

amples, we have finally found the following pattern: 

This is an abbreviation of x-y1-y2-y3-y4-z that 

generates all sequences containing "-" at  least five 

times. Table 4 (N2) shows the result of the case where 

c-substitutions are allowed only to x and z .  Ta,ble 4 

(N3) is the result of the case that a,ll variables allow 

E-substitutions where the accura.cy of more tl1a.n 95% 

is achieved. 

(N2) E-substitutions a<re ilot allowed to  inside va.ri- 
ables. 

Patterns 
-X-X-X-X- 

(N3) E-substitutions are allowed to  all variables. 

Positive 
1 7  ( 2.5%) 

Patterns 
-X-X-X-X- 

Table 4: Results for - X - X - X - X -  

5 Discussioicls 

I11 this paper we showed and examined a new 

M B  
599 (94.5%) 

Positive 
32 ( 4.6%) 

framework for acquisition of knowledge from protein 

data. Even a very restricted class of EFSs is useful for 

identifying transmembraile domain sequences. Espe- 

cially, we have shown that a single regular pa,ttern ca.11 

A L L  
17555 (91.2%) 

recognize transmembrane doma.ins with an excelleilt 

accuracy. Through these results, we have indica.t,ed 

the iiliportance of negative examples. 

Although the learning algorithm [lo] for more 

general class, LB-H-EFS(ln,k), is shown to run in 

A4 B 
616 (97.2%) 

polynomial time, it requires enormous amount of tiine. 

A L L  
18304 (95.1%) 

In order to atta>ck more general ~itua~tions, we need es- 

sential iiilprovei?zents on the algorithm. 

I11 [I] we reported a machine learning system us- 

ing decision trees over regular pat terns which employs 

the idea of ID3 [14] for the construction of decision 

trees. We also have good results for the transmem- 

brane domain identification problem. A neural net- 

work a4pproach has been taken for prediction of sec- 

ondary structures of proteins [6]. But the authors have 

not a chance to examine this method. The compar- 

ison with other inethods for transmembrane domain 

identification remains as a future work. 

A well-known structure aroui~d the membrane 

integrated doi~iain is the signal-anchor structure 

that coilsists of two parts, the hydrophobic part 

of a membrane-spa,nning sequence and the charged 

residues a.round the hydrophobic part [9, 221. The 

pattern x-y1-y2-y~-y4-z which indicates a cluster of 

polar amino acid residues may be closely related to 

the signa,l-anchor structure. 

References 

[l] S. Arikawa., S. KuBa.ra, S. Miyano, A. Shinohara 

and T. Sllinohara, "Idei~tification of transmem- 

bra,ne domains by clecision trees over regular pat- 

terns," Techlzical Report RIFIS- TR-CS-44, Re- 

search Institute of Fu.ndam.enta1 Informution Sci- 

ence, I{yushu University (to be presented a t  Sec- 

ond Int. Symp. Artificial Intelligence and Mathe- 

matics), 1991. 

[2] S. Arikawa, T. Shinohara and A. Yamamoto, "El- 

ementary formal system as a unifying framework 

for langua.ge learning," I11 Proc. 2n d Workshop on 

Conaputatio~zal Learning Theory, pp. 312-32, 1989 

(to appear in Theorelical Computer Science). 

[3] A. Blumer, A. Ehrei~heucht, D. Haussler and 

M.K. Warinuth, "Learnability and the Vapnik- 

Chervonenkis dimension," JACM Vol. 36, pp. 

929-965, 1989. 



[4] D.M. Engelman, T.A. Steiz and A. Gold- [14] J.R. Quinlan, "Induction of decision trees," Ma- 

man, "Identifying ilonpolar transbilayer helices chine Learning Vol. 1,  pp. 81-106, 1986. 

in amino acid sequences of membrane proteins," 
[15] J.1c.M. Rao and P. Argos, "A conformational 

Ann. Rev. Biophys. Biophys. Ch.em. Vol. 15, pp. 
nreference narameter to nredict helices in inte- 

321-353, 1986. 
I 1. 

gral membrane proteins," Biochim. Biophys. Acta 

1.51 M.R. Garey and D.S. Johnson, Compvters and Vol. 869, pp. 197-214, 1986. 

Intractability: A Guide to the Theory of NP- 
[16] T .  Shinohara, "Polynomial time inference of pat- 

Completeness, W .H. Freeman, 1979. 
tern languages and its applications," In Proc. 

[GI L.H. Holley and M. Karplus, "Protein secondary 7th IBM Symp. on Mathematical Foundations of 
structure prediction with a neural network," In Computer Science, pp. 191-209, 1982. 
Proc. Natl. Acad. Sci. USA Vol. 86, pp. 152-156, 

1989. [17] T. Shinohara, "Polynomial time inference of 

extended regular pattern languages," In Proc. 
[7] D .S. Johnson, "Approxiinat ion algorit 11111s for RIMS Symposia on Soflware Science and Engi- 

combinatorial problems," JCSS Vol. 9, pp. 256- neering (Lecture Notes in Computer Science Vol. 
278, 1974. 147), pp. 115-127, 1983. 

[$I J .  Icyte and R.F. Doolittle, "A simple method for 
[lS] T .  Shinohara, "Inductive inference from posi- 

displaying the hydropathic chasacter of protein," 
tive data, is powerful," In Proc. 3rd Workshop 

J .  Mol. Biol. Vol. 157, pp. 105-132 1982. 
on Computational Learning Theory, pp. 97-110, 

[9] J .  Lipp, N. Flint, M.T. Ha~upt le  and B. Dob- 1990. 

berstein, "Structural requireinents for meinbrane 

assembly of proteins spai~ning the 1ne111bra.ne sev- 

eral times," J. Cell Biol. Vol. 109, pp 2013-2022, 

1989. 

[lo] S. Miyano, A. Shinohara and T. Shinohara, 

"Which classes of elementary formal systems are 

polynomial-time learnable? ," Technical Repo rt 

RIFIS-TR-CS-37, Research Institute of Funda- 

mental Informatio~z Science, IGushu U~ziversity, 

1991 (to appear in Proc. ALT'91). 

[ l l ]  B .K. Natarajan, "On learning boolean fiiuc- 

tioils,,, In Proc. 19th A CM Symp. Theory of Corn- 

puting, pp. 296-304, 1987. 

[I91 R.F. Smith and T.F.  Smith, "Automatic gener- 

ation of prii-naxy sequence pat terns from sets of 

related prot3eiil sequences," In Proc. Natb. Acad. 

Sci. IJSA Vol. 87, pp. 118-122, 1990. 

[20] R..M. Sinullyan, Theory of Fornzal Systems, 

Princeton University Press, 1961. 

[21] I,. Valia.nt, "A theory of the learnable," Commun. 

ACMVol. 27, pp. 1134-1142, 1984. 

[22] G. von Heijine, "Transcending the impenetrable: 

how proteins come to terms with membranes," 

Biochinz. Biophys. Acta Vol. 947, pp. 307-333, 

1988. 

[12] B.K. ~ a t a r a ~ j a n ,  "On learllillg sets and fullc- [23] A. Yamallloto, "Elementary formal system as a 
tions," hlachine Learning Vol. 4, pp. 67-97, 1989. logic progra.ini~~ing language," In Proc. Logic Pro- 

[13] Protein Identification Resource, Na,tional gramming Conference '89, pp. 123-132, 1989. 

Biomedical Research Foundation. 



About the Authors 

Setsuo Arikawa (61 I I $in%) was born in Kagoshima on April 

29, 1941. He received the B .S. degree in 1964, the M. S. degree in 

1966 and the Dr.Sci. degree in 1969 all in Mathematics from 

Kyushu University. Presently, he is Professor of Research Insti- 

tute of Fundamental Inforamtion Science, Kyushu University. His 

research interests include algorithmic learning theory, logic and 

inference in AI, and information retrieval systems. 

Satoru Kuhara (AE g) was born in Fukuoka on April 20, 

1950. He recieved the B.A. in 1974, the M.A. degree in 1976 and 

the Dr. Agr. in 1980 from Kyushu University. Currently, he is an 

Associate Professor of Graduate School of Genetic Resources 

Technology, Kyushu University. His present interests include 

computer analysis of genetic information and protein structure. 

h T' Satoru Miyano (& % $2) was born in Oita on December 5, 

1954. He received the B.S. in 1977, the M.S. degree in 1979 and 

the Dr. Sci. in 1984 all in Mathematics from Kyushu University. 

Presently, he is an Associate Professor of Research Institute of 

Fundamental Infomation Science, Kyushu University. His pres- 

ent interests include parallel algorithms, computational complex- 

ity and computational learning theory. 

Ayumi Shinohara (T&E $) was born in Fukuoka on July 18, 

1965. He received the B.S. degree in 1988 in Mathematics and the 

M.S degree in 1990 in Information Systems from Kyushu Univer- 

sity. Presently, he is an Assistant of Research Institute of Funda- 

mental Information Science, Kyushu University. His research in- 

terests are computational learning theory and algorithms. 

Takeshi Shinohara ($&E 8) was born in Fukuoka on January 

23, 1955. He received the B .S. in 1980 from Kyoto University, 

and the M.S . degree and the Dr. Sci. from Kyushu University in 

1982, 1986, respectively. Currently, he is an Associate Professor 

of Department of Artificial Intelligence, Kyushu Institute of 

Technology. His present interests include information retrieval, 

string pattern matching algorithms and computational learning 

theory. 

Research Institute of Fundamental Information Scinece, Kyushu University 33, Fukuoka 8 12, Japan. 


