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Decision Problems for the Int uitionistic Logic 

without Weakening Rule 

Eiji Iciriyama and Hiroakira Ono 

Abstract. This paper treats decision problexs for the intuitionistic logic without weak- 

ening rule FL,,. First, the cut elimination theorem for FL,, will be s h o ~ ~ n .  Using this fact 

and Mripke's method, it will be proved that the propositional FL,, is decidable. On the 

other hand, the predicate FL,, t ~ i l l  be shown to be undecidable by reducing the decision 

problem to that of the intuitionistic predicate logic. 

In recent pears. various studies have been done concerning logics lacking some or ail 

of structural rules. (For more irnformation. see [7] , )  This paper will be devoted to stucly 

of the decision problem of the logic FL,,, which is obtained from the intuitionistic Iogic 

by deleting the -weakening rule. The decidability of the propositional FL,, will be shown 

bj- using a method originally developed for relevant logics. Next, the nndecidability of the 

prerlicate FL,, millbe proved by reducing its decision problem to that of the intuixionistic 

predicate logic. 

It is well-known that both the classical and the intuitionistic predicate logics are un- 

decidable. while their propositional fragments are decidable. On the other hand, it was 

sl~own that predicate logics lacking some structural rules are decidable when they have no 

contraction rule (see 157). The standard way of proving these results is to show the cut 

elimination theorern, in the first place. Suppose that the cut elimination theorem holcis 

for a logic L, which does not have the contraction rule. Then, it can he shown that every 

cut-free proof has such a property that each upper sequent of a given rule of inference is 

simpler than its lower sequent. From this fact it follows that every decomposition-tree of a 



given sequent is finite, and that the number of its decomposition-trees is also finite. This 

gives us a procedure of deciding whether a given sequent is provable in E or not. 

On the other hand, when a given logic L contains the contraction rule but not the weak- 

ening rule, some difficulties will occur; even if L is a cut-free propositional logic. Recall 

here that in the case of the classical and the intuitionistic propositional logics, the usual 

procedure relies on the fact that we can restrict the number of occurrences of a formula 

in a given sequent, by virtue of the exisrence of both contraction and weakening rules. To 

overcome the difficulty, Kripke[G] introduced a new method of showing the decidabiliiy, 

which was extended later to that of relevant Logics by Belnap and Wallace [I] (see also 131). 

In $2, sve will first show the cut elimination theorem for Fk,,. Then, by applying the 

similar method to ICripke's one mentioned in the above, the decida'sility of the propo- 

sitional FL,, mill be proved. In $3, we .vr7lli give a translation of a given sequent of the 

intuitionistic predicate logic LJ illto a sequent of the predicate FL,,, by using the ides 

mentioned in the paper [?, $31 by the second author. Making use of this translation, we 

can reduce the decision problem of the predicate FL,, to that of LJ,  which is known to be 

undecidable. 

Authors would like to express their gratitude to Prof. S. Arikawa for his col-istant 

encouragement. 

2 Decidability of the propositional logic FL,, 

In this section, tve mill prove that the propositional part of the logic FE,, is decidable. 

Roughly speaking, the logic FL,, is obtained from the intuitionistic predicate logic by 

deleting only the weakening rule. Our language contains logical connectives 3, 'd,  A ,  &, 

quantifiers 3,Y, and logical constants 0,  1, I. To simplify our subsequent discussion, we 

will adopt the multiset notation in the definition of sequents. Here, we say two mriltisets 

f and A are equal, when I' and A have the same members with the same multiplicity. 

In other words, two multisets ( Al, .  - ,A, 3 and ( B1, - .  , B, ) are equal, if m=n 

and the sequence B1,,  - , B, is obtained from Al, = .  , A,, by permuting them. Now. 

a sequent of FL,, is an expression of the form i. A, where r is a finite (possibly 

empty) multiset of formulas and A is a formula (possibly empty). IVe wii? sometimes 

wrlte~+BasAl,~~~,A,+B,when~=(Al,~~~?A,,),and(4J1~~~~,C,)UA+B 



as C1. . - , C,, A 4 B. Initial sequents and rules of inferences of FL,, are defined as 

follows (C may be empty in the follo~ving): 

Initial sequents: 

Structural rules: 

Logical rules: 

In the above, t is any term, and a is any variable satisfying the eigenvariable condition, 

We remark that we can dispense rvitla the exchange rule, as we adopt the multiset notation. 



Theorem 2.1 The cut elimination theorem holds for FA,,. 

Proof. Our theorem can be obtained by modifying slightly the standard proof of the 

cut elimination theorem for LK (see e.g. 181). To prove this theorem we introduce a new 

rule of inference, called the weak-mix rule; 

Here, A must contain at  least one A, and A' is a multiset obtained from A by deleting 

at least one occurrence of A in it. Rotice that A* is not necessary the multiset obtained 

from A by deleting all occurrences of A 541 it. Therefore? A' may contain some A's. The 

formula A is called the weak-mix formula of the above weak-mix rule, 

It is clear that the cut rule is a special case of the weak-mix rule. On the other hand, 

each application of the weak-mix rule can be replaced by the cut rule. with the help of 

the contraction rule. 

Thus, to show our theorem, it is ensugh to prove that if a sequent is provable in FE,, 

(using some weak-mix rules in place of cut rules) then it is provable without a weak-mix 

rule. As usual, this can be obtained by shotving that if a proof s f  a sequent S contains 

only one weak-mix, occurring as the last inference, then S is provable without a \veal-mix. 

In fact. we can carry out the proof, by using double induction on the grade and the rank 

of a proof and considering the following four cases: 

(1) Either T --+ A or A + C is an initial sequent. 

(2) Either I7 t A or A -+ C is a lower sequent sf a structural rule. 

(3)  Botli P' i A or A -+ C are lower sequents of sone Logical rules such that principal 

formulas of both rules are just the weak-mix formula. 

(4) Either F -+ A or A t @ is a lower sequent of a logical rule except Case ( 3 ) .  

We will show next that the propositional logic FL,, is decidable by applying the above 

result. Vlie will use a method which is popular among relevant logicians (see 53 of 131). 

For our purpose, we will first introduce an auxiliary system FEQ,. The system FEL, 

has neither the cut rule nor the explicit contraction rule, but the contraction rule is 



incorporated into some logical rules. Initial sequents of FLL, are the same as those of 

FL,,, and structural rules of FL;, are only (iw) and (1 w). -Among logical rules of FEL,, 

(-+I), (-+ vlj, (4 1/21 and (4 A) are the same as those of FL,,, but other rules are 

slightly digerent from those of FL,,, as shown in the following: 

Here, C, TI and O are multisets defined as follows. In the foilswing, I? i! A denotes the 

nultiset union sf r and A. and # c ( D )  denotes the multiplicity of a formula D in a 

multiset C. 

i. C is a multiset obtained from f U A by deleting some duplicated formulas in it, 

which satisfies the fo!lo%t-ing requirements: 

(1) If the formula A > B belongs to both r and A, then jfc(A > B) 2 #ruL(A 2 Bj-2. 

Otherwise, #c(A 3 B)  2 ifrua(A 3 B) - 1. 

(2) Let 61 be a formula in r U A; other than A > B. Then, #c(D) > +jtrua(D) - 1 if 

D belongs to both r and A,  and otherwise, # c ( D )  = #ruA(D). 

ii. Let o be any one of V, A and &. Then. !J is either r or the multiset obtained from 

?? by deleting one A o 23: if possible. 

iii. O is a multiset obtained -from r U A, which satisfies the following requirement: 

(3) Let I) be any formula in r U A. Then, +jtc(D) 2 #rva(D) - 1 if D belongs to both 

r and A, and otherwise: #c(D3 = #rua(D>. 

We will write FL,, I- P -+ C and FLL, t F t C. when a sequent T -+ C is provable in 

FL,, and FLL,, respectively. Now, n7e have the following lemma, 

Lemma 2.2 For any sequent T' --+ C, FL,, t r t C ij and only if FL',, t l? 4 C. 

Proof. Suppose that a proof of J? -+ C in FLL, is given. By supplementi~~g some 

contractions to each logical rule other than (4 >), (i V l ) ,  (4 ~ 2 )  and (i A), tve can 

get a proof of r -+ C in FE,,. 



Conversely, suppose that a proof P of + C in FL,, is given. By Theorem 2.1, we 

can suppose moreover that P is cut-free. U7e will construct a proof Phof I? + C in FLLc 

in the following way. 

Suppose that an application of the contraction rule in P follows an application of a 

rule (R), which is either a logical rule or a structural rule except the contraction rule, We 

will interchange these applications as far as we can: or eliminate the contraction rule, as 

shown below. Mere, we notice that two consecutive applications sf the contraction rule 

are altvays interchangeable. 

(1) Suppose that (R) is any of (1 w), (-+ A 1) and (-+ 172). Then, it is of the following 

form; 

-4; A, n + D 
A, A, A -+ D ' ( ~ )  

A, A + D" (4 

where (e3 is an abbreviation of (contraction). This can be trans-formed into the foiloiving 

In the same way, we can interchange (R) and (c) when (R) is either (+I) or (i A )  

(2) Suppose that (R) is ( Iw) .  Then, it is of the following form; 

If the contractio~i is applied to a formula other than 1 then clearly (Iw) and (c) are 

interchangeable. If the contraction is applied to 1 then A is equal to C (as rnultisets) and 

hence we can eliminate both ( lw)  and (c) in the above figure. 

(3) Suppose that (R) is (A1 4). Then. it is of the foEoilowing form; 

If the contraction is applied to two formulas in A, then clearly (,\I i )  and (c) are 

interchangeable. But we should notice here that when one of them is just the principal 

forrn~~ia A A B, they are not interchangeable in general. 



'6% can treat it in the same way when (R) is any of ( ~ 2  +); (&- +) and (V I) ,  

(4) Suppose that (R) is (>+I. Then, it is of the following form 

If the contraction is applied to two formulas in A U XI, then it is easy to see that (>I) 

and ( c )  are interchangeable, But, in other cases, they are not interchangeable in general. 

UThen (R) is (I  &)> we can treat it in the same way. 

By repeating this process. we can get a proof PI,  in which every (consecutive) appli- 

cations of the contraction rule follows either an initial sequent or one of rules treated in 

(3) and (4) in the above. It is easily seen that only initial sequents of the form 0 ,  A i D 

can be follosved by the contraction rule. So let us consider the following case: 

0 : a - D  
(4 C I D  . 

Then it is clear that C contains at least one 0, and hence C -+ D is also an initial secpent, 

Therefore, we can eliminate the upper sequent from the proof. As for the latter case; we 

can replace each logical rule foliowed by consecutive applications of the contraction, by 

a single application of the corresponding logical rule of FL",,. In this waj; we can get a 

proof Pi of FLL, whose end sequent is r -. C.  

We say that a sequent Sj is a contraction of another sequent S ,  if S' is obtained from 

S by some applications of the contraction rule, For each proof F3 of FILL,, we will define 

the length of P inductively as follows. If P consists only of an initial sequent then the 

length of P is 1. If the last inference of P is of the form 

and the length sf  the proof of S1 (and of S2)  is nl (and ns ) ,  then the length of P is nl $1 

(and azl 3 nz + I, respectively). 

Lemma 2.3 (Curry's lemma) If a sequent S%s a contraction sf a sequent S and S has 

a proof (in F'LL,) of the length n then. S' has a proof of the length < 71. 

Proof. Suppose that S has a proof of the Length n. We will show our lemma by 

induction on n. Mere we will show this only when S is the lower sequent of the following 

(4 & b r  



Moreover suppose t h a t t h e  lengths of the proofs of F -+ A and A 4 B are nl and n2, 

respectively, with sz = n1 $ n2 $ 1. Then SYs  of the form C' t A&B. Clearly, C4 can 

be obtained from the rnuitiset union of r and A by applying the contraction rule. Th-iis, 

there exist multisets T i  and Ahsuch that 1) I?' and 4512 obtained from f and A by 

applying the contraction rule and 2) Cqs obtained from the muliiset union of PI and 

At by contracting only such formulas that have a single occurrence both in I" and A'. 

(Notice that such T i  and A' are not always determined uniquely from T, A and C',) By 

induction hypothesis, both F9 i. A and A' i B have proofs of the length 5 nl and 5 na,  

respectiveiy. Since C' 4 A&B is proved by applying (4 &) by F% A and A 5  BB. it 

has a proof of the length < n. 3 

Let a be any branch in a given proof of FLL,. If there are two secluents S1 and S2 in 

a such that 1) S2 is below S1 in a and 2) S2 is a contraction of Sly then we say that the 

branch a is redundant. 

Corollary 2.4 If a sequent S is provable i n  FZL,, then there is a proof of S, which has 

no redundant branch. 

Proof. Take any proof P of S in FLL,, which has the smallest length among proofs 

of S. Suppose that there exists a brancl-b a in P which is redundant. Then, a is of the 

following form; where S2 is a contraction of Sl. 

S 
Suppose that Sl "1 proved with the length n and Sz is proved with the length ni(> n). 

Then b y  Curry's lemma, S2 can be proved with the length m(< n).  Let us consider the 

following proof P' of S .  



It is clear that the proof P i  has a smaller length than that of P. This is a contradiction. 

Thus, P is a proof of S in which no branch Is redundant. KI 

In order to  check whether a given sequent S is provable in FLL, or not, we will try to 

find a proof of S in the following way. First, we will search for every such sequent that can 

be an upper sequent of some rules of inference of FLL, whose lower sequent is S. Then, we 

will write each of them, just above the sequent S. We call this process, the deco.mpo.sition 

of S. Next; we will decompose each sequent which we have obtained just now7 and repeat 

it again. An exceptional case is when a sequent S1 is obtained by the decomposition but 

the branch from Sa to S becomes redundant. In such a case, we tvill ornit the sequent S1. 

Of coarse, we can not decon~pose a sequent which can not be a lower sequent of any rule 

sf  inference. By doing so, we can get a tree such that some sequent is attached to each of 

its points, Let us call it, the decomposition-tree of S. 

In the foliowing, we will show that the decomposition-tree of each sequent is finite. To 

show this, we will use the following I<6nigqs lemma. 

Proposition 2.5 (Kijnig's lemma) A tree is $nite i f  and only if both 1) there are only 

finitely many points connected directly to a given point (finite fork property) and 2) each 

branch is finite (finite branch pro pert^)^ 

L e n ~ n ~ a  2.6 Finite fork pmperty holds for any  decompositio~a-tree in FL",,. 

Proof. Suppose that a sequent S is gis-en. We will show that the n u d e r  of sequents 

tvhich are obtained by the decomposition of S is finite. So, suppose first that S is the 

lower sequent of a given inference (R). We will shox7 tthat the number n~ of sequents which 

can be upper sequents of (R) is finite. This is almost obvious, if (a) is one of rules of 

inference except (4 &,-) and (>+). (Recall here that FLL, is a cut-free system.) 

Now, suppose that (R) is the following (i; &) 

It is clear that n~ becomes maximum, when C consists of mutually different formulas. For 

each formula G in S, the decomposition of S by (4 &) has three possible cases, i.e., 1) 

only T contains C7 2) only A contain~s 67, and 3) both I? and h contai~l C. Thus, n~ is 

at most 3" if C consists of n formulas. Since S is decomposed into two sequents in each 

case, there are at most 2 .  3n possible points just above S. By a similar consideration, we 

can show that n~ is finite when (Rj is (>--+I. 



If the same formulas occur in I? as in A, we say that two sequents I' -+ and A -+ A 

are cognate, Then, we have the folIowing (see El], [3] and 161). 

Proposition 2,7 (Kripke's lemma) If a sequence of cognate sequents is not redundant, it 

is finite. 

Since our system FLL, is cut-free, the subformula property holds. Therefore, the num- 

ber of cognation classes occurring in a given proof is finite. Moreover, the above Kripkee's 

Lemma said that only a finite number of members of each cognation class will appear in 

a branch which is not redundant, Thus, we have the following. 

Lemma 2,8 Finite branch pmperty holds for any decomposition-tree in  FLL,, if the tree 

has no redundant branch. 

Tlaearem 2,9 The propositional Iogic FL,, is decidable, 

Proof. It su%ces to show that, F'LL,, which is equivalent to FE,,, is decidable. Suppose 
. . 

that an arbitrary sequent So 1s gaven. iVe construct the decomposition-tree of So. By 

Corollary 2.4: it is enough to co~sider the decomposition-tree without redundant branches. 

But, the decomposition-tree becomes finite, by using K6nigqs lemma with Lemmas 2.6 and 

2.8. Then. we check whether the decomposition-tree contains such a subtree that every 

top sequent is an initial sequent of FILL, or not. If it does, then So is provable. Otherwise, 

So is not provable. 

3 Undecidability of the predicate Isgic FL,, 

!Ye have showln in $2 that the propositional Logic FL,, is decidable. On the other hand, 

we will show in this section that the predicate logic FL,, is undeciciahle. Our result relies 

on the following well-kno~vn fact (e.g, see 121). 

Proposikionm 3.1 The intuitionistic predicale logic is undecidable, 

In the f011owing, we will show that the decision problem of the predicate logic FL,, 

can be reduced to that of the intuitionistic predicate logic. To do so, we will introduce 

a formal system IL for the intuitionistic predicate logic, which is a variantof Gentzen's 

LJ. Roughly speaking, our system IL differs only from L3 in the definition of sequents. 

That is, a sequent of IE is defined in the same way as that of FL,,, but it must consist of 





(ii) If r i A is obtained by 
r i  

then by induction hypothesis, FL,, I- IF/- -+. By Lemma 3.2, FL,, !-I+ !A/+. Therefore, 

(2) If r i A is a lower sequent of ( " i S 7  then it is obtained by 

where T is B > C,";A,E. In this case, FL,, t jAj- i and FL,, i- ]GI-: /Ti]- i j ~ 1 +  

by induction hypothesis. What we want to show is FE,, 1 1 A ( j B l f  3 jCl-), in/-, /El- -+ 

/A/+. But, this can be obtained by 

For any formula B contailling no 8i9s; B denotes the formula obtained from B by 

replacing 1 and i by p > p and yip > p ) ,  respectively, where p is a 5xed propositional 

variable. Then, the following lemma can be easily verified. 
- - 

Lemlna 3.4 For any firmula A ofib,, both A E jAj- and A ]Al+ are provable in IL, 

where B r C is an abbreviatio?z of (I3 > @) A (C > B). 

Lemma 3.5 F ~ T  a n y  sequent II i B (of FL,,) FL,, C IJ -+ 63 implies I L  I-- fi i B; 
w h e n  fi means {el;. . - , 6 2 1  if n is a mz~ltiset {C1, - ,  Cn>. 

Proof. Our le a can be proved by induction of the length of the proof of -+ B. 

Clearly, it is enough to check it only for initial sequents and rules of inference of FL,, 

which are not of IL. 

(i) Suppose that I! - B is either -+ 1 or i+. Then me must show that both -+ p 3 p 

and ~ ( p  > p) 4 are provable in Ik. But this is trivial. 

(ii) Suppose that E t B is the lower sequent of (1 w). Then? the proof is of the form 

By induction hypothesis, i\ i B is provable in IL. Therefore, p 2 p, h --+ B is also 

provable by using (w 4). Similarly, we can treat the case (i w). 



Combining Lemma 3.5 with Lemma 3.4, we have the following. 

Lemma 3.6 For any sequent r + A ojPIL, FL,, I- 4 jAIf implies TL C- r -+ A. 

By Lemmas 3.3 and 3.6, we have the following. 

Theorem 3.7 For any sequent F + A of IL, PL t T -+ A if and only i f  FL,, C- -+ 

]A/+. 

Theorem 323 The predicate logic FL,, is undecidable. 

Proof. Suppose otherwise. Then, there exists an algorithm of deciding whether /TI- -+ 

/A/+ is provable in FL,, or not; for any given sequent r -+ A of IL. By Theorem 3.7. this 

brings about a decision algorithm for the intuitio~~istic predicate logic. But this contradicts 

Proposition 3.1. So the predicate logic FL,, must be undecidable. o 

Notice here that the proof of the above theorem depends highly on the existence of 

constants 1 and 1. 
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