SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Sufficiency of Operators Identification and
Inter-construction in Inverting Resolution

Zeng, chao
Department of Information Systems, Kyushu University

Arikawa, Setsuo
Research Institute of Fundamental Information Science Kyushu University

https://doi.org/10.5109/3131

HERIEZR : Bulletin of informatics and cybernetics. 24 (3/4), pp.111-120, 1990-04-03. Research
Association of Statistical Sciences
N—=I 3

HEFIBAMR

RIFIS-TR-CS-24

RIFIS Technical Report

Sufficiency of Operators
Identification and Inter-construction
in Inverting Resolution

Chao Zeng
Setsuo Arikawa

April 3, 1990

Research Institute of Fundamental Information Science
Kyushu University 33
Fukuoka 812, Japan

E-mail: ayumi@rifis.sci.kyushu-u.ac.jp Phone: 092(641)1101 Ext.4471

Sufficiency of Operators
Identification and Inter-construction
in Inverting Resolution

Chao Zeng and Setsuo Arikawa
Department of Information Systems
Kyushu University 39, Kasuga 816

March, 1990

Abstract

In this paper we give a formal definition of examples(or training instances) that
are widely used in the field of concept learning. Based on this definition, we discuss
the operators introduced by Muggleton[2] in Duce system, especially the sufficiency of
operators identification and inter-construction in the sense that for any given ground
definite program P we can give out a set of examples(named characteristic sample)
from which we can learn P using these two operators. For this purpose, we de-
fine the concept of unique definition for identification and inter-construction which
corresponds to the isolated reference defined by Muggleton[4] for absorption and
intra-construction. We also discuss the independence of Duce operators.

1 Introduction

Muggleton[2] has proposed a machine learning system Duce based on a propositional logic.
Duce can enrich the learner’s vocabulary by suggesting new descriptive terms(new interme-
diate concepts) to the user. For a practical use of such an inference system it is important
to evaluate the inference method used in the system[6]. We consider the sufficiency of
Duce operators as an evaluation criterion. Some operators uesd in Duce have been proved
sufficient for a class of logic programs in the other framework[4]. In this paper, we prove
that operators identification and inter-construction are sufficient for learning ground def-
inite programs from examples we are defining. We start with recalling the operators in
Muggleton[2] by examples. All the atoms in the examples below are ground.

1. Identification

P C T« a,bcde
C’1 :E(_—anb1p

U
P: T —a,bp
02 pi__cadae

The operator identification(Ident, for short) transforms P’ to P = (P'—{C})U{C,},
and Ident™! is called the inverse of Ident that transforms P to P’ = (P—{C,})U{C}.
There is a question whether there are other rules with head p in the rule base. If
there are not, the new rule C; is valid. Otherwise it will be verified by the oracle.
This is the same as that pointed out in [2] about absorption.

. Inter-construction

P': BB: By 1z «bcde
BZ y‘—aab)daf
U
P: CC: C; zecep?
CZ y"—a)f;p?
A: p? — b, d

Note here that p? indicates that p is a new predicate symbol, i.e., a new intermediate
concept, produced by the operator. The operator inter-construction(Inter, for short)
transforms P’ to P = (P’ — BB) U CC U {A} and Inter™', the inverse of Inter,
transforms P to P'=(P — (CC U{A})) U BB.

. Intra-construction

P': BB: By z«bcde
By, ze«abdf

4
P: CC: C; p?ece
C; pleaf
A: z «—b,d,p?

The operator intra-construction(Intra, for short) transforms P’ to P = (P’ — BB) U
CCU{A} and Intra~? , the inverse of Intra, transforms P to P' = (P—(CCU{A}))U
BB.

. Absorption

P C T« a,bcde
Ci pea,bc

4
P: C, peabec
Cs z—d ep

The operator absorption(Abs, for short) transforms P’ to P = (P’ —{C})U{C>} and
Abs™! the inverse of Abs, transforms P to P’ = (P — {C,}) U{C}.

. Truncation

P C; zeabcd
C; z+acef

4
P. C T a,c

Note that when we apply truncation, we must check whether the resultant rule C
conflicts with any other rule in the rule base.

6. Dichotomisation

P O Tz —a,bcd
Cy, -z ea,ce,f
Cé T a’ b) c?g

4

P: C z «— a,c,p?
Cy, -z e—a,c,p?
Cy p?ebd
Cy —p? —e, f
Cs —p?—b,g

The operator dichotomisation transforms P’ to P.

2 Sufficiency of Identificatin and Inter-construction

In this section, we define the concept of training instance set as the set of examples given by
user to learn the desired concept. We prove that we can learn any ground definite program
P from a particular training instance set, which is called characteristic sample of P, using
identification and inter-construction. Here we use the terminology in [1].

Definition 1 A ground atom is an atom not containing variables.

Definition 2 A definite clause is a clause of the form
h bl)bZ"”)bn

which contains precisely one atom (h) in its consequent. his called the head and by, by, + -+, b,
is called the body of the clause. A ground definite clause is a definite clause that all atoms
in it are ground.

Definition 3 A definite program is a finite set of definite clauses. A ground definite pro-
gram is a finite set of ground definite clauses.

Definition 4 We say that definite clause
pe—a€pP

defines the predicate symbol p in P, where « is a conjunction of atoms. Note here that «
may be empty.

Definition 5 Let E be a ground definite program.
An inverse derivation of E based on identificatin and inter-construction is a mixed sequence
of transformations by these two operators

EFE—-P—-.---— P,

from E into other definite program P,, and the P, is called an inverse derivative of E.

Definition 6 Let E be a ground definite program. We say that a definite program P is
learnable from E by identification and inter-construction if it is an inverse derivative of E.

Of course, from a ground definite program many different inverse derivatives may be
produced by different search strategies or different orders of operator applications. Here
we do not consider them but put stress on the existence of the desired inverse derivative.

Definition 7 Let P be a definite program and a predicate symbol p be defined by p « «
in P. We say that p is an intermediate (predicate) symbol in P if p occurs in the body of
some other clauses in P.

In order to show the sufficiency of identification and inter-construction we need to change
the definition of the example set because system based on just these two operators can not
learn any clause with nonempty body from the unit clauses. We now give a new definition
of examples, which should be more natural and usable than the original one in [3].

Definition 8 Let E be a ground definite program. We say that E is a training instance
set if E contains no intermediate symbols.

Example 1 Consider the following ground definite programs:

E: peaybed E': pea,byqg
q(_— a7c’6,f q(_. a,cie)f
p—2cgh pcg,h
g—e, f,l

E contains no intermediate symbols in it. Hence by the definition, E is a training instance
set. On the other hand, E’ contains an intermediate symbol ¢ in it. Hence it is not a
training instance set.

Definition 9 For a ground definite program E, we define
Duce(1dent,nter)(E)={P | P is an inverse derivative of E},

and call it an hypothesis space of F.

The Duce(dent, mter)(£) is an algorithm that produces all the inverse derivatives of the
input E, and it contains all the definite programs learnable from E. We are now in a
position to define those ground definite programs from which the desired definite program
is learnable. Clearly, for any definite program, such ground definite programs are not
unique.

Definition 10 Given a definite program P, we say that E is a characteristic sample of P
for algorithm Duce(rgent,Intery if E is a training instance set and P € Duce(rgent,inter)(E).

By the above definitions, now the sufficiency of identificatin and inter-construction be-
comes a question whether we can give out a characteristic sample E for any definite program
P. The answer will be proved yes.

Definition 11 If p « o is only the clause in definite program P that defines the predicate
symbol p then we say that P contains a unique definition of p.

Asin Example 1, £’ contains a unique definition of the predicate symbol q, but does not

E.
Remark 1 We use vocab(P) to indicate the set of all predicate symbols in P.

Remark 2 Let C; be a clause which contains p in its body and C; be a clause which
defines p. If Ident™! is applied to P 2 {Cy, C2} to produce P’ = (P — {C3}) U{C; * C,},
then the operator Ident™! reduces the number of clauses which define predicate symbol
p € vocab(P) by one. Note here that the number of clauses in P’ is equal to that in P.

Remark 3 Let A=p« « be the clause that uniquely defines p in P and CC be the set of
all clauses in P which contain p in their bodies. If Inter~! is applied to P D ({A}UCC)
to produce P' = (P — ({A} UCC)) U BB, then P’ will never contain the predicate symbol
p- Note also that the number of clauses in P’ is one less than that in P.

Now we can use the following algorithm Char(jgent, mmeer) to generate a characteristic sam-
ple of a given ground definite program P.

Algorithm Chargdent,Inter)(P)
begin Char(ldent,fnter)(P)

let 1:0,P0=P
until 7 is a training instance set do
if dJA € P, such that A is a unique definition of p in F,
then
P, is the result of applying Inter~! to remove
pin F;
else
P, is the result of applying Ident™? to remove
the definition A from P,
let i=i+1
done
Eis P,
return(E)

end Char(ident inter)(P)

We will prove that the output E is a characteristic sample of input P.

Example 2 Consider the following input definite program P:

5

P: p—a,b
a«—c,d,e,f
ce—r3s,t
ce— s, h

The algorithm Char(jgent, mter)(P) works as follows:

FPy=P: p e ab
a(—c,d,e,f
cer1s,t
ce—3s,h

At the first step, Py(i.e.,P) is not a training instance set. Hence we choose a « ¢, d, e, f as
A which is a unique definition of a. Then the algorithm uses Inter~! to remove predicate
symbol a in Py and produces

P pec,deb
¢t
ce s,h

P, is not a training instance set and clause ¢ « 7, 5,7 is not a unique definition of predicate
symbol c. Hence we choose ¢ « r,s,t as C; and p « ¢, d, e, b as C; which contains c in its
body. Then the algorithm uses Ident™! to remove ¢ « r, s, from P, and produces

Py pec,deb
p(_ris’t)d’e)b
ce— s,h

P, is not a training instance set and now ¢ « s, h is a unique definition of predicate symbol
c. Hence we choose ¢ « s,h as A which is a unique definition of a. Then the algorithm
uses Inter™! to remove predicate symbol ¢ in P, to get

Py pe s, hyc,deb
p(_r)s’tid’e’b)

which is a training instance set. Then the algorithm Charjaent, mnter)(P) terminates and
returns P; as the output E.

Essentially, the characteristic sample that the algorithm Char(jgens, imiery looks for is a
set of examples which contains only the clauses that are described by the low level fea-
tures(bodies) and the high level concepts(heads), but not by any intermediate concept(i.e.,
those predicate symbols appears in the body of some clauses and are defined by some other
clauses in the same program)[5]. Now we can use this algorithm to prove that there is a
characteristic sample for any ground definite program, and to generate it.

In the following, we apply the operators identification and inter-construction inversely
to derive and create all the clauses of the definite program from E. Of course, the search
method for the inverse derivation process is non-deterministic, to which we do not refer
any more in this paper.

Theorem 1 For any ground definite program P, the algorithm Char(raent,intery(P) termi-
nates, and E=Char(rgent, nter)(P) is a characteristic sample of P.

Proof First we prove that the algorithm Char(jgent, fneer)(P) terminates in a finite time.
Suppose p is an intermediate predicate symbol in P. Then the definition of p in P contains
at least one clause. Hence there are two cases to be considered:

1. If the definition A is a unique definition of p, then at the stage of then statement,
we can erase the occurrence of p.

2. If there are several definitions, then they will be removed one by one by the else
statement, and the last one will be removed by the above 1.

The processes 1 and 2 above may continue until P, becomes a training instance set. Then
the algorithm Char(jaent, inter)(P) terminates. Because P is a finite set of ground definite
clauses, the algorithm will terminate in a finite time.

Secondly we prove that E=Charjgens mmter)(P) is a characteristic sample of P. Since a
sequence of programs

P—-P—>---—>PFP,_,—-E=P,

from P to E is obtained, and Inter~! or Ident™! is applied in each step. Hence we have
Pe Duce(]dent’]nter)(E). By the termination condition, E is a training instance set. Then
by Definition 10, E=Char(gent, nter)(P) is a characteristic sample of P. Q.E.D

Theorem 2 Let P be a ground definite program, E = Char(igent, inter)(P) and P; be the
set of intermediate symbols in P. Then

| El=l PR

where | X |is the number of clauses in X and | E | is called the size of the characteristic
sample E.

Proof According to the Remark 2, Ident™! is applied to P D {C}, C3} to produce
Pl= (P —{C:}) U{C1 = Co},

but the number of clauses in P does not decrease. Hence | P’ |=| P |.
According to the Remark 3, Inter~! is applied to P D ({A} U CC) to produce

P=(P-({A}UCC))U BB,

and the number of clauses in P decreases by one. Hence | BB |=| CC |,and | P' |=| P | —1.

In the proof of Theorem 1, we have shown that the unique definition of an intermediate
predicate symbol in P is removed using Inter~!, and others are obtained by applying
Ident™!. If there are | P, | intermediate predicate symbols in P, then, until the algorithm
terminates, Inter™! must be applied | P, | times. Hence | £ |=| P | — | £ |. Q.E.D

Example 3 Asin Example 2, the algorithm applies Inter™ twice and hence | P |=4 and
| P; |=2. The returned value E has two clauses. Thus | E |=| Py |=2,and | £ |=| P | — |
P |=2.

From Theorem 1 and 2, we have seen that the size of example set for learning a definite
program is bounded by the size of the desired program. So when the given example set
is large enough, it may contain at least one characteristic sample of the desired definite
program. Thus it is theoretically guaranteed that by using the operators identification and
inter-construction we can learn the desired definite program.

3 Independence of Duce Operators

We have proved that operators identification and inter-construction also have the suffi-
ciency. For Duce system, Muggleton[2] gave out six operators in all. In this section, we
discuss the independence of some of them. We show that the operator truncation can be
replaced by inter-construction or intra-construction if we introduce some minute techniques
to the original system.

3.1 Replacing Truncation by Inter-construction

Since we restrict our discussion in propositional logic, we do not need to consider the
recursion. Hence we can assume the following condition in Duce system.

Condition: We suppose there is no recursion, that is, there is no such rule whose head
occurs in the body as a predicate symbol in the rule base. If there are such clauses,
we remove them from rule base.

Under this condition, we can call the oracle(user) to give the new concept an appropriate
name in the process of executing inter-construction to realize truncation as shown in the
following example.

Example 4 Consider the following example in Figure 1, where we want to learn P : z «
a, ¢ from

P: zea,bcd

T —a,c7,k

by using truncation, or using inter-construction instead of truncation.

P C z «—a,bc,d
== P: zeaqac

. t ti

Cl ¢ —a,c,j L (truncation)

U (inter-construction)

P. z b, d 27

. 77X
Cy ze3,k 27 = P: zea,c

(condition)

A 27 —a,c

Figure 1

As shown in the figure, we can get P : 2 « a, ¢ by an application of truncation. But we can
also get the same result in two steps, that is, at the first step inter-construction is applied.
Since inter-construction generates new concept, and at the second step the new concept
is given the name x depending on the oracle(user). Then, according to the condition, the
recursive clauses in the rule base are removed, and P: z « a,c is obtained. Note that, in
general, the operator inter-construction generates new concept, but when it is used as in
the above and it generates no new concept, it works just like truncation.

3.2 Replacing Truncation by Intra-construction

In order to replace truncation by intra-construction, we need to introduce to the system a
special predicate symbol T with the following condition.

Condition: When the T appears in the head of a clause, we remove the clause from the
rule base, and when T appears in the body, we remove T from it.

Under this condition; we can call the oracle(user) to give the new concept the name T
appropriately in the process of executing intra-construction to realize truncation as shown
in the following example.

Example 5 Consider the following example in Figure 2, where we want to learn P : z «
a,c from
| P: =z« a,bcd
T« a,c 5,k

by using truncation, or using intra-construction instead of truncation.

P C T« a,b,c,d
= P: z«aqa,c
01 s —a, C,j, k (truncation)

U (intra-construction)

P: G 2?7 —b,d

. z?<T
Cy, 27«3,k = P: z+a,c
(condition)
A T —a,cz?
Figure 2

As shown in the figure, we can get P : z « a,c by an application of truncation. But we can
also get the same result in two steps, that is, at the first step intra-construction is applied.
Since intra-construction generates new concept, and at the second step the new concept
is given the name T depending on the oracle(user). Then, according to the condition,
‘the clauses with the special predicate symbol T in their heads and the occurrence of T
in the body are removed, and P: z « qa,c is obtained. Note also that, in general, the
operator intra-construction generates new concept, but when it is used as in the above and
it generates no new concept, it works just like truncation.

9

Thus the operator truncation is not necessary for Duce system, but it contributes to
make the system more efficient. As known from the examples in [2], the tuncation operator
reduces more symbols than the other operators.

4

Conclusion

In this paper, we have discussed the sufficiency of operators identification and inter-
construction based on a new definition of training instance set. Although we have not
discussed the operators absorption and intra-construction based on the new definition, a
similar result may be obtained for them. As a future work, we are considering the same
questions in the framework of first-order logic.

References

(1]

2]

J.W .Lloyd (1987): Foundations of Logic Programming. Springer-Verlag, Germany
(Second Version).

S.Muggleton (1987): Duce,an oracle based approach to constructive induction. In
IJCAI-87,Kaufmann,pp.287-292.

S.Muggleton and W.Buntine (1988): Towards Constructive Induction in first-order
predicate calculus. Turing Institute working paper.

S.Muggleton and W.Buntine (1988): Machine Invention of first-order predicates by
inverting resolution.In Machine Learning 5 ,Kaufmann,pp.839-352.

L.M.Fu and B.G.Buchanan (1985): Learning Intermediate Concepts in Constructing
a Hierarchical Knowledge Base.in Proceedings of the Ninth International Joint Con-
ference on Artificial Intelligence.Los Altos, CA:Kaufmann,(1985),pp.650-658.

D.Angluin and C.H.Smith (1983): Inductive Inference: Theory and Methods. in ACM
computing Surveys 15,237-269.

R.S.Michalski (1983): A Theory and Methodology of Inductive Learning.in
R.S.Michalski, J.G.Carbonell, and T.M.Mitchell, (Eds.),Machine Learning. Palo
Alto:Troga.

10

About the Authors

Chao Zeng (2 i#8) was born in Guizhou
Province of China on February 14, 1965. He received
the B.S. degree from Zhongshan University of Chi-
na in 1985. Presently, he is a graduate student of
Master Course in Information Systems, Kyushu
University. His research interests are in machine
learning and logic programming.

Setsuo Arikawa (F JI[#fiX) was born in Kagoshi-
ma on April 29, 1941. He received the B.S. degree in
1964, the M.S. degree in 1966 and the Dr.Sci. degree
in 1969 all in Mathematics from Kyushu University.
Presently, he is Professor of Research Institute of
Fundamental Inforamtion Science, Kyushu Univer-
sity. His research interests include algorithmic
learning theory, logic and inference in Al, and in-
formation retrieval systems.

Research Institute of Fundamental Information Science, Kyushu University, Fukuoka 812, Japan.

