Analogy is NP－Hard

Furuya，Shinji
Department of Information Systems，Kyushu University

Miyano，Satoru
Department of Information Systems，Kyushu University
https：／／hdl．handle．net／2324／3145

出版情報：RIFIS Technical Report．38，1991－03－26．Research Institute of Fundamental Information Science，Kyushu University
バージョン：
権利関係：

RIFIS Technical Report

Analogy is NP-Hard

Shinji Furuya
Satoru Miyano

March 26, 1991

Research Institute of Fundamental Information Science Kyushu University 33 Fukuoka 812, Japan

Analogy is NP-Hard

Shinji Furuya and Satoru Miyano
Department of Information Systems
Kyushu University 39

March 26, 1991

Abstract

Analogy is described in predicate logic. This paper deals with the analogy without any function symbols except constants. We show that the problem of deciding whether a given atomic formula can be inferred by analogy is NP-hard even in such a simple case.

1 Introduction

Analogy is an inference method that acquires unknown facts or knowledge by finding similarities among given objects. Some theoretic formulations have been suggested to realize analogy on a computer [6][7][8]. But the computational complexity of analogy has not yet been studied very much. In this paper we deal with the analogy theory by Haraguchi and Arikawa $[1][3][4][5]$ that is described in terms of predicate logic. We consider the case where no function symbols are allowed. We show that a problem of deciding whether a given atomic formula can be inferred by analogy is NP-hard even in such a simple case.

2 Analogy principle

A definite clause is a formula of the form

$$
q_{0}\left(t_{1}^{0}, \ldots, t_{n_{0}}^{0}\right) \leftarrow q_{1}\left(t_{1}^{1}, \ldots, t_{n_{1}}^{1}\right), \ldots, q_{r}\left(t_{1}^{r}, \ldots, t_{n_{r}}^{r}\right) \quad(r \geq 0)
$$

where t_{j}^{i} are terms and q_{i} are predicate symbols. In Haraguchi and Arikawa's analogy theory [1][3][4][5], an object of analogy is the minimal model M represented by a finite set S of definite clauses. In this paper we concentrate on the case where no function symbols are allowed except constant symbols. Therefore terms are constants or variables. We call each element in M a fact. An atomic formula containing no variables is simply called an atom.

Let S_{i} be a finite set of definite clauses and let $C\left(S_{i}\right)$ be the set of constants in S_{i} for $i=1,2$. A partial identity between S_{1} and S_{2} is a subset φ of $C\left(S_{1}\right) \times C\left(S_{2}\right)$ such that for each $a \in C\left(S_{1}\right)$ (resp., $a^{\prime} \in C\left(S_{2}\right)$) there is at most one $a^{\prime} \in C\left(S_{2}\right)$ (resp., $a \in C\left(S_{1}\right)$) with $\left\langle a, a^{\prime}\right\rangle \in \varphi$. Hence φ gives a one-to-one correspondence between some subsets of $C\left(S_{1}\right)$ and $C\left(S_{2}\right)$.

Let $t_{j} \in C\left(S_{1}\right), t_{j}^{\prime} \in C\left(S_{2}\right)$ for $j=1,2, \ldots, n$ and let α, α^{\prime} be atoms in S_{1}, S_{2}, respectively. For a partial identity φ, we say that α and α^{\prime} are identified by φ, denoted by $\alpha \varphi \alpha^{\prime}$, if they are written as

$$
\begin{aligned}
\alpha & =p\left(t_{1}, t_{2}, \ldots, t_{n}\right), \\
\alpha^{\prime} & =p\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots, t_{n}^{\prime}\right),
\end{aligned}
$$

and $\left\langle t_{j}, t_{j}^{\prime}\right\rangle \in \varphi$ for $i=1,2, \ldots, n$.
Haraguchi and Arikawa's analogy is explained with these terminologies as follows. We assume that there exist facts $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ in S_{1} such that $\alpha \leftarrow \beta_{1}, \beta_{2}, \ldots, \beta_{n}$ holds in S_{1}. Then if there exist facts $\beta_{1}^{\prime}, \beta_{2}^{\prime}, \ldots, \beta_{n}^{\prime}$ in S_{2} with $\beta_{i} \varphi \beta_{i}^{\prime}$ for $i=1,2, \ldots, n$, then we infer α^{\prime} in S_{2} by identifying it with α.

An atom α^{\prime} inferred in this way is not always a fact in S_{2}. But the partial identity φ gives a reason of possibility that α^{\prime} holds in S_{2}. Then we can continue to infer by analogy, assuming such α^{\prime} to be a fact in S_{2}. Conversely, we also infer atoms in S_{1} from S_{2} by analogy in the same way. Let $M_{i}(*)$ be the set of atoms in S_{i} which can be inferred in this way. Formally, $M_{i}(*)$ is defined inductively as follows.

Definition. Let S_{i} be a finite set of definite clauses and let M_{i} be the minimal model of S_{i} for $i=1,2$. For a partial identity φ, we define $M_{i}(*)$ as follows, where we set i (resp., i^{\prime}) to 1 (resp., 2) or 2 (resp., 1).

$$
\begin{aligned}
M_{i}(*)= & \bigcup_{k} M_{i}(k), \\
M_{i}(0)= & M_{i}, \\
R_{i}(k)= & \left\{\alpha \leftarrow \beta_{1}, \beta_{2}, \ldots, \beta_{n} \mid \beta_{j} \in M_{i}(k), \beta_{j}^{\prime} \in M_{i^{\prime}}(k)(j=\right. \\
& 1,2, \ldots, n) \text { and } \alpha^{\prime} \leftarrow \beta_{1}^{\prime}, \beta_{2}^{\prime}, \ldots, \beta_{n}^{\prime} \text { holds in } S_{i^{\prime}} \text { and } \\
& \left.\alpha \varphi \alpha^{\prime}, \beta_{j} \varphi \beta_{j}^{\prime}\right\},
\end{aligned}
$$

$$
M_{i}(k+1)=\left\{\alpha \mid R_{i}(k) \cup M_{i}(k) \cup S_{i} \vdash \alpha\right\} .
$$

Example. Consider the following sets S_{1} and S_{2} of definite clauses, where upper-case letters are variables and lower-case letters are constants or predicate symbols.

$$
\begin{aligned}
S_{1}=\{ & p(a, b), q(b, c) \\
& r(Y, X) \leftarrow q(X, Y), \\
& s(X, Z) \leftarrow p(X, Y), r(Z, Y)\} \\
S_{2}=\{ & \left.p\left(a^{\prime}, b^{\prime}\right), q\left(b^{\prime}, c^{\prime}\right)\right\}
\end{aligned}
$$

Then take the following partial identity φ :

$$
\varphi=\left\{\left\langle a, a^{\prime}\right\rangle,\left\langle b, b^{\prime}\right\rangle,\left\langle c, c^{\prime}\right\rangle\right\} .
$$

For S_{1}, S_{2} and φ, the inference by analogy goes as follows. First, we obtain $M_{2}(0)=\left\{p\left(a^{\prime}, b^{\prime}\right), q\left(b^{\prime}, c^{\prime}\right)\right\}$. Next we get $r(c, b) \leftarrow q(b, c)$ from $r(Y, X) \leftarrow$ $q(X, Y) \in S_{1}$. Then we get $r\left(c^{\prime}, b^{\prime}\right) \leftarrow q\left(b^{\prime}, c^{\prime}\right) \in R_{2}(0)$ by $q(b, c) \varphi q\left(b^{\prime}, c^{\prime}\right)$ and $r\left(c^{\prime}, b^{\prime}\right) \in M_{2}(1)$. Moreover, we get $s(a, c) \leftarrow p(a, b), r(c, b)$ from $s(X, Z) \leftarrow$ $p(X, Y), r(Z, Y) \in S_{1}$. Then we get $s\left(a^{\prime}, c^{\prime}\right) \leftarrow p\left(a^{\prime}, b^{\prime}\right), r\left(c^{\prime}, b^{\prime}\right) \in R_{2}(1)$ by $p(a, b) \varphi p\left(a^{\prime}, b^{\prime}\right), r(c, b) \varphi r\left(c^{\prime}, b^{\prime}\right)$ and $s\left(a^{\prime}, b^{\prime}\right) \in M_{2}(2)$. No more atoms can be inferred by analogy. Hence $M_{2}(2)=M_{2}(*)$.

3 Computational complexity

Analogy consists of two phases. One is to search a partial identity φ and the other is to infer using φ. We consider the following decision problem on analogy.

ANALOGY

Instance: Two finite sets of definite clauses S_{1}, S_{2} and an atom $p\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.
Problem: Decide whether there exists a partial identity φ between S_{1} and S_{2} such that $p\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is in $M_{2}(*)$.
We obtain the following theorem about the complexity of searching a partial identity.

Theorem. ANALOGY is NP-hard.

Proof. We give a reduction from 3-SAT (3-satisfiability problem) [2] to ANALOGY. For a Boolean formula $F=C_{1} C_{2} \cdots C_{m}$ in three conjunctive normal form (3-CNF), S_{1} and S_{2} are constructed as follows, where x_{1}, \ldots, x_{n} are the variables in F. For $i=1,2, \ldots, n$,

$$
h_{i}\left(a_{i}\right), h_{i}\left(\bar{a}_{i}\right) \in S_{1} \text { and } h_{i}\left(a_{i}^{\prime}\right) \in S_{2},
$$

where a_{i} and \bar{a}_{i} are constant symbols in S_{1}, a_{i}^{\prime} is a constant symbol in S_{2} and h_{i} is a predicate symbol.

Next, for each clause C_{j}, we use predicate symbols p_{j} of zero argument and q_{j} of one argument. Let α be a literal in C_{j}.

If $\alpha_{j}=x_{u}$, then

$$
q_{j}\left(a_{u}\right) \in S_{1}, \quad q_{j}\left(a_{u}^{\prime}\right) \in S_{2} \text { and } p_{j} \leftarrow h_{u}(X), q_{j}(X) \in S_{1} .
$$

If $\alpha_{j}=\bar{x}_{u}$, then

$$
q_{j}\left(\bar{a}_{u}\right) \in S_{1}, \quad q_{j}\left(a_{u}^{\prime}\right) \in S_{2} \text { and } p_{j} \leftarrow h_{u}(X), q_{j}(X) \in S_{1} .
$$

Moreover,

$$
p \leftarrow p_{1}, p_{2}, \ldots, p_{m} \in S_{1}
$$

where p is a predicate symbol of zero argument. Then we show that F is satisfiable if and only if there exists a partial identity φ such that p is in $M_{2}(*)$.

First, if F is satisfiable, then let $\hat{x_{1}}, \ldots, \hat{x_{n}}$ be a truth assignment to the variables x_{1}, \ldots, x_{n} that satisfies each clause C_{j} of F. We define the partial identity φ by

$$
\begin{array}{ll}
\left\langle a_{i}, a_{i}^{\prime}\right\rangle \in \varphi & \text { if } \hat{x}_{i}=1 \\
\left\langle\bar{a}_{i}, a_{i}^{\prime}\right\rangle \in \varphi & \text { if } \hat{x}_{i}=0
\end{array}
$$

for each $i=1, \ldots, n$. Then we can infer each p_{j} as follows. If C_{j} contains a literal \hat{x}_{i} with $\hat{x}_{i}=1$, then φ contains $\left\langle a_{i}, a_{i}^{\prime}\right\rangle$. We get $p_{j} \leftarrow h_{i}\left(a_{i}\right), q_{j}\left(a_{i}\right) \in S_{1}$ from $p_{j} \leftarrow h_{i}(X), q_{j}(X) \in S_{1}$. Then we get $p_{j} \leftarrow h_{i}\left(a_{i}^{\prime}\right), q_{j}\left(a_{i}^{\prime}\right) \in R_{2}(0)$ by $h_{i}\left(a_{i}\right) \varphi h_{i}\left(a_{i}^{\prime}\right)$ and $q_{j}\left(a_{i}\right) \varphi q_{j}\left(a_{i}^{\prime}\right)$. Therefore $p_{j} \in M_{2}(1)$. If C_{j} is satisfiable by a literal \hat{x}_{i} with $\hat{x}_{i}=0$, we can show in a similar way that p_{j} is inferred by analogy. Hence p is in $M_{2}(2)$.

Conversely, assume that there exists a partial identity φ such that p is in $M_{2}(*)$. For each $i=1, \ldots, n$, we define a truth assignment $\hat{x}_{1}, \ldots, \hat{x}_{n}$ as
follows: If φ contains $\left\langle a_{i}, a_{i}^{\prime}\right\rangle$, then $\hat{x}_{i}=1$. If φ contains $\left\langle\bar{a}_{i}, a_{i}^{\prime}\right\rangle$, then $\hat{x}_{i}=0$. Otherwise \hat{x}_{i} is arbitrary. If p is $M_{2}(*)$, each p_{j} must be inferred by analogy using φ since it is not in S_{2}. Then, there exists i such that $p_{j} \leftarrow h_{i}\left(a_{i}^{\prime}\right), q_{j}\left(a_{i}^{\prime}\right)$ is in $R_{2}(0)$ and $p_{j} \leftarrow h_{i}\left(a_{i}\right), q_{j}\left(a_{i}\right)$ or $p_{j} \leftarrow h_{i}\left(\bar{a}_{i}\right), q_{j}\left(\bar{a}_{i}\right)$ holds in S_{1} since both h_{i} and q_{j} are not in the left side of definite clauses. Therefore φ must contain either $\left\langle a_{i}, a_{i}^{\prime}\right\rangle$ or $\left\langle\bar{a}_{i}, a_{i}^{\prime}\right\rangle$. If $\left\langle a_{i}, a_{i}^{\prime}\right\rangle \in \varphi$, then we can satisfy C_{j} by $\hat{x}_{i}=1$. If $\left\langle\bar{a}_{i}, a_{i}^{\prime}\right\rangle \in \varphi$, then we can satisfy C_{j} by $\hat{x}_{i}=0$. It is not hard to see that this reduction is computable in polynomial time or log space. Hence ANALOGY is NP-hard.

Remark. If the argument of each predicate symbol is bounded by a fixed constant and if the number of atomic formulas containing variables is also bounded by a fixed constant in each definite clause, then we can see that ANALOGY is solvable in NP. The definite clauses constructed in our reduction satisfies these conditions. Moreover, S_{2} consists of only facts.

4 Conclusion

Our analysis shows that searching a partial identity φ such that a given atom can be inferred using φ is at least as hard as finding a truth assignment that satisfies a given 3-CNF formula. Therefore the computational complexity of analogy is fairly large even in the case where no function symbols are allowed. But the analogical reasoning is used not only to decide whether a given atom is inferred but also to obtain new knowledge. In this respect, analogy can be a useful technique in Artificial Intelligence in spite of its large complexity

References

[1] Arikawa, S. and Haraguchi, M.: Knowledge Acquisition and Learning, Osuga, S. and Saeki, Y.,Eds, Chapter 8, 221-251, Ohm (1987) (in Japanese).
[2] Garey, M.R. and Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Company (1979).
[3] Haraguchi, M. and Arikawa, S.: A formulation of analogical reasoning and its realization, Journal of Japanese Society for Artificial Intelligence 1 (1), 132-139 (1986) (in Japanese).
[4] Haraguchi, M. and Arikawa, S.: A foundation of reasoning by analogyanalogical union of logic programs, LNCS 264, Springer-Verlag, 58-69 (1987).
[5] Haraguchi, M. and Arikawa, S.: Reasoning by analogy as a partial identity between models, LNCS 265, Springer-Verlag, 61-87 (1987).
[6] Kling, R. E.: A paradigm for reasoning by analogy, Artif. Intell. 2, 147178 (1971).
[7] Plaisted, D. A.: Theorem proving with abstraction, Artif. Intell. 16, 47-108 (1981).
[8] Winston, P. E.: Learning and reasoning by analogy, CACM 23, 689-703 (1980).

