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Decision Problems for the Intuitionistic Logic

without Weakening Rule

Eiji Kiriyama and  Hiroakira Ono

Abstract. This paper treats decision problems for the intuitionistic logic without weak-
ening rule FL... First, the cut elimination theorem for FL,. will be shown. Using this fact
and Kripke’s method, it will be proved that the propositional FL. is decidable. On the
other hand, the predicate FL.. will be shown to be undecidable by reducing the decision

problem to that of the intuitionistic predicate logic.

1 Introduction

In recent years, various studies have been done concerning logics lacking some or all
of structural rules. (For more information, see [7].) This paper will be devoted to study
of the decision problem of the logic FL,., which is obtained from the intuitionistic logic
by deleting the weakening rule. The decidability of the propositional FL.. will be shown
by using a method originally developed for relevant logics. Next, the undecidability of the
predicate FL. will be proved by reducing its decision problem to that of the intuitionistic

predicate logic.

It is well-known that both the classical and the intuitionistic predicate logics are un-
decidable, while their propositional fragments are decidable. On the other hand, it was
shown that predicate logics lacking some structural rules are decidable when they have no
contraction rule (see [5]). The standard way of proving these results is to show the cut
elimination theorem, in the first place. Suppose that the cut elimination theorem holds
for a logic L, which does not have the contraction rule. Then, it can be shown that every
cut-free proof has such a property that each upper sequent of a given rule of inference is

simpler than its lower sequent. From this fact it follows that every decomposition-tree of a
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given sequent is finite, and that the number of its decomposition-trees is also finite. This
gives us a procedure of deciding whether a given sequent is provable in L or not.

On the other hand, when a given logic L contains the contraction rule but not the weak-
ening rule, some difficulties will occur, even if L is a cut-free propositional logic. Recall
here that in the case of the classical and the intuitionistic propositional logics, the usual
procedure relies on the fact that we can restrict the number of occurrences of a formula
in a given sequent, by virtue of the existence of both contraction and weakening rules. To
overcome the difficulty, Kripke[6] introduced a new method of showing the decidability,
which was extended later to that of relevant logics by Belnap and Wallace [1] (see also [3]).

In §2, we will first show the cut elimination theorem for FL... Then, by applying the
similar method to Kripke’s one mentioned in the above, the decidability of the propo-
sitional FL. will be proved. In §3, we will give a translation of a given sequent of the
intuitionistic predicate logic LJ into a sequent of the predicate FL.., by using the idea
mentioned in the paper [7, §3] by the second author. Making use of this translation, we
can reduce the decision problem of the predicate FL.. to that of LJ, which is known to be

undecidable.

Authors would like to express their gratitude to Prof. S. Arikawa for his constant

encouragement.

2 Decidability of the propositional logic FL,.

In this section, we will prove that the propositional part of the logic FL.. is decidable.
Roughly speaking, the logic FL.. is obtained from the intuitionistic predicate logic by
deleting only the weakening rule. Our language contains logical connectives D, V, A, &,
quantifiers 3,V, and logical constants 0, 1, L. To simplify our subsequent discussion, we
will adopt the multiset notation in the definition of sequents. Here, we say two multisets
I' and A are equal, when I" and A have the same members with the same multiplicity.
In other words, two multisets { A;,---,A,, } and { By,---,B, } are equal, if m=n
and the sequence By,---, B, is obtained from A;,.--,A,, by permuting them. Now,
a sequent of FL.. is an expression of the form I' — A, where T' is a finite (possibly

empty) multiset of formulas and A is a formula (possibly efnpty). We will sometimes

write ' = B as Ay,---,A,, > B,when I'={ Ay,---,A,, },and { Cy,---,C, } UA - B



as Cq,---,C,,A — B.

Initial sequents and rules of inferences of FL.. are defined as

follows (C may be empty in the following):

Initial sequents:

1) A—-A,
2) 0,I'->C,
3) —1,
4) 1—
Structural rules:
L (i) F=r(Lw)
%ﬁlfxrj_)cg(contraction) L _)fflAA_’)AC_) C(cut)
Logical rules:
ATl' - B r- A BA->C
r=458(°) ASBT,ASC (P)
Al'-C B, I'->C
rSsHop- v VBT ST (V)
rSAavp(— V2)
r>A I'>B AT — C
TSAAE (N AABT ST =)
B,I' - C
ANBT SO =)
A B, I'->C
ST (- Y atBr=0 )
' = F(t) F(a),I' - C
I' - dzF(z) (=3) dzF(z),[ — C'(Ei ~)
I - F(a) F@),I' - C
S var@) ) Vel (2),T > O )

In the above, t is any term, and «a is any variable satisfying the eigenvariable condition.

We remark that we can dispense with the exchange rule, as we adopt the multiset notation.
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Theorem 2.1 The cut elimination theorem holds for FL,..

Proof. Our theorem can be obtained by modifying slightly the standard proof of the
cut elimination theorem for LK (see e.g. [8]). To prove this theorem we introduce a new

rule of inference, called the weak-miz rule;

' A4 A-=C
LA* - C

Here, A must contain at least one A, and A* is a multiset obtained from A by deleting
at least one occurrence of A in it. Notice that A* is not necessary the multiset obtained
from A by deleting all occurrences of A in it. Therefore, A* may contain some A’s. The
formula A is called the weak-miz formula of the above weak-mix rule.

It is clear that the cut rule is a special case of the weak-mix rule. On the other hand,
each application of the weak-mix rule can be replaced by the cut rule, with the help of
the contraction rule.

Thus, to show our theorem, it is enough to prove that if a sequent is provable in FL,.
(using some weak-mix rules in place of cut rules) then it is provable without a weak-mix
rule. As usual, this can be obtained by showing that if a proof of a sequent S contains
only one weak-mix, occurring as the last inference, then S is provable without a weal-mix.
In fact, we can carry out the proof, by using double induction on the grade and the rank

of a proof and considering the following four cases:

(1) Either I' = A or A — C' is an initial sequent.
(2) Either I' = A or A — C is a lower sequent of a structural rule.

(3) BothT'— A or A — C are lower sequents of some logical rules such that principal

formulas of both rules are just the weak-mix formula.

(4) Either I' - A or A — C is a lower sequent of a logical rule except Case (3).

O

We will show next that the propositional logic FL.. is decidable by applying the above
result. We will use a method which is popular among relevant logicians (see §3 of [3]).
For our purpose, we will first introduce an auxiliary system FL... The system FL._

has neither the cut rule nor the explicit contraction rule, but the contraction rule is



incorporated into some logical rules. Initial sequents of FL.  are the same as those of
FLec, and structural rules of FL,_ are only (1w) and (L w). Among logical rules of FL._,
(—=D2),(— V1),(— V2) and (— A) are the same as those of FLe., but other rules are

slightly different from those of FL,., as shown in the following:

'r-A BA->C Al'—-C B I'->C

ASB Y S0 (07) VB ST V=)

AT —C B,T - C

AAB I =C N ~) AAB I =T N2 =)
A,B,T - C

v g TS ~)

Here, 3, Il and © are multisets defined as follows. In the following, I' U A denotes the
multiset union of I' and A, and #s5(D) denotes the multiplicity of a formula D in a
multiset Y.

i. Y is a multiset obtained from I' U A by deleting some duplicated formulas in it,

which satisfies the following requirements:

(1) If the formula A D B belongs to both I and A, then #5(A D B) > #rua(A D B)-2.
Otherwise, #x(A D B) > #rua(A D B) — 1.

(2) Let D be a formula in I' U A, other than A D B. Then, #5(D) > #rua(D) — 1 if
D belongs to both I' and A, and otherwise, #x(D) = #rua(D).

ii. Let o be any one of V, A and &. Then, II is either I" or the multiset obtained from
I’ by deleting one A o B, if possible.

ili. O is a multiset obtained from I' U A, which satisfies the following requirement:

(3) Let D be any formula in I'U A. Then, #5(D) > #rua(D) — 1 if D belongs to both
I' and A, and otherwise, #5(D) = #rua(D).

We will write FLec ' = C and FL,_ - I' — C, when a sequent ' — C is provable in

FLe. and FL,_, respectively. Now, we have the following lemma.

Lemma 2.2 For any sequent I' - C, FL,.-T' — C if and only if FL._FT — C.

Proof. Suppose that a proof of I' — C in FL[_ is given. By supplementing some
contractions to each logical rule other than (—D),(— V1),(— V2) and (— A), we can

get a proof of I' = C' in FL,..



Conversely, suppose that a proof P of I' — C in FL.. is given. By Theorem 2.1, we
can suppose moreover that P is cut-free. We will construct a proof P’ of I' — C in FL_
in the following way.

Suppose that an application of the contraction rule in P follows an application of a
rule (R), which is either a logical rule or a structural rule except the contraction rule. We
will interchange these applications as far as we can, or eliminate the contraction rule, as
shown below. Here, we notice that two consecutive applications of the contraction rule
are always interchangeable.

(1) Suppose that (R) is any of (L w), (— Al) and (— A2). Then, it is of the following
form;

e
AA—=D ,

where (c) is an abbreviation of (contraction). This can be transformed into the following

form;

A, A A= D
HASD O
A,A—)D, ()

In the same way, we can interchange (R) and (c) when (R) is either (—D) or (— A).
(2) Suppose that (R) is (1w). Then, it is of the following form;

Al

S, )

If the contraction is applied to a formula other than 1 then clearly (1w) and (c) are
interchangeable. If the contraction is applied to 1 then A is equal to ¥ (as multisets) and
hence we can eliminate both (1w) and (c) in the above figure.

(3) Suppose that (R) is (A1 —). Then, it is of the following form;

AA— D
AANBA DN =)
EN) (e)

If the contraction is applied to two formulas in A, then clearly (A1 —) and (c) are
interchangeable. But we should notice here that when one of them is just the principal

formula A A B, they are not interchangeable in general.
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We can treat it in the same way when (R) is any of (A2 —), (& —) and (V —).
(4) Suppose that (R) is (O—). Then, it is of the following form;

If the contraction is applied to two formulas in A U II, then it is easy to see that (D—)
and (c) are interchangeable. But, in other cases, they are not interchangeable in general.
When (R) is (— &), we can treat it in the same way.

By repeating this process, we can get a proof Py, in which every (consecutive) appli-
cations of the contraction rule follows either an initial sequent or one of rules treated in
(3) and (4) in the above. It is easily seen that only initial sequents of the form 0,A — D

can be followed by the contraction rule. So let us consider the following case;

0,A—D

BEyR
Then it is clear that ¥ contains at least one 0, and hence ¥ — D is also an initial sequent.
Therefore, we can eliminate the upper sequent from the proof. As for the latter case, we
can replace each logical rule followed by consecutive applications of the contraction, by
a single application of the corresponding logical rule of FL... In this way, we can get a

proof P’ of FL., whose end sequent is I' — C. O

We say that a sequent S’ is a contraction of another sequent S, if S’ is obtained from

/

te» we will define

S by some applications of the contraction rule. For each proof P of FL
the length of P inductively as follows. If P consists only of an initial sequent then the

length of P is 1. If the last inference of P is of the form

é (and 51 52)

S S
and the length of the proof of S; (and of S;) is ny (and n3), then the length of P is ny +1
(and nq + ng + 1, respectively).

Lemma 2.3 (Curry’s lemma) If a sequent S’ is a contraction of a sequent S and S has

a proof (in FL.,) of the length n then S’ has a proof of the length < n.

Proof. Suppose that S has a proof of the length n. We will show our lemma by

induction on n. Here we will show this only when S is the lower sequent of the following

(— &);



r-A A—->B/,
Y — A&B (= &),

Moreover suppose that the lengths of the proofs of ' - A and A — B are n; and na,
respectively, with n = ny + ny + 1. Then S’ is of the form ¥/ — A& B. Clearly, ¥’ can
be obtained from the multiset union of I" and A by applying the contraction rule. Thus,
there exist multisets I'' and A’ such that 1) IV and A’ are obtained from I' and A by
applying the contraction rule and 2) ¥’ is obtained from the multiset union of IV and
A’ by contracting only such formulas that have a single occurrence both in IV and A’.
(Notice that such I and A’ are not always determined uniquely from T', A and ¥'.) By
induction hypothesis, both IV — A and A’ — B have proofs of the length < n; and < n,,
respectively. Since ¥/ — A&B is proved by applying (— &) by I — A and A’ — B, it
has a proof of the length < n. a

Let « be any branch in a given proof of FL._. If there are two sequents S; and S; in
a such that 1) S, is below S} in « and 2) S, is a contraction of S;, then we say that the

branch « is redundant.

Corollary 2.4 If a sequent S is provable in FL._, then there is a proof of S, which has

ec’

no redundant branch.

Proof. Take any proof P of S in FL!_, which has the smallest length among proofs

of S. Suppose that there exists a branch « in P which is redundant. Then, « is of the

following form, where S, is a contraction of S;.

sy |,

' n'(>n)
S
S
Suppose that S; is proved with the length n and S, is proved with the length n’(> n).

Then by Curry’s lemma, S; can be proved with the length m(< n). Let us consider the
following proof P’ of S.

i }m(s )



It is clear that the proof P’ has a smaller length than that of P. This is a contradiction.

Thus, P is a proof of S in which no branch is redundant. m]

In order to check whether a given sequent S is provable in FL._ or not, we will try to
find a proof of S in the following way. First, we will search for every such sequent that can
be an upper sequent of some rules of inference of FL._ whose lower sequent is S. Then, we
will write each of them, just above the sequent S. We call this process, the decomposition
of S. Next, we will decompose each sequent which we have obtained just now, and repeat
it again. An exceptional case is when a sequent S is obtained by the decomposition but
the branch from S; to S becomes redundant. In such a case, we will omit the sequent ;.
Of course, we can not decompose a sequent which can not be a lower sequent of any rule
of inference. By doing so, we can get a tree such that some sequent is attached to each of
its points. Let us call it, the decomposition-tree of S.

In the following, we will show that the decomposition-tree of each sequent is finite. To

show this, we will use the following Konig’s lemma.

Proposition 2.5 (Konig’s lemma) A tree is finite if and only if both 1) there are only
finitely many points connected directly to a given point (finite fork property) and 2) each
branch is finite (finite branch property).

Lemma 2.6 Finite fork property holds for any decomposition-tree in FL.,.

Proof. Suppose that a sequent S is given. We will show that the number of sequents
which are obtained by the decomposition of S is finite. So, suppose first that S is the
lower sequent of a given inference (R). We will show that the number ng of sequents which
can be upper sequents of (R) is finite. This is almost obvious, if (R) is one of rules of
inference except (— &) and (D—). (Recall here that FL._is a cut-free system.)

Now, suppose that (R) is the following (— &)

'—- A A—- B
oS acn Y

It is clear that ng becomes maximum, when ¥ consists of mutually different formulas. For
each formula C in S, the decomposition of S by (— &) has three possible cases, i.e., 1)
only I' contains C, 2) only A contains C, and 3) both I' and A contain C. Thus, ng is
at most 3" if ¥ consists of n formulas. Since S is decomposed into two sequents in each
case, there are at most 2 - 3" possible points just above S. By a similar consideration, we

can show that ng is finite when (R) is (D—). o
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If the same formulas occur in I" as in A, we say that two sequents ' - Aand A — A

are cognate. Then, we have the following (see [1], [3] and [6]).

Proposition 2.7 (Kripke’s lemma) If a sequence of cognate sequents is not redundant, it

is finite.

Since our system FL._ is cut-free, the subformula property holds. Therefore, the num-
ber of cognation classes occurring in a given proof is finite. Moreover, the above Kripke’s
Lemma said that only a finite number of members of each cognation class will appear in

a branch which is not redundant. Thus, we have the following.

Lemma 2.8 Finite branch property holds for any decomposition-tree in F L' _, if the tree

ec’

has no redundant branch.
Theorem 2.9 The propositional logic F'L.. is decidable.

Proof. It suffices to show that FL’

ec)

which is equivalent to FL, is decidable. Suppose
that an arbitrary sequent Sy is given. We construct the decomposition-tree of Sy;. By
Corollary 2.4, it is enough to consider the decomposition-tree without redundant branches.
But, the decomposition-tree becomes finite, by using Konig’s lemma with Lemmas 2.6 and
2.8. Then, we check whether the decomposition-tree contains such a subtree that every
top sequent is an initial sequent of FL._ or not. If it does, then Sy is provable. Otherwise,

Sp is not provable. O

3 TUndecidability of the predicate logic FL..

We have shown in §2 that the propositional logic FLe. is decidable. On the other hand,
we will show in this section that the predicate logic FL.. is undecidable. Our result relies

on the following well-known fact (e.g. see [2]).
Proposition 3.1 The intuitionistic predicate logic is undecidable.

In the following, we will show that the decision problem of the predicate logic FL,.
can be reduced to that of the intuitionistic predicate logic. To do so, we will introduce
a formal system IL for the intuitionistic predicate logic, which is a variant of Gentzen’s
LJ. Roughly speaking, our system IL differs only from LJ in the definition of sequents.

That is, a sequent of IL is defined in the same way as that of FL,., but it must consist of
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formulas containing neither constants 0, 1 nor the logical symbol &. As initial sequents of
IL, we will take initial sequents 1) and 4) of FLe.. Structural rules of IL is the contraction
rule, the cut rule and the following weakening rules;

I‘—)C( ) ' —
—_—(w —
AT SC T C

Logical rules of IL are just logical rules of FL,c other than (— &) and (& —). (We will

(= w)

treat the negation —A of a formula A as an abbreviation of A D_L.) Similarly to Theorem
2.1, we can show that the cut elimination theorem holds for IL.
Now for each formula A of IL, i.e., a formula containing neither constants 0,1 nor

logical symbol &, we will define formulas |A|~ and |A|* as follows:
(1) |JA-=1AA, |Alt=LVA if A is atomic,
(2) [ADBI= =1A(lAI" D |B[7), |AD B[*f =L V(A" D |BJ*),
(3) [Ae Bl =|A]7o[B|7, [AoB[* =|A[*o|BI*  ifoe{V,A},
(4) 1Qz Al = QzlAl, |QuA[* = QulAlF i Q € {3,V).
By induction on the length of A, we can easily show the following.
Lemma 3.2 For any formula A of IL, both |A|~ — 1 and L— |A|* are provable in FL,..

Lemma 3.3 For any sequent I' — A of IL, IL - T — A implies FL.. F |T|~ — |A|t,
where |I'|~ means {|B1|™, -+, |Bn|"} if T is a multiset {By,---,B,}.

Proof. We will show this lemma by induction on the length of a cut-free proof of IL
whose end sequent is I' — A. Here we will show the proof of the following two cases.

(1) Suppose that I' — A is a lower sequent of weakening. Recall that the weakening
rule is not a structural rule of FL,..

(i) If I'is B,A and I' — A is obtained by

A— A
B,A— A

(w =)

then by induction hypothesis, FLe. F [A|~ — |A|*. On the other hand, FLe. F |B|~ — 1
by Lemma 3.2. Thus,

' A" — JA]*
[BI” =1 LIA[" — A"
|BI7, [A]7 — [A]F

(1)

(cut)
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(ii) If ' — A is obtained by
I'—

7~ w)
then by induction hypothesis, FL,. F |['|~ —. By Lemma 3.2, FL.. - L— |A|". Therefore,

O™ — o
U
ol —i;l_ N ;AIJ;_) 4 (cui)‘
(2) If T — A is a lower sequent of (D—), then it is obtained by
A—-B Cll— A
BOC,ATTI— A
where I'is B D C, A,IL. In this case, FL. - |A]” — |B|* and FL. F |C|7, || — |A]*
by induction hypothesis. What we want to show is FLe. - 1A(|B|T D |C]7), |Al=, O]~ —
|A|*. But, this can be obtained by
- + - M- +
S S eE R = T )
LA(IBI* D 1CI7), 1A, I~ — |4

(L w)

(>-)

(/\2 4)
. O

For any formula B containing no &’s, B denotes the formula obtained from B by
replacing 1 and L b D pand —~(p D respectively, where p is a fixed propositional
P g yp_op P o Pp), resp Y P prop

variable. Then, the following lemma can be easily verified.

Lemma 3.4 For any formula A of IL, both A = |;1T‘ and A = IZF’ are provable in IL,
where B = C is an abbreviation of (B D C) A (C D B).

Lemma 3.5 For any sequent [l — B (of FL..) FL.. -1l — B implies IL I - B,
where Il means {Cy,---,Cs} if I is a multiset {Cy,---,Cy}.

Proof. Our lemma can be proved by induction of the length of the proof of II — B.
Clearly, it is enough to check it only for initial sequents and rules of inference of FlLe.
which are not of IL.

(i) Suppose that IT — B is either — 1 or L —. Then we must show that both = p D p
and —(p D p) — are provable in IL. But this is trivial.

(i1) Suppose that II — B is the lower sequent of (1w). Then, the proof is of the form

A— B

1,A — B(lw)

By induction hypothesis, A — B is provable in IL. Therefore, p D p,A — B is also

provable by using (w —). Similarly, we can treat the case (L w). O
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Combining Lemma 3.5 with Lemma 3.4, we have the following.
Lemma 3.6 For any sequent I' — A of IL, FL. .+ [T'|~ — |A|* implies ILFT — A.
By Lemmas 3.3 and 3.6, we have the following.

Theorem 3.7 For any sequent I' = A of IL, ILF-T — A if and only if FL.. F [T'|” —
|Al*.

Theorem 3.8 The predicate logic F'L.. is undecidable.

Proof. Suppose otherwise. Then, there exists an algorithm of deciding whether |I'|~ —
|A|* is provable in FL.. or not, for any given sequent I' — A of IL. By Theorem 3.7, this
brings about a decision algorithm for the intuitionistic predicate logic. But this contradicts

Proposition 3.1. So the predicate logic FL.. must be undecidable. i

Notice here that the proof of the above theorem depends highly on the existence of

constants 1 and L.
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