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Abstract

We propose a method for algorithmic learning of
transmembrane domains based on elementary formal
systems. An elementary formal system (EFS, for
short) is a kind of a logic program consisting of if-
then rules. With this framework, we have imple-
mented the algorithm for identifying transmembrane
domains in amino acid sequences. Because of the lim-
ttations on computational resources, we restrict candi-
date hypotheses to EFSs defined by collections of reg-
ular patterns. From 70 transmembrane sequences and
a stmilar amount of negative examples which are not
transmembrane sequences, our algorithm has produced
several reasonable hypotheses of small size. Ezperi-
ments with the database PIR show that one of them
recognizes 95% of 689 transmembrane sequences and
95% of 19256 negative ezamples which consist of non-
transmembrane sequences of length around 30 ran-
domly chosen from PIR.

1 Introduction

In [10] we have shown that some subclasses of el-
ementary formal systems are polynomial-time PAC-
learnable [3, 12, 21]. An elementary formal system
(EFS, for short) introduced by [20] is a kind of a logic
program consisting of if-then rules that can define a
set of words. Its descriptive ability is quite large even
in some restricted cases [2] and its semantics has been
thoroughly studied [23]. EFSs also have received con-
siderable attentions from inductive inference [2, 18].

In this paper we apply the learning algorithm for

EFS to identification of transmembrane domains in

amino acid sequences. Given positive and negative ex-
amples, the algorithm finds a hypothesis represented
by an EFS of a specified form. Since an EFS has a
structure of logic program, the resulfing hypothesis
explains the given examples reasonably in the sense
that what kind of facts and rules are used to produce
given positive examples while excluding negative ex-

amples.

Smith and Smith [19] present an efficient method
for extracting patterns from amino acid sequences. In
contrast, our approach using EFSs has the following
features. First, we use both positive and negative data
while the approach in [19] is to find information com-
mon to positive data. Second, EFSs include patterns
or regular expressions as special instances and have
much expressive ability. EFSs may give a chance to
find unknown motifs which can not be described with
regular expressions. Therefore the learnability of EFSs
from positive and negative examples is an important

problem to be discussed.

We have implemented the basic idea in [10] as a
learning algorithm and made some computational ex-
periments using positive and negative data. Based on
the accepted assumption that membrane proteins con-

tain transmembrane domains, we consider the prob-




lem of identifying them. The algorithm in [10] runs
in polynomial time for some subclasses of EFSs. But,
unfortunately, the running time is beyond practical
use. However, by restricting a target hypothesis to
an EFS consisting of regular patterns [16, 17] of spe-
cial forms, our implemented algorithm can cope with
this problem in reasonable time and space. As posi-
tive training examples, we use 70 transmembrane do-
main sequences. Negative training examples are 100
sequences of length around 30 which are not trans-
membrane sequences. The strategy of our algorithm
is to find a hypothesis that covers positive examples
and excludes negative examples. It has found some
hypotheses consisting of just at most seven regular
patterns with a few variables. We examined these
hypotheses by using already known membrane pro-
tein data from PIR database [13]. By experiments on
689 positive and 19256 negative examples, they cover
90% transmembrane domain sequences and excludes
75% ~ 77% negative examples. The accuracy rate for
positive examples is acceptable but that for negative
examples may be unacceptable.

In [1] we pointed out the importance of negative
examples. Inspired by the results in [1}, we changed
the strategy in a way that the algorithm searches a hy-
pothesis which covers negative examples and excludes
positive examples. As a result, we have found a sin-
gle regular pattern that can recognize both positive
and negative examples with accuracy more than 95%
although transmembrane domains have seemed to be
difficult to define as a simple expression when the view

point was focussed on positive examples.

2 Elementary formal systems and

learnability
Let ¥ be a finite alphabet, X = {z,y,z, 21,22, -}
a set of variables, and I = {p,q,7,5,p1,p2, -} a set

of predicate symbols. We assume that X, X, and II
are mutually disjoint. Let ¥* be the set of all words,
T+ the set of all nonempty words, £5” the set of all
words of length n or less for n > 0 over L.

A pattern is an element of (¥ U X)*. A pattern
m is called regular if each variable in 7 occurs ex-
actly once in w. An afom is an expression of the form
p(71, ..., ™), where p is a predicate symbol in II with
arity n and 74, .

.., Ty are patterns. A definite clause

is a clause of the form
A — Bl,‘..,Bm,

where m > 0 and A, By, ..., By, are atoms. The atom

A is called the head and the part By, ...B,, the body
of the definite clause. An elementary formal sysiem

(EFS) is a finite set of definite clauses.

Example 1. Consider the following EFS with ¥ =

{a,b}:
p(z) — q(x),r(z)
r— J 4laz) —q(bx)
T q(bbzby) —
r(zaxb) —
The pattern bbaby is regular but zaxzb is not. In the
definite clause p(z) «+ g(2), 7(z), the head is the atom

p(x) and the atoms ¢(z) and r(z) form the body.

A substitution 8 is a homomorphism from patterns
to patterns such that 6(a) = a for each symbol a €
3. A substitution which maps some variables to the
empty string e is called an e-substitution, and it is
not allowed without extra notice. By 76 we denote
the image of a pattern 7 by a substitution #. For an
atom A = p(my,...,7,) and a definite clause C =
A — By,..., By we define A6 = p(m¥6,...,7,0) and
CO = A0 — Bq6,...,B,0.

A definite clause C' is provable from an EFS T, de-
noted by I' F C, if C is obtained from T' by finitely

many applications of substitutions and modus ponens.



That is, we define the relation T' - C inductively as

follows:
() Xr>C thenT'FC.
(2) T C then T'F C8 for any substitution 6.

(3) I+ A~ Bl,--me)Bm—{-l and T + Bm+1
then ' A «— By,...,Bn

For p € TI with arity one, we define L(T',p) = {w €
T | T F p(w) —}. Alanguage L C B* is definable by
EFS or an EFS language if such T' and p exist. For a
pattern m, the pattern language L(7) is the set {w €
ot [ w = 7w for some 6}. It should be noticed that
a pattern language L(7) is an EFS language L(T',p)
with ' = {p(7) — }.

Let |7| denote the length of a pattern 7. For an
atom p(my, ..., T, ), wedefine ||p(my, ..., m,)|| = |7 |+
-+ |7wn|. A definite clause 4 — By, ..
bounded if ||AB|} > ||B16]] + - - - + || Bm 0| for any sub-

. B, is length-

stitution @. It is known that a definite clause is length-
bounded if and only if ||A]| > ||B1||+- - +]]|Bm|| and,
for each variable z;, the number of occurrences of z;
in the body is not greater than that in the head. For
example, the definite clause gq(bz) — q(az) is length-
bounded, while p(&) — ¢(z),r(z) is not. An EFST'is
length-bounded if all definite clauses in I' are length-
bounded.

We say that a definite clause

A1, ey M) = qulT1, ooy Ty )y ooy o QT 41, o T2y)

is hereditary if, for each j = 1,...,1;, pattern 7; con-
tains at least one variable and 7; is a subword of some
m;. An EFS T is hereditary if each definite clause
in T' is hereditary. For example, the definite clause
g(bz) «— ¢(az) is not hereditary. For m,k > 1, LB-H-
EFS(m,k) denotes the class of languages definable by

length-bounded hereditary EFSs with at most m def-
inite clauses such that the number of variable occur-
rences in the head of each clause is bounded by k. Ob-
viously the class LB-H-EFS(m,k) contains infinitely
many languages for any m and k. Any context-free
language is in LB-H-EFS(m,2) for some m > 1 and
any regular language is in LB-H-EFS(m,1) for some
m > 1. Moreover, LB-H-EFS(m,k) contains union of
m pattern languages which are definable by patterns
with at most k variable occurrences.

The following are examples of languages and

length-bounded hereditary EFSs which define them.
Example 2. {a"b" | n > 1} € LB-H-EFS(2,1).

. { p(azb) — p(a) } ,

p(ab) —

Example 3. {a"b"c" | n > 1} € LB-H-EFS(3,3).
{ p(eyz) — q(z,y,2) }
I'=<% gqlax,by,cz) —q(z,y,2) ;.
q(a,b,c) —

We call a subset ¢ of ¥* a concept. A concept ¢
can be regarded as a function ¢ : ¥* — {0, 1}, where
c(z) = 1 implies » is in the concept and c(z) = 0
otherwise. A concept class is a nonempty set C C
2% of concepts. An ezample of a concept ¢ is a pair
(z,c(z)) for z € T*.

A concept class C is polynomial-time learnable [3,
12] if there exists an algorithm A which satisfies the

following conditions:

(1) A runs in polynomial time with respect to the

length of the input.

(2) There exists a polynomial p(-,-,-) such that for
any integer n > 0, any concept ¢ € C, any real
number ¢, § (0 < ¢,6 < 1), and any probability
distribution P on ©57 if A takes p(n, El, %) exam-

ples which are generated randomly according to



P, then A outputs a representation of a hypoth-
esis h such that P(c @ h) < ¢ with probability at
least 1 — 6.

Theorem 1. [10] LB-H-EFS(m,k) is polynomial-

time learnable for any m, k > 1.

Proof. It has been shown [3, 12] that a concept class
C is polynomial-time learnable if and only if C is of
polynomial dimension [11, 12] and there is a random-
ized polynomial-time hypothesis finder [3] for C.

First we show that LB-EFS(m) is of polynomial
dimension for any m > 1. Let LB-EFS(m), = {L N
yin ]AL € LB-EFS(m)} for n > 0. We evaluate the
cardinality of LB-EFS(m),. Let I and p be a length-
bounded EFS and a predicate symbol with arity one
defining a language L(T',p). Let C = A — By,..., B
be a definite clause in I'. Note that if ||4}| > n then
L(T,p) nT2" = L(T — {C},p) N B". Therefore we
need to consider only length-bounded EFSs consist-
ing of at most m definite clauses whose heads are of
length at most n. We also have | < n. The number
of such length-bounded EFSs is roughly bounded by
mH M (|$] 4 )% =D Hence dimLB-EFS(m),,
is O(n?logn). Thus the dimension of LB-EFS(m) is
polynomial.

Now it suffices to show that there is a polynomial-
time hypothesis finder for LB-H-EFS(m, k). Let S be
a set of positive examples and T" be a set of negative
examples. If S is empty, we choose a word w € &t
not in T and take a length-bounded hereditary EFS
consisting of a single definite clause p(w) <. Then
obviously it is consistent with S and 7. Therefore,
we can assume that S is not empty. If there is a pair
(T, p) of a hereditary EFS T' and a predicate symbol p
such that

(1) T contains at most m definite clauses each of

whose head has at most k& occurrences of variables,
and

(2) L(T, p) is consistent with S and T,
then without loss of generality we can add the follow-
ing condition:

(3) (T, p) is reduced with respect to S, i.e., S C
L(T',p) and S € L(IV, p) for any I ¢cT.

Claim 1. Let G(m,k,S) be the set of pairs (T, p)
which satisfies (1)-(3). Then |G(m,k, S)| is bounded
by some polynomial in )7 s |s]

Proof. Let (I',p) be a pair in G(m,k,S) and
Q71 m) = (T, Ty ), @2(Ta1s o Ta)s ooy
(T4, 41, -, T1,), be a clause in I'. Since each 7; con-
tains at least one variable and the head contains at
most k variable occurrences, 1t follows from the length-
boundedness that t; < k. Let II(k,S) be the set of
patterns 7 up to renaming of variables such that it
contains at most k variable occurrences and 76 is a
subword of some s € S for some substitution . Then
Ik, S)| < 3 es((Is|2)F+1EY). Since (T, p) is reduced,
we can see that for any definite clause ¢(my, ..., m,) —
1 (71, o Tt ) 2 (Tt 1y s Tta )y o o Q(Tty_ 1 41y oo Ty ),
there exists a substitution @ such that all 7,0, ..., 7,0
are subwords of some w € S. Therefore all patterns
m; and 7; are in II{k,S). Since I' is reduced and
has at most m clauses, there are at most m distinct
predicate symbols in I'. Thus we have |G(m, k,S)| <
(|T(k, S)|?*m*+1)ym+1 Since m and k are constants,
|G(m, k, S}| is bounded by a polynomial.

Claim 2. There is an algorithm that, given a word
win ©F and a length-bounded hereditary EFS T' satis-
fying (1), decides whether w € L(T', p) in polynomial-
time with respect to |w| + |I'|, where |T'| represents
the length of T' as an expression and p is a specified
predicate symbol in T.

Proof. We first consider the family T'(w) of the




definite clauses that can be obtained from the definite
clauses in ' by replacing all variables by nonempty
subwords of w. Since the number of variable occur-
rences is bounded by k£ and since the number of defi-
nite clauses in I' is also bounded by m, I'(w) contains
at most polynomially many definite clauses. In order
to check whether w is in L(T', p), we repeat applica-
tions of modus ponens to I'(w) until p(w) « is derived.
This procedure works correctly since ' is hereditary.
It is not hard to see that the total algorithm can be im-
plemented in polynomial time with respect to |w|+|T|.

The polynomial-time algorithm that finds the re-
quired length-bounded hereditary EFS runs as follows:
The algorithm enumerates pairs (I',p) in G(m, &, S).
Then it checks by using the polynomial-time algo-
rithm of Claim 2 whether s € L(T',p) for s € S and
t ¢ L(T',p) for t € T. If such pair is found, the algo-
rithm outputs it as a hypothesis.O

It should be noticed that if the number of defi-
nite clauses is not bounded by a constant m then the
resulting concept class is not of polynomial dimen-
sion since all finite sets can be defined. Moreover,
we showed in [10] that the problem of finding a reg-
ular pattern which is consistent with given positive
and negative examples is NP-complete. Therefore it
is reasonable to make restrictions on the number m
of definite clauses and the number k of variable occur-
rences in order to achieve polynomial-time learnability
with respect to domain dimension.

The learning algorithm sketched in the proof of
Theorem 1 requires unavailable amount of time and
space if it is applied to LB-H-EFS(m,k) for m, k£ > 10.
This 18 because the running time is polynomial but
exponential with respect to m and k& although they
are fixed constants. Therefore it seems necessary for

feasible learning to make both the number k of vari-

able occurrences and the number m of definite clauses
smaller. Moreover, we do not know in advance how
small the number m can be. However, if we deal with
an EFS consisting of only patterns with a few vari-
ables, there is a way of solving this problem in feasible
time.

Given a set Pos of positive examples and a set
Neg of negative examples, we first compute a set S
of patterns which produce some of positive examples
but exclude almost all negative examples. Then we
compute a subset I' of S which covers all positive ex-
amples in Pos. It is preferable that the size of T is as
small as possible. But it is known that the minimum
set cover problem is NP-complete [5]. Therefore, in-
stead, we use a minimal subset ' of S in the sense
that no proper subset of I' covers Pos. The following

algorithm sketches our implementation.

input Pos, Neg;
S:=19; [ .= Pos; F:= Neg;
foreach pattern 7 with 76 = w for some w € I and 6;
if 7 excludes almost all examples in £
then S = SU {r};
Find a subset T’ of S covering I which is minimal
with respect to set-inclusion;
output T
Algorithm 1
The approximation algorithm for the minimum
set cover problem by Johnson [7] is useful to find a
minimal subset I' in Algorithm 1. It finds very effi-
ciently a set cover of size at most M log M, where M
is the size of a minimum set cover.
3 Experiments on transmembrane do-
mains of proteins
The final purpose of this approach is to establish
an algorithm which classifies proteins into the follow-
ing three categories by simply searching amino acid

sequences:

C1. Membrane proteins




C2. Secretary proteins

C3. Cytosolic proteins

Figure 1 shows an example of an amino acid se-

quence of a membrane protein.

MDVVNQLVAGGQFRVVKE (PLGFVKVLQWVFAIFAFATCGSY)
TGELRLSVECANKTESALNIEVEFEYPFRLHQVYFDAPSCVKG
GTTKIFLVGDYSSSAE(FFVTVAVFAFLYSMGALATYIFL)QN
KYRENNK (GPMMDFLATAVFAFMWLVSSSAWA)KGLSDVKMAT
DPENIIKEMPMCRQTGNTCKELRDPVTS (GLNTSVVFGFLNLV
LWVGNLWFVF)KETGWAAPFMRAPPGAPEKQPAPGDAYGDAGY
GQGPGGYGPQDSYGPQGGYQPDYGQPASGGGGYGPQGDYGQQG
YGQQGAPTSFSNQM

Figure 1: Protein which contains four transmembrane
domains shown by the parenthesized parts.

However, it is computationally rather hard to
find an appropriate EFS which describes each cate-
gory since these sequences are too long to apply the
learning algorithm in [10] using reasonable amount of
computational resources. There is a tendency to as-
sume that a membrane protein has transmembrane do-
mains each of which constitutes an a-helix structure.
The reported length of a transmembrane domain is
not large, usually, 20 ~ 30. If a sequence correspond-
ing to a transmembrane domain is found in a protein,
the probability that it is a membrane protein may be
larger.

Therefore it is important to give an algorithm
which identifies transmembrane domains in an amino
acid sequence. Since the length of a transmembrane
domain is not so large, our learning algorithm may
work for learning EFSs consisting of regular patterns
which describe the sequences of transmembrane do-
mains. We used 37 membrane proteins from the
database of PIR.

A hydropathy plot [4, 8, 15] has been used gener-

ally to predict transmembrane domains from primary

sequences. Instead of dealing with twenty symbols
of amino acids, we classify these symbols into three
classes by the hydropathy indices of amino acids [8].

More precisely, we transform symbols by Table 1.

Amino Acids Hydropathy  New Symbol
AMCFLVI 1.8 ~45 *
PYWSTG —16~ —-04 +
RKDENQH -—-45~-32 -

Table 1: Transformation rules

This transformation from 20 symbols to just 3
symbols reduces the search space of hypotheses and
may make learning from a small number of examples
possible. The sequence in Figure 2 is the result of this

transformation from the sequence in Figure 1.

Kk m— ok b bk kK (kb Rk R bR KRR K KKK+
B . 3 I T T SO S M MR U A YA S O B S S SR P S
Fhtmskokkkt bbbk (Rokok bRk kR kR bR KRRk bRk ) ——
B S — (H4sk—k kb dokkkk b kdk) kb —kkt
—bm—kkm kb kbbb Kk b kb (kb ko kK
R e S L S T S S R NENERERT S S SR S B R S S
0 o X S O B P S S ST R S S WA AR R R B
th——tk bbbk

Figure 2: The sequence obtained by the transforma-
tion

As is seen, this transformation makes the charac-
teristics of a transmembrane domain more vivid. Fig-
ure 3 gives some of the sequences obtained by this
transformation from the transmembrane domains cho-
sen from our 37 examples.

A positive ezample is a sequence which is already
known to be a transmembrane domain. A negative
example is a sequence of length around 30 which is
cut out from the part other than transmembrane do-
mains. Hence, for a protein which is not a membrane
protein, all sequences of length around 30 are negative
examples. We use the examples in Figure 3 as positive

training examples. As negative training examples, we




* sk bk kR ok ok k- ok ok
ok bRk oKk kK Kok sk ok bk kokok
koK kK ok sk kb km dkkod kK
Fok KKK+ = kb kb K Kk b kok bRk Rk koK
ok = kKR KAk K FoHRAKF K+ KKK =K
=k =Rk Rk = ok Rokkok bRk oKk
b dkok = ddokoK bk kKoK = =k ok bRk kKK
+4 *okkk
=K bk ko KK * ok ok = KKK
=k ook ko ook ok bk b m ok b ok
R T L Hok bk Rk = ok kR
kKA b dok =Rk K ook kKR otk bk = kokok HHokK - K=
ok koK ko ok KRk KRRk ook bk oK ok ok ok b koK
ok ¥

Aok KKk oK+ KRk sk ok Kok

ok bk k4 ok koK ko R
FARRAA AR koK KKK =k kKR KRRk Rk oK
Hrkkk *okokokok 4+ *m bRk koK
kb kbRokkokk kbR = sk ook kR ok koK
R L e *
B e ] Hok bk Ak K = b kKKK
Sk kAR KAk K=Kk Fopokokok m ok kb b kok Rk
+ * *k Rtk bkt Rk Rk Rk
ok dok-pokskok Kokl = kb bk + *+ +-kkkbk
P T L ] L R Bt LS ST P e

+ *d Hok sk bkt bRk koK Rk k4
sk Rk bk sokkoksk oKk Bk ook ok
— ok oKk bRk ok ok Fokkmkkokok kb= ok
sk kR ok ok ook ok ok ok
B s T T R
*ebok bk koK bk kR
== kob s ok bRk ok =k bopkok bk koK = kokok
ok koK = ook ok ok kb4 — bRk -k koK R+
ok n— ok ok R KKK Kok Rk
ok — ook bk ok Aok ko =k Rk Fok Aok ok KRR kR K K ok = ok =

kb ok ok ok * kK
F kb bk 4k bdokok bbb dokokokok
sk o= koK Rk Aok kb ok ok

K
ok kKK KK = KKK
ks koK ok

Figure 3: Examples of transformed transmembrane
domains

have chosen randomly 100 negative examples shown
in Table 4.

The approach we have taken for this problem is
to find a collection of regular patterns which covers
almost all positive training examples and excludes al-
most all negative training examples.

We restrict the forms of patterns to the following:
Tz
T yaz

T Y1 QaYagz

In the above forms, a1, a, az are strings in {*, +, —}+
constructed from positive training examples and
z,y1,Ys,z are distinct variables, where we allow e-

substitutions to the variables x,z. We consider EFSs

Hom e K b om
B BT Lo TS S

B L o e T e 4
KKK K b = Hm e mK
=K AR Kb b KK b K
B L 2 ST T B
bbbk kbbb -

P e T T T
o . 2 DL T E R e
b =Kk kK
------------ L . Lo T
e o Lt T T B O
B N e At T
B it £ ot T2 S TS SR B
S ST Dt Tt ST PR S
B T L S et T

------- B oo T
L e Lt TR LT
e L Fm Hm e
R s e TRt

B T s T
ot AR KA K e o KK
R B s T T

B S5 Lo & & DT RS SR,
B s T L I S T
bbbt gk bbbk b kbR

R AKE = ek KK K e = KR
B e St ¢ Lot TR T S S
ko m b o ko o bkt k=
o AR o e K o e o bk o
B e oT L TNt S e S
B Tt S T £ 2 3
bk Kok K o o K o KK =K
K ——— Fob ok m ko e o KRR
HA K K o b KK KK Fokm bk
N RNt 2 TSI S Y

FH KKK K= K =K R kb b Kk
bR KKK KK b KoK b e m b b
Ao o e Kk o AR K b KK
B L a T LT T T 2 e S

—kkmm e B L 2 T ST
R s Sl L7 & S S T
T 4 kokkk kK Kbk KKK

bbb K R K KK = K KKK o K
b md mm ke b KK *%

B LT RS T
BT T & et Tk T

B s &2 e S S

b o ko FK o o K o o S o b K
L £ T S SRR S S

KoK o o b o b b b

ek ok Ko b K K R K AR
HAK e KKK KK e

K e K e e KKK K

A K Ko KKK AR K b m b=
T n © & © R SR S

ek m bbb = F K
ok kK K kb e b KR

o A K KK o e K K e K
[ T T HSL SR . S
K e ook A e ok
B T R

B .t L T ET SRR TSR S T Y S
Fobt o m bbb oK K bk Kb K

A K o o b KK o K e b
ok b K A o o K
Ak o o K o e KK

b m ok ok = b kKb = KRR

B T B T ot
K Kook KA K K e HOK
FRRAK X T— ok
HKK o e o K K e O e e K
B L Ll T T T e
ke kb K b b

B T L e ot S L S Y
e KK e e o 3K oo o KK oo

A KK o K = b o K S 3K

o kb bk kb = b kb dokb = ek
ot m o kK K b 3K K K

b K m K b e b =
T Tt ST
otk mdm K AK Ko bRk K
= bk ok kb K o o e
G T T S R T
B £ b Lt = = S R
[ B s & T T T T

B Gt £ - T T S S
bRk bbb b KA K

ok ok b e R AKOKOK b b K
B T S O R S L L

*+

o Kk KK o m b o e e K
F b K o KKK o o KK e e K
A e $mmm e B & & S L)

=k kb o= kR Rk kR

R e T e e S ]
K K Kk KRR R OK
Fm Kk b kRt bR =

B e S L BT T B Fokokok btk

Figure 4: Negative training examples

which consists of a finite number of regular patterns

in the above forms.

We have implemented Algorithm 1 so that it can

cope with the above number of positive and nega-

tive training examples. Our implemented algorithm

found 2.44 million patterns that meet our conditions.

Then the algorithm produced some reasonable hy-

potheses from them. The total computation time on

Sun SPARC station 2 is about three hours. Table 2

shows the hypotheses and their success rates that our




learning algorithm has produced.

Patterns Positive MB ALL

Fdkkok 403 (58.5%)| 19 ( 3.0%)|1050 ( 5.5%)
srerXeaXens 273 (39.6%)| 32 ( 5.0%)|1209 ( 6.3%)
L) oo 153 (22.2%)| 29 (4.6%)] 700 ( 3.6%)
FebXebaXenx (130 (18.9%)| 24 ( 3.8%)[1019 ( 5.3%)

ok seok XKkt 58 ( 8.4%)| 21 (3.3%)| 729 ( 3.8%)
* =Xk kkohkk 75 (10.9%)| 11 ( 1.7%)| 674 (3.5%)
**Xktr+r Xt 94 (13.6%)| 11 ( 1.7%)] 687 ( 3.6%)

total 625 (90.7%)|113 (17.8%)|4367 (22.7%)

(P0) Each pattern is consistent with all positive and
negative training examples.

Patterns Positive MB ALL

S SR Y 482 (70.0%)| 59 ( 9.3%)|2596 (13.5%)
HEARRE 403 (58.5%)| 19 ( 3.0%)|1050 ( 5.5%)
Aty O 137 (19.9%)| 20 ( 3.2%)|1309 ( 6.8%)
ek Xatr Xk 1184 (26.7%)| 9 ( 1.4%)| 593 ( 3.1%)
k= X+ Kkt 63 (9.1%)| 23 (3.6%)|1089 ( 5.7%)
*HAFAK 302 (43.8%)| 10 ( 1.6%)| 621 (3.2%)
total 632 (91.7%)[101 (15.9%)|4823 (25.0%)

(P1) Each pattern is consistent with all positive train-
ing examples and inconsistent with at most one nega-
tive training example.

Table 2: Collections of regular patterns produced by
our learning algorithm from 70 positive and 100 neg-
ative training examples. The leftmost and rightmost
variables are extracted for simplicity. The symbol X
represents a position where the variable occurs. The
second column shows the number of the positive ex-
amples from 689 positive examples that the pattern
in the first column covers. The third (fourth) column
shows the number of the negative examples from M B
(ALL) that the pattern in the first column generates.

We verified these hypotheses (P0), (P1) by ex-
periments. As the total space of positive examples,
we use the set POS of all transmembrane sequences
(689) from PIR database. We consider two kinds
of total spaces M B and ALL for negative examples.
M B consists of randomly chosen 634 negative exam-
ples taken from membrane proteins. ALL is the set
of negative examples consisting of 19276 negative ex-
amples randomly chosen from all proteins from PIR.

The success rates for positive are more than 90%. The

rates rejecting negative examples in M B are not bad

(82% ~ 84%). But only 75% ~ 77% of negative ex-

amples in ALL can be recognized as negative.

4 Finding patterns from

training examples

negative

In Section 3, we were interested in collections of
regular patterns which cover positive examples and
exclude negative examples. In contrast, this section
deals with collections of regular patterns which ez-
clude positive examples and cover negative examples.
The strategy is first to generate regular patterns from
negative training examples instead of positive train-
ing examples and then to apply Algorithm 1 in which
statements [ := Pos; E := Neg; are replaced with
I := Neg; E := Pos;. As training examples, we use
the same set of positive examples and randomly cho-
sen 50 negative examples in M B.

We made experiments in the same way as in Sec-
tion 3 using POS for positive examples and M B and
ALL for negative examples. Table 3 shows the results.
As is seen, hypotheses (NO) and (N1) are very small
and the success rates for both positive and negative

examples are quite good. From these observations, we

Pattern Positive MB ALL

*-X—~X- 12 (1.7%)[444 (70.0%)]13669 (71.0%)
X 21 ( 3.0%)|264 (41.6%)| 6094 (31.6%)
O o 21 ( 3.0%)|333 (52.5%)| 9482 (49.2%)
total 43 (6.2%)[585 (92.3%)[17340 (90.0%)

(NO) Each pattern is consistent with all positive and
negative training examples.

Pattern Positive MB ALL

“XeX—- 36 ( 5.2%)|535 (84.4%)|16103 (83.6%)
Eap OO G 27 (3.9%)|253 (39.9%)| 6538 (34.0%)
total 61 (8.9%)|581 (91.6%)|17302 (89.9%)

(N1) Each pattern is consistent with all negative train-
ing examples and inconsistent with at most two posi-
tive examples.

Table 3: Collections of regular patterns produced by
our learning algorithm from 50 negative and 70 posi-
tive training examples.




can say that the approach from negative examples is
much better than that from positive examples in the
last section.

After recognizing the importance of negative ex-

amples, we have finally found the following pattern:
-X-X-X-X-

This is an abbreviation of z-y;-ys-y3-ys4—2 that

@ _»

generates all sequences containing at least five
times. Table 4 (N2) shows the result of the case where
e-substitutions are allowed only to  and z. Table 4
(N3) is the result of the case that all variables allow
e-substitutions where the accuracy of more than 95%

is achieved.

Positive MB ALL
17 ( 2.5%)|599 (94.5%)| 17555 (91.2%)

Patterns
“X—X-X-X-

(N2) e-substitutions are not allowed to inside vari-
ables.

Positive MB ALL
32 (4.6%)|616 (97.2%)[18304 (95.1%)

Patterns
X-X-X-X-

(N3) e-substitutions are allowed to all variables.

Table 4: Results for -X-X-X-X-

5 Discussions

In this paper we showed and examined a new
framework for acquisition of knowledge from protein
data. Even a very restricted class of EFSs is useful for
identifying transmembrane domain sequences. Espe-
cially, we have shown that a single regular pattern can
recognize transmembrane domains with an excellent
accuracy. Through these results, we have indicated
the importance of negative examples.

Although the learning algorithm [10] for more
general class, LB-H-EFS(m,k), is shown to run in
polynomial time, it requires enormous amount of time,
In order to attack more general situations, we need es-

sential improvements on the algorithm.

In [1] we reported a machine learning system us-
ing decision trees over regular patterns which employs
the idea of ID3 [14] for the construction of decision
trees. We also have good results for the transmem-
brane domain identification problem. A neural net-
work approach has been taken for prediction of sec-
ondary structures of proteins [6]. But the authors have
not a chance to examine this method. The compar-
ison with other methods for transmembrane domain
identification remains as a future work.

A well-known structure around the membrane
integrated domain is the signal-anchor structure
that consists of two parts, the hydrophobic part
of a membrane-spanning sequence and the charged
residues around the hydrophobic part [9, 22]. The
pattern x-y1-y2-ys-ya-z which indicates a cluster of

polar amino acid residues may be closely related to

the signal-anchor structure.
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