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Abstract 

An elementary formal system (EFS) is a logic program consisting of def- 
inite clauses whose arguments have patterns instead of first-order terms. 
We investigate EFSs for polynomial-time PAC-learnability and show by ex- 
periments on protein data that PAC-learning is very useful for discovering 
knowledge. A definite clause of an EFS is hereditary if every pattern in 
the body is a subword of a pattern in the head. With this new notion, we 
show that H-EFS (m, k, t, r )  is polynomial- time learnable, which is the class 
of languages definable by EFSs consisting of at most m hereditary definite 
clauses with predicate symbols of arity at most r, where k and t bound 
the number of variable occurrences in the head and the number of atoms 
in the body, respectively. The class defined by all finite unions of EFSs in 
H-EFS(m, k, t, r )  is also polynomial-time learnable. We also show an inter- 
esting series of NC-learnable classes of EFSs. As hardness results, the class 
of regular pattern languages is shown not polynomial-time learnable unless 
R P = N P .  Furthermore, the related problem of deciding whether there is a 
common subsequence which is consistent with given positive and negative 
examples is shown NP-complete. As a practical application of our learn- 
ing algorithm, we made experiments on learning transmembrane domains in 
proteins from amino acid sequences. The experimental results were quite 
successful. 
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Elementary Formal System (EFS), polynomial-time PAC-learning, NC-learnable, 
pattern languages, common subsequence, structure prediction of proteins 
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1 Introduction 

Genome Informatics is, roughly speaking, an area which aims at developing meth- 

ods and tools for analyzing, understanding, and designing large molecules such as 

DNA and proteins with the aid of computers. Genome Informatics would be a 

challenging field for Machine Learning to show its identity and usefulness since 

it has been generating a lot of problems which should require machine learning 

technologies. One of the important issues in this filed is to establish technologies 

for discovering knowledge from DNA and amino acid sequences that may provide 

new directions of investigations to biologists. 

This paper deals with one of such problems, which is to find characteristic 

features of transmembrane domains of proteins (Hartmann et al., 1989) from amino 

acid sequences. Most approaches to this problem have been by means of biophysical 

analysis of amino acid residues (von Heijine, 1986) while our approach is based on 

concept learning from examples. 

The applicability of concept learning largely depends on the representation of 

concepts. In this paper, as the representation of concepts, we use elementary 

formal systems (EFSs for short) which are a kind of logic programs introduced by 

(Smullyan, 1961) and applied to inductive inference (Gold, 1967) by (Arikawa et al., 

199210; Shinohara, 1990). Logic programs have been used for various knowledge 

representations in Genome Informatics. For instance, (Muggleton et al., 1992) 

gave an interesting approach to protein secondary structure prediction by inductive 

logic programming. On the other hand, "motifs" of functional domains are usually 

described with patterns, which are words containing variables. Such motifs have 

been compiled in the PROSITE database (Bairoch, 1991). Informally, an EFS is a 

logic program consisting of definite clauses whose arguments have patterns instead 

of first-order terms. Thus we can directly handle amino acid sequences with EFSs 

while keeping the structure of logic programs. 

Machine Learning would make sound development by sound combination of 
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theory and practicism. In this paper, we are involved with the model of PAC- 

learning (Valiant, 1984) that have provided many insightful theoretical results. As 

a theoretical investigation, we discuss which classes of elementary formal systems 

are polynomial-time learnable, while we also give some hardness results which 

imply the polynomial-time non-learnability of some classes. As practicism, we 

consider an application of our learning algorithm developed in our theoretical study 

to identify transmembrane domains in proteins from amino acid sequences. There 

is a large gap between the feasibility in theory expressed as "polynomial time" 

and the feasibility in practice. However, by dealing with a class of EFSs of a 

much simpler form, our learning algorithm found very interesting hypotheses and 

the experiments for learning transmembrane domains are quite successful. These 

experimental results are given in Section 6. By the results in this paper and those 

in (Arikawa et al., 1992a; Shimozono et al., 1993), we are convinced that Machine 

Learning can be an important and strong strategy in Genome Informatics. 

EFSs have a rich structure similar to logic programs and sound semantics (Ya- 

mamoto, 1992). Without any restriction, any recursively enumerable language can 

be defined by an EFS. In order to make learning from examples feasible, we shall 

restrict the form of definite clauses for EFSs. We introduce hereditary definite 

clauses that prove to be suited for learning from examples. We say that a definite 

clause is hereditary if every pattern appearing in the argument of the body is a sub- 

word of a pattern in the head. Since all patterns appearing in the body are directly 

inherited from those in the head, this property is helpful in finding a hypothesis 

from examples. We can also show that the languages defined by hereditary EFSs 

are in P. For integers m, k, t ,  r 2 0, we consider a hereditary EFS consisting of at 

most m definite clauses such that the number of variable occurrences in the head 

of each clause is bounded by k and the number of atoms in the body is at most 

t and the arity of each predicate symbol is at most r .  Then H-EFS(m, k, t ,  r )  is 

defined as the class of languages definable by such EFSs. In Section 3, we show 



that H-EFS(m, k, t, r) is polynomial-time learnable for any m, k, t ,  r 2 1 by show- 

ing that its dimension (Natarajan, 1989; Natarajan, 1991) is polynomial and it 

has a polynomial-time fitting (Natarajan, 1991). Moreover, we show that the class 

FU(H-EFS(m, k, t, r))  which is defined by taking all finite unions of concepts in 

H-EFS(m, k, t, r) is also polynomial-time learnable by showing a polynomial-time 

Occam fitting for it. These results give an interesting series of polynomial-time 

learnable classes of EFS-languages. Some related topics on context-free grammars 

and ranked node rewriting grammars are discussed in (Abe, 1988). 

In (Arikawa et al., 1992b), the length-boundedness of a definite clause is intro- 

duced, which requires that the length of the body is at most the length of the head 

for any substitution. We show that the concept class LB-H-EFS(m, k, r), which is 

defined by length-bounded hereditary EFSs with a t  most m definite clauses such 

that the number of variable occurrences in the head is bounded by k and the arity 

of each predicate symbol is at most r, is NC-learnable, i.e., its learning algorithm 

can be parallelized efficiently. The notion of NC-learnable is due to (Vitter and 

Lin, 1992). 

The class of pattern languages (Angluin, 1980) is exactly the same as LB-H- 

EFS(1, *, *) except the empty set, where * means "don't care". (KO and Tzeng, 

1991) showed that deciding whether there is a pattern consistent with given posi- 

tive and negative examples is E5-complete. Schapire (Schapire, 1990) strengthened 

this result in a sense by showing that the pattern languages cannot be learned in 

polynomial time regardless of the representation under a reasonable assumption. 

Hence even the pattern languages are hard to learn. In (Shinohara, 1982) a pat- 

tern of a simpler form called a regular pattern is considered, where each variable 

is allowed to occur in the pattern exactly once. Obviously the regular pattern 

languages are regular. In Section 5 we show that the consistency problem is N P -  

complete even for regular pattern languages. Therefore the class of regular pattern 

languages is not polynomial-time learnable if RP # N P .  Moreover, we show the 



related problem of deciding whether there is a subsequence which is common to 

given positive but not common to given negative examples is NP-complete. Sim- 

ilar results are obtained independently in (Jiang and Li, 1991). These negative 

results are not so strong as Schapire's result, but it is strong enough to convince of 

the hardness of its polynomial-time learnability. These NP-completeness results 

suggest that the number of occurrences of variables in a definite clause should be 

bounded if polynomial-time learnable subclasses of EFS languages are of interest. 

2 Preliminaries 

2.1 Patterns and elementary formal systems 

Let C be a finite alphabet and X = {xl, x2,. . .) be a set of variables. We assume 

that C n X = 0. For an alphabet A, let A* denote the set of all words over A, A+ 

the set of all nonempty words, and AUn] the set of all words of length n or less for 

n 2 0. 

A pattern is a word in (C u X)+. A pattern T is called regular if each variable in 

a occurs exactly once in T. For instance, axlbxza is a regular pattern, but axlbxla 

is not, where a and b are in C. An atom is an expression of the form p(al, . . . , T ~ ) ,  

where p is a predicate symbol with arity r and TI, . . . , .rr, are patterns. A definite 

clause is a clause of the form 

where A, Al, . . . , At are atoms and t 2 0. The atom A is called the head and the 

part Al, . . . , At the body of the definite clause. In case t = 0, we denote simply 

A instead of A +-. An elementary formal system (EFS for short) is a finite set of 

definite clauses. 

A substitution 0 is a homomorphism from patterns to patterns such that O(a) = 

a for each a E C. A substitution which maps some variables to the empty word is 

called an E-substitution. In this paper, we do not allow any &-substitutions without 



extra notice. For a pattern n- and a substitution 0, we denote by n-0 the image of 

n- by 0. For an atom A = p(nl,. . . , T,) and a definite clause C = A +- Al,  . . . , At, 

we define A0 = p(r18, . . . , n-$) and C0 = A0 +- Ale, . . . , AtO. 

A definite clause C is provable from an EFS I?, denoted by I? I- C, if C is 

obtained from I? by finitely many applications of substitutions and modus ponens. 

That is, the relation I' t C is defined inductively as follows: 

(1) If l '3 C, then I' I- C. 

(2) If I' t C, then I' t C0 for any substitution 0. 

(3) If I' t A +- Al,  . . . , At, At+l and I' &+I, then t- A +- A I ,  . , At. 

For a predicate p with arity one, we define L(r ,p )  = {w E C' I I' I- p(w)). A 

language L C+ is definable by EFS if there is an EFS l' with a predicate symbol 

p with L = L(I',p). 

For a pattern n-, the pattern language L(a) is the set {w E C+ I w = n-0 for 

some substitution 0 ) (Angluin, 1980). It should be noticed that a pattern language 

L(T)  is also defined by L(I',p) with I' = {p(n-)). 

Example 1. Consider the following EFS with C = {a, b):  

The language defined by I' is L ( r ,  p)  = {an bnww I n 2 1, w E {a,  b)+). In the 

definite clause p(x1x2) +- q(xl) ,  r (x2) ,  the head is the atom ~ ( ~ 1 x 2 )  and the atoms 

q(xl) ,  r ( x 2 )  form the body. A substitution is denoted as a collection of assignments 

{xl := x l ,  . . . , xn := %). We can see aabbaa E L ( r ,  p)  as follows: 



( axiom ) 
( Cl{.l := a)  ) 

( axiom ) 
( C3{x1 := ab) ) 

( axiom ) 
( c4 & c 5  ) 

( axiom ) 
( C7{x1 := aabb, x2 := aa) ) 

( c 2  & c8 ) 
( c6 & c9 ) 

Example 2. The languages {anbn I n 2 1) and {anbncn I n 2 1) are defined by 

the following EFSs rl and r2, respectively. 

2.2 Polynomial- t ime learnability 

This section briefly reviews some necessary notions for PAC-learnability due to 

(Valiant, 1984). 

We call a subset c of C* a concept. A concept c can be regarded as a function 

c : C* -+ (0, I), where c(w) = 1 if w is in the concept and c(w) = 0 otherwise. A 

concept class is a nonempty set C 2" of concepts. We use a finite alphabet A 

for representing concepts. For a concept class C, a representation is a function R : 

C --+ 2"' such that R(c) is a nonempty subset of A* for c in C and R(cl) n R(c2) = 0 

for any distinct concepts cl and c2 in C. For each c E C, R(c) is the set of names 

for c. The length of a name u E R(c) is the word length lvl of u. We denote the 

length of the shortest name for c by lmin(c, R). When R is clear from the context, 

we simply use lmin(c). 

An example is an element (w, a) in C* x { O , l ) .  For a concept c, example for a 

concept c is a pair (w, c(w)) for w E C*. For a set S C* x { O , 1 )  of examples, 

we define S+ = {w I (w , I) E S) and S- = {w I (w , 0) E S). We call a word in 

S+ a positive example and a word in S- a negative example, respectively. For two 

sets Y and N with Y n N = 0, we say that a concept c is consistent with positive 



examples in Y and negative examples in N if c(w) = 1 for all w E Y and c(wf) = 0 

for all w' E N. A concept c E C is consistent with a set S of examples if c is 

consistent with positive examples in S+ and negative examples in S-. For a set S 

of examples, lmin(S, R) is the length of the shortest name in R of any concept in C 

which is consistent with S. 

Definition 1. A concept class C is polynomial-time learnable in a representation 

R if there exist an algorithm A and a polynomial poly(0, *, a, .) which satisfy the 

following conditions for any concept c in C, any probability distribution P on ~ [ " l ,  

and for any real numbers E, 6 (0 < E, 6 < I), and any integers n 2 0, s 2 1: 

(a) A takes E, 6, n,  and s. The real numbers E and 6 are called the accuracy and 

confidence, respectively. The integers n and s are called the length parameter 

and the concept complexzt y, respectively. 

(b) A may call EXAMPLE, which generates examples for the concept c E C, 

randomly according to the probability distribution P on CLn]. 

(c) A outputs a name v E R(h) for some concept h E C satisfying P ( c ~ h - c n h )  < 

E with probability at least 1 - 6, when lmin(c) 5 s is satisfied. 

(d) The running time of A is bounded by poly($, $, n, s). 

Remark 1. In (Natarajan, 1991), the input to the learning algorithm does not 

include the parameter s. This yields slightly different learnability. See (Haussler 

et al., 1988) for the equivalence and difference among these definitions of learnabil- 

ities. 

Definition 2. (Blumer et al., 1989) Let C be a concept class. We say that C 

shatters a set S 2 C* if the set {c n S I c E C) coincides with the set of all subsets 

of S.  The Vapnik-Chervonenkis dimension of C, denoted by DvcC, is the greatest 
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integer d such that there exists a set of cardinality d that is shattered by C. For an 

integer n 2 0, we define = {c n c[~]  I c E C). We say that C is of polynomial 

dimension if there exists a polynomial d(n) such that D ~ ~ c [ ~ ]  < d(n) for all n 2 0. 

Definition 3. A representation R for a concept class C is polynomial-time com- 

putable if there exist a deterministic algorithm B and a polynomial q satisfying (a) 

and (b): 

(a) B takes as input a pair (w, Y) of words w E C* and v E A*. 

(b) If Y E R(c) for some c E C, then B halts in time q(lw1 + lvl) and outputs 

c(w) 

Definition 4. (Natarajan, 1991) Let C be a concept class with representation R, 

and S C C* x { O , 1 )  be a finite set of examples. A deterministic algorithm is said to 

be a fitting for C in R if it takes as input S and outputs a name v E R of a concept 

c E C which is consistent with S if any. A fitting is said to be a polynomial-time 

fitting if it runs in time polynomial in the length of its input and lmin(S, R). A 

randomized fitting for C in R is a randomized algorithm which takes as input S and 

outputs a name v E R of a concept c E C which is consistent with S ,  if any, with 

probability greater than i. A fitting is an Occam jittitting if there exist a polynomial 

q and a real number 0 5 a < 1 such that for every input S, the output is of 

length a t  most q(n, lmin(S, R)) ISIa, where IS1 is the number of examples in S and 

n = max{lwl I (w, a )  E S). 

The polynomial-time learnability is characterized as follows: 

Lemma 1. (Haussler et al., 1988; Natarajan, 1989; Blumer et al., 1989; Natara- 

jan, 1991) Let C be a concept class and R be a polynomial-time computable rep- 

resentation for C. 



(1) C is polynomial-time learnable in R if C is of polynomial dimension and there 

exists a polynomial-time fitting for C in R. 

(2) C is polynomial-time learnable in R if there exists a polynomial-time Occam 

fitting for C in R. 

(3) C is polynomial-time learnable in R only if there exists a randomized polynomial- 

time fitting for C in R. 

3 Polynomial-t ime learnable classes of EFSs 

Consider a definite clause 

An EFS is defined as a finite collection of such clauses. In order to get polynomial- 

time learnable classes of EFSs, we focus our attention on the following features of 

an EFS. 

(1) The relationship between patterns in the head and patterns in the body. 

(2) The number of variables occurring in a pattern. 

(3) The number of atoms in the body. 

(4) The arity of a predicate. 

(5) The number of clauses in the EFS. 

It has been shown in (Arikawa et al., 1992b) that any recursively enumerable set 

can be defined by an EFS whose clauses do not contain any internal variables, i.e., 

in each clause all variables in the body also appear in the head. By strengthening 

this view on the relationship between patterns in the head and patterns in the 

body, we define the following notion that is the key to finding polynomial-time 

learnable classes. 



Definition 5. We say that a definite clause is hereditary if each pattern in the 

body is a subword of some pattern in the head. An EFS I? is hereditary if each 

definite clause in I? is hereditary. 

Example 3. The definite clauses p(ax1 be) -+ q(axl), r(xl b) and p(ax1, bx2, ex,) +- 

q(xl, x2, x3) are hereditary. But the definite clause ~ ( a x ~ )  +- q(bxl) is not heredi- 

tary. 

A pair (I?, p) of an EFS and a predicate symbol is said to be reduced with respect 

to a nonempty set Y of words if Y L(r ,p)  and Y L(rl,p) for any I?' $ I?. 

As we shall show in Claim 3 of Lemma 5, languages definable by hereditary 

EFSs are in P. Moreover, hereditary EFSs have the following property that is very 

suited for learning from examples. The proof is obvious from the definition. 

Lemma 2. Let Y be a nonempty set of words in C+ and let (I?,p) be a pair of 

a hereditary EFS and its predicate symbol of arity one. If (F,p) is reduced with 

respect to Y, then for each definite clause 

in I?, there exists a substitution 0 such that all r;0's are subwords of some w E Y. 

In Section 5, we shall show that we cannot get any polynomial-time learnable 

subclass of EFSs unless the number of variables occurring in a pattern is bounded 

by a constant. Hence it is reasonable to bound by a constant, say k ,  the number 

of variable occurrences in patterns for our purpose. 

We do not have any strong mathematical reasons to restrict other three param- 

eters; the number t of the atoms in the body, the arity r of a predicate, and the 

number m of the clauses. However, counting these parameters into consideration, 

we define the following class of EFS languages. 



Definition 6. For m, k, t, r > 0, H-EFS(m, k, t, r) is the class of languages defin- 

able by hereditary EFSs with a t  most m definite clauses each of which satisfies the 

following conditions: 

(a) The number of variable occurrences in the head is at most k. 

(b) The number of atoms in the body is at most t. 

(c) The arity of each predicate symbol is a t  most r .  

The following two theorems give a series of classes of EFS languages that are 

polynomial-time learnable. 

Theorem 1. H-EFS(m, k, t, r) is polynomial-time learnable for any m, k, t, r 2 0. 

For a concept class C, (Blumer et al., 1989) discussed the polynomial-time 

learnability of the finite union class of C that is defined as 

Though the concept class FU(H-EFS(m, k, t ,  r)) is not of polynomial dimen- 

sion, we can prove the following theorem by showing a polynomial-time Occam 

fitting for this class. The idea of proof is mostly due to (Blumer et al., 1989). 

However, we shall give the details since for the application given in Section 6 its 

learning algorithm will play a key role in learning transmembrane domains of pro- 

teins. 

Theorem 2. FU (H-EFS (m, k, t ,  r)) is polynomial-time learnable for any m, k, t, r > 
0. 

The rest of this section is devoted to the proofs of Theorem 1 and Theorem 2. 

From Claim 3 of Lemma 5, the representation for the concept class H-EFS(m, k, t ,  r) 

is polynomial-time computable if we use a conventional representation for EFSs. 
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We can also see that the representation for FU(H-EFS (m, k, t,  r))  is polynomial- 

time computable. 

First, we shall show Theorem 1 by proving that the conditions of Lemma 1 (1) 

are satisfied for H-EFS(m, k ,  t ,  r) (Lemma 4 and Lemma 5). 

We use the the following lemma: 

Lemma 3. (Natarajan, 1989) A concept class C is of polynomial dimension if and 

only if there exists a polynomial p(n) such that log, ICln] 1 5 p(n) for all n 2 0. 

Let H-EFS(m, *, t ,  r )  = U k 2 ,  H-EFS(m, k, t, r) for m, r, t 2 0. H-EFS(m, *, t, r) 

is the class of languages defined by hereditary EFSs that allow an arbitrary number 

of variable occurrences in patterns in their definite clauses while other restrictions 

are kept as they are. 

Lemma 4. H-EFS(m, *, t, r) is of polynomial dimension for any m, t ,  r 2 0. 

Proof. Let H-EFS(m, *, t, r)ln1 = {L n xin] I L E H-EFS(m, *, t, r)} for n 2 0. We 

evaluate the cardinality of H-EFS(m, *, t, r)Ln]. Let (r, p) be a pair of a hereditary 

EFS I' and its predicate symbol p of arity one. Since the number of definite clauses 

is bounded by m, we need to consider only m predicate symbols, each of whose arity 

is at most r. Let C = qo(?r?, . . . , K : ~ )  +- ql(n-:, . . . , ?r,'J, q2(?rf,. . . , T : ~ ) ,  . . . , qt(?r;,.  . . ,?r&~ 

be a definite clause in I?. Note that if l?r:1 > n for some pattern ?r: in the head, 

then L(r ,  p) n xin] = L(I' - {C), p) n xln1 since r is hereditary. Therefore we have 

only to consider definite clauses whose heads contain patterns of length at most n. 

Since the arity of the predicate symbol of the head is bounded by r, we see that 

the number of possible heads is at most m(lCI + nr)"'. 

Since we are dealing with a hereditary EFS, each pattern in the body of a 

definite clause is a subword of some pattern in the head. For each pattern in the 

n(n-1) body, the possible number of subwords from the head is at most r . Moreover, 

since the number of atoms in the body is at most t,  the number of possible bodies 
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with the head is (m(r-)~)~. Thus, the possible number of definite clauses is 

roughly bounded by m(l C I + nr)nr (m(r-)~)~. 

Hence, the number of such hereditary EFSs is a t  most ( m ( l ~ l + n r ) ~ ' ( m ( r v ) ~ ) ~ ) ~ .  

Thus, we see that logz IH-EFS(m, *, t, r)[nl~ is O(n1ogn). By Lemma 3, H-EFS(m, k, t, r) 

is of polynomial dimension. 

It should be noticed that if the number of definite clauses is not bounded by a 

constant m then the resulting concept class is not of polynomial dimension since 

all finite sets can be defined. 

Lemma 5. There exists a polynomial-time fitting for H-EFS(m, k, t ,  r) for any 

m, k, t, r > 0. 

Proof. Let S be a finite set of examples for some concept c in H-EFS(m, k, t, r). 

If S+ is empty, we choose a word w E C+ not in S- and take a hereditary EFS 

I? = {P( w)). Then obviously L(I',p) is consistent with S. Therefore, we assume 

that S+ is not empty. 

Let B(m, k, t ,  r, S+) be the set of pairs (I?, p) which satisfies the following con- 

ditions (1)-(3): 

(1) I' contains a t  most m hereditary definite clauses such that in each clause the 

head has a t  most k variable occurrences, the body has a t  most t atoms, and 

each predicate is arity at most r .  

(2) For each patterns ?r in each definite clause in I', there is a substitution 0 such 

that is a subword of some positive example in St. 

(3) Variables are from {xl, . . . , xk) and predicate symbols are from {p, pl, . . . , pm-l). 

The arity of p is fixed to be one, but we do not fix in advance the arity of pi 

for i = 1, . . . , rn - 1. Hence the arity of pi may differ from one EFS to another. 



Claim 1. There exists a pair (I?, p) E G(m, k, t ,  r, S+) such that the concept 

L(r ,p)  is consistent with S. 

Proof. Since S is the set of examples for some concept c in H-EFS(m, k, t, r), 

there exists a pair (ro, p) with L(r0,  p) = c which satisfies the condition (1). With- 

out loss of generality, we can assume that ro is reduced with respect to S+. Then 

ro satisfies the condition (2) by Lemma 2. Since ro is reduced and has a t  most m 

clauses, there are at most m distinct predicate symbols in ro. Therefore we can 

rename the variables and predicate symbols in ro so that they satisfy the condition 

(3). 

Claim 2. IG(m, k, t, r, S+)I is bounded by some polynomial in EWES+ Iwl. 

Proof. Let n(k,  S+) be the set of patterns .rr such that n contains at most k 

variable occurrences which are from 1x1, . . . , xk}, and n0 is a subword of some w E 

S+ for some substitution 0. Then In@, S+) 1 5 c,,~+ ( ( 1  w 12)k+1ic!). The number of 

definite clauses with a t  most t + l  atoms, in which all patterns are from H(k, S+) and 

all predicate symbols are from {P, pl, . . . , pmml) with arity at most r, is bounded by 

(mln(k, S+) l r ) %  Thus we have lG(m, k, t ,  r, S+) I 5 ((mllI(k, s+) lr)t+l)m. Since 

m, ic, t, and r are constants, lG(m, k, t, r, S+)I is bounded by a polynomial with 

respect to Cwts+ Iwl. 

Claim 3. There is an algorithm that, given a word w in C+ and a hereditary 

EFS I' satisfying (I), decides whether w is in L ( r ,  p) in polynomial time with 

respect to lw 1 + Irl, where represents the length of I' as an expression. 

Proof. We apply a bottom-up algorithm for deciding whether a given word w 

is in L(I?,P). Since I? is hereditary, we need to consider only substitutions that 

substitute subwords of w to variables. Then, by such substitutions, we construct 

the family r (w) of all clauses containing no variables that can be obtained from 

the clauses in I' by replacing all variables by nonempty subwords of w. Since the 

number of variable occurrences, the arity of predicate symbols, and the number of 

atoms in the bodies are bounded by k, r, and t, respectively, and since the number 



of definite clauses in is also bounded by m, r (w) contains at most polynomially 

many clauses. In order to check whether w is in L(r ,p) ,  the bottom-up algorithm 

repeats applications of modus ponens to r(w) until p(w) is derived. Since r(w) 

contains polynomially many clauses, we see that the algorithm runs in polynomial 

time with respect to lwl+ Irl. 
The polynomial-time algorithm finding the required hereditary EFS runs as 

follows: The algorithm enumerates pairs (I?, p) in G (m, k, t, r, S+). Then it checks 

by using the polynomial-time algorithm of Claim 3 whether w E L ( r ,  p) for w E S+ 

and w' 6 L(r ,p)  for w' E S-. If such pair is found, the algorithm outputs it as a 

hypothesis. 

In order to prove Theorem 2, we show that there is a polynomial-time Occam 

fitting for FU(H-EFS(m, k, t, r)). Then Lemma 1 (2) yields the polynomial-time 

learnability. 

We use the weighted set cover problem and its approximation algorithm Greedy- 

WSC due to (Chvatal, 1979). The weighted set cover problem is, given a col- 

lection of finite sets TI,. . . ,T, with positive real weights Wl,. . . , W,, to find 

J* G I = (1, . . . , n)  with UiE J* Ti = UiEl Ti such that weight(J*) = xi€ J* Wi 

is minimized. 

The algorithm GreedyWSC is described in Figure 1: 

Lemma 6. (Chvatal, 1979) For the weighted set cover problem, algorithm Greedy- 

WSC runs in polynomial-time and produces a set cover J G I with weight(J) < 
weight(J*) log I It, where J* is a minimal weighted set cover. 

Proof. The basic idea is due to (Blumer et al., 1989). By Lemma 1 (2), we have 

only to show a polynomial-time Occam fitting for FU(H-EFS(m, k, t, r)). For a 

set S of examples, the algorithm Occam in Figure 2 finds in polynomial time a 

hypothesis which is consistent with S. 



procedure GreedyWSC ( {(i, T,, Wi))iEJ : set of triples ) : subset of I 
begin 

UnCover := UiEI Ti ; 
J : = 0 ;  
while Uncover $; 0 

begin 
Find k E I which minimizes the ratio Wk/ITkI ; 
J : =  Ju{k)  ; 
UnCover := Uncover - Tk ; 
foreach i E I 

Ti :=T,-Tk 
end 

return J 
end 

Figure 1: Algorithm GreedyWSC 

procedure Occam ( S : set of examples ) : pair of hereditary EFS and predicate 
begin 

3 := 0; /* instance for the weighted set cover problem */ 
foreach (I?, p) E G(m, k, t, r, S+) 

if L(r,p) n S- = 0 then 
3 := 3 u {(r, L(r,p) n S+, size(r))) 

G := Greedy WSC(3) ; 
r U = U r e o r ;  
return (rU, p) 

end 

Figure 2: Occam fitting for m(H-EFS(m, k ,  t, r)) 



Recall that we can generate all pairs in G(m, k, t ,  r, S+) in polynomial-time 

with respect to EWES+ IwI. Moreover, by Lemma 6, the size of the output I' is at 

most as log IS1 times as the size of minimum hereditary EFS which is consistent 

with S. Therefore the algorithm Occam is a polynomial-time Occam fitting for 

Fi!4(H-EFS(m, k, t , r ) ) .  

The notion of NC-learnability is introduced in (Vitter and Lin, 1992). By using 

N C  algorithms instead of polynomial time algorithms, we can develop the same 

argument as that in Section 2 and obtain a similar result for NC-learnability. 

The purpose of this section is to show a series of NC2-learnable subclasses of 

hereditary EFSs. It is shown in (Arimura, 1993) that a P-complete set can be 

described with a hereditary EFS. Therefore, at least, we cannot expect any NC- 

computable representation for H-EFS(m, k ,  t, r). Hence we are required to get into 

a new class of EFSs. 

Let la1 denote the length of a pattern a .  For an atom p(nl,.  . . , .irn), we define 

IIp(?~~,. . . ,a~)?1)1 = =all + + Ianl A definite clause A + A1, . . .  At is called 

length-bounded if 1 1  ABl 1 2 1 lA161 1 + + 1 lAtBl 1 for any substitution B (Arikawa 

et al., 199213). An EFS I? is length-bounded if all definite clauses in I' are length- 

bounded. For a length-bounded definite clause, we can easily see that, for each 

variable xi in the clause, the number of occurrences of xi in the head is not less 

than that in the body. 

Example 4. The definite clause ~ ( a x l )  +- q(bxl) is length-bounded but not hered- 

itary, while p(axlbc) t q(axl), r(xlb) is not length-bounded but hereditary. The 

definite clause p(axl, 6x2, ex3) +- q(xl, x2, x3) is both length-bounded and heredi- 

tary. 



Definition 7. For m, k, r 2 0, LB-H-EFS(m,k,r) is the class of languages defin- 

able by length-bounded hereditary EFSs with at most m definite clauses such that 

the number of variable occurrences in the head of each clause is bounded by k and 

the arity of each predicate is at most r. 

Obviously the class LB-H-EFS(m,k,r) contains infinitely many languages for 

any m, k, r 2 1. Any context-free language is in LB-H-EFS(m,2,1) for some m 2 1 

and any regular language is in LB-H-EFS(m,l,l) for some m 2 1. 

Example 5. Example 2 shows that the language {anbn I n 2 1) is in LB-H- 

EFS(2,1,1) and that the language {anbncn I n 2 1) is in LB-H-EFS(3,3,3). 

Remark 2. Unlike the definition of H-EFS(m, k, t, r) ,  we do not bound the num- 

ber t of atoms in the body explicitly, when we define the class LB-H-EFS(m,k,r). 

However, we can assume that the number of atoms in the body is a t  most k without 

loss of generality: Let (I?, p) be a pair of a length-bounded EFS r and its predicate 

symbol of arity one. Assume that the number of variable occurrences in the head 

of each clause is a t  most k. For a definite clause C = A + Al, . . . , At in I?, suppose 

that an atom Ai does not contain any variables. If Ai is not provable from I?- {C), 

it is not hard to show I? If Ai by induction on the number of applications of modus 

ponens since only modus ponens rules can eliminate Ai from the body of C. Hence 

the clause C is redundant in I?, i.e., L(I?,p) = L(I? - {C),p). On the other hand, 

if Ai is provable from I? - {C), then the atom Ai is redundant in the clause C,  

i.e., L(I?,p) = L( ( r  - {C)) LJ {Ct),p), where C' = A +- Al, . . . , Ai-1, Ai+1,. . . ,At. 

Therefore we can assume that each atom contains at least one variable. From the 

length-boundedness of I?, the total number of variable occurrences in the body is 

bounded by k. Thus the number of atoms in the body is at most k. 

Theorem 3. LB-H-EFS(m,k,r) is NC2-learnable for any m, k, r 2 0. 



Proof. We first observe that Claim 3 in the proof of Lemma 5 is solvable in NC2 

for LB-H-EFS (m, k ,r ) . Consider the following nondeterministic recursive procedure 

that returns true if and only if I? I- q(ul, . . . , u2) for a length-bounded hereditary 

EFS I? and ul , .  . . , ul E C+. 

procedure Prove(q, [a1, . . . , ul]) 
begin 

guess a definite clause q($, . . . , ?r:) + q1 (T:, . . . , ?r,ll), . . . , qt(?rf, . . . , T : ~ )  in I?; 
guess a substitution 0 with ?r,O0 = Ui (1 5 i < 1); 
if t = 0 then return true 
elseif Prove(qj, [$0,. . . , ~ ! ~ 0 ] )  = true for all j = 1,. . . , t then return true 

end 

Figure 3: Algorithm for proving I? I- q(ul, . . . , ul) 

We can simulate the procedure Prove by a two-way nondeterministic auxiliary 

pushdown automaton that runs in polynomial time using O(1og n) worktape space 

(Sudborough, 1978). We just state the idea of simulation. We assume that a word 

w and a pair (I?, p) are given on the input tape. Since I? is hereditary, we can assume 

that xhO is a subword of w for any variable xh in the guessed clause. Therefore 

each xhO can be expressed by specifying the start and end positions of xhO in w. 

This requires only O(1ogn) worktape space. Moreover, since .rr contains at most k 

variables, we need O(1og n) space to keep 0. Since I? is on the input tape, guessing 

nondeterministically a definite clause from I? requires O(log n) worktape space. 

Checking ~0 = ui is also possible in O(1ogn) worktape space. Recursions are 

simulated by a pushdown store in a conventional way by pushing (qj, [?r{0, . . . , nij 01) 

for j = 1, .  . . , t, where each 4 0  is represented by a pair of binary integers in 

O(1og n) bits. Since tj is a t  most r ,  (qj, [?r:0, . . . , xij 81) requires O(1og n) space. 

Then the simulation can be continued using O(1ogn) worktape space. 

We consider the size of the recursion tree for Prove(p, [w]), where each node is la- 

beled with some Prove(q, [ul, . . . , u l ] )  We can assume that each ui of Prove(q, [ul, . . . , ul]) 

is a subword of w. Since the number of predicates is at most m and the arity of 
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each predicate symbol is bounded by r, the depth of the recursion tree is bounded 

by some polynomial in 1w 1. Moreover, since I' is length-bounded, the number of 

the leaves of this tree is at most lw 1. Therefore, the number of the nodes in this 

recursion tree is also bounded by a polynomial in 1 w 1 .  Hence, this nondeterministic 

algorithm accepts in polynomial time. 

It is known in (Ruzzo, 1980; Ruzzo, 1981) that if a set is accepted by a polyno- 

mial time auxiliary pushdown automaton that uses O(1og n) worktape space then 

it is in NC2. Therefore it is possible to check in NC2 whether r I- p(w). Thus we 

can decide the membership w E L( r ,p )  in NC2 when w and (I?, p) are given as 

input. Therefore the representation for LB-H-EFS(m,k,r) is computable in NC2. 

We combine this NC algorithm for deciding membership with the following 

NC algorithm. We consider how to generate all candidates (I?, p) consistent with 

S+ of positive examples and S- of negative examples. We define G1(rn, k, r, S+) in 

the same way as G(m, k, t ,  r, S+) in Lemma 5. From Lemma 2, it  suffices to deal 

with G1(m, k, r, S+) as the space of candidates. It is not hard to see that we can 

generate all pairs in G1(m, k ,  r ,  S+) in NC2 since we are required to consider only 

subwords of the words in S+ as patterns in atoms and m, k, r are constants. 

From these NC2 algorithms, we can see that a pair ( r ,p )  in G1(m, k, r, S+) 

which is consistent with examples in S is computable in NC2. 

Theorem 4. FU(LB-H-EFS(m, k, r)) is NC learnable for any m, k, r > 0. 

Proof. We can construct an NC Occam fitting for FU(LB-H-EFS(m, k, r)) by 

using the NC approximate algorithm for the weighted set cover problem due to 

(Berger et al., 1989). 

5 Regular patterns are hard to learn 

For a concept class C with a representation R, we consider the following problem: 

Consistency Problem for C in R 
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Instance : A set of examples S C* x { O , 1 )  with S+ n S- = 0. 

Question : Is there a name v E R of a concept h E C which is consistent with 

S?  

If the consistency problem for C in R is shown NP-complete, we can say that 

C is not polynomial-time learnable in R under the assumption of R P Z N P ,  since 

there is no randomized polynomial-time fitting for C in R by Lemma 1 (3). 

In this section, we deal with only regular patterns and abbreviate variables 

xl, x2, . . . by the same symbol x for simplicity. 

Theorem 5. The consistency problem for the class of regular pattern languages 

is NP-complete. 

Proof. Obviously the problem is in N P .  We give a polynomial-time reduction from 

3SAT to the problem. Let F = C1 C, be a formula in 3-CNF with variables 

ul, uz, . . . , un. Without loss of generality, we can assume that Ci does not contain 

both uk and for any 1 5 Ic < n. We define Y of positive examples and N of 

negative examples so that F is satisfiable if and only if there is a regular pattern 

n consistent with Y and N .  

First, we use n + 1 positive examples so, . . . , sn and n + 1 negative examples 

to,. . . , tn over C = {0,1) so that any consistent regular pattern n must be of the 

form .ir = 71'7-2 rn, where ri = Ox or XO (1 < i 5 n). We define 

si = (00)~-~010(00)~-~ for 1 < i 5 n; 

ti = (00 )~ -~11(00)~ -~  for 1 < i 5 n. 

From the positive example s o  with lsol = 2n and the negative example to with 

ltol = 2n - 1, we see that any pattern x consistent with so and to satisfies .ir E 
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(0, x)+ and In1 = 2n. Thus we can denote n = 0 1 0 2  0 2 ~  with 0 k  € {O, x) for 

1 < k < 2n. 

For 1 < i < n, since lsil = 2n+ 1 and &-substitutions are not allowed, the (2i)th 

character 1 of si must match with either 02i-1 or 0 2 i  of pattern n ,  i-e., either a2i-1  

or 0 2 i  is x. On the other hand, both of them are not x since ti f L(n). Therefore 

each ri = 0 2 i - l ~ r ~ i  is OX or XO for 1 < i < n. 

For Cl, . . . , Cm of F, we use additional negative examples dl , .  . . , dm to forbid 

that all of the three literals in Ci are assigned to false for 1 < i < rn. For 1 < i < m, 

we define 

{ 
01 if literal uk appears in Ci 

di = ~ 1 ~ 2 .  . . rn, where ~k = 10 if literal appears in Ci 
00 otherwise. 

Since we have assumed that both uk and q does not appear in any Ci, the above 

di is well-defined. Then let Y = {so, ~ 1 ,  . . . , sn) and N = {to, tl, . . . , t,, dl , .  . . dm). 

Assume that F is satisfiable under a truth assignment Gl, . . . , Gn. Then we 

define a regular pattern n = rl . rn by putting ri = x0 if iii = true and ri = Ox 

if iii = false for 1 5 i < n. It is easy to see from the definitions of Y and N that 

.ir is consistent with Y and N. In fact, it is clear that si E L(n) and ti f L(x) 

for 0 < i < n. Since F is satisfiable by the assumption, each Ci contains either 

uk with Gk = true or q with iik = false for some k.  In the former case, r k  = x0 

and rk = 01 guarantee di f L(n). In the latter case, r k  = Ox and r k  = 10 give an 

evidence for di $ L(T) similarly. 

Conversely, we assume that there exists a regular pattern .ir consistent with 

Y and N. Then n must be of the form TIT-2 orni where r E {Ox, $01, since n 

is consistent with si's and ti's for 0 < i < n. We define the truth assignment 

Gi = true if ri = XO and iii = false if 7 2  = Ox for 1 < i < rn. For each Ci, at  

least one literal must be assigned to true since L(n) does not contain the negative 

example die 

Example 6. For an instance F = ( u l + ~ + u 3 ) ~ ( ~ + u 3 + u q )  of 3SAT, we construct 

five positive examples {00000000, 010000000, 000100000, 000001000, 000000010) 
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and seven negative examples {0000000, 11000000, 00110000, 00001100, 00000011, 

01100100, 10000101). A regular pattern consistent with these examples, say n = 

~ 0 x 0 0 ~ ~ 0 ,  corresponds to the truth assignment iil = true, ii2 = true, ii3 = false, 

ii4 = true, which satisfies the formula F. 

Theorem 6. Let m 2 1 be an integer. The consistency problem for the class 

{L(nl) u u L(nm) 1 ni9s are regular patterns) 

is NP-complete for any m 2 I .  

Proof. The case of m = 1 is Theorem 5. For m 2 2, we will reduce the problem 

to the case of m = 1. Let Y and N be the sets of positive examples and negative 

examples given in the proof of Theorem 5. Then we define as follows: 

We will show that the following two statements are equivalent: 

(1) There is a set M consisting of m regular patterns such that U T E M  L(a) is 

consistent with Y' and N'. 

(2) There is a regular pattern no such that L(no) is consistent with Y and N .  

We show that (1) implies (2). For each i = 1, . . . , m - 1, the set M contains 

a regular pattern n with li E L(n) since li is a positive example. Then n is 

in (1, x)[']. However, if a variable occurs in n, the negative example lm is also in 

L(a). Therefore, n = li. Thus M contains m - 1 patterns 1, 11, . . . , 1"-1 without 

any variables. Therefore M must contain a regular pattern no such that L(no) is 

consistent with Y and N. The converse is almost clear. U 



An extended regular pattern language Z(T) (Shinohara, 1983) is defined by 

allowing E-substitutions to a regular pattern T. The E-substitutions might change 

the behavior entirely since the length of the possible patterns can not be bounded. 

However, any extended regular pattern language can be defined by a regular pattern 

in canonical form ?r = woxwlx xwn-lxwn with wo, w, E C* and wi E C+ for 1 5 

i 5 n- 1, since two consecutive variables are reduced to a single variable(Shinohara, 

1983). 

Theorem 7. Let m 2 1 be an integer. The consistency problem for the class 

{Z (rl)  u u Z(T,) I ni's are regular patterns) 

is NP-complete. 

Proof. We will show only the case of m = 1. For m 2 2, we can reduce the 

problem to the case of m = 1 in the same way as the proof of Theorem 6. 

The basic idea of the proof is similar to that of Theorem 5. For an instance 

F = Cl . C, of 3SAT with variables ul, u2,. . . , u,, we give the following two 

positive examples over C = {0,1, #): 

sl = 0#0#-**#O with lsll = 2n - 1, 

s2 = 00#00# #00 with ls21 = 3n - 1. 

We also use 2n - 1 negative examples &'s and ti's: 

ii : the word obtained by deleting the ith # of sl, 1 < i < n - 1, 

ti : the word obtained by replacing the ith 0 of sl with 101, 1 5 i < n. 

It can be noticed that a regular pattern in canonical form which is consistent with 

positive examples sl, s 2  and negative examples il, . . . fnWl, tl, . . . , t, must be of the 

form: 
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n = r1#r2#. . . #rn, where ri E {Ox, $0) for 1 5 i 5 n. 

Then for each Ci of F ,  we define the following additional negative examples: 

01 if literal uk appears in Ci 
di = rl#r2#. . . #r,, where r k  = 10 if literal appears in Ci 

0 otherwise. 

We can verify that there is a regular pattern n such that L(n) is consistent with 

these examples if and only if F is satisfiable in the same way. 

The common subsequence problem has been dealt from independent viewpoints, 

such as text processing, data compression, or DNA sequences (Maier, 1978; Wag- 

ner and Fischer, 1974). It is known that the longest common subsequence problem 

is NP-complete (Maier, 1978). The problem of finding a sequence al a, which 

is common to all positive examples but not common to any of negative examples 

is equivalent to finding a regular pattern n = xalx xanx such that the extended 

regular pattern language I ( n )  is consistent with the positive and negative exarn- 

ples. Thus we call a regular pattern of the form n = xalxa2x oxanx with ai E C 

for 1 5 i 5 n a common subsequence. 

Theorem 8. The consistency problem for the class of common subsequence lan- 

guages is NP-complete. 

Proof. Since the basic idea is also similar, details are omitted. Two positive 

examples 

sl = 01#01#. . . #01 with Isl 1 = 3n - 1, 

s 2  = 10#10#. . . #10 with ls21 = 3n - 1 

and 2n - 1 negative examples 

ti : the word obtained by deleting the ith # of sl for 1 5 i 5 n - 1, 

ti : the word obtained by deleting the ith 01 of sl for 1 5 i 5 n 
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make a consistent common subsequence restricted to the form: 

T =  al#a2# ...# a,, where ai E { O , I )  for 15 i 5 n. 

Additional m negative examples 

0 if literal uk appears in Ci 
di = rl#r2# . . . #r,, where rl, = 1 if literal appears in Ci 

01 otherwise, 

guarantee the equivalence between the existence of a consistent common subse- 

quence and the satisfiability of a given 3-CNF formula. 

6 Application to learning from amino acid se- 
quences 

The primary structure of a protein is described as a sequence of amino acid residues 

of 20 kinds. One of the important problems in Genome Informatics is to discover 

rules for predicting functions of proteins by analyzing their amino acid sequences. 

The purpose of this section is to apply our learning strategy for identifying 

transmembrane domains of proteins (Hartmann et al., 1989; von Heijine, 1988). 

We will show some experiments using real protein data with successful results. 

6.1 Membrane proteins and PIR database 

Figure 4 shows an example of an amino acid sequence of a membrane protein 

of a Norway rat. There is a tendency to assume that a membrane protein has 

transmembrane domains each of which constitutes an a-helix structure generating 

the membrane. The protein in Figure 4 has four transmembrane domains. The 

reported length of a transmembrane domain is not large, usually, 20 N 30. If 

a sequence correspondingto a transmembrane domain is found in a protein, the 

probability that it is a membrane protein will get larger. Therefore it is important 

to identify transmembrane domains in amino acid sequences. 

These amino acid sequences have been compiled in the PIR database (PIR, 

1991) together with their additional information such as functions. This database 
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is growing larger year by year, and currently its size is about 50MB. 

FEATURE 
19-41 
101-123 
133-156 
195-218 

# D o m a i n  t r a n s m e m b r a n e  
# D o m a i n  t r a n s m e m b r a n e  
# D o m a i n  t r a n s m e m b r a n e  
# D o m a i n  t r a n s m e m b r a n e  

SEQUENCE 
5 10 15 20 25 30 

1 M D V V N Q L V A G G Q F R V V K E P L G F V K V L Q W V F  
3 1 A I F A F A T C G S Y T G E L R L S V E C A N K T E S A L N  
G I I E V E F E Y P F R L H Q V Y F D A P S C V K G G T T K I F  
9 1 L V G D Y S S S A E F F V T V A V F A F L Y S M G A L A T Y  

1 2 1 I F L Q N K Y R E N N K G P M M D F L A T A V F A F M W L V  
1 5 1 S S S A W A K G L S D V K M A T D P E N I I K E M P M C R Q  
1 8 1 T G N T C K E L R D P V T S G L N T S V V F G F L N L V L W  
2 1 1 V G N L W F V F K E T G W A A P F M R A P P G A P E K Q P A  
2 4 1 P G D A Y G D A G Y G Q G P G G Y G P Q D S Y G P Q G G Y Q  
2 7 1 P D Y G Q P A S G G G G Y G P Q G D Y G Q Q G Y G Q Q G A P  
3 0 1 T S F S N Q M  

Figure 4: An amino acid sequence of a membrane protein containing four trans- 
membrane domains. 

In applying our learning strategy to this problem, we regard the sequences of 

transmembrane domains as positive examples. The PIR database contains the 

amino acid sequences with FEATURE field where transmembrane domains are 

indicated. 

For example, in Figure 4 the transmembrane domains of the amino acid se- 

quence w are indicated by intervals 19-41, 101-123, 133-156, 195-218. Then the 

substrings w[19..41], w[101..123], w[133..156], and w[195..218] are taken as positive 

examples. 

As negative examples, we use amino acid sequences without any overlap with 

transmembrane domains. Since the length of a positive example is 20 N 30, we 

randomly choose sequences of length around 30 for negative examples. 

We collect all the positive examples from the PIR database and the same num- 



ber of negative examples as shown in Table 6.1. Since the PIR database is not 

completely correct, the data may contain some noises. 

Sequences Positive Negative 
Transmembrane 689 689 

A hydropathy plot (Engelman et al., 1986; Kyte and Doolittle, 1982; Rao and 

Argos, 1986) has been used generally to predict transmembrane domains from 

primary sequences. Instead of dealing with twenty symbols of amino acids, we 

classify these symbols into three classes by the hydropathy indices of amino acids 

(Kyte and Doolittle, 1982). More precisely, we transform symbols by Table 1. 

Amino Acids Hydropathy New Symbol 
A M C F L V I 1 . 8 ~ 4 . 5  
P Y W S T G  - 1 . 6 ~ - 0 . 4  
R K D E N Q H -4.5 N -3.2 

Table 1: Transformation rules 

This transformation from 20 symbols to 3 symbols reduces the search space of 

hypotheses. The sequence in Figure 5 is the result of this transformation from the 

sequence in Figure 4. 

Figure 5: The sequence obtained by the transformation, where transmembrane 
domains are indicated by parentheses. 



Positive examples 
+++**+****+*-**+*I-+ 

+++**+****-**I+*****+*+***+ 

+**+*****+** 
+*+*****+*****-*****-* 
***+*+*+***++++***-**+* 
++-****+**+***+*+**+****+-+ 
*+**++******+******** 
******+**+*+*+*-*I** 

**+********++***** 
*++*I***-++*-+**+*** 

Negative examples 
*+------*I------- *-+-*** 
-+++-++--+***-+-*-I 

****+*-*-*++-++++- 
**---**+****++-*---**--* 
+**-+*--*+*+-++-**+*+-*-**+- 
**+*-*+-++-+**+I-+*+**++ 

-+*-*+--++*I-**--*+*-*++ 

-I--- +-+-+*-+*+++--*+*** 
-+--**---+-*-++-+*-**+*+-- 
+-+++*-*+*+***---**-**+++- 

Figure 6: Positive and negative examples 

As is seen, this transformation makes the characteristics of a transmembrane 

domain more vivid. Figure 6 gives some of the sequences obtained by this trans- 

formation from the transmembrane domains chosen from our 689 examples. 

We denote by POS and NEG the sets of these positive and negative examples 

converted by Table 1, respectively. Fortunately, POS and NEG do not have any 

overlaps. 

6.2 Experiments and results 

As a hypothesis space, we use the concept class defined as 

{&) LJ LJ L(7rm) I .rri is a regular pattern in II' and rn 2 I}, 

where II' is the set of regular patterns of the following forms: 

with al, a 2 ,  a3 in {*, +, -I+. 
We can see from an argument similar to Theorem 2 that this concept class is 

polynomial-time learnable by the algorithm Occam in Section 3. 
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The reason why we restrict the number of variables to 4 is simply due to the 

actual time and space required to implement the algorithm. 

Our learning algorithm chooses randomly two small sets pos and neg from 

POS and NEG, respectively. Then the sample S defined by pos and neg is given 

to an input to the algorithm Occam. This process shall be repeated until good 

hypotheses are found. 

In our experiments, the size of pos (neg) varies from 5 to 20. 

6.2.1 Finding patterns from positive training examples 

The first approach we take for this problem is to find a collection of regular patterns 

which covers almost all positive training examples and excludes almost all negative 

training examples. 

Table 2 shows the good hypotheses and their success rates that our learning 

system has produced. 

Table 2: Collections of regular patterns covering positive examples and excluding 

Patterns 
xl+***+x2 
x1*+*x2**+x3 
accuracy 

negative examples that was produced by our learning algorithm from 10 positive 
(transmembrane domain) and 10 negative (nontransmembrane domain) training 

Positive 
38.6% 
80.4% 
82.1% 

examples. The second (third, resp.) column shows the percentage of the positive 

Negative 
9.6% 

19.7% 
76.2% 

(negative, resp.) examples that the pattern in the first column covers. The last 
row shows the accuracy for positive examples and negative examples. 



6.2.2 Finding patterns from negative training examples 

We are also interested in collections of regular patterns which exclude positive 

examples and cover negative examples. That is to say, we use transmembrane do- 

mains as negative examples, and nontransmembrane domains as positive examples. 

Table 3 shows the results. 

Table 3: Collections of regular patterns covering nontransmembrane domains and 
excluding transmembrane domains. 10 positive and negative training examples are 
used. 

As is seen, hypotheses (Nl)  and (N2) are very small and the success rates for 

both positive and negative examples are quite good. From these observations, we 

can say that the approach from negative examples is much better than that from 

positive examples in the last section. 

After recognizing the importance of negative examples, we have finally found 

the following pattern: 

Table 4 (N3) shows the result whose accuracy is more than 91%. 



7 Concluding remarks 

We showed that the classes H-EFS(m, k, t ,  r )  and FZA(H-EFS(m, k ,  t ,  r)) are polynomial- 

time learnable for any constant m, k, t, r > 0. But if the number k of variable occur- 

rences in the head of each definite clause is not bounded by a fixed constant, even 

for some small subclasses of H-EFS(m, *, t, r), we can not expect polynomial-time 

learning. For example, the consistency problem for H-EFS(1, *, 0, I) ,  which is the 

class of pattern languages, is known to be C;-complete (KO and Tzeng, 1991). We 

strengthened this observation by showing the NP-completeness of the consistency 

problem for the class defined by taking all unions of m regular pattern languages for 

any fixed constant m > 1. According to the number m of the clauses, we know that 

the class H-EFS(*, k, t, r) is not of polynomial dimension. Note that, however, it 

does not necessarily imply that H-EFS(*, k, t, r) is not polynomial-time learnable, 

since Occam fitting for H-EFS(*, k, t, r) might exist. As to another parameters in 

H-EFS(m, k, t, r) ,  we do not have any results which justify the restriction on the 

number t of atoms in the body and the arity r of a predicate symbol, in order to 

meet polynomial-time learnability. 

We introduced hereditary definite clauses for EFSs in order to make it feasible 

to learn a concept from given examples. However, the experiments in Section 6 did 

not have the benefit of hereditariness directly since we used the class of finite unions 

of regular pattern languages, which have no bodies. This is because the running 

time of our learning algorithm, which is essentially an enumeration method, is huge 

although it remains polynomial. In order to finish the computation in realistic 



time, we had to restrict the class as in Section 6. Therefore it is an important 

problem to develop a more efficient learning algorithm which makes good use of 

the heredit ariness. 

In the experiments of learning EFSs, we met with quite satisfactory results on 

identification of transmembrane domains in amino acid sequences from positive and 

negative data. We have also taken another approach to this problem by learning 

decision trees over regular patterns (Arikawa et al., 1992a; Shimozono et al., 1993). 

In comparison, since the algorithm for finding decision trees is much more efficient 

than that in this paper, we met a better performance in time and accuracy in the 

experiments, while the algorithm in (Arikawa et al., 1992a; Shimozono et al., 1993) 

is not fully analyzed and the accuracy of outputs is not theoretically guaranteed. 
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