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Abstract

This is a survey on complexity issues of subgraph problems proved in a
systematic way. We deal with vertex-deletion and edge-deletion problems
which can be viewed as subgraph problems. General NP-completeness the-
orems are presented for these problems. We also present a systematized
result which shows polynomial time algorithms for these problems restricted
to series-parallel graphs. Another problem we consider in this paper is the
lexicographically first maximal subgraph problems which appear in connec-

tion with parallel complexity theory.

1 Introduction

A number of NP-complete problems have been shown in the literatures [8].
Most of these NP-complete problems are proved by giving reductions problem by
problem. On the other hand, there are approaches to systemitize their reductions
so that one need not prove the completeness individually.

Such systematized approaches have been very successful for subgraph problems
which are to find a specified subgraph from a given graph. Formally, for a property
7 on graphs (digraphs), the subgraph problem for 7 is described as follows:

Instance: A graph (digraph) G = (V, E).

Problem: Find a subgraph of G satisfying the property = if there is any such
subgraph.



Problems of this kind involves many important problems in combinatorial graph
algorithms. For example, the problem of finding a maximum independent set (or
clique) in a graph is a subgraph problem for m7=“no two vertices are adjacent”
(or m=“any two vertices are adjacent”) [4], [12]. The problem of computing a
depth-first search tree is also of this kind [24].

This paper surveys general results on the complexity of subgraph problems with
which we can determine their complexity simply by examining given properties.

This paper is organized as follows: Section 2 is for necessary definitions and
terminologies. In Section 3 we deal with vertex deletion and edge deletion problems
which can be formulated as maximum subgraph problems. We present important
results by [2], [1], [15], [28], [29], [27] which systematize NP-completeness proofs
for these problems. We also present an interesting result on linear time algorithms
for series-parallel graphs by [23]. Section 4 is concerned with the lexicographically
first maximal subgraph problems which can be solved by greedy algorithms. Based
on [19], we first present general P-completeness results analogous to the results on
NP-completeness. We also deal with a A%-completeness theorem which yields a

new series of Ab-complete problems [20].

2 Preliminaries

This section introduces some terminologies in graph theory ([9], [10]). Through-
out this paper, a graph and digraph mean an undirected graph and a directed graph,
respectively. Unless stated, all graphs and digraphs are simple except series-parallel
graphs, i.e., no parallel edges are allowed.

Let G = (V, E) be a graph (digraph). For a subset U of vertices, the induced
subgraph of U, denoted G(U), is the graph defined by G(U) = (U, E(U)), where
E(U) consists of edges whose endpoints are both in U. For a subset F' of edges,
the edge-induced subgraph of F, denoted G[F], is the graph defined by G[F] =
(V(F), F), where V(F) is the set of vertices appearing as endpoints of edges in F.

An edge e is said to be contracted in G if e and all of its parallel edges, if they
appear, are deleted and its endpoints are identified. A graph H is a contraction of
G if H can be obtained from G by a sequence of edge contractions. A graph H is
called a subcontraction of G if H is isomorphic to a contraction of some subgraph

of G.



Let G = (V, E) be a connected graph. An articulation point is a vertex v
of G whose deletion disconnects G. A connected graph G is called biconnected if
G has no articulation point. The biconnected components of G are the maximal
biconnected subgraphs of G.

A pair {u,v} of vertices is called a separation pair if there exist subgraphs
Hy = (W4, Ey) and H; = (Vs, E3) satisfying the following conditions:

(a) V=V1UVz and Vi NV, = {u,v}.

(b) E=E,UE,, EENE, =0, |Ey| > 2, |E,y] > 2.

(c) There are edges e; € E; and e; € E, such that there is a cycle in G
containing both e; and es.

A biconnected graph G is called 3-connected if it contains no separation pair.

The 3-connected components of G are the maximal 3-connected subcontractions of

G.

3 Vertex-Deletion and Edge-Deletion Problems

Many combinatorial graph problems can be formulated as vertex-deletion and
edge-deletion problems. This section surveys some very general NP-completeness
theorems on these problems. The importance of the results lie on the point that
they systematized NP-completeness proofs and released us from attacking each

problem individually.

3.1 Problems

Let 7 be a property on graphs (digraphs) such as “planar”. The vertez deletion
problem for 7 is the problem of finding a set of vertices of minimum size such that
deletion of these vertices together with the edges adjacent to them results in a
subgraph satisfying . Equivalently, the vertex deletion problem is to find a set U
of vertices of mazimum size such that the induced subgraph of U satisfies 7. By
this correspondence, the vertex deletion problem for 7 is also called the mazimum
induced subgraph problem for «.

Examples of graph (digraph) properties are listed below:

(1) Independent set (or null): No two vertices are adjacent.

(2) Clique (or complete): Every vertex is adjacent to all other vertices.



()

(6)

(10)
11

(13)
(14)

(15)

(16)

Planar: A planar graph is a graph which has a layout on the plane in
which no edges cross.

Outerplanar: An outerplanar graph is a planar graph with a planar layout
such that all vertices lie on the same face.

Bipartite: A bipartite graph is a graph G = (V, E) such that the vertex
set V is partitioned as V = N U M and every edge in £ has one endpoint
in N and the other in M.

Acyclic: Without any cycles. An acyclic graph is also called a forest. A
set of vertices whose deletion results in an acyclic graph (digraph) is called
a feedback vertex sei.

Maximum degree k: Every vertex is adjacent to at most & vertices.
Chordal: A graph G is chordal if for every circuit of length greater than
3 there is an edge joining two nonconsecutive vertices of the circuit. A
chordal graph is also called a iriangulated graph.

Line-invertible (or edge graph): A graph G is line-invertible if there is a
graph H = (V, E) such that G is isomorphic to the graph having F as a
vertex set and an edge set consisting of {e, e’} such that e and ¢’ share a
common endpoint in H.

Without cycles of length I: This property is for both graphs and digraphs.
Without cycles of length < [: This property is for both graphs and di-
graphs.

Transitive: A digraph G = (V) E) is transitive if (u,v) € E and (v,w) € £
implies (u,w) € E.

Symmetric: A digraph G = (V, E) is symmelricif (v,u) € E & (u,v) € E.
Antisymmetric: A digraph G = (V, E) is antisymmetric if (u,v) € E =
(v,u) € E.

Transitively orientable: A graph is transitively ortentable if there is an
assignment of directions to the edges such that the resulting digraph is
transitive. A transitively orientable graph is also called a comparability
graph.

Interval graph: A graph is an interval graph if there is a one-to-one

correspondence between the vertex set and a set of intervals such that



two vertices are adjacent if and only if their corresponding intervals have‘
nonempty intersection.

(17) Nonseparable: A graph G is nonseparable if it is connected, has more than
one vertex and has no articulation points.

(18) With a singleton k-basis: We say that a graph G has a singleton k-basis if
each connected component of G contains a vertex v such that every vertex
in the connectd component is of distance at most & from v.

(19) Eulerian: A graph is called Fulerian if there is a path which passes through

all edges exactly once.

The edge deletion problem for « is to find a set of edges of minimum size whose
deletion results in a subgraph satisfying #. As in the case of the vertex deletion
problem, the edge deletion problem can be regarded as the problem of finding a
set F' of edges of mimimum size such that the edge-induced subgraph of F' satisfies
7. We also call this problem the mazimum edge-induced subgraph problem for «.
However, there is a slight difference between the edge deletion problem and the
maximum edge-induced subgraph problem. Edge deletions may produce vertices
of degree 0 but every vertex of an edge-induced subgraph is of degree at least one.
But we confuse these problems since only differeces are on vertices of degree 0.

A number of graph problems can also be viewed as maximum edge-induced
subgraph problems. The followings are some examples: The maximum matching
problem is the case for r=“degree< 1”. The maximum cut problem is defined by
setting m#=“bipartite”. The Chinese postman problem is for 7=“Eulerian”.

The edge contraction problem for = is to find a set of edges of minimum size
whose contraction produces a subgraph satisfying 7. This problem is not exactly
a subgraph problem. But we deal with edge contraction problems since they are
deeply related to edge deletion problems.

To discuss the complexity issues on these problems, we consider the following

decision problems.

1. MAXIMUM INDUCED SUBGRAPH PROBLEM FOR =
Instance: A graph (digraph) G = (V, E) and an integer K < |V|.

Problem: Decide whether there is a set U of vertices with |U| > K whose

induced subgraph satisfies 7.



2. MAXIMUM EDGE-INDUCED SUBGRAPH PROBLEM FOR =
Instance: A graph (digraph) G = (V, E) and an integer K < |V]|.
Problem: Decide whether there is a set F' of edges with |F| > K such that
the edge-induced subgraph of F' satisfies =.

3. EDGE-CONTRACTION PROBLEM FOR =
Instance: A graph (digraph) G = (V, E) and an integer K < |V/|.

Problem: Decide whether there is a set F' of edges with |F'| < K whose

contracion results in a subgraph satisfiying .

3.2 General NP-Completeness Results
3.2.1 Vertex-Deletion Problems

The vertex cover problem, which is known to be NP-complete [12], is regarded
as the vertex deletion problem for 7 =“independent set”.

Krishnanmoorthy and Deo [13] showed that the maximum induced subgraph
problems are NP-complete for 17 explicit properties. For the NP-completeness
proofs, they developed a rather unified approach for reductions from the vertex
cover problem using forbidden subgraphs.

Then a more general NP-completeness theorem was obtained by Lewis and
Yannakakis [15]. We need some definitions for stating their result.

Let D be a class of graphs (digraphs). We say that a property = is nontrivial
on D if infinitely many graphs (digraphs) in D satisfy 7 and infinitely many graphs
(digraphs) in D violates w. A property = is said to be hereditary (resp., hereditary
on induced subgraphs, hereditary on contractions) if, whenever a graph G satisfies
7, all subgraphs of G (resp., induced subgraphs of G, contractions of G) satisfy «.
Obviously, if a property is hereditary, then it is hereditary on induced subgraphs. A
property 7 is called polynomial time testable if there is a polynomial time algorithm
deciding whether a graph (digraph ) G satisfies 7 or not.

The graph (digraph) properties of (1)-(16) in the above list are nontrivial,
herediatry on induced subgraphs and polynomial time testable. But the property

w="“transitively orientable” is hereditary on induced subgraphs but not hereditary.

Theorem 1 (Lewis and Yannakakis [15]) Let w be a property on graphs (digraphs).
If v is



1. nontrivial,
2. hereditary on induced subgraphs, and

3. polynomial time testable,
then MAXIMUM INDUCED SUBGRAPH PROBLEM FOR w is NP-complete.

If = satisfies the conditions of Theorem 1 for planar graphs, then the problem
whose instances are restricted to planar graphs is also NP-complete. Moreover,
for digraphs, the problem restricted to acyclic digraphs is NP-complete under the
same conditions on 7 for acyclic digraphs [15].

Theorem 1 covers a large number of, in fact infinitely many, NP-complete max-
imum induced subgraph problems. As we have seen that the properties (1)-(16)
of the list satisfy the conditions of Theorem 1, the corresponding maximum in-
duced subgraph problems are all NP-complete. Theorem 1 was proved by reducing
the vertex cover problem but requires different reductions according to graphs or
digraphs.

For properties which are not hereditary, the maximum induced subgraph prob-
lems need not be NP-complete. For example, the maximum induced subgraph
problem for © =“biconnected” is solvable in linear time [24].

The vertex cover problem allows a polynomial time algorithm by matching
technique if instances are restricted to bipartite graphs [14]. Hence the restriction
to bipartite graphs may make a problem easier. Yannakakis [27] analyzed the
complexity of maximum induced subgraph problems restricted to bipartite graphs.
He proved a very beautiful classification theorem exploiting complicated arguments.

For a graph G = (V, E) and a vertex u, the neighborhood N(u) of u is defined by
N(u) = {v | {u,v} € E}. Then let v(G) be the number of different neighborhoods
of its nodes, i.e., ¥»(G) = [{N(u) | v € V}|. Then for a property = on graphs we
define v(7) = sup{v(G) | G is a graph satisfying =}.

Theorem 2 (Yannakakis [27]) Let = be a nontrivial property on bipartite graphs
which is hereditary on induced subgraphs and polynomial time testable. Then MAX-
IMUM INDUCED SUBGRAPH PROBLEM FOR 7 restricted to bipartite graphs
18,

(1) if v(m) = oo, then NP-complete,
(2) if v(7) < o0, then polynomial time computable.
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Yannakakis [25] considered how the connectedness condition affects the com-
plexity of maximum induced subgraph problems.

MAXIMUM CONNECTED SUBGRAPH PROBLEM FOR r is, given a graph
(digraph) G and an integer K, to decide whether there is a subset U of vertices
with |U| > K whose induced subgraph is connected and satisfies =.

A property 7 is interesting on connected graphs if there are arbitrarily large
connected graphs satisfying 7.

The following result asserts that the connectedness does not affect the com-

plexity.
Theorem 3 (Yannakakis [25]) Let 7 be a property on graphs. If = is

1. hereditary on induced subgraphs,
2. nontrivial and interesting on connected graphs, and

3. polynomial time testable,
then MAXIMUM CONNECTED SUBGRAPH PROBLEM FOR © is NP-complete.

The same result is also shown for digraphs but we require the following addi-
tional condition [25]: There is a polynomial time algorithm which finds a digraph
of n vertices satisfying 7 for every n.

The property 7=“maximum degree 2 and acyclic” satisfies the conditions of
Theorem 3 and the connected graphs satisfying 7 are paths. Therefore, the problem

of finding a maximum induced path is NP-complete.

3.2.2 Edge-Deletion Problems

Yannakakis [27] showed that maximum edge-induced subgraph problems for
some properties on graphs and digraphs are NP-complete. He proved the NP-
completeness of the maximum edge-induced subgraph problems for the following
properties by giving reductions individually: (a) without cycles of specified length ,
or of any length < [, (b) connected and maximum degree k (k > 2), (c) outerplanar,
(d) transitive, (e) line-invertible, (f) bipartite, (g) transitively orientable.

It is natural to ask whether a result similar to Theorem 1 holds for maximum
edge-induced subgraph problems. It is well-known that the maximum matching

problem [14] and the Chinese postman problem [6] are solvable in polynomial time
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