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This is a survey on complexity issues of subgraph problems proved in a 

systematic way. We deal with vertex-deleti011 and edge-deletion problems 

which can be viewed as subgraph problems. General XP-completeness the- 

orems are presernted for these problems. We also present a systematized 

result which shoavs polynomial time algorithms f ~ r  these problems restricted 

to  series-parallel graphs. Another problem rve consider in this paper is the 

lelricographically first maximal subgraph problems which appear in connec- 

tion with parallel comple~ ty  theory. 

A number of NP-conlplete problems have been shown in the literatures [8], 

Most of these WP-complete problems are proved by giving reductions problem by 

problem. On the other hand, there are approaches to systemitize their reduczions 

so that one need not prove the completeness individually. 

Such systematized approaches have been very successful for subgraph problems 

irrhich are to find a specified subgraph from a given graph. Formally, for a property 

.;r on graphs (digraphs), the subgraph problem for a: is described as follows: 

Instance: A graph (digraph) G = (Ti, E ) .  

Problem: Find a subgraph of G satisfying the property .ir if there is any such 

subgraph. 



Problems of this kind involrres many important problems in combinatorial graph 

algorithms. For example, the problem of finding a maximum independent set (or 

clique) in a graph is a subgraph problem for ;?="no tm vertices are adjacent" 

(or ;?="any two vertices are adjacent") [4], 1123. The problem of computing a 

depth-first search tree is also of this kind 1241. 

This paper surveys general results on the complexity of subgraph problems with 

which we can determine their complexity simply by examining given properties. 

This paper is organized as follows: Section 2 is for Eecessary definitions and 

terminologies. In Section 3 we deal with vertex deletion and edge deletion problems 

which can be formulated as maxirnulrs subgraph problems. Uie present important 

results by [I], 1151, 1281, [29], 1271 which systematize NP-completeness proofs 

for these problems. We also present an interesting result on linear time algorithms 

for series-parallel graphs by [23]. Section 4 is concerned with the lexicographically 

first maximal subgraph problems which can be solved by greedy algorithms. Based 

on [19], we first present genera? P-completeness results analogous to the resuits on 

SP-completeness. &Ve also deal with a A$-completeness theorem which yields a 

new series of A;-complete problems [2O]. 

2 Preliminaries 

This section introduces some terminoiogies in graph theory (191, [I hi]). Through- 

out this paper, a graph and digraph mean an undirected graph and a directed graph, 

respecti~ely. Unless stated, all graphs and digraphs are simple except series-parallel 

graphs, i.e., no parallel edges are allo\ved. 

Let G = (V* E )  be a graph (digraph), For a subset U of vertices, the ind~cerl  

subgraph of k;; denoted G(U) ,  is the graph defined by G(U) = jU;E(U)) ,  where 

E(U) consists of edges whose endpoints are both in U ,  For a subset F of edges, 

the eidge-induced subgraph of F ,  denoted GIF], is the graph defined by G[F] = 

( V ( F ) ,  F ) ,  x~here V(F) is the set of vertices appearing as endpoints of edges in F .  

An edge e is said to be contracted in G if e and all of its parallel edges, if they 

appear, are deleted and its endpoints are identified. A graph 61 is a contraction of 

G if 61 can be obtained from G by a sequence of edge contractions. A graph H is 

called a subeontraction of G if H is isomorphic to a contraction of some subgraph 

of 6. 



Let G = (V- EE) be a connected graph. An articulation point is a vertex 2: 

of G whose deletion disconnects 6. A connected graph G is called biconnected if 

G has no articulation point. The biconnected components of G are the maximal 

biconnected subgraphs of 6. 

A pair (u, u )  of vertices is called a separation pair if there exist subgraphs 

HI = (VI7 E l )  and Hz = (x, E2j satisfying the following conditions: 

(a) V = K ti 14 and 1% fl I/a = ( u , v ) .  

(b) E = El U E2, El n E2 = @ ?  ]El/ 2 2, jE2/ 2 2. 

jc) There are edges el f El and e2 E E2 such that there is a cycle in G 

containing both el and e2, 

.4 biconnected graph G is called 3-connected if it contains no separation pair. 

The 3-connected components of 5: are the maximal 3-connected subcontractions of 

6. 

3 Vertex-Deletion and Edge-Deletion Problems 

Many cornbinatorial graph problems can 'be formulated as vertex-deletion and 

edge-deletion problems. This section sur-sreys some very general NP-completeness 

theorems on these problems. The importance of the results lie on the point that 

they systematized KP-completeness proofs and released us from attacking each 

problem individually. 

Let 7: be a property on graphs (digraphs) such as ""planar". The vertex deletio~z 

problem for n is the problem of finding a set of vertices of minimum size such that 

deletion of these vertices together tvith the edges adjacent to them resrrlts in a 

subgraph satisfying sr, Equivalently, the vertex deletion problem is to find a set U 

of vertices of mazimum size such that the induced subgraph of h; satisfies n. By 

this correspondence, the vertex deletion problem for n is also called the mazimum 

induced subgraph problem for T. 

Examples of graph (digraph) properties are listed below: 

(1) Independent set (or null): No two vertices are adjacent. 

(2) Clique (or complete): Every vertex is adjacent to all other vertices. 



(3) Planar: planar graph is a grapfi which has a layout on the plane in 

which no edges cross, 

Outerplanar: An outerplanar graph is a planar graph with a planar layout 

such that all vertices lie on the same face. 

Bipartite: X bipartite graph is a graph G = (v E )  such that the vertex 

set V is partitioned as V = 11- U and every edge in E has one endpoint 

in itr and the other In M .  

,4cyclic: SiTlthout any cycles. An acyclic graph is also called a forest. A 

set of vertices whose deletion results in an acyclic graph [digraphj is called 

a feedback vertex set. 

M a x i m m  degree X-: Every yereex is adjacen~ to at most k vertices, 

Chordal: A graph G is chordal if for every circuit of Length greater than 

3 there is an edge joining two nonconsecuti~~e vertices of the circuit. A 

chordal graph Is also called a triangulated graph, 

Line-invertible (or edge graph): A graph 6= is l ine-invertible if there is a 

graph H = (55 E )  such that G is isomorphic to the graph having E as a 

vertex set and an edge setconsisting of { e ,  el) such that e and ebshare a 

common endpoint in H .  

Withour cycles of length 1: This property is for both graphs and digraphs. 

J5'ithout cycles of lzilgth 5 I: This property is forboth  graphs and di- 

graphs. 

Transitive: A digraph G = (V, E) is transitive if (u ,  u) E E and (v, w) f E 

implies (u, ul) E E. 

Symmetric: A digraph G = (V: E )  is symmet r i c  if (v, u) E E H ( u , v )  E E. 

Antisymmetric: X digraph G = (V, Ej is un t i s ymmet r i c  if (u i  v) E E + 
6.. u) $! E. 

Transitively orientable: A graph is transitively orientable if there is an 

assigllnlent of directions to the edges such that the resulting digraph is 

transitiire. A transitively orientable graph is also called a comparability 

graph. 

Intersial graph: A graph is an interval graph if there is a one-to-one 

correspondence between the vertex set and a set of intervals such that 



two vertices are adjacent if and only if their corresponding intervals have 

nonempt y intersection. 

(17) Nonseparable: A graph G is nonsepamble if it is connected, has more than 

one vertex and has no articulation points. 

(18) With a singleton k-basis: 'CVe say that a graph G has a singleton k-basis if 

each connected component of G contains a vertex zi such that every vertex 

in the connectd component is of distance at  most L from v, 

('19) Eulerian: A graph is called Euberian if there is a path which passes through 

all edges exactly once. 

The edge deietion problem for 7; is to find a set of edges of minimum size whose 

deletion results in a subgraph satisfying T. As in the case of the vertex deietion 

problem, the edge deletion problem can be regarded as the problem of finding a 

set F of edges of mimimum size such that the edge-induced subgraph of F sa~isfies 

n-. 14% also call this problem the maximum edge-induced subgraph problem for T .  

However. there is a slight difference between the edge deletion problem and the 

maximum edge-induced subgraph problem. Edge deletions may produce vertices 

of degree O but every vertex of an edge-induced subgraph is of degree at least one. 

But -Eve confuse these problems since only diEereces are on vertices of degree 0.  

A number of graph problems can also be viewed as maximum edge-induced 

subgraph problems. The fo91o\vings are some examples: The maximum matching 

problem is the case for 7;="&gree< 1"- The maximum cut problem is defined by 

setting r='.bipartite7'. The Chinese postman problem is for ~="Eulerian". 

The edge contraction problem for T is to find a set of edges of minimum size 

whose contraction produces a subgraph satisfying ;r. This problem is not exactly 

a subgraph problem. But we deal with edge contraction problems since they are 

deeply related to edge deletion problems. 

To discuss the complexity issues on these problems. we consider the fotloiving 

decision problems. 

I. MAXIMUbI INDUCED SUBGRAPH PROBLEhf FOR x- 

Instance: A graph (digraph) G = (li, E) and an integer K 5 jV1. 

Problem: Decide whether there is a set U of vertices with IU/ 2 K whose 

induced subgraph satisfies T. 



2. MAXI%fVIUM EDGE-INDUCED SUBGRAPH PROBLEM FOR n 

Instance: A graph (digraph) G = (8 / ,  E )  and an integer K 5 IT//. 

Problem: Decide whether there is a set F of edges with IF1 2 K such that 

the edge-induced subgraph of F satisfies T .  

3. EDGE-CONTRACTION PROBLEM FOR sr 

Instance: A graph (digraph) G = (v E )  and an integer M 5 /If/, 

Problem: Decide whether there is a set F of edges with IF/ 5 K whose 

contracion results 4n a subgraph satlsfiylng T .  

3.2 General NP-Completeness Results 

3.2.1 Vertex-Deletion Problems 

The vertex cover problem, which is known to be NP-complete [12]; is regarded 

as the vertex deletion problem for n ="independent set". 

Krishna~moorthy and Deo 1131 showed that the maximum induced subgraph 

problems are NP-complete for 17 explicit properties, For the WP-completeness 

proofs, they developed a rather unified approach for reductions from the vertex 

cover problem using forbidden subgraphs. 

Then a Eore general NP-completeness theorem was obtained by Lewis and 

Yannakakis [25]. 1% need some definitions for stating their resul~. 

Let D be a class of graphs (digraphs). 6Ve say that a property T is ncantrizjial 

on Ca if infis,iteiy many graphs (digraphs) in D satisfy 7; and infinitely many graphs 

(digraphs) in D violates n. A property n is said to be hereditary (resp., hereditary 

on induced subgraphs, hereditary on eontraetions) if, whenever a graph &: satisfies 

T, all subgraphs of G (resp., induced subgraphs of G,  contractions of 6) satisfy n. 

Obviouslgi, if a property is hereditary, then it is hereditary on induced subgraphs. A 

property n is called polynomial time tesi'a65e if there Is a polynomial time algorithm 

deciding whether a graph (digraph ) e;' satisfies 7; or not. 

The graph (digraph) properties of (I)-(16) in the above List are nontrivial, 

herediatry on induced subgraphs and polynomial time testable. But the property 

x="transitively orientable'' is hereditary- on induced s~bgraphs  but not hereditary. 

Theorem I (Lewis and Yannakakis [15] ) Let n be n property on graphs (digraphs). 

1- x is 



I .  nontrivial,  

2- heredi tary o n  induced subgraphs, and 

3, polynomial  t i m e  testable, 

t h  e n  iMAXIil.fUil1 IiPkPkD UGED S UBGRA PH PR 0Bd;Eil.f FOR 7i- i s  NP-comple te  . 

If n satisfies the conditions of Theorem 1 for planar graphs, then the problem 

'L-vhose instances are restricted to planar graphs is also XP-complete, Moreover; 

for digraphs, the problem restricted to acyclic digraphis is NP-complete under the 

same conditions on T for acyclic digraphs 1151. 

Theorem 1 covers a large number of, in fact infinitely many, NP-complete max- 

imum induced subgraph problems. As we have seen that the properties (1)-(16) 

of the list satisfy the conditions of Theorem 1; the corresponding maximum in- 

duced subgraph prohiems are all XP-complete. Theorem 1 was proved by reducing 

the vertex c o x r  problem but requires different reductions according to graphs or 

digraphs. 

For properties which are not hereditary. the maximum induced subgraph prob- 

lems need not be NP-complete, For example, the maximum induced subgraph 

problem for .ir ='%biconnectedn is solvable in linear time 1241. 
T nhe vertex cover problem allows a polynomial time algorithm by matching 

technique if instances are restricted to bipartite graphs [14]. Hence the restriction 

to bipartite graphs may make a problem easier. Yannakakis 1271 analyzed tlie 

complexity of maximum induced subgraph problems restricted to bipartite graphs. 

Me proved a very beautiful classification theorem exploiting complicated arguments. 

For a graph G = E )  and a vertex u, the neighborhood N ( u )  of u is defined by 

,";i(u) = (v j (u, v) E E), Then let v(G) be the number of diEerent neighborhoods 

of its nodes, i.e., v(G) = :(ilti(u) u E V )  1 .  Then for a property 7; on graphs we 

define v ( ~ )  = supjs/(G) 1 G is a graph satisfying T). 

Theorem 2 (hnnakakis [a?]) Let  n be a nontrivial  property on bipartite graphs 

which is  heredi tary o n  induced subgraphs and  polynomial  t i m e  testable, T h e n  IWA~Y- 

I~l4l;;;pl JATD UCED SUBGRAPH PROBEElW FOR n restricted t o  bipartite graphs 

ZS, 

( 1 )  if  V ( T )  = x, t h e n  iVP-complete, 

( 2 )  if v( r )  < m, thelz polynomial t i m e  computaSle. 



Yannakakis 1251 considered how the connectedness condition affects the com- 

plexity of maximum induced subgraph problems, 

MAXI&IUhL CBNKECTED SUBGRAPH PROBLEW1 FOR n is, given a graph 

(digraph) G and an integer K ,  to decide whether there is a subset U of vertices 

with jU j 2 di' whose induced subgraph is connected and satisfies n. 

A property n is interesting on connected graphs if there are arbitrarily large 

connected graphs satisfying T .  

The following result asserts that the connectedness does not affect the com- 

plexity. 

Theorem 3 (Yannakakis 1251) Let n be a property on graphs. 1 f . p ~  2s 

1. hereditary on induced subgraphs, 

2. nontrivial and interesting on connected graphs, and 

3. polynomial time testable, 

then iWAXIIia/ICTi14 COlViVECTED S UBGRAPH PR OBLE-11 FOR T is iVP- co my le t e , 

The same result is also shown for digraphs hut we require the hilowing addi- 

tional condition - r251: - There is a polynomial time algorithm which finds a digrzph 

of n vertices satisfying n for every n. 

The property n="maximum degree 2 and acyclic" satisfies the conditions of 

Theorem 3 and the connected graphs satisfying .jr are paths, Therefore. the problem 

of finding a maximum induced path is NP-complete. 

3-2-2 Edge-Deletion Problems 

Yannakakis 1271 showed that maximum edge-induced subgraph problems for 

some properties on graphs and digraphs are YP-complete. Me proved the NP- 

completeness of the maximum edge-induced subgraph problems for the following 

properties by giving reductions indis~iduafly: (a) without cycles of specified Length I, 

or of any length < I, (b) connected and maximum degree k ( k  2 2 ) ,  (c) outerplanar. 

(d) transitive, (e) lime-invertible, (f)  bipartite, ( g )  transitively orientable. 

It is natural to ask whether a result similar to Theorem 1 holds for maximum 

edge-induced subgraph problems. It is well-known that the maximum matching 

problem [14] and the Chinese postman problem [6j are solvable in polynomial time 



but the maximum cut problem is NP-complete [12]. Hence the situation is rather 

different from the vertex deletion problems. However, !i7atanabe, Ae and Nakamura 

1281, 1291 have successed in proving a result analogous to Theorem 1. 

Let S be a set of graphs. T;tTe say that a property T is characterizable by for- 

bidden subgmphs (resp,, forbidden subcontractions, forbidden homeomorphic sub- 

graphs, forbidden induced subgraphs) in s" if a graph G satisfies .i; if and only if G 

has no subgraph isomorphic to (resp,, no subgraph homeomorphic to, no subcon- 

traction isomorphic to, no induced subgraph isomorphic to) any graph in S. A 

graph property is said to be jnitely ckaracterlzabke by 3-connected forbidden sub- 

contractions if there exists a finite nonempty set S of 3-connected graphs such that 

.;;r is characterizable by forbidden subcontractions in S. 

For example, the property .ir="planarn is characterizable by forbidden homeo- 

morphic subgraphs in , > . 
Theorem 4 (I$Tatanabe, -4e and Nakamra 1281, [29j) If.;?- be a nontrivial propert9 

on graphs which is finitely characterizable b y  3-connectedjorbidden subcontractions, 

then the foSlowirtg problems are iJTB-complete. 

( I i'MA XIiMLTM1I EDGE- IND GCED S UB GRrl PH PR OBLEiVI FOR .;;r . 
(2) EDGE C0A7TRA CTION PROBLE-W FOR .;p. 

Xsano and Hirata [2] improved Theorem 4 as follows: A property 7; on graphs 

is determined by the 3-connected components if a graph G satisfies .7; if and only if 

every 3-connected component of G satisfies T .  

It can be seen that if T is characterizable by 3-connected forbidden subcon- 

tractions then it is hereditary on sutgrapils and determined by the 3-connected 

components but the converse is not true, 

Examples of properties ir which are hereditary on subgraphs and determined 

Sy the 3-connected components are .i; ="planar" and T = "series-parallel". 

Tfiesrem 5 (Asano and Hirata [2]) Let n be a nontrivial property on gmphs 

which is hereditary, determined b y  the 3-connected components and polynomial time 

testable. Then the following problems are NP-complete. 

( I )  itfAXIhf UiW EDGE-IiYD UCED SliBGRAP6-I PROBLEM FOR .;;r . 
(2) EDGE CO:V;'TRA @TION PROBEEiM FOR T . 



Furthermore, Asano [I] extended the arguments in [28], [29] and showed thai 

the problem remains NP-complete even if instances are restricted to planar graphs. 

As to edge contraction problems, Asano [S] also showed that if a property .rr is 

nontrivial on connected graphs, hereditary on contractions, determined by the bi- 

connected components and polynomial time testable then EDGE-CONTR.4CTION 

PROBLEM FOR .z; is WP-complete. 

The following results due to El-hfallah and Coibournn i7] also covers quite large 

NP-hard families. 

Theorem 6 (El-Mallah and Cslboum [ S ] )  Let S be a set &?$ biconnected graphs 

with minimum degree at least 3. a property -jr is characterizable by forbidden 

homeomorphic subgraphs j~esp., forbidden subcontractions) in S ,  then ~%fAll11VIGlll 

mGE-II1;D UCED SUB 6R-4 PH PR CJBLE,M FOR T is iYP- hard, 

3.3 Restriction t o  Series-Parallel Graphs 

Most of NP-complete graph problems fall in P when instances are appropriately 

restricted. For example, the restriction to bipartite graphs alloivs the vertex cover 

problem a polynomial time algorithm. Such restrictions that make NP-complete 

problems solvable in polynomial time are found for each problem in the appendix 

of [8]. It is not our purpose of this paper to enumerate these restrictions but to 

show a class s f  graphs for which subgraph problems can be solved in polynomial 

time. 

Takamizaiva, Nishizeki and Saito [23] showed in a unified way that maximum 

induced subgraph and maximum edge-induced subgraph problems are linear time 

computable for series-parallel graphs. 

In this section we deals with graphs (digraphs) with muitiple edges since we 

consider series-parallel graphs. MTe say7 that t m  edges are series (resp., parallel) if 

they are incident to a vertex of degree 2 (resp., if they join the same pair sf distinct 

vertices). A series-par~klel graph is defined recursively as follows: 

{a) ,4 graph consisting of two vertices joined by two parallel edges is a series- 

parallel graph. 

jb) If G is a series-parallel graph, then a graph obtained by replacing any edge 

of G by series or parallel edges is a series-parallel graph. 



Theorem 7 (Takamizawa, Nishizeki and Saito (1982))  L e t  a be a pmper t y  o n  

graphs ckaracterizab17e b y  a finite number  of forbidden subgraphs (resp., forbid- 

den  induced subgraphs). Then t h e  m a x i m g m  edge-induced subgraph problem (resp., 

m a x i m u m  i.nd.ueed subgraph problenau) $or a is linear t i m e  computable for  series- 

parabled graphs. 

4 Problems Solvable by Greedy Algorithms 

Instead of finding a maximum size subgraphs, there is a way of finding a marc- 

imad subgraph satisfying a given property. One of the simplest ways of finding a 

maximal subgraph is to employ greedy methods. This section considers algorithms 

which finds the iesicographical%y fiibst maximal  srrbgrapizs. 

Let G = (If> EE) be a graph (digraphs) with V = ( 2 ,  ..., n ) .  The vertices in 

%/' are linearly ordered as 1 < . . . < n. For a hereditary property x, consider the 

foliowing greedy algorithm: 

begin J" G = (t: E )  is given, where V = {I, ..., n 3 * J  

U +- 8; 
for i c l to  n d o  

if the swbgraph induced by ti U (i) satisfies 7; 

then t U U {i) 

end 

ialgorithm 1: Greedy algorithm for maximal subgraphs 

The set, U of vertices computed by the above algorithm is the lexicographically 

first maximal set of vertices whose induced swbgraph of U satisfies T .  form ail-^., 

the lexicographic order on the set zV sf  ail subsets s f  V is defined as ICBL~OWS, where 

5' = {I, ..., n>: 

@ < ( i > < ( 1 , 2 ) < ~ - - < { 1 , 2  ,..., n ) < ( 2 ) < ( 2 , 3 ) < - - - < ( 2 , 3  ,..., n) 

< (3) < < (3 ,..., n) < - . a  < ( n -  1,n)  < ( n )  

For example, the lexicographically first maximal independent set is shown in 

Figure P as the gray vertices. 

Tile problem we consider is the following decision problem, where LF is an 

abbreviation for ""lexicogaphically first7' : 



B 1: The lexicographically first maximal independent set 

4. EF Md4XIbI;IAL SUBGRAPH PROBLEM FOR 7; (kFMSP(i;)) 

Instance: A graph (digraph) G = (V, E) and a vertex v ,  where T/ = 

51. ..., n>. 

Problem: Decide whether the vertex v is in the lexicographically first max- 

imal subset I: of vertices whose induced subgraph satisfies ;i., 

4.1 General P-Completeness Theorems for EFMSP(.ir) 

P denotes the class of sets accepted by polynomial time deterministic Turing 

machines. A set S is called P-complete [Ill if ( 1 )  S is in P and (2) every problem 

in P is log-space reducible to 5'. Another definition of P-completeness is given by 

NC-reducibility by [5] brat the difference is not important in this paper. Recently, 

P-complete problems have received considerable attensions since any P-complete 

problem does not seem to allow efficient parallel algorithms 151, [l8]. Some amount 

of P-complete problems are also reported [21j. 

Theorem 8 (Miyano j19j) Let T be a rroi.ztrivial property on graphs (digraphs) 

which is hereditary on induced sugraphs and polynomial time testable. Then LFikiSP(r) 

is P-complete. 

The above theorem also holds when the instances are restricted to planar (resp,, 

bipartite) graphs and T satisfies the conditions of Theorem 8 for planar (resp., 

bipartite) graphs. These results are proved by reducing the lexicographicaiy first 



maximal independent set problem restricted to planar (resp., bipartite) graphs 

which is P-complete [19]. 

Unfortunately, the lexicographically first maximal independent set problem 

restricted to planar bipartite graphs is not known to  be P-complete. By this reason, 

we need a new analysis for simultaneously planar and bipartite grzphs. Vv'e call 

a collection of disjoint edges independent  edges. 6't7ith an additional condition for 

independent edges, LFAlISP(.lr) restricted go planar bipartite graphs becomes P- 

complete, 

Theorem 9 (Miyano [I933 Let  7" b e a  anontrivial proper ty  on pbanar bipartite graphs, 

If7i is satisfied b y  all independent  edges,  herediiary on induced subgraphs and poiy- 

n o m i a l  t i m e  testable, t h e n  LFitfSP(x;?) i s  P-complete .  

By Theorems 8, 9, the problem of finding the maximal induced subgraph by 

Algirithm ? for many hereditary properties is seen to be P-complete: hence, hardly 

efficient iy parallelizaMe. 

When a linear order is given on the edge set as E = (el < ez < - < em), 

we can also consider the lexicographically Erst maximal edge-induced suhgraph 

satisfying a given property x. As we have seen in Secton 3, general NP-completeness 

results are known for 'the maximum edge-induced subgraph problems. But we 

do not know such general P-completeness results for the lexicographically first 

maximal edge-induced subgraph problems. The situation is rather diEerent from 

that of induced subgraphs. We have the following observakions: 

(4)  For the properties .?r=""acyclicn and n="'bipartite", the lexicographically 

first maxima9 edge-induced subgraph problems have eEcient parallel a]- 

gorithms. Hence they do not seem to be P-complete ji9j. 

42) For the property T= "without cycles of length k?' (k 2 3 ) ,  the lexicogsapin- 

ically first maximal edge-induced subgraph problem is P-complete 1191. 

( 3 )  For the property  maximurn urn degree 1": the problem is the iexics- 

graphically first maximal matching problem. This problem is shown CC- 

complete 6161. This fact implies that this problem may be neither P- 

complete and nor efficiently parallelizable, 



4% General A;-Completenes Theorem 

A typical nonhereditary graph property is 'konnected9'. Theorem 3 shows 

that the connectedness neither increases nor decreases the cornpiexit)- of many 

maximum subgraph pm"bems. However? the complexity of EFbISP(?;) changes 

drastically when the connectedness is added to the property. The class we consider 

here is .A; (also denoted pNP): which is the class of sets accepted by deterministic 

polynomial time oracle Turing machines using oracles in NP (see [el), This class 

obviously contains NP and cs-KP. 

Algorithm 1 computes the lexicographically first maximal set when the prop- 

erty ;r is hereditary on induced subgraphs. In general, for any property jr (not 

necessarily hereditary), the lexicographically first maximal set of vertices which in- 

duces a subgraph satisfying ?; is computed by the foilowing algorithm (Algorithm 

a): 

begin /" G = jni, E )  is given, where T J  = (1, ..., n )  */ 
t' + 8 ;  
for i t l to n 

if there exists a set W satisfying 

1. tv 2 uu (i) 
2. the induced subgraph of IV satisfies a 

then U + ti U 1;) 
end 

Algorithm 2: General LFLtlSPix) algorithm 

Again we consider the foilo~ving decison problem: 

5 .  LF MAXIAtAL CONNECTED SEBGRAPB PROBLEAI FOR ;r (LFMCSP(.ir)) 

Instance: A graph (digraph) G = (l7>',E) and a vertex v, where V = 

(I, ..., n>. 

Problem: Decide whether the vertex v is in the lexicographically first max- 

imal subset U whose induced subgraph is connected and satisfies ar. 

If ?; is polynomial time testable, it is easy to see that LF&ICSP(r) is in solvable 

by a deterministic polynomial time oracle Turing machine using the NP-oracle 



which decide the if-condition of Algorithm 2. Hence it is in A;. For this problem 

we also have a general completeness theorem. 

TVe say that a graph property sr is determined  by the blocks if for any graphs 

GI and Gz satisfying T the graph formed by  identifying any vertex of GI and any 

vertex of G2 ~ S B  satisfies T .  

Theorem PO (Miyano [%I]) Le t  .R be a nontrivial pmperty on graphs which is 

hereditary on induced sugrapks;  determined b y  the blocks and polynomiabtime testable.  

Then kFia,fCSP(r) i s  A;-complete. 

Theorem 10 is proved by reducing the deterministic satisfiability problem - 1221 - 

that was shown A;-complexe. 

One of the interesting properties not covered by Theorem 10 is 7 ;0= i ama~ i m~~m 

degree 2 and acyclic" for which the connected induced suhgraphs are paths. For 

the property TO, EFMg;lSP(xG) is also shown A:-complete by giving an individual 

reduction [18!. Hence a more general result seems to hold. 

For a property T. we d e h e  the diameter S ( T )  by sup{S(G) I G is a connected 

graph satisfying .R], where S(G) is the diameter s f  G. For example, G;(*'planar")=m, 

S(rro) = CQ and G( 6'ciiq~e'7)=1. By Theorem 8 EF%ItlCSP(LLciique") is P-complete. 

On the other hand, LFNGSP(x0) and LFMGSP(""planar1') (by Theorern 18) are 

A;-complete. By these observations, we conjecture the foilotving: 

Conjecture 1 If a property r is nontrivial on connected graphs and satisfies 

= m, then LFMCSP(rr) is A;-hard. 

Vi surveyed some general theorems for shon~ing completeness for NP) I' and A;, 

Since thousands of natural EP-complete problems have been reported, a siagle NP- 

complete problem may not be very attractive. However, the approaches presented 

in this paper cover a large class of problems in a systematic way. Hence the 

systematic approaches will increase importance in the analysis of complexity. 
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