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Abstract 

We give a series of combinatorial optimization problems defined by graph 
properties on vertex weighted graphs and allowing the local search methods. 
We show that  the weighted vertex-induced subgraph problem for any nontrivial 
hereditary property is complete for the class PLS of polynomial-time local search 
problems, which are defined t o  formalize the local search algorithms and their 
complexity of finding locally optimal solutions. Our result yields, without any 
specific discussions, the PLS-completeness of weighted vertex-induced subgraph 
problems for many well-known properties. 

1 Introduction 

In the last twenty years a lot of heuristic approaches have been developed for NP- 
hard combinatorial optimization problems. The local search method, well known 
as the Lin-Kernighan algorithm for "Travelling Salesperson Problem" [ll], is one 
of the efficient approximation approaches for optimization problems. Basically the 
method is based on iterations of deterministic improving process which searches better 
combinations in polynomial time. Although the algorithm may be trapped in a locally 
optimal solution far from the optimum, there are a lot of extended researches which 
try to escape from local optima and seek near optimum solutions by nondeterministic 
improving procedures [I], [8]. 

On the other hand, from the computational complexity point of view, Johnson 
et al. [5] defined the class PLS of polynomial-time local search problems to for- 
malize complexity of finding locally optimal solutions by the local search methods. 
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As a remarkable result, they have shown that the Lin-Kernighan algorithm with a 
P-complete local search procedure is P LS-complete. 

In this paper, we prove the PLS-completeness of the weighted vertex-induced 
subgraph problem for any nontrivial hereditary property. The techniques we employ 
for the proof are already used for proving N P-completeness or P-completeness of 
generalized subgraph problems [lo], [13], [14], [15]. Even though it is natural to 
guess a similar completeness result for PLS from the former results, the proof of our 
result is rather complicated. Our completeness result covers many new PLS-complete 
problems since a lot of properties such as planar, acyclic, complete, bipartite and 
chordal [4] are all hereditary and nontrivial. 

2 Preliminaries on PLS 

First we review some definitions for the class PLS and the first PLS-complete problem 
FLIP [5]. 

Definition 1. Let C be a finite alphabet. A polynomial-time local search problem L 
is either a maximization or minimization problem specified as follows: 

(a) DL: A subset of C* whose elements are called instances. 

(b) For each instance II E DL, we associate it with the following: 

(i) Sk: This is a finite subset of C* called the solution space. An element s in 
S& is called a solution of II. We assume that Is1 is polynomially bounded 
with respect to IIIl. 

(ii) iV&(s): This is a subset of Sk called the neighborhood of s, where s is a 
solution in Sj$. We call a solution in N&(s) a neighborhood solution of s. 

(iii) F !  : Sk -+ N: This function is called the cost function for Sk, where N is 
the set of nonnegative integers. The value F&) is called the cost of s. 

We require that DL, Sk, N; and F !  are polynomial-time computable with respect 
to InI. A solution s in S; is called locally optimal if s has no better neighborhood 

L 1 solution, i.e., F,L(s') 5 F$(s) (resp., F -  (s ) 2 F&(s)) for all s' in iV;(s) when L 
is a maximization (resp., minimization) problem. We denote by PLS the class of 
polynomial-time local search problems. 

From now on, we consider only maximization problems without loss of generality. 

Definition 2. Let L and I< be problems in PLS. We say that L is PLS-reducible to 
K if there are polynomial- time comput able functions f and g such that (a), (b) and 
(c) hold for each instance II of L : 



(a) f (11) is an instance of I{. 

(b) Let s be a solution of f (II). Then g(f (11), s)  is a solution of II. 

(c) If s is a locally optimal solution in sZn) , then g( f (II), s) is also a locally optimal 
solution in Sk 

Let C = (21,. . . , x,,gl,. . . , g ~ ,  yl, . . . , y,) be an acyclic boolean circuit with n 
inputs and rn outputs. The gates 11,. . . ,x, are the input gates and yl,. . . , ym are 
the output gates. The indegree of an input gate is 0. Each gi is either an AND-gate, 
an OR-gate, or a NOT-gate. The inputs to gi come from x j  (1 < j < n) and gk 
(1 < k < i), The indegree of an output gate yi is 1 and the value for yi comes from 
either x j  (1 < j 5 n) or gk (1 5 k < N). The following problem is known as the first 
standard P LS-complete problem. 

Definition 3. An instance of FLIP is a boolean circuit C = (xl,.  . . , x,, gl, . . . , g ~ ,  
yl,. . . , y,) with n inputs and rn outputs. The solution space Sc is the set of boolean 
assignments to the input gates XI , .  . . , x,, and the cost function & is given by 

where yj is the j-th output of the circuit with an input s = (s l , .  . . , s,). The neigh- 
borhood Nc(s) of s is all the assignments obtained by flipping a single bit of the 
current input, i.e., Nc (s) = {(sl , . . . , S k ,  . . . , s,) 11 < k < n}  . 

Lemma 1. (Johnson, Papadimitriou and Yannakakis [5]) FLIP is P LS-complete. 

3 Main Result 

We say that a property n is hereditary on induced subgraphs if a graph G satisfies 
T then all vertex-induced subgraphs of G satisfy n. We say that a property n is 
nontrivial on a farnily r of graphs if infinitely many graphs in I' satisfy n and some 
in I' violates n. 

Definition 4. Let n be a hereditary property on graphs. The weighted greedy maxi- 
mal T problem (WGM-n) is defined as follows. An instance is a vertex-weighted graph 
G = (V, E,  W), where W is a function W : V -+ N of weights on vertices. We assume 
a linear order on vertices V. A solution V* is a subset of vertices inducing a subgraph 
satisfying T, and the cost FG(V*) of V* is defined by 

A neighborhood solution U(u, V*) of V* shall be generated for each u E V - V* as 
follows: 



U(u, V*) t {u) U (V* - {vJv is adjacent to u)). 
T t - V - V * .  
while T f. 0 

Choose the first t E T of the largest weight. 
If the subgraph induced by U(u, V*) U {t) does not violate n 

then U(u,V*) + U(u, V*) U {t). 
T + T - {t). 

end of while. 

Our main result is the following theorem. 

Theorem 1. If a property n is hereditary, nontrivial and polynomial-time testable, 
then the WGM-n is PLS-complete. 

For the proof of Theorem 1, we first show the PLS-completeness of the weighted 
greedy maximal independent set problem (WGMIS) that is the WGM-n problem de- 
fined by setting n = "independent set", where an independent set of a graph is a set 
of vertices such that no two vertices are adjacent. 

Without formal discussion, Johnson et al. [5] have already mentioned the PLS- 
completeness of the weighted independent set problem with a "Kernighan-Lin-like" 
local search algorithm that is defined by slightly modifying the original Kernighan- 
Lin algorithm [7]. However, since our neighborhood of WGM-n is different from their 
neighborhood, we need to prove the PLS-completeness of our WGMIS. 

Lemma 2. WGMIS is PLS-complete. 
Proof. We PLS-reduce FLIP to WGMIS. Let C = ($1,. . . , x,, gl, . . . , g ~ ,  yl, . . . , 9,) 
be a boolean circuit with n inputs and m outputs as an instance of FLIP. We construct 
a weighted graph G' = (V',Ef, W') that simulates the computation of C for the 
current input and its neighborhood solutions. From now on, without loss of generality, 
we may assume that C contains only NAND-gates. 

At first, we construct the subgraphs Gtk for 0 5 k 5 n. For an input s = 

(31, . . . , sn) of C ,  G' (1 5 k < n) (resp., Gf0) simulates the computation of C 
with the neighborhood solution (sl,. . . , Sk, . . . , s,) (resp., (sl , .  . . , s,) ) as an input. 
Gtk = (v '~,  E ' ~ ,  w '~ )  is given as follows: 

For each input gate xi (1 5 i 5 n), Gtk has an edge {z:, 5:). For each gate 
gi (1 5 j 5 N), Gtk has an edge $1 (Fig. 2 (a)). We call these edges 
the gate value pairs. For each NAND-gate gj c v A w, Grk contains a triangle 
{a:, Pf], {Pf , $), {yf , $1 (Fig. 2 (b)) called the gate triangle of gj, where v 

and w are in {xl, . . . , x,, gl, . . . , g&. In addition to this triangle, G ' ~  has 
k k  

edges {vk,aS), {gk,yf), {w~ ,P :} ,{w~ ,~J^~} ,  {yj ,gj) ,  { v k , ~ f }  and { ~ ~ , g f )  as 
shown in Fig. 2 (c). We call the pairs {vk, ek) and {wk, wk) (resp., {&,$) the 
inputs (resp., output) of the gate triangle. For each output gate yr (1 3 13 m), 
G ' ~  contains an edge {y;, $), where vi is the gate directly connected to yl. 



Figure 1: The  graph representation of (a) a gate value pair, (b) a gate triangle and (c) a 
NAND-gate calculating g j  + v A w. 

The  weights of the newly added vertices are given as follows: (i) o0 -+ 28N + 2 2 N ,  (ii) 
& -k o l , .  . . ,on -+ 28N, (iii) p j , j i j  + 22N, (iv) X i ,  i?i -+ 2N, (v) U~ , ui -+ 1. 

Finally, the linear order on vertices V can be given appropriately by the names and 
the indices of vertices. We omit the details. I t  can be defined, for example, o' < . . . < on, 

a! < ,8f < ?f ,  uf < $, and so forth. 

The  graph G' given above simulates the neighborhood-searching steps of FLIP by sim- 
ulating G'O and Gtk (1 5 k 5 n) alternatingly. The  connections between X I ,  zl, . . . , z,, 2, 

k -k and y , z+, . . . , u,k, fik imply tha t  the gate value pair {ut  ,z$} represents the i-th value of 
s l ,  . . . , Sk, . . . , Sn for 1 5 i 5 n .  Next we look into the following three claims about locally 
optimal solutions. 

Claim 1. If an independent set I/'* V' is a locally optimal solution of G', it contaiils 
exactly one switch vertex ok and the vertices of the subgraph Gfk simulates the computation 

k -k of the circuit C for the input represented by the gate value pairs {v t ,  i$}, . . . , {un, vn}. 

Proof. Observe the following facts: 

(1) One of ok (0 < k < n) must be chosen in v'*. If not, we have a neighborhood 
solution by adding any ok to  V" and removing all vertices in u ~ ~ ~ v ' '  from Vt* .  This 
neighborhood solution results in positive gain more than 28N - n n - 2 .  27N, and since 
oo, . . . , on form the complete graph exactly one switch vertex is in v'* . 

(2) The  gate value pair 1x5, 25) represents either 1 or 0, i.e., exactly one of x:, 2: is in 
* If none of 25, i?: is in I/'*, we have a neighborhood solution by adding one of 
25, Z: t o  v'* and removing all adjacent vertices. This results in positive gain more 
than 27N - 26N. 

(3) All gate value pairs and gate triangles of Gfk represent the computations of NAND- 
gates. Let {vk, v k )  and {wk, wk} be the inputs and let Igf, g$} be the output  of a 
NAND-gate triangle {at, ,$, y;} as shown in Fig. 2 (c). Then exactly one of at , ,Ot, y,f 
(resp., g:, ijf )is in v'*. Consider the following two cases: 



Figure 2: The constructions of the graph G' simulating the FLIP. 



Case 1. None of a:, pjk, ?,k is in v'*: 

If vk or wk is not in V'*, we can add at or p,k to  Vf* and get weight 23(N-j)+3N+'. 
Otherwise, vk and wk are both in I/'*. Then we add yk to  V1* and get weight 
23(N-j)+3N+1 With loss a t  most 23(N-j)+3N. 

Case 2. None of gt, ijt is in v'*: 

If vk and wk are both in I/'*, we add g,k t o  v'* and get weight 23(N-j)+3N with 

loss less than 2 . 23(N-j-')+3N+'. Otherwise, we add gf to  v'* and also get 
positive gain. 

Claim 2. If a solution v'* is locally optimal and the selection switch ok is chosen in Vi*, 
the value represented by {xi, iEi} is the same as tha t  of {x i ,  2;) for 1 < i < n.  

Proof. As we mentioned above, the t ru th  values obtained by the gate value pairs in vJk 
represents the computation of C. Then we can show that  the value represented by {xi, li} 

is the same as that  of {xjC, ZjC}. If not, we can reach a new neighborhood solution with a. 

better cost as follows: 

Case 1. Suppose that  the value represented by the gate value pair {xh,  Zk} differs 
from that  of {xk, $1. For producing the better neighborhood solution, choose ,uk or 
jik tha t  is not adjacent to  the chosen vertex of the pair {x;,~;} and reject both xk 
and Zk with gain a t  least 22N - 2N. Then for the next better neighborhood solution, 
choose xk or Zk in the same way (and this implies tha t  both vf and fit are rejected) 
with gain 2N - 1. 

Case 2. Otherwise, neither v,k nor fit is not in V". For producing the better neigh- 
borhood solution, choose one of xi,  Zi in the same way as the choice of {x f ,  2;) and 
reject v!, G! for all 0 < j < n ,  then add v! or fij for all 0 5 j < n to  V" in the linear 
order. We get positive gain 1. 

Claim 3. If v'* is locally optimal, it  must include the selection switch oO, and the sequence 
of the values represented by {vi ,  pi}, . . . , {vi ,  fii} is the neighborhood solution of FLIP given 
by flipping the j-th bit for 0 < j < n (if j = 0, it means tha t  no flip occurs). 

Proof. If ok with k # 0 is chosen in v", we can reach a better neighborhood solution 
u ( o 0 ,  v'*). We simply choose oo and reject all in {ok , p k ,  jik} U vlk, then choose vertices 
in v'O by weight descending order. Since the value represented by {xi ,  zi} is the same as 

the previous input {x t ,  Zt} of G ' ~  from Claim 2, the new solution u(o0, Vf*) simulates the 
computation for the same input by I/''. Moreover, we obtain positive gain 1 by adding 
one of v t  , fit that  was rejected by {xk,  Zk} and {x i ,  z;}. I t  means the pairs {vj ,  6,") for 
0 < j < n represent the neighborhood solution. 

Now we are ready to  show tha t  an independent set v'* has no improved neighborhood 
solution only if the corresponding input of C has no better solutions, i.e., the solution of 
FLIP determined by V'* is a locally optimal solution. For v'*, we define a sequence of bits 
sl , . . . , s, as follows: If the pair {xi, Zi} represents 1, i.e., the vertex xi is in Vf*, then the 
i-th input si is 1; otherwise, si is 0. Suppose tha t  Vf* is a locally optimal solution for G' 
and the solution ( s l , .  . . , s,) of FLIP determined by the values of {xl ,  2'1, . . . , {x,, 2,) is 
not. Then we have a t  least one better neighborhood solution for C which can be obtained 
by flipping a single bit. Let ( s l , .  . . , S k ,  . . . , s,) be one of those improved solutions. Since we 



Figure 3: The  general form of a critical graph as connected components. 

have oo in v'* from Claim 3 and the value of {xi, iti} is the same as {xp, 2:) for all 1 5 i 5 n ,  
we can get a new better neighborhood solution (i(gk, V1*). We add uk t o  V" and reject all 
of v'O, then choose vertices in vfk by the weight descending order. At first for all 1 5 i 5 n 
we must chose vertices of { z t ,  2;) tha t  are not adjacent to  already chosen v,k, f i f ,  so the new 
solution v'* simulates the computation of the circuit with inputs (sl , . . . , Sk , . . . , s,). The  
vertices y f , .  . . , yk  simulates the cost of the solution ( s l , .  . . , Sk, . . . , s,) of C ,  so the solution 
u ( o k ,  I/") contributes more weights than V". This contradicts the local optimality of the 
solution V1*. C3 

Before we look into our main result, we review some notions from [lo] and [13]. A 
vertex c is called a cutpoint of graph if deletion of c separates the graph into a t  least two 
connected components. A subgrap h consisting of a resulting connected component toget her 
with c and the edges between c and the component is called a component relative to  c. 

For a connected graph H, we define the a-sequence c u ~  of H as follows. If H is 
not  biconnected, let c be any cutpoint of H and let H I , .  . . , Hj(,-) be connected com- 
ponents relative to  c. Then aC,H = (IHll, .  . . , IHj(,lI), where lHil represents the num- 

ber of vertices in Hi, and we assume IHII > . + > IHj(,-)l. Then a~ is defined by 
a~ = min{a,,HJc is a cutpoint of H } ,  where min is the minimum with respect t o  the lexico- 
graphic order on sorted lists of positive integers. Let c~ be any cut point with a H  = a , , ,~ .  

If H is biconnected, we define a H  = (IHI) and let c~ be any vertex. For a graph G 
with connected components G I , .  . . , Gt ,  the /?-sequence PG of G is ( a G l , .  . . , aGt),  where 
a G ,  > . . 2 a c t .  

Proof of Theorem 1. We PLS-reduce WGMIS G' to  WGM-n problem G .  There is a 
critical graph H such that  pH = IH' is a graph violating 5 7 ) .  pH, the /?-sequence 
of H ,  can be expressed as the sequence of connected components (aH,, aX,, . . . , a H t ) .  Let 
c be a cutpoint of IT1. Since the deletion of c produces a t  least two connected components 
if H1 is not biconnected, let I. be the largest connected component of H1 relative to  c and 
let Il be the  graph obtained by removing lo except c. I. has a vertex d ( f  c) such tha,t the 
distance between c and d is one. 



At first, we define the indices of vertices for graph lo and Il by assigning unique integers, 
for calculating the weight W .  Let 6(u,v)  be the distance between vertices u and v on the 
graph. For each graph lo and 11, the depth of the vertex v in I. is defined as 

b'(v) = min{b(v, c), b(v, d)), 

and the depth of v in Il is 
6'(v) = 6(v, c ) .  

We define the index ~ ( v )  of vertices based on the depth of v for both graphs lo and I1 as 
follows. No two vertices in I. (resp., 11) have the same index, and if two vertices v and u 
satisfy relation #(v) > 6'(u) then these vertices must satisfy relation r (v)  > r (u ) .  

Now we construct a graph G = (V, E ,  W )  for a given graph G' = (V', El, W') as follows. 
A copy of Il is attached to  each vertex u of G' by identifying u with c. Then each edge 
{u, v) in E' is replaced by a copy of I. by identifying u with c ,  and v with d.  Finally, 
independent graphs H 2 , .  . . , are added. 

Moreover, the weight function W is defined as follows. 

(1) If vertex v E V corresponds to  one of vertices of V', the weight W(v) is the same as 
WJ(v). 

(2) If vertex v is one of vertices of H z , .  . . , Ht,  the weight W(v) is some constant, for 
example, 1. 

(3)  Otherwise, vertex v corresponds to  one of I. or Il . In this case its weight is 2 r ( v )  4 I I V'l 1 ,  
where r (v)  is the index of v and I/V'/I is the total weight of the vertices in V'. 

The  linear order on V is given as follows: If v E V corresponds to  one of V', then the 
order of v is determined by the order on V'; Otherwise, the order is determined arbitrary. 

Finally, the mapping g of solutions calculates V" of G' as follows: if vertex v E V n V' 
of G is in V*, then the corresponding vertex v' of G' is in V"; otherwise vertex v' is not in 
v'* . 

For the  proof of the theorem, we have to  consider two cases. 

(i) T h e  critical graph H consists of only one connected component. 

(ii) The  critical graph H consists of a t  least two connected components. 

Case (i). First, we show the following claim. 

Claim. The  solution V" of G' induced by V* is locally optimal if V* is an optimal 
solution of G. 

We show tha t  all vertices in V - V' must be chosen in V* if i t  is an optimal solution. 
Suppose tha t  some u E V - V' is not in V*. Since there is a t  least one vertex which is 
adjacent to  u and weight a t  most W(u)/2,  we have an improved neighborhood solution 
U(u,  V*), tha t  adds u to  V* and rejects vertices of smaller weights than u.  

Now suppose tha t  V* is an optimal solution and the solution V" induced by V" is 
not. Then we have a t  least one better solution of G' rather than  V'*, so let U1(u', V'*) 
be such solution. We choose the vertex u in V corresponding to  u' for producing the new 



neighborhood solution, so all the vertices adjacent to  u are rejected. Therefore, we can add 
u E V t o  V*, and all other vertices corresponding to  the vertices added to  U f ( u f ,  v'*) will be 
added in the same manner. This  introduces a new improved solution of G, and contradicts 
the assumption. Thus the claim holds. 

Case (ii). If we have more than two connected components in H, we need a special 
restriction on the initial solution: the connected components H 2 , .  . . , Ht and subgraphs 
corresponding t o  HI are separated from each other, so we can not select all vertices from 
Hz, . . . , Ht if vertices of one of the copies of 10 U Il have completely included in V* . There- 
fore the initial solution which will be produced by the algorithm must have all vertices of 
H z , .  . . , Ht in V*. This condition is enough for this case. In the neighborhood structure 
of WGM-a we can reject only adjacent vertices, so the vertices of Hz ,  . . . , Ht will not be 
rejected. T h e  mapping of solution g is calculated by the vertices corresponding t o  the ver- 
tices of HI, so the restriction makes no affects to  PLS-reduction. The  same proof as Case 
(i) will be applied, and the mapping of solutions g is also the same as Case (i). 

4 Concluding Remarks 

Johnson e t  al. [5] conjectured tha t  every PLS-complete problem requires a P-complete local 
search procedure. Krentel [9] has disproved this conjecture by showing PLS-complete prob- 
lems with LOGSPACE local search procedures. Although the verification of local optimality 
of WGMIS is P-complete, we conjecture tha t  similar problems which use NC algorithms for 
the maximal independent set problem such as [3], [12], [6] instead of the lexicographically 
first maximal independent set are also PLS-complete. The  techniques for the reduction given 
here do not work directly with these NC local search procedures. We leave the completeness 
of the problem with NC local search as an open problem. 
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