
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Completeness of Dynamic Time-Bounded Derivation
for Locally Weak Reducing Programs

Shi, Yi-Hua
Department of Information Systems, Kyushu University

Arikawa, Setsuo
Research Institute of Fundamental Information Science Kyushu University

https://doi.org/10.5109/3138

出版情報：Bulletin of informatics and cybernetics. 24 (3/4), pp.93-109, 1990-08-22. Research
Association of Statistical Sciences
バージョン：
権利関係：

Completeness of Dynamic Time-Bounded Derivation
for Locally Weak Reducing Programs

Yi-Hua Shi
Setsuo Arikawa

August 22, 1990

Research Institute of Fundamental Information Science

Kyushu University 33

Fukuoka 81 2, Japan
E-mail: shi@rifisl .sci.kyushu-u.ac.jp Phone: 092(641)1101 Ext.4484

Completeness of Dynamic Time-Bounded Derivation
for Locally Weak Reducing Programs

Yihua S11i and Setsuo Arikawa

Department of Information Systems, Kyushu University 39,

Kasuga, Fukuoka 816, Japan

E-mail: shi@rifis.sci.kyushu-u.ac.jp

Abstract

In the logic programming, it is generally undecidable, whether or not a formula is
deducible from a program. In this paper, we discuss the relations between structure
of programs and termination of derivations, and show that the predicate symbols in a
program can be classified and stratified by a relation between them. We propose two
classes of logic programs called locally weak reducing and locaJly reducing programs.
We also give a new dynamic time-bounded derivation procedure, and prove the
completeness of this procedure for locally weak reducing programs.

1 Introduction

The termination problem of derivations in logic programming is generally unsolvable.

There are, however, some terminating or terminable subclasses of logic programs such

as hierarchical programs, and function-free logic programs. Unfortunately, they have not

enough power to express many practical programs. To enlarge the terminable classes,

some new classes such as reducing programs and weakly reducing programs have been

proposed [2].

This paper discusses the relations between clauses, programs and the termination

problem. Then, we propose two larger classes than that of weakly reducing programs

which are terminable and easy to write.

In Section 3, we consider the structure of programs, the finite termination and the

relation between them. We show that the predicate symbols of a program can be classified

and stratified in a natural way, and point out that a program is terminable if special parts

of it satisfy some syntactic conditions. Using these properties, in Section 4, we define

two new classes called locally weak reducing programs and locally reducing programs

which have less syntactic restrictions and are easy to write. In Section 5, we discuss the

termination problem for locally weak reducing programs. For this purpose, we provide

a dynamic time-bounded derivation procedure, and prove its completeness for locally

reducing and locally weak reducing programs. In Section 6, we compare our results with

the previous works. Then, we propose a use of the abstract base to simplify the operations

on programs and to make the derivations efficient. Furthermore, we describe the relations

between the dynamic time-bounded derivation procedure and the time-bounded reasoning

system[lO].

2 Basic Definitions

We first define some notions for our discussions. The other basic terminology and concepts

not defined in this paper may be found in [6].

A goal is a clause of the form "t Ll, L2, . . , L," (n > 1). A program clause is a

clause of the form "A t L1, L2,. . . , L,"(n 2 0). A program clause is called a fact if it is

of the form "A t", otherwise called a rule, where A is an atom and Li (i = 1,2, . . , n) is

a literal. A program is a finite set of program clauses. A program clause or goal is ground

if it does not contain any variable. We use the following notations:

pred(L) : the predicate symbol of the literal L.

B(P) : the Herbrand base of program P.

P S (P) : the set of predicate symbols in program P .

#(S) : the size of the set S, i.e., the number of elements in S.

We also use the concepts of breadth-first derivation (BF-derivation for short), deriva-

tion tree, and the depth of derivation tree as in Figure 1, where B t Al,. . . ,A, is a

clause, and A is an atom.

(a) BF-derivation (b) derivation tree for A

Figure 1: BF-derivation and BF derivation tree

The derivation tree of Figure 1 (b) is constructed by BF-derivations like Figure 1 (a).

We denote the depth of the derivation tree by the length of its longest branch, e.g., the

depth of derivation tree for A is 3 as shown in Figure l(b).

To describe the structure of programs, we need the following concepts.

Definition 2.1 Let P be a program. A binary relation Re1 on PS(P) is defined as

follows:

Re1 = {(p, qi) I A + LI , . . . , Lk E P ,p = pred(A), qi = pred(Li), 1 5 i 5 k)

Definition 2.2 Let p be a predicate symbol in program P.

is the set of the predicate symbols called an influence set of the predicate symbol p, where

Rel+ is the transitive closure of Eel.

For providing some syntactic restrictions for program clauses, we introduce the fol-

lowing notions:

o(x, A): the number of all occurrences of a variable x in an atom A.

var(A): the set of all variables in expression A.

An expression is either a term, a literal, a conjunction or disjunction of literals. The

size of an expression e, denoted by /el, is the total number of occurrences of variable

symbols, constant symbols, function symbols and predicate symbols in e. Note that

I7Al = IAl for negative literal 1A.

Now, we give an example to explain these concepts.

Example 2.1 Let PI be a program below:

where x, y, z are variable symbols, a is a constant symbol, f is a function symbol, and

f denotes a four-fold application of f . Then,

3 Program Clauses, Programs and Termination

As described in the introduction, there are some terminating programs, but their power

of expression is not strong. So we need some more powerful classes of logic programs.

However, there seems to be a tradeoff between the expressive power and the finite ter-

mination in logic programs. We consider this tradeoff from the viewpoint of relations

between termination and structure of programs.

The many researchers [lo , 12, 21 have discussed whether and when a derivation pro-

cedure can be terminated based on the sizes of Herbrand universe and base. The search

space will explosively grow with the increment of Herbrand base. I11 fact, its size may he

0(2"(~)). Thus, it is also necessary to discuss the relations between the search space and

the structure of programs. We need the following concepts.

Definition 3.1 A level mapping of a program P, denoted by 6, is a mapping from PS(P)

to positive integers which satisfies the following conditions for any A + L1, . . , L, E P
and any i (l 5 i 5 m):

(1) S(pred(A)) > S(p?7ed(Li)) if pred(A) 6 IS(p?*ed(Li)),

(2) 6(pred(A)) = G(pred(Li)) if pred(A) E IS(pred(Li)).

We refer to S(p) as the level of the predicate symbol p.

Definition 3.2 Let P be a program.

= {P I P E IS(p) and P E PS(P)),

R2(P) = {P I (P, q) E Rel+, q E IS(q), p $ Rl(P) and p € PS(P)),
S(P) = { P I p 6 Rl(P) U R2(P) and p € PS(P)}.

A predicate symbol is called simple, directly recursive, or indirectly 7-ecursive if it is

in S(P), Rl (P), or R2(P) , respectively.

Form Definition 3.1, trivially we have the following.

Proposition 3.1 For any program, there is a level mapping which satisfies the conditions

(1) and (2) in Definition 3.1.

Example 3.1 Consider the program Pl in Example 2.1. The predicate symbols in Pl ajre

stratified by Definition 3.1 as shown in Figure 2. By Definition 3.2, PS(Pl) is classified

into three subsets:

level

P .------------------. 5

Figure 2: The stratums of program Pl with level mapping

From the example above, the followings are observed: (1) The levels of predicate

symbols, which can reach each other, are the same, e.g., = S(p2) = 4, and S(p) =

6(q) = 6 (r) = 3. (2) The recursive calls can not occur between predicate symbols with

different levels. (3) The derivation for a goal may use only the predicate symbols whose

levels are less than or equals to this goal's. For example, only p, q, r , s , u, t are used to the

goal +p (- -) , and onlys,t ,p3 areused to +- s(.-). (4) If A. --+ Al i . - . --+ A,... is

a branch(path) of a BF-derivation tree, then S(p0) > 6(pl) 2 . . - > 6(pn). . and =

only when p;, pi+l are directly recursive, where pi = pred(Ai) (i = 1, . . , n, . . -).
The level mapping shows some strata of predicate symbols in a program, and such

a stratum structure shows some relations among predicate symbols in a program. We

can also see that the derivation for P U {+- L} uses only a part of program clazlses and

predicate symbols in the program P, that is, its influence set IS(pred(L)).

From Definition 3.2, S(P), Rl(P) and R2(P) are mutually disjoint and

A special attention should be paid to Rl (P), that is, to the recursive calls among

predicate symbols, since if there are no recursive calls in the program P, that is, R1 (P) =

q5, then the P is hierarchical and any derivation in such a program will terminate.

Proposition 3.2 Let P be a program, and t L be a goal. The derivation for PU {+- L)

terminates in a finite time if pred(L) E S(P) .

Proof. It is trivial, since one step of derivation for a simple predicate symbol decreases

the level of each subgoal by at least one, and the level of any predicate symbol is finite.

In this sense, the recursive call is a main cause that leads to the undecidability of the

derivation procedure. Therefore, only by restricting the recursive calls of directly recursive

predicate symbols to finite times, the termination of derivations is guaranteed. According

to such a stratification structure of programs and the classification of predicates, the search

space for deriving a goal can be reduced radically. Hence we can only pay attention to

some small parts of a program, that is, to the directly recursive predicate symbols.

4 Locally Weak Reducing Programs

Along the line discussed above, we introduce two new classes called locally weak reducing

programs and locally reducing programs.

Definition 4.1 A rule A +- L1,. . . , L, in a program P is locally weak reducing (local

reducing) if for any substitution 0 and any i = 1,. . . , n the following conditions (1) and

(2) hold:

(1) IAO1 2 (>) lLiOl if S(pred(A)) = 6(pred(L;)) and Li is a positive literal,

(2) 1 A01 > lLidl if S(pred(A)) = 6(pred(Li)) and Li is a negative literal,

where S is a level mapping of P.

Definition 4.2 A program P is locally weak reducing if every rule in P is locally weak

reducing. A program P is locally reducing if every rule in P is locally reducing.

Now we give the syntactic conditions that checks whether or not a program is locally

weak reducing (locally reducing).

Proposition 4.1 Let P be a program which contains at least one function symbol and

6 be a level mapping of P. A rule A t L1, . . . , L, in P is locally weak reducing (locally

reducing) iff the following conditions (a), (b) and (c) hold for any variable x in this rule

and any i in 6(pred(A)) = 6(pred(Li)) (1 5 i 5 n) .

(a) o(x7 A) 2 O(X, Li).

(b) IAl 2 (>) I Lil, if Li is a positive literal.

(c) IAl > lLil, if Li is a negative literal.

Proof. A similar proof can be found in [2].

We can see that the conditions (b) and (c) are independent of the presence of function

symbols. Therefore, also in case P contains no function symbols, we can similarly show

that a rule A t L1,. . . , L, in P is locally weak reducing iff the above conditions (b) and

(c) hold for any i in S(pred(A)) = S(pred(Li)), (1 5 i 5 n).

Example 4.1 The programs

- 1
are locally weak reducing. The derivation for P3 U {t p(a, b, c) } is obviously infinite.

5 Termination of Locally Weak Reducing Programs

Example 4.1 above shows that the derivations may be infinite even for locally weak re-

ducing programs. In order to discuss the termination problem for locally weak reducing

programs, we introduce a time-bound into the derivation procedure. The time-bounded

derivation will terminate the derivation within finite steps. The number of such steps is

called a time-function of the time-bounded derivation.

For the discussions in this section, we recall the concept of abstract graph [4] as

shown in Figure 3.

0 recursive node

0 unrecursive node

(a) the stratification of PS(P) (b) the abstract graph of P

Figure 3: The level mapping and the abstract graph

For rule A c L1, Lz, . . a , L, in P, we put arcs from p to qi (i = 1 ,2 , . . . , n) into the

graph, where p = pred(A) and qi = pred(Li). Then, we identify the strongly connected

components (SCCs) of the graph, which are the maximal sets of nodes that can reach

each other. The abstract graph of P is obtained by combining all nodes that are in R1 (P)
and also in the same SCC into a recursive node labeled a set of nodes of this SCC, and

eliminating arcs among them. Hence the abstract graph is acyclic. The abstract proof

graph of a node r is the maximal subgraph which can be reached from r. We refer to a

node as a leaf, if no nodes can be reached from it.

Proposition 5.1 (Knuth[5]) Let T(n) be the number of all ordered trees each of which

has n nodes. Then,

Now we can regard an atom as an ordered tree whose nodes are labeled by the

predicate symbols, function symbols, variable symbols, and constant symbols. Thus, the

number of atoms whose sizes are less than or equal to n is finite.

Proposition 5.2 Let P be a locally weak reducing program, N, be a recursive node of

abstract graph of P, II be the set of constant symbols and function symbols, and C be

the set of predicate symbols that occur in Nj. Then, the total number of atoms whose

predicate symbols are in N j and sizes 5 n + 1 is less than or equal to

Proof. We can look upon the constant symbols, function symbols, and predicate symbols

as the nodes of ordered trees. By using Proposition 5.1 and the results in Section 3, we

can prove this proposition straightforward.

In order to use the time-bounded derivation procedure, we need to calculate a time-

function for the goal and the program before the derivation starts. In this paper, we

estimate the time-function by the sizes of goals which appear in the derivation. However,

in the locally weak reducing and weak reduing programs, only the directly recursive

predicate symbols of rules satisfy the condition (a), (b) and (c) in Proposition 4.1, while

the simple predicate symbols and the indirectly recursive predicate symbols may not

satisfy them. Thus, the new variables may be introduced into the goals such as in Example

5.1 below. Furthermore, the un-ground goals(queries) are permitted.

Example 5.1 Consider a locally weak reducing program P3 given in Example 4.1. In

the derivation for P3 U { t p(a, b, c)), the goal t p(a, b, c) is ground, but with the rule

"s(x, IJ) +- pl (x, y, z)" , a new variable symbol z is introduced as in a subgoal c p, (a , b, r)
in Figure 4.

The sizes of goals which contain the variables can be changed by some substitutions

during derivations as shown in Example 5.2.

Figure 4: Introducing a new variable to subgoals

Example 5.2 Consider a locally weak reducing program P2 given in Example 4.1, and

consider the derivation for P2 U {+ p(x, y, z)} as shown in Figure 5. At the start of

derivation, the size of goal +- p(x, y, z) is 4. The rule p(x, y, z) t s(f 4(w), y) , p(y, z, x)

satisfies I P (x , y,z)l I I P (Y , 2, x)l and var(p(x, Y , 2)) = var(p(y, z, x)) = {x, y , 4, but
vur(s(f4(w), y)) # vur(p(x, y, z)). Thus, with the substitution {x := f4(w), y := g(f 4 (~)) } ,

the size of the goal +- p(g(f 4(w)), x, z) becomes 9.

Figure 5: An increase of the sizes of subgoals

As in the above example, tlie sizes of goals may increase or decrease during a deriva-

tion. Therefore, it is difficult to calculate the time-function exactly before the deriva-

tion starts, as described in [2]. In order to solve these problems, we need a dynamic

time-bounded derivation procedure that can check and modify the time-function while

deriving.

Now, we give an algorithm of such derivation procedure. It is constructed by adding

a counter to each goal and uses a deri~a~tion procedure which also cl~a~nges and checks its

values as we are showing in Figure 8(b). Although it only gives one solution of tlie goal,

we can easily modify it so as to give all solutions.

Algorithm 1: Dynamic Time-Bounded Derivation Procedure

Input: a goal c G and a program P

Output: a solution of the goal

procedure Derivation(P, G)

begin

ansl := DTBD(G, IGI, f (P, IGI));
if ans, = 0 then answer:="No"

else answer := G o ans,;

output answer;

end

procedure DTBD(G, I, d)

begin

counter := d;

if counter = 0 then return(0);

if no clause can be unified with G then return(0);

for every clause whose head can be unified with G do

/* Let R = A c B1, . . , B, and 0 = tini f ier(G, A)*/

if n = 0 then return(0) else

begin

for i := 1 to n do

if S(pred(A)) = G(pred(B;)) then

if 1 < IBiOI then

begin

0, := DTBD(B;O, 1 ~ ~ 0 1 , f (~ , p ie l))) ;
0 := 0 o dl

end

else

begin

O1 = DTBD(BiO, I, counter - 1);

0 : = 8 0 0 1
end

else

begin

01 = DTBD(Bi0, I-RiQI, f (p7 IBiel)));
0 := 0 o

end;

end

end

/* f is a time-function, and it is computed by Proposition 5.2,

o is the composition of unifiers, and assume 6 hold 10 o 0 1 = 10 o 0 1 = 0 for any

unifier. */

As described in Section 3, roughly a derivation for P U {+ L) can always be termi-

nated and gives the solutions after the Herbrand base of program P has been enumerated.

If we can show that, for any locally weak reducing program and any goal, the sizes of all

goals occurring in its derivation are less than a fixed value, then we can terminate the

derivation.

Let tl and t2 be terms which consist of constant symbols, variable symbols, and unary

function symbols. Assume var(tl) n var (t2) = 4. A substitution {x := t} is called "form

tl to t2" if the variable x is in t2, and in this case, we put an arc from tl to t2 as in Figures

6 and 7. Since 1x1 = 1 and It1 2 1, if a unifier of tl and t2 is form tl to t2 then ltll 2 lt21.

Thus, the direction of arcs is always from larger terms to smaller terms in the case of

unifications. By the definition of unification, the following properties hold:

Property 5.1 For any unifier 6 of tl and t2, ltlOj = It2BI = max(Itl1, It21).

Property 5.2 Throughout the derivation, the sizes of goals are unfixed, the sizes of

atoms in a rule are fixed, and the unifiers always from larger terms to smaller terms.

Proposition 5.3 For any goal t G, the dynamic time-bounded derivation procedure

Derivation(P, G) terminates in a finite time and gives a solution of G if P is a locally

reducing program.

Pro of. The dynamic time-bounded derivation procedure Derivation (G, P) calls the

recursive sub-procedure DTBD(G, 1, d), where + G is a goal, 1 is the current bou~id of

sizes, and d is a counter. If d is 0, then this sub-procedure terminates and returns 0 for

the goal.

Let Go, GI, . . be any path of BF-derivation tree for P U {+ Go} and 6 be a level

mapping. Consider the derivation for Gi. The counter is modified only in Lines (I) , (2)

and (3). If S(Gi) > S(Gi+1), then the DTBD in Line (3) is called and d is calculated

again. Since the level of the goal Gi is finite and Line (3) results in a decrease of the level

of the goal by at least one, Line (3) can be called only finite times. If 6(Gi) = 6(Gi+l)

and 1 2 IGi+ll, then the DTBD in Line (2) is called and counter d decreases by 1.

Since S(Gi) = 6(Gi+l) means that Gi and Gi+l may form a loop as described before, the

counter d is used to detect such an infinite loop by Proposition 5.2. If 6(G;) = 6(Gi+l)

and I < IGi+J, then the DTBD in Line (1) is called and the counter d is increased by

Proposition 5.2. Therefore, if we show the Line (1) is called only finite times, that is, 1 G; 1
is finite, then we can prove this proposition.

Let the above ~ a t h be abstractively corresponded to Al, Az, . , A, by the definition

of abstract tree. If any A; is not a recursive node, then the path terminates in a finite

time. Now, by using an induction on the number of recursive nodes, we prove that a.ny

path of BF-derivation for P U {+ G) terminates in a finite time, and does not affect the

correctness of the results.

For simplifying the proof, we assume only unary function symbols are in P.

(1) (Base step)

Assume there is only one recursive node in the path. Then, assume also 6(Go) >
6(G1) > . . > 6(Gn,-1) > 6(Gn,) = 6(G,,+l) = . = 6(Gn,) > 6(Gn,+1) >
Since the &(Go) is finite and 6(Gi) > O(i 2 I) , the path terminates in a finite time if

the length n2 - nl of the sub-path G,, , Gn,+l, . , G,, is finite.

With Proposition 5.2, if there exists a number k which bounds the sizes of all

subgoals in G,, , Gn,+l, , G,,, then n2 - nl is finite.

We classify the cases by the independency of terms and the unification of them.

Without losing the generality, we may assume G,, is t p(tl, . , tk) and

is a rule in P. Consider a unification of p(tl, . - , tk) and ~ (s , , . . . , sk).

Case (i): Both p(tl, . . , tk) and p(sl, . . , sk) are independent.

Figure 6: Three kinds of substitutions

t ~ e t tl and t z be two terms. Then they are independent if v a r (t l) n var (t2) = q5. A predicate
p (t l , . . , t k) is independent if ti and t j is independent for all i f j .

In this case var(si) n var(sj) = 4 and var(ti) n var(tj) = 4 for i, j(l 5 i , j 5
k , i f j) . Assume O1 is a unifier of p(tl, . . , tk) and p(sl,. . , sk). Then by Property

5.1 and Property 5.2, we have

Let p(ti, . . , t i) = p(rl, . . , rk)S1 and O2 be a unifier of p(ti, . . , t;) and p(sl, . . , sk).

Then,

Thus, the number ~ , k _ ~ rnax(lti1, lsil)+l bounds the sizes of all goals G,, , Gnlil, . . G,,.

Case (ii) : Either p(tl, . , tk) or p(sl, . . , sk) is independent.

Assume p(sl, . . . , sk) is not independent and var(si) nvar(sj) = {x). Then there

are three kinds of substitutions such as (a), (b) and (c) in Figure 6 t.

(a) if 0 = {y := f (x) ,z := h(x)), then by Properties 5.1, 5.2, we have

As discussed in the case (i), all the sizes of goals created by repeated uses of such

substitutions as Figure 6(a) are bounded.

(b) if 0 = {x := f (y) ,z := h(x)), then

since 1x1 5 If(y)l and 121 5 Ih(x)l 5 Ih(f(y))l. That is, the unifier may increase the

sizes of goals. However, at the same time, the number of variables decreases by 1 as

shown in Figure 6(b).

(c) Furthermore, since G,, , . . , G,, are directly recursive atoms, the numbers of

variables in them do not increase. According to Property 5.2, when the sizes of goals

increase to a finite value, the substitutions such as (b) can not be applied and only

the substitutions such as Figure 6(c) can, since the arc is always from larger terms

to smaller ones. Thus, the sizes of goals do not increase.

Case (iii): Neither p(tl, . . , tk) nor p(sl, . . , sk) is not independent.

As shown in Figure 7, they look like combinations of cases (i) ans (ii). Thus, by

a similar discussion to cases (i) and (ii), we can prove that the sizes of all suhgoals

G,, , G,,+l, . . . , G,, are bounded by a finite value.

t1n the figures, ti (x), s i (z) means the term t i , si containing the variable x, respectively.

13

Figure 7: Three kinds of substitutions

(2) (Induction step)

Assume the length of any path which contains rn recursive node iV,(i 5 nz) is
finite. Now we prove that the path which contains rn + 1 recursive nodes is finite.

The lengths of sub-paths in which levels of predicate symbols are lower than the

level of the recursive node Nm+l are finite, by the assumption of induction. Then,

by the same discussions as in (I) , the sub-path caused by the recursive calls of the

predicate symbols in is finite. Therefore, the length of any path whicli lias

rn + 1 recursive nodes is finite.

Finally, note that the above proof on unary function symbols is still valid in the

general case of the proposition, since a size of the term which contains n-ary function

symbols can be treaded as an n-ary predicate symbols such as p(tl, t 2 , . . . , t n) in the

above.

(a) The SLDNF derivation procedure (b) The dynamic time-b ouiided derivation procedure

Figure 8: SLDNF and DTBL)

Theorem 5.4 The dynamic time-bounded derivation procedure is sound and complete

for the locally reducing and locally weak reducing programs.

Proof. The soundness is trivial, since the dynamic time-bounded derivation procedure

is constructed by adding functions for size check of subgoals, calculation of time-function

and counting to the SLDNF-derivation procedure as shown in Figure 8.

The completeness can be proved immediately by Proposit ion 5.3.

Example 5.3 A program

is locally weak reducing. Figure 9 gives a successful derivation tree for Pq U {+ q (t l) }
which includes variables, and shows the number of variables decreases while the size of

goals increases.

Figure 9: A dynamic time-bounded derivation (1)

If a new rule ('p(x, y , z) + p(x, y , 2)" is added into P4, obviously the dynamic time-

bounded derivation procedure returns the solutions of the goal in a finite time, since this

rule will not change the sizes of subgoals.

Example 5.4 A program

is locally weak reducing. A goal t p(t17 t2, tY) with variables t l , t2, t3 produces a fail

derivation tree as in Figure 10. Hence the dynamic time-bounded derivation procedure

returns the answer ((NO" in a finite time.

fail

Figure 10: A dynamic time-bounded derivation (2)

6 Related Works

6.1 Weakly Reducing Programs

Arimura[2] has proposed the classes of reducing and weakly reducing programs, and

proved that the depth-bounded derivations is complete under the prefect model seman-

tics [Przymusinslti [7]] for the weakly reducing programs. In the reducing and weakly

reducing programs, however, all rules and all parts of a rule must satisfy the condition

of reducing or wealtly reducing, and also the goals (queries) must be ground. These

restrictions should be hard for practical applications.

We expect them to easily express our knowledge and to answer the general queries

with variables as well as to the L'yes"/L'no" (ground) queries. The locally weak reducing

programs and the dynamic time-bounded derivation procedure meet our expectations,

since they only put such restrictions on some predicate symbols and some small parts of

programs, but not to the whole, and permit queries with variables. Trivially, every wealtly

reducing (reducing) program is locally weakly reducing (locally reducing).

For a locally weak reducing program P and a goal +-- G, although the time-function

f (P, G) is not calculated before derivation starts, the dynamic time-bounded derivation

procedure can dynamically calculate the values of the time function using the sizes of

subgoals. The weakly reducing programs have a good property that they lteep all sub-

goals ground and reduce sizes with derivations. Furthermore, the dynamic time- bounded

derivation procedure is efficient for the weakly reducing programs such as in P6 below.

Example 6.1 Consider a weakly reducing program

To a goal t p(a, b, c , d), the time-bound[2] of its derivation is

Termination -* ~3(b),p(a,b),s(a,b,f(c),d)

Figure 11 : Termination of the dynamic time-bounded derivation

With the dynamic time-bounded derivation procedure, however, it can be teriniiiated

within 1 + 1 + 1 + N steps, where N is the number of terms whose sizes are less than or

equal to 1, so N = 6. Thus, DTBD terminates within 9 steps as shown in Figure 11.

This example shows the dynamic time-bounded derivation procedure is more efficient

than "static" time-bounded derivation procedure.

6.2 Locally Weak Reducing Program and TBR

In this section, we discuss relations between the time-bounded reasoning [9, 101 a n d

the dynamic time-bounded derivation procedure for the locally weak reducing programs.

Since the structures of first order predicate programs are complicated, we have introduced

abstract base to simplify them.

Definition 6.1 (Shi [lo]) Let P be a program. An abstract base A B is a set of atoms

AB = {ab(id, p, n, S1, S2, S3, S4) I p is an n-ary predicate symbol in P}

which expresses the relations among the predicate symbols in P, where

id is a natural number called an identifier of the knowledge,

S1 is the set of consequences of p,

S2 is the set of antecedents of p,

S3 is the set of foundations of p, and

S4 is the influence set of p.

With the abstract base, we can simplify the structure of a first order prograin to a

propositional program. Trivially,

p(. . .) is related to q(. . .) in P ===+ p is related to q in AB.

Since the calculations and operations on A B are much simpler than those on the original

P, we use it to record the abstract structure of the program P [9, 101.

Furthermore, the value of time-function may be very large for many goals as seen in

Proposition 5.2. In order to terminate the derivation in a finite time users can wait for,

the dynamic time-bounded procedure should be merged into the TBR system. Using the

AB, the procedure can be smoothly added to our TBR systern[9, 101. In these senses, the

locally weak reducing program and the dynamic time-bounded derivation procedure are

important in our time-bounded reasoning.

7 Conclusions

This paper has proposed two classes of locally reducing and locally weak reducing pro-

grams. We have paid attention to the recursive predicates, function symbols, variables

and the relations among them, and shown several conditions that may cause the infinite

loops. Furthermore, using them, we have presented a dynamic time-bounded deriva-

tion and proved its completeness for locally weakly reducing (locally reducing) programs.

Finally, we have compared our results with related ones, and shown that the dynamic

time-bounded derivation is efficient to process ground queries in the weakly reducing pro-

grams. On the other words, by the classification and stratification of predicate sylnbols

in programs, we can select a more accurate value of time bound. This is useful to raise

the efficiency of the derivation systems.

By the discussion about the functions, we have seen how the sizes of terms are

changed by substitutions of variables and functions. The discussion should be also valid

in understanding the relations between the function symbols and the stratum of programs.

References

[I] Arikawa, S., Shinohara, T., and Yamamoto, A., Elementary formal system as a

unifying framework for language learning. In Proc. of the Second Annual Workshop

on Computational Learning Theory. Morgan Kaufmann, 1989.

[2] Arimura, A., Completeness of depth-bounded resolution in logic programming. In

6th Conference Proceedings of Japan Society for Software Science and Technology,

1989.

[3] Cavedon, L., Continuity, consistency, and completeness properties for logic programs.

In Proc. of the Sixth International Conference on Logic Programming, 1989.

[4] Gelder, A.V., Negation as failure using tight derivations for general logic programs.

J. of Logic Programming, pp.109-133, 1989.

[5] Knuth, D.E., The Art of Computer Programming. volume 1, chapter 2. Addison

Wesley, second edition, 1973.

[6] Lloyd, J. W., Foundations of Logic Programming. Springer Verlag, second edition,

1987.

[7] Przymusinski, T., On the declarative semantics of deductive databases and logic

programs. In J. Minker, editor, Foundations of Deductive Databases and Logic Pro-

gramming. Morgan Kaufmann, 1988.

[8] Reiter, R., On closed world data bases. In H. Gallaire and J. Minker, editors, Logic

and Data Bases. Plenum, 1978.

[9] Shi, Y., The Principles of Time-Bounded Knowledge Base Management Systems,

Engineering Sciences Reports, I(2Jushu University, Vol.11, No.1, pp.77-84, June. in

Japanese, 1989.

[lo] Shi, Y., Arikawa, S., Time-Bounded Reasoning in First Order Knowledge Base Sys-

tems, In Proc. of the Logic Programming Conference '89, 1989.

[ll] Wikfram, D.A., Maher, M.J., and Lasezz, J.-L., A Unified Treatment of Resolution

Strategies for Logic Program. Proceedings of the Second International Conference of

Logic Programming, pp. 263-276, 1984.

[12] Yamamoto, A., Elementary formal system as a logic programming language. In Proc.

of the Logic Programming Conference '89, 1989.

About th@ Author

Yi-Hua Shi (9 --s) was born in Jiansu Province of
China on January 14, 1961. He received the B.S. degree from
Fudan University of China in 1982 and the M.S. degree from
Kyushu University in 1989. Presently, he is a graduate stu-
dent of Doctor Course in Information Systems, Kyushu Uni-
versity. His interests are in truth maintenance, reasoning and
nonmonotonic logic.

Setsuo Arikawa (8,h 1 HA) was born in Kagoshima on
April 29, 194 1. He received the B.S. degree in 1964, the M.S .
degree in 1966 and the Dr.Sci. degree in 1969 all in Mathemat-
ics from Kyushu University. Presently, he is Professor of Re-
search Institute of Fundamental Inforamtion Science, Kyushu
University. His research interests include algorithmic learning
theory, logic and inference in AI, and information retrieval
systems.

Research Institute of Fundamental Information Science, Kyushu University, Fukuoka 8 12, Japan.

