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This is a survey on complexity issues of subgraph problems proved in a 

systematic way. We deal with vertex-deleti011 and edge-deletion problems 

which can be viewed as subgraph problems. General XP-completeness the- 

orems are presernted for these problems. We also present a systematized 

result which shoavs polynomial time algorithms f ~ r  these problems restricted 

to  series-parallel graphs. Another problem rve consider in this paper is the 

lelricographically first maximal subgraph problems which appear in connec- 

tion with parallel comple~ ty  theory. 

A number of NP-conlplete problems have been shown in the literatures [8], 

Most of these WP-complete problems are proved by giving reductions problem by 

problem. On the other hand, there are approaches to systemitize their reduczions 

so that one need not prove the completeness individually. 

Such systematized approaches have been very successful for subgraph problems 

irrhich are to find a specified subgraph from a given graph. Formally, for a property 

.;r on graphs (digraphs), the subgraph problem for a: is described as follows: 

Instance: A graph (digraph) G = (Ti, E ) .  

Problem: Find a subgraph of G satisfying the property .ir if there is any such 

subgraph. 



Problems of this kind involrres many important problems in combinatorial graph 

algorithms. For example, the problem of finding a maximum independent set (or 

clique) in a graph is a subgraph problem for ;?="no tm vertices are adjacent" 

(or ;?="any two vertices are adjacent") [4], 1123. The problem of computing a 

depth-first search tree is also of this kind 1241. 

This paper surveys general results on the complexity of subgraph problems with 

which we can determine their complexity simply by examining given properties. 

This paper is organized as follows: Section 2 is for Eecessary definitions and 

terminologies. In Section 3 we deal with vertex deletion and edge deletion problems 

which can be formulated as maxirnulrs subgraph problems. Uie present important 

results by [I], 1151, 1281, [29], 1271 which systematize NP-completeness proofs 

for these problems. We also present an interesting result on linear time algorithms 

for series-parallel graphs by [23]. Section 4 is concerned with the lexicographically 

first maximal subgraph problems which can be solved by greedy algorithms. Based 

on [19], we first present genera? P-completeness results analogous to the resuits on 

SP-completeness. &Ve also deal with a A$-completeness theorem which yields a 

new series of A;-complete problems [2O]. 

2 Preliminaries 

This section introduces some terminoiogies in graph theory (191, [I hi]). Through- 

out this paper, a graph and digraph mean an undirected graph and a directed graph, 

respecti~ely. Unless stated, all graphs and digraphs are simple except series-parallel 

graphs, i.e., no parallel edges are allo\ved. 

Let G = (V* E )  be a graph (digraph), For a subset U of vertices, the ind~cerl  

subgraph of k;; denoted G(U) ,  is the graph defined by G(U) = jU;E(U)) ,  where 

E(U) consists of edges whose endpoints are both in U ,  For a subset F of edges, 

the eidge-induced subgraph of F ,  denoted GIF], is the graph defined by G[F] = 

( V ( F ) ,  F ) ,  x~here V(F) is the set of vertices appearing as endpoints of edges in F .  

An edge e is said to be contracted in G if e and all of its parallel edges, if they 

appear, are deleted and its endpoints are identified. A graph 61 is a contraction of 

G if 61 can be obtained from G by a sequence of edge contractions. A graph H is 

called a subeontraction of G if H is isomorphic to a contraction of some subgraph 

of 6. 



Let G = (V- EE) be a connected graph. An articulation point is a vertex 2: 

of G whose deletion disconnects 6. A connected graph G is called biconnected if 

G has no articulation point. The biconnected components of G are the maximal 

biconnected subgraphs of 6. 

A pair (u, u )  of vertices is called a separation pair if there exist subgraphs 

HI = (VI7 E l )  and Hz = (x, E2j satisfying the following conditions: 

(a) V = K ti 14 and 1% fl I/a = ( u , v ) .  

(b) E = El U E2, El n E2 = @ ?  ]El/ 2 2, jE2/ 2 2. 

jc) There are edges el f El and e2 E E2 such that there is a cycle in G 

containing both el and e2, 

.4 biconnected graph G is called 3-connected if it contains no separation pair. 

The 3-connected components of 5: are the maximal 3-connected subcontractions of 

6. 

3 Vertex-Deletion and Edge-Deletion Problems 

Many cornbinatorial graph problems can 'be formulated as vertex-deletion and 

edge-deletion problems. This section sur-sreys some very general NP-completeness 

theorems on these problems. The importance of the results lie on the point that 

they systematized KP-completeness proofs and released us from attacking each 

problem individually. 

Let 7: be a property on graphs (digraphs) such as ""planar". The vertex deletio~z 

problem for n is the problem of finding a set of vertices of minimum size such that 

deletion of these vertices together tvith the edges adjacent to them resrrlts in a 

subgraph satisfying sr, Equivalently, the vertex deletion problem is to find a set U 

of vertices of mazimum size such that the induced subgraph of h; satisfies n. By 

this correspondence, the vertex deletion problem for n is also called the mazimum 

induced subgraph problem for T. 

Examples of graph (digraph) properties are listed below: 

(1) Independent set (or null): No two vertices are adjacent. 

(2) Clique (or complete): Every vertex is adjacent to all other vertices. 



(3) Planar: planar graph is a grapfi which has a layout on the plane in 

which no edges cross, 

Outerplanar: An outerplanar graph is a planar graph with a planar layout 

such that all vertices lie on the same face. 

Bipartite: X bipartite graph is a graph G = (v E )  such that the vertex 

set V is partitioned as V = 11- U and every edge in E has one endpoint 

in itr and the other In M .  

,4cyclic: SiTlthout any cycles. An acyclic graph is also called a forest. A 

set of vertices whose deletion results in an acyclic graph [digraphj is called 

a feedback vertex set. 

M a x i m m  degree X-: Every yereex is adjacen~ to at most k vertices, 

Chordal: A graph G is chordal if for every circuit of Length greater than 

3 there is an edge joining two nonconsecuti~~e vertices of the circuit. A 

chordal graph Is also called a triangulated graph, 

Line-invertible (or edge graph): A graph 6= is l ine-invertible if there is a 

graph H = (55 E )  such that G is isomorphic to the graph having E as a 

vertex set and an edge setconsisting of { e ,  el) such that e and ebshare a 

common endpoint in H .  

Withour cycles of length 1: This property is for both graphs and digraphs. 

J5'ithout cycles of lzilgth 5 I: This property is forboth  graphs and di- 

graphs. 

Transitive: A digraph G = (V, E) is transitive if (u ,  u) E E and (v, w) f E 

implies (u, ul) E E. 

Symmetric: A digraph G = (V: E )  is symmet r i c  if (v, u) E E H ( u , v )  E E. 

Antisymmetric: X digraph G = (V, Ej is un t i s ymmet r i c  if (u i  v) E E + 
6.. u) $! E. 

Transitively orientable: A graph is transitively orientable if there is an 

assigllnlent of directions to the edges such that the resulting digraph is 

transitiire. A transitively orientable graph is also called a comparability 

graph. 

Intersial graph: A graph is an interval graph if there is a one-to-one 

correspondence between the vertex set and a set of intervals such that 



two vertices are adjacent if and only if their corresponding intervals have 

nonempt y intersection. 

(17) Nonseparable: A graph G is nonsepamble if it is connected, has more than 

one vertex and has no articulation points. 

(18) With a singleton k-basis: 'CVe say that a graph G has a singleton k-basis if 

each connected component of G contains a vertex zi such that every vertex 

in the connectd component is of distance at  most L from v, 

('19) Eulerian: A graph is called Euberian if there is a path which passes through 

all edges exactly once. 

The edge deietion problem for 7; is to find a set of edges of minimum size whose 

deletion results in a subgraph satisfying T. As in the case of the vertex deietion 

problem, the edge deletion problem can be regarded as the problem of finding a 

set F of edges of mimimum size such that the edge-induced subgraph of F sa~isfies 

n-. 14% also call this problem the maximum edge-induced subgraph problem for T .  

However. there is a slight difference between the edge deletion problem and the 

maximum edge-induced subgraph problem. Edge deletions may produce vertices 

of degree O but every vertex of an edge-induced subgraph is of degree at least one. 

But -Eve confuse these problems since only diEereces are on vertices of degree 0.  

A number of graph problems can also be viewed as maximum edge-induced 

subgraph problems. The fo91o\vings are some examples: The maximum matching 

problem is the case for 7;="&gree< 1"- The maximum cut problem is defined by 

setting r='.bipartite7'. The Chinese postman problem is for ~="Eulerian". 

The edge contraction problem for T is to find a set of edges of minimum size 

whose contraction produces a subgraph satisfying ;r. This problem is not exactly 

a subgraph problem. But we deal with edge contraction problems since they are 

deeply related to edge deletion problems. 

To discuss the complexity issues on these problems. we consider the fotloiving 

decision problems. 

I. MAXIMUbI INDUCED SUBGRAPH PROBLEhf FOR x- 

Instance: A graph (digraph) G = (li, E) and an integer K 5 jV1. 

Problem: Decide whether there is a set U of vertices with IU/ 2 K whose 

induced subgraph satisfies T. 



2. MAXI%fVIUM EDGE-INDUCED SUBGRAPH PROBLEM FOR n 

Instance: A graph (digraph) G = (8 / ,  E )  and an integer K 5 IT//. 

Problem: Decide whether there is a set F of edges with IF1 2 K such that 

the edge-induced subgraph of F satisfies T .  

3. EDGE-CONTRACTION PROBLEM FOR sr 

Instance: A graph (digraph) G = (v E )  and an integer M 5 /If/, 

Problem: Decide whether there is a set F of edges with IF/ 5 K whose 

contracion results 4n a subgraph satlsfiylng T .  

3.2 General NP-Completeness Results 

3.2.1 Vertex-Deletion Problems 

The vertex cover problem, which is known to be NP-complete [12]; is regarded 

as the vertex deletion problem for n ="independent set". 

Krishna~moorthy and Deo 1131 showed that the maximum induced subgraph 

problems are NP-complete for 17 explicit properties, For the WP-completeness 

proofs, they developed a rather unified approach for reductions from the vertex 

cover problem using forbidden subgraphs. 

Then a Eore general NP-completeness theorem was obtained by Lewis and 

Yannakakis [25]. 1% need some definitions for stating their resul~. 

Let D be a class of graphs (digraphs). 6Ve say that a property T is ncantrizjial 

on Ca if infis,iteiy many graphs (digraphs) in D satisfy 7; and infinitely many graphs 

(digraphs) in D violates n. A property n is said to be hereditary (resp., hereditary 

on induced subgraphs, hereditary on eontraetions) if, whenever a graph &: satisfies 

T, all subgraphs of G (resp., induced subgraphs of G,  contractions of 6) satisfy n. 

Obviouslgi, if a property is hereditary, then it is hereditary on induced subgraphs. A 

property n is called polynomial time tesi'a65e if there Is a polynomial time algorithm 

deciding whether a graph (digraph ) e;' satisfies 7; or not. 

The graph (digraph) properties of (I)-(16) in the above List are nontrivial, 

herediatry on induced subgraphs and polynomial time testable. But the property 

x="transitively orientable'' is hereditary- on induced s~bgraphs  but not hereditary. 

Theorem I (Lewis and Yannakakis [15] ) Let n be n property on graphs (digraphs). 

1- x is 



I .  nontrivial,  

2- heredi tary o n  induced subgraphs, and 

3, polynomial  t i m e  testable, 

t h  e n  iMAXIil.fUil1 IiPkPkD UGED S UBGRA PH PR 0Bd;Eil.f FOR 7i- i s  NP-comple te  . 

If n satisfies the conditions of Theorem 1 for planar graphs, then the problem 

'L-vhose instances are restricted to planar graphs is also XP-complete, Moreover; 

for digraphs, the problem restricted to acyclic digraphis is NP-complete under the 

same conditions on T for acyclic digraphs 1151. 

Theorem 1 covers a large number of, in fact infinitely many, NP-complete max- 

imum induced subgraph problems. As we have seen that the properties (1)-(16) 

of the list satisfy the conditions of Theorem 1; the corresponding maximum in- 

duced subgraph prohiems are all XP-complete. Theorem 1 was proved by reducing 

the vertex c o x r  problem but requires different reductions according to graphs or 

digraphs. 

For properties which are not hereditary. the maximum induced subgraph prob- 

lems need not be NP-complete, For example, the maximum induced subgraph 

problem for .ir ='%biconnectedn is solvable in linear time 1241. 
T nhe vertex cover problem allows a polynomial time algorithm by matching 

technique if instances are restricted to bipartite graphs [14]. Hence the restriction 

to bipartite graphs may make a problem easier. Yannakakis 1271 analyzed tlie 

complexity of maximum induced subgraph problems restricted to bipartite graphs. 

Me proved a very beautiful classification theorem exploiting complicated arguments. 

For a graph G = E )  and a vertex u, the neighborhood N ( u )  of u is defined by 

,";i(u) = (v j (u, v) E E), Then let v(G) be the number of diEerent neighborhoods 

of its nodes, i.e., v(G) = :(ilti(u) u E V )  1 .  Then for a property 7; on graphs we 

define v ( ~ )  = supjs/(G) 1 G is a graph satisfying T). 

Theorem 2 (hnnakakis [a?]) Let  n be a nontrivial  property on bipartite graphs 

which is  heredi tary o n  induced subgraphs and  polynomial  t i m e  testable, T h e n  IWA~Y- 

I~l4l;;;pl JATD UCED SUBGRAPH PROBEElW FOR n restricted t o  bipartite graphs 

ZS, 

( 1 )  if  V ( T )  = x, t h e n  iVP-complete, 

( 2 )  if v( r )  < m, thelz polynomial t i m e  computaSle. 



Yannakakis 1251 considered how the connectedness condition affects the com- 

plexity of maximum induced subgraph problems, 

MAXI&IUhL CBNKECTED SUBGRAPH PROBLEW1 FOR n is, given a graph 

(digraph) G and an integer K ,  to decide whether there is a subset U of vertices 

with jU j 2 di' whose induced subgraph is connected and satisfies n. 

A property n is interesting on connected graphs if there are arbitrarily large 

connected graphs satisfying T .  

The following result asserts that the connectedness does not affect the com- 

plexity. 

Theorem 3 (Yannakakis 1251) Let n be a property on graphs. 1 f . p ~  2s 

1. hereditary on induced subgraphs, 

2. nontrivial and interesting on connected graphs, and 

3. polynomial time testable, 

then iWAXIIia/ICTi14 COlViVECTED S UBGRAPH PR OBLE-11 FOR T is iVP- co my le t e , 

The same result is also shown for digraphs hut we require the hilowing addi- 

tional condition - r251: - There is a polynomial time algorithm which finds a digrzph 

of n vertices satisfying n for every n. 

The property n="maximum degree 2 and acyclic" satisfies the conditions of 

Theorem 3 and the connected graphs satisfying .jr are paths, Therefore. the problem 

of finding a maximum induced path is NP-complete. 

3-2-2 Edge-Deletion Problems 

Yannakakis 1271 showed that maximum edge-induced subgraph problems for 

some properties on graphs and digraphs are YP-complete. Me proved the NP- 

completeness of the maximum edge-induced subgraph problems for the following 

properties by giving reductions indis~iduafly: (a) without cycles of specified Length I, 

or of any length < I, (b) connected and maximum degree k ( k  2 2 ) ,  (c) outerplanar. 

(d) transitive, (e) lime-invertible, (f)  bipartite, ( g )  transitively orientable. 

It is natural to ask whether a result similar to Theorem 1 holds for maximum 

edge-induced subgraph problems. It is well-known that the maximum matching 

problem [14] and the Chinese postman problem [6j are solvable in polynomial time 



but the maximum cut problem is NP-complete [12]. Hence the situation is rather 

different from the vertex deletion problems. However, !i7atanabe, Ae and Nakamura 

1281, 1291 have successed in proving a result analogous to Theorem 1. 

Let S be a set of graphs. T;tTe say that a property T is characterizable by for- 

bidden subgmphs (resp,, forbidden subcontractions, forbidden homeomorphic sub- 

graphs, forbidden induced subgraphs) in s" if a graph G satisfies .i; if and only if G 

has no subgraph isomorphic to (resp,, no subgraph homeomorphic to, no subcon- 

traction isomorphic to, no induced subgraph isomorphic to) any graph in S. A 

graph property is said to be jnitely ckaracterlzabke by 3-connected forbidden sub- 

contractions if there exists a finite nonempty set S of 3-connected graphs such that 

.;;r is characterizable by forbidden subcontractions in S. 

For example, the property .ir="planarn is characterizable by forbidden homeo- 

morphic subgraphs in , > . 
Theorem 4 (I$Tatanabe, -4e and Nakamra 1281, [29j) If.;?- be a nontrivial propert9 

on graphs which is finitely characterizable b y  3-connectedjorbidden subcontractions, 

then the foSlowirtg problems are iJTB-complete. 

( I i'MA XIiMLTM1I EDGE- IND GCED S UB GRrl PH PR OBLEiVI FOR .;;r . 
(2) EDGE C0A7TRA CTION PROBLE-W FOR .;p. 

Xsano and Hirata [2] improved Theorem 4 as follows: A property 7; on graphs 

is determined by the 3-connected components if a graph G satisfies .7; if and only if 

every 3-connected component of G satisfies T .  

It can be seen that if T is characterizable by 3-connected forbidden subcon- 

tractions then it is hereditary on sutgrapils and determined by the 3-connected 

components but the converse is not true, 

Examples of properties ir which are hereditary on subgraphs and determined 

Sy the 3-connected components are .i; ="planar" and T = "series-parallel". 

Tfiesrem 5 (Asano and Hirata [2]) Let n be a nontrivial property on gmphs 

which is hereditary, determined b y  the 3-connected components and polynomial time 

testable. Then the following problems are NP-complete. 

( I )  itfAXIhf UiW EDGE-IiYD UCED SliBGRAP6-I PROBLEM FOR .;;r . 
(2) EDGE CO:V;'TRA @TION PROBEEiM FOR T . 




















