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Abstract 

SLDNF-resolution procedure is not complete with respect to the perfect model se- 
mantics for logic programs in general. In this paper, sve introduce two classes of logic 
programs containing function symbols. reducing programs and weakly reducing pro- 
grams: which are characterized by the size of atom. For these classes of programs, we 
prove the completeness of the derivation procedure which makes use of depth-bound. 
First, we introduce the local finiteness of Herbrand base of a program, and prove the 
finite fixpoint property for the class of programs which satisfies the local finiteness. 
Further, we show that the class of weakly reducing programs: a subclass of locally 
stratified programs, has some syntactic conditions. and prove that it has the finite 
fixpoint property. Using the finite fispoint property; we prove the completeness of 
depth-bounded derivations for weakly reducing programs. In particular, we prove 
the completeness of unbounded derivations for reducing programs. 

1. Introduction 

The completeness of tlze derivation procedure is an important problem in logic programming. 

Any Turing machine can be simulated by a definite programjl5j. Since the termi~zation 

problem of Turing machines is undecidable. the completeness of a derivation procedure in 

logic programming does not hold in general. However. there are some completeness results 

for restricted classes of logic programs. 

SLDNF-resolution is complete for the class of allowed hierarchical progmms [lo], which 

can not represent any recursion. &SQR/SLS query evaluation procedurel]7] and OEDTNF- 

resolution[l4] are complete for the class of allowed stratified dataiiases[lj, which is the class of 

programs containing no function symbols. The class has enough power to express deductive 

databases. However, many of small efficient logic programs like list-operation programs are 

not contained in the class. because the function-freeness prevents us from using complex 

terms representing data structures such as List and Binary-Tree. The allowedness rejects 

many of ""acceptabie" programsi5j ,[l i j including the above mentioned small efficient logic 



programs. For example, the program P l  below is neither function-free nor allowed. 

rn e m  ber (x, eons (x, z )  j 
P I =  

rnenaber(z, cons(y, zj) c member(z ,  z) 

The stratifiedness is a condition to ensure the freedom from recursive negation. The 

following program P2 satisfies the freedom and has a clear declarative semantics, that is, 

even numbers represented by the successor function. However, it is not stratified. 

In this paper, we discuss the iterative fixpoint semantics and the procedural semantics for 

these natural and efficient logic programs, not for deductive databases. More precisely, we 

discuss three conditions, '610cal stratified9', "loca31y finite" and "local-variable-free" instead 

of "stratified", .'functions-free" and bkailowed'', respectively. 

First, we extend the notion of the finiteness of Rerbrand base to the local finiteness 

and prove the finite fixpoint property for locally finite stratified programs. Further, we 

introduce two classes of logic programs, weakly reducing programs and reducing programs, 

which are characterized by the size of atom. These classes include many of small e%cient 

logic programs. \tie give some syntactic conditions of two classes and prove that these classes 

are locally finite stratified and local-i-ariabie-free. Moreover, we prove the completeness of 

depth-bounded derivation procedures for weakly reducing programs using finite fixpoint 

property for locally finite programs. In particular; we prove the completeness of unbounded 

derivation procedures for its subclass. reducing programs. 

A program clause is a clause of the form A c L1,. . . . L,. A goal is a clause of the form 

c L1, .  . . , L,, where A is an atom and L1,. . . L, are literals. A prqram is a finite non- 

empty set of program clauses. 

.A definite program clause is a clause of the form A +- Al, . . . , A,. A definite goal is a 

clause of the form c Al, . . . , A,, where A and Al,  . . . , A, are atoms. -4 clejv.de program is 

a finite non-empty set of definite program clauses. 

A ground term is a term containing no variables. Similarly, a ground atom is an atom 

containing no variables. Let L be a first order language. The Herbmnd base BL is the set of 

all ground atoms, (In case L has no constants, we add some constant "a" to the first order 

language L,)  Let P be a program. The Herbrand instantiation of P. denoted by ground(P) ,  

is the set of all ground instances of a program P. An Herbrand model &/l is a subset of Bp 

which is a model of P. In this paper, we only deal with Herbrand models, so we call an 

Hesbrand m d e l  a model. 



Locally stratified programs were introduced by Przymusinski[l2], who generalized the 

class of stratified programs. A program P is Eocakly stratified if there is a partition 

of an Herbrand base which satisfies the following three conditions for every program clause 

A c- L1:. . . ; E n  E grou~zd(P)  and any i = 1,. . . , n: 

2. D; E lJ(Hjj j 5 k), if L; is positive literal D;, 

3. D; E U ( H j  1 j < k), if L; is negative literal TD; .  

We call the partition I&. . . . ,He, .  . . the local s t ra i i jca t ion  of Bp, and the partition 

8,. . . ; P,, . . . of 9.round(P) the local stratification of grsundjP);  where 

P, = (At .Al , .  . .,A, f ground(P) 1 A E if,, q 2 8) 

and a < w .  The level of a positive literal A is a if AE Pi,, and the leuel of a negative literal 

-A is a + 1 if A f Ha. Every stratified program is locally stratified. 

In this paper, we consider the perfect model semantics as the semantics for Locally strat- 

ified programs. The perfect model is a minimal model with respect to a preference order 

between models. locally stratified program has a unique perfect niodef independent of the 

stratification. 

We now define the perfect model, Let P be a program, A, B; C, D E Bp. Then, priority 

orders 4 and 5 on Merbrand base Bp is given as follows: 

1. (condition I.) A 4 B if there exists a program clause A c Al, .  . . : 7B.. . . ,A,  E 

ground(P) ( n  > O j .  (We say this clause defines A 4 B.) 

2. (condition 11.) A 5 B if there exisrs a program ciause A - Al , .  . . . B,. . . .A, E 

g r o u n d ( P )  (n  > 0). (We say this clause defines A 5 63.1 

4. (transitivity of 4 )  A < @ ( D  4 B)  if A 5 B and B 4 C (D 4 A). 

5, (++5) If A 4 B then A 5 B. 

6. (closure axiom) 4 and 5 are only the relations defined above. 

Let hf, iV be distinct models of P. iW is preferable to N if for every A E il/J - iV tilere 

exists a B E ,V- such that A 4 B. i"Je call a model a perfect model of P if no other 

model of P is preferable to &I. 





(c) If A is true in 191 then there exists a successful derivation sequence for P U (+ A). 

(d) If A is false in i14 then every derivation sequence for P U (t A) is failed. 

Note that the derivation sequence may be infinite for logic program in general. 

We introduce some notations for our discussions. An expression is either a term, a literal, 

a conjunction or disjunction of Literals. The size of an expression e ,  denoted by jej, is the 

total number of o ccurrences of variable symbols, const ant symbols, function symbols and 

predicate symbols in e. Note that 11-41 = /As for negative literal ?A. 

Example 1. Let x and y be variable symbols? a and [ ]  be constant symbols. cons be a 

function symbol and p be a predicate symbol, Then, 

Let o(z, A) be the number of all occurrences of a variable z in an atom A, and let ~ ( - 4 )  

be the set of all variables in atom A. Let ji(S) be the number of elements in a set S, and let 

Sj, = { A  E S 1 jAI 5 n),  

where S is a set of exr -resslons. 

An order + is noetherian if there exists no infinite sequence d l ,  d z , d 3 , .  . . such that 

d l + d 2 + d 3 +  . . .  . 

3. Locally Finite Stratified Programs 

In this section, we consider the termination problem in logic p s o g r a m ~ n g .  If Bp is finite 

then the closure ordinal y of the mapping Tp is finite. However, Bp may be infinite if a 

program P contains function symbois. Thus, y may not be infini~e. Originally the notion 

of stratification was introduced for the consistency problem of the completed programs. On 

the other hand, we will use it for the termination problem of programs. Now we define the 

notion of the locaily finite stratification. 

Definition 2. Let P be a locally stratified program and Ho,. . . , H a : .  . . (a  < w )  be the 

local stratification of Bp. P is locally finite strat(fied if 

is a finite set for any a < w. We call Ho, . . . , W,, . . . ( a  < 4) the locally finite stratification 

of Bp, and the corresponding local stratification of g r o u ~ a d ( P )  the locally finite stratificatio?;; 

of ground(P). 



%;'or a definite program P,  Bp> is a local stratification of Bp. Thus; definite program 

is locally stratified. However; Bp may not be the Locally finite stratification for a definite 

program P if P contains function symbols. 

Example 2. The definite program 

has Bp3 as a trivial local stratification of Herbrand base. However, Bp3 is not a locally 

finite stratification because Bpg = i p ( f i ( a )  / i < w )  is not finite. On the other hand. there 

is another local stratification No,.  . . , H a , .  . . (a  < u) of Bp3 such that Ha = { p i  f a ( a ) ) .  

Since H a  = { p ( f i ( a )  j i < a )  is finite -for any 0 < w ,  the local stratification Ho, . . , , hd, . . . 
is a locally finite stratification. Hence, P3 is a iocaiiy finite stratified program. and has 

count ably infinite strata. 

Eelnrma 2, Let P be a locally stratijed program, Po,. . . , Pa,. . . ( a  < w )  be the local strati- 

fication of groundjP) and iiil & Bp. Then, 

Proof. By the definition of ordinal powers of Tp. the result immediately holds. D 

Lemma 3. Let B be a locally stratified progrcrm, P8,. . . .Pa,.  . . (a  < wj be the local strat- 

ification o fgroundjP)  and A f B p .  Suppose MPC( = TP,-i 7 w(iMPQ-,) a r ~ d  i\fp-l = Q. If 
there exists a k < w  .such that 

then for a n y  j > k 

T a -  2 TpeT( j ) ( lWa- l ) .  

Proof. It suffices to prove only the case j = k + 2. First suppose A E TPa ( k  4- 2)(1%f,-~). 

Then? 

A E T'(Tpa T ( k  -I i ) ( 1 J f a - l ) )  U T P ~  T (k + l)(!lya-a). 

If A E T' 1 ( k  + I)(A4@-,) then it immediately holds. Thus, we suppose 

There is a clause A t La , .  . . , L, E P, such that 

There are two cases to be considered for each L;. 



1. If k; is a positive literal B then B E Tpe (b+ 1)(n/l,-1). By the assumption of lemma, 

E Tpa (k)(hfe-~). 

2. If L; is a negative literal 1 B  then B @ Tpa (k + l)(iVIa-l). By the definition of ordinal 

powers of the mapping, B @ Tpa T (kj(iWe-l). 

By the above 1 and 2, Tp, 7 (k)(14de-l) I= L1 A . .  . A L,. LVe obtain A E iFp, f jk + l)(l%f,-1). 

By the assrrmp";on of lemma, E Tpa (b) (i%fQ-l). Thus, 

The remainder of the proof proceeds on in the same way by an induction on j .  CI 

Definition 3. Let P be a iocally stratified program. Has.. . .He?. . . ( a  < o )  be the local 

stratification of Bp. and let = Tpa-, 4 o(-VIpa-,) and &2"p_, = d. 
Then. we define a lattice 

Lemma 4. Let P be a locally finite stratified program, I f o 7 . .  . , Hag . . . ( a  < W )  be the locally 

finite stratification of BID. If 

then there exists a b 5 ij(H,) s ~ c h  that Sj = Sk for any j > k. 

Proof. By the definition of A,; we can assume that S, = ,%fa-1 LI 1' for some I; 5 He and 
any i > 0. Then I. C Il C . . . C _i,. C . . . (i 2 0). Since Ii Z. He for any i 2 0 ,  there exists 

a k 5 P(Ha) such that 6, = Ik for any j > k .  Then S, = Sk for any j > F.  LI 

Lemma 5 ,  Let P be a locally Jinite stratified program, Ho, .  . . , H,, . . . ( a  < w j  be the locaiiy 

finite stratification of Bp, Then, the closure ordinal ;la < $(He) for any a < w .  

Proof. By Lemma 2, for any j < w 

By definitions of the local stratification of grozend(P) and ordinal powers of T', Tp, 7 
j(niIa-,) E A, for any j 5 w .  By Lemma 3 and E e m a  4, there exists a k 5 $ ( H a )  such 

that Tpa k(-Ma-l) is a fixpoint Tpa TU(&I~-~). CI 

The closure ordinal y, corresponding to each H ,  is finite for a locally finite stratified 

program. Now we show the finite fixpoint property for locally finite stratified programs. 



Theorem 6 .  L e t  P be a locally finite stratified program, Ho, .  . . , Hare . .  ( a  < w )  be the  

locaMy finite ~ tra t i~5cat io .n  o f B p  and Po,. . . , Pa,.  a . (a  < w) be the  locally finite stratification 

o f g r o u n d ( P ) .  I f y a  i s  the  closure ordinal of a mapping  Tp9, : ha -+ An for a n y  a < u, t h e n  

Proof* By Lemma 5 ,  if Tpa f ~ji%f,-~) = TPa T ~ , ( L W ~ - ~ )  for any a < ~ b !  then y, 5 /;(a). 
Hence, 

The above corollary asserts that we can decide whether a ground atom in Ha is true or 

false on the perfect model of a program P by applying operators Tp, jj = 0,. . . ,a)  at  most 

$ ( H a )  times. The following corollary is an extension of the theorem in bmamoto[l ' i ]  for 

elementary formal systems[2]. 

Corollary 7. Le t  P be a definite program, and  bet P be locally finite stratified; Ho, . . . , H a , .  . . ( a  < 
w )  be the  docally finite stratification of B p  and -4 E f Bp.  If A E Ma t h e n  

for the finite ordinal n = : ( H a ) .  

Proof,  W7e consider t,he increasing sequence 

Since a defrnite program has no negative literals in the body of a clause, we can consider the 

lattice 2 " ~  whose least element is 4, instead sf the sequence A,, . , . ,A ,  of Lattices. Thus, 

the increasing sequence above is reduced to the sequence 

Hence, the result holds by Theorem 6. O 

4. Depth-Bounded BFNF-Derivation 

We introduce the notion of depth-bounded BFNF-derivation to discuss the termination 

property of logic programs more precisely. ""BF" stands for ""Breadth Firstgf, and 'WNF" 



stands for "Negation as Failure". -4 BFNF-derivation is a variant of the usual SLDNF- 

resolution, where in each goal all literals are selected. This computation rule ensures that 

every derivation is a fair191 derivation. 

We define a BFNFld-derivation for programs, which is an extension of the (P ,E) -  

derivation[tj]. The BFNF/d-deri-c~ation sequezce is a BFNF-derivation sequence which is 

Sounded by the depth-bound d. where d is an ordinal. Throughout this paper, we assume 

clL U).  

Definition 4. Let G be a goal + El , .  . . , Ln (L ;  is a literal) and P be a program. If there 

are a substitution 8 and an n-tuple (C1,. . . Cn) (each C'% is a literal) such that the following 

conditions 1, 2 and 3 hold for every i = I , .  . . , n, then a goal i-- R1,. . . , R, is derived from 

G and P using the most general unifier (mgu) 8. 

1. B is an mgu of conjunctions of literals (L; .  . . . , L,) and <Cl ; . . . , C,). 

2, If L; is a positive literal then 

(a) C, is a positive literal B and there is a clause B t i%fla. . . . ,Wq ( q  > O j  which is 

a variant of a clause in P.  j"l"tie call each ,W3 ( j  = I , .  . . . q )  a child of L,.) 

(b) R, is a conjunction of literals (,&. . . . , iZiir4)d. 

3. If & is a ground negative literal 7 A  then 

(a) C, is -A and every BFNF/d-derivation sequence for P U (t A) is failed. (If a 

literal 1ZZ is a child of A in the BFNFld-derivation sequence for P U (t A) then 

we call iTta the child of L,. Moreover, we call derivation sequences for P Li j t  A) 
piirtial derivation sequences -for P U (c 1 - A ) . )  

(b) R, is empty. 

Definition 5. Let P be a program, G be a goal and d 5 ~d be a depth-bound. -4 BFlVFid- 

deri~a-tion sequence for P U (G) consists of a sequence Go = G, GI,.  . . , G,, . . . of goals and 

a sequence 01, 02,. . . , e,, . . . ( a  5 d) of mgus such that each is derived from G, and P 

using 

A derivation sequence Go. GI. . . . is successful if there is an n such that 6, is an empty 

clause. A derivation sequence Go; GI, . . . is floundered if there is an 12 such that G, contains 

non-ground negative literals. A derivation sequence Go, GI , .  . . , 6, is jfazbed with length n if 

either any goal cannot be derived from G, which contains no ~non-ground negative literal (in 

this case the sequence is firiitedy jailed), or n = d and a goal G, is not empty (in this case 

the seyuence is depth-bound-failed) Otherwise a derivation sequence Go, GI ,  . . . has inJJi7zite 

Length. 

,4 BFNF/d-derivation is successful if there exists a successful BFNFjd-derivation se- 

quence for P U 16). A BFNF/d-derivation is failed if there exists an n such that every 

BFKF/d-derivation sequence for P U { G )  is failed within length n, 



We define a BFNFJd-tree for measuring only the time derivation procedure requires. 

Definition 6. Let P be a program, G be a goal and 6;) be a BFXt'Fld-derivation sequence 

Go, GI,. . . for P i1 (6). A BFNF/d-tree 2' for D is a tree defined as follows: 

1, a root of T is a literal in G. 

2. every node in T is a literal in D or in partial derivation sequences of D,  

3, if a literal B is a child sf a literal A in D or in a partial derivation sequence of D then 

B is a child of A in T .  

The depth of a BFNFld-tree T is the maximum length of branches in T. 

JVe define an unbounded BFNF-derivation and a depth-hounded BFNF-derivation. K 
a depth-bound d is the smallest limit ordinal w then we call the derivation sequence an 

u~~bounded BFNF-derivation sequence. If el < bj then we call the derivation sequence a 

depth-bounded BFNF-derivation sequence with depth-bound d. \Ve define successful, floun- 

dered, failed, infinite derivation sequences and BFNF-trees in the same may as above. Note 

that a failed unbounded BFNF-derivation sequence is a finitely failed unbounded BFYF- 
derivation sequence. Because an unbounded BFXF-derimtion has no derivation sequence 

which is depth-bound-failed. Note also that a dept h-bounded BFKF-derivation has no infi- 

nite derivation sequence. 

An unbounded BFNF-derivation is sound like the usual SLDNF-resolution. iVe show 

the soundness of a successful unbounded BF'NF-derivation and a finitely failed unbounded 

BFXF-derivation. 

Proposition 8. Let P be a local-variable-fiee program, i\fp be the perfect model of P, and 

L be a ground literal. Then the jolloming ('a) and (b) hold: 

(a) I j  there exists an unbounded BFIVF-derivation for P tl (t L )  then iVlp L .  

(b) If there exists arr n such that every unbou~~ded BFXF-derivation for 9 U (t k) is 

-6niteby failed withi72 the length n then Afp j= 1E. 

Corollary 9. A n  unbounded BFNF-derivation for a local-variable-,free program is sound 

with respect to its perfect model semantics, 

A depth-bounded BFNF-tree has no infinite branch, since a depth-bound d is less than 

bJ. 

Lemma 18. Let P be a locally stratified progmm, J; be a literal, and cE be a depth-bound. If 
the level of L is a and BE depth-bound d < w then n depth-bounded BFA'F-tree for P t! (G) 
is a finite tree whose depth is at most (a  + I )  . d .  



Proof, The length of each depth-bounded BFNF-derivation sequences and partial deriva- 

tion sequences with depth-bound d is at most d. On the other hand, the number of strata 

whose level is lower than or equal to a is at most a + 1. Hence, the length of every branch 

of the depth-bounded BFNF-tree is less than or equal to (a + I) - d.  

5 .  Weakly Reducing Programs and Reducing Programs 

Definition 7. A program ciause A t LI ,  . . . . L, is weakly reducing if for any substitution 

d and any i = I,. . . , n the following conditions I and 2 hold: 

I, IABj > 1L;Oj if E.; is a positive literal, 

2. /At91 > /L;Bl if E; is a negative literal. 

A program clause A t el,. . . L, is reducing if 

for any substitution O and any i = I , .  . . . n, 
,4 program 9 is weakly reducing jreduei?ag) if every program clause in P is weakly reducing 

(reducing,). 

Example 3, A program P1 and a program P2 shown in Section 1 are reducing programs. 

Every reducing programs are also weakly reducing programs. 

The proposition below provides some syntactic conditions that programs be weakly re- 

ducing and reducing. 

Proposition 11. Let P be a program. Suppose P contains a t  least one function symbol, 

A clause A t L1,.  . . L, in  P i s  weakly reducing (reducing) if and oniy i f  t h e  following 

conditions (a): (b) and ('4 hold fir any variable n: in  -the clazese and any i = I , .  . . , n: 

(h) 2 (>) lL;il if L; is a positive literal. 

(cj 1-41 > Iti/ , if L, is a negative literal. 

Suppose P contains no funct%o?z symbols. Then a clause A t L1,.  . . . L, in P is weakly 

reducing (reducind if and only i f  a b o ~ e  conditions ('15) and (c) ho/d for any variable x in  the 

elause and any i = I,. . . ; n .  



Proof, Let C be a program clause A +-- L1,. . . E m  ( n  2 01, v ( C )  be a set of variables 

(rcl,. . . z,) and 6 be a substitution. tVe assume that B is a substitution restricsed to variables 

in C without loss of generality. Let t9 = ( z ,  := t,/ j = 1,. . . , q ) .  Then, for i = I , .  . . , n 

(+ part) Suppose P contains function symbols, and conditions (a),( b) and (c) hold for 

any i = I ,  . . . , n. Since It, 1 - jzjj 2 0, the following conditions jd) and (e) hold for any 8: 

(d) Ii4Bj 2 jLi81, if Li is a positive literal. 

(e) \A81 > \L;Bj, if L; is a negative literal. 

Thus, C is weakly reducing. If there exists no function symbols then (b) and (c) imply (d) 

and (e). Thus. C is weakly reducing. 

(+ part) Suppose C is weakly reducing. W e  shovr~ that if there is an z (1 5 z 5 m)  

such that one of the conditions (a),(bj and ( c )  does not hold then contradiction is derived. 

Suppose first there is an i (1 < i < rnj such that neither (b) nor (c) holds, Then contradiction 

is immediately derived for an identity substitution 9. Therefore, conditions (b) and (c) hold 

for any i = I , .  . . , n.  This is independent of existence of function symbols. 

Suppose next there are k and m (1 5 k < q ,  1 < rn 5 n )  such that o(zk, A) < o(sk,  L,). 

JVe take a substitution a = ( 2 ,  := t,] j = I,. . . , q )  such that 

(f)  if j $ k then t j  is either a constant symbol or a variable symbol, 

(g) if j = k then tk is a term that satisfies 

Since P contains at least one function symbol, there exists such a subsiitution 0. Hence, 

IAal < jL,o/ for the substitution cr. This contradicts the assumption. Thus, the condition 

(a) holds for any i = I . .  . . , n. G 

Example 4, Every propositional program not containing negation is weakly seducing. A 

program 

P4 = P2 U (ewen(3) t even(z)) 

is weakly reducing. P4 has the same perfect model semantics as that of P2. P4 ti (t 

evesa(sijOj)) has no finite SLDNF-tree, while every SLDNF-tree for P2 and a ground goal 

is finite. 

Throughout this paper, we only consider weakly reducing programs and reducing pro- 

grams containing function symbols, 



6. Freedom from Recursive Negation for Weakly 
Reducing Programs 

The local stratifiedness ensures the freedom from recursive negation. Przymusinski[l2] gave 

a condition: 

Proposition 12 (Przymusinski88). A program P is locally stratified if and only if the 

priority relation 4 on Bp is noetherian. 

The class of locally stratified programs is .undecidable[4]. However, for weakly reducing 

programs the priority relation 4 on Bp is reduced to the partial order on ground atoms with 

respect to their sizes. Hence, we imnediately obtain the following theorem. 

Theorem 13. Euery weakly reducing program is locally stratified. 

Prooi: Let P be a iveakly reducing program, A, B, 6, D E Bp. It suffices to prove that 

the priority relation 4 on Bp is noetherian, If A 4 B then the following 1, 2 or 3 hold by 

the definition of 4: 

1. There exists a clause which defines A 4 B. 

2 ,  There exist C such that A 4 C 3 B and a clause in g r o u n d ( P )  which defines A 4 6. 

3. There exist D such that A 5 D 4 B and a clause in grouncl(P)  which defines D i B. 

We consider the case 1. Let A +-- A1.. . . , T B , .  . . A, ( n  > 0) be a clause to define A 3 B. 

'Then IAj > jB] by the definition of weakly reducing programs, In cases 2 and 3, we also 

prove that if A 4 B then [A /  > IBi in the same way. Thus, the relation can be reduced to 

the relation >, Therefore an increasing sequence with respect to 4 is reduced to  a decreasing 

sequence of natural numbers. Since > is noetherian, so is 4. 

Combining the result in Przymusi~aski [ l2]  and the t heorern, we can conclude that a 

weakly reducing program has a unique perfect model. 

7. Safeness for Negation of Weakly Reducing Programs 

4 variable in a program clause is local if it appears only in the body of the clause. The 

condition ""ical-variable-free" is an alternative to the condition "allowed7' with respect to 

occurrences of variables. Goals in a derivation sequence turn ground in a top-down man- 

ner for Local-variable-free programs, while goals in a derivation sequence turn ground in a 

bottom-up manner for allowed programs. 

Definition 8. A program clause i4 t L1, . . . , L, is local-variable-free if 

A program P is local-variable-free if every program clause in P is local-variable-free. 



Example 5. The program P1 is a focal-variable-free program. 

Local-variable-free programs are also acceptable programs [5] [I I]. 

Definition 9, Let P be a program, G be a goal and d be an ordinal. P U ( G )  is safi for 

negation if any BFNF/d-derivation and any partial derivation for P U {G) do not flounder. 

We give a condition under which P U ( G )  is safe for negation. First nTe give a lemma for 

local-variable-free programs. 

Lemma 14. Let P be a local-variable-free program and G be a ground goal. Then, every 

goal in a BFNF/d-tree for P U (6) is ground, 

Proof. Since P is a local-variable-free programl a goal Gi+l which is derived from a ground 

goal G; is ground. Thus, the resuit holds. 

Hence, the next lemma follows inlmediateiy from Lemma 14. 

Lemma 15, Let P be a local-variable-free program and G be a ground goal. Then P O (6) 
i s  s a k  for negation. 

By the condition (a) in Proposition li, a weakly reducing program containing function 

symbols is local-variable-free. Thus, ive have: 

Lemma 16. Let P be a weakly reducing program contains function symbols and G be a 

ground goal, Then P ir (G) is safe for negation. 

8. Termination Properties of Reducing Programs 

In Section 6 and Section 7, we have shoxvn that both a weakly reducing program and a 

reducing program are locally stratified and safe for negation, In this section, we show that 

the termination property of unbounded BFKF-derivations for reducing programs, which is 

a subclass of weakly reducing program. First we have: 

Lemma 19. Let P be a program, Then, a partial order jAj > lB/ ( A , B  E Elp) is ~zoethe- 

rian, and the length of the decreasing sequence /All > / A 2 /  > . . . is at ?nost ] A l / .  

Lemma 18. Let P be a reducing program containing function symbols and L be a ground 

literal. Then, every BFNF/d-tree for P U (t E )  is finite, and the depth of that tree is at 

most ILI. 

Proof. Let L be ground. Since a reducing program containing function symbols Is Bocai- 

variable-free, every goal in a BFYFld-tree for P U (t E )  is a ground goal. We consider a 

branch in the BFNF/d-tree. Since this branch is a decreasing sequence with respect to >, 
the length of it is at most 1151 by Lemma 19. EI 



By Lemma 15 and Lemma 18, for a reducing program and a ground goal there is neither 

an unbounded BFKF-derivation which flounders nor an unbounded BFNF-derivation which 

has infinite length. By those lemmas and Proposition 9, vge can prow the following theorem: 

Theorem 19. Let P be a reducing program contaiaing function symbols, :\Jp be the perfect 

model of P a n d  k be a ground literal. Then, the following (a)  and (b) hold: 

(a) i%Jp + L ++ 
there is a .successfiI unbounded BFlVP-derivation for P U (c hi). 

(%> ll/r, I= " L  +==+ 
there is an n such that every u7mbounded BFNF-deriuation for P U (c L )  is finitely 

failed. 

Proof. By Proposition 8 in Section 4, both a successful unbounded BFKF-derivation 

sequence and a finitely failed unbounded BFNF-derivation sequence are sound. Hence, we 

only shonr ''+" part. 

(a) Let L he a ground literal. Since a reducing program is weakly reducing, P Li (t I,] 
is safe for negation. On the other hand, every unbounded BFgF-derivation secpence for 

a reducing program and a ground goal has a finite length by E e m a  18. Thus, every 

unbounded BFNF-derivation sequence for P u ( ~  L )  is either successful or finitely failed. Let 

! I fp  + L. Then, there is no n such that every unbounded BFNF-derisration sequence for P U 

j c  L )  is finitely failed within length n by the soundness of finitely failed unbounded BFNF- 

derivation sequence. Thus, there is a successfui unbounded BFNF-derivation sequence for 

P U { t L) .  Hence, part (a) holds, 

(b) Coxlbining the soundness of successful unbounded BFNF-derivation sequences and 

the finiteness of unbounded BFNF-derivation sequences, part (b) can be proved in the same 

way as in the above. n 

Corollary 20. Let P be  a reducing program containing f~hnction symbols, and L he a ground 

literad. Then, an unbounded BFW-rlerivation for P ii {c L )  is complete with respect to the 

perfect model semantics. 

Now me consider the termination property of the usual SLDNF-resolution. instead of 

the BFNF-derivation. Cavedon[$] introduced the notion of Locally w-hierarchical programs, 

which is an extension of hierarchical programs. He showed that every fair SLDNF-resolution 

for locaify w-hierarchical programs terminates, and that if moreover a program and a goal 

are allowed then the SLDNF-resolution is complete with respect to the perfect model se- 

mantics. In fact, our reducing programs are locally w-hierarchical, so we can also obtain the 

termination property of the SLDNF-resolution for reducing programs in the same way as in 

CavedonE41. 



9. Termination Properties of Weakly Reducing 
Programs 

In this section, we give the solution of the termination problem of weakly reducing programs 

containing function symbols, and prove the correctness of depth-bounded derivations for the 

class, 

Since a weakly reducing program is safe for negation and a depth-bounded BFXF-tree 

for weakly reducing programs is finite, a depth-bounded BFNF-derivation procedure returns 

either success or failure in finite time, Though the depth-bounded derivation may not be 

sound -for an arbitrary depth-bound d, u9e can show that for a given program and a ground 

goal, there is a computable bounded-depth d such that the depth-bounded BFNF-derivation 

is complete. First we S!IOW that the subset of Bp bounded by the term size is finite. 

Lelnma 21. Let k be a first order language, C be the set c?f all constant symbols and all 

function symbols, and II be the set of a l l  predicate symbols in L.  If both C and hii are finite 

then BL/, is finite and there exists a computable function f(n) such that ;i(BLj,j < f(n) for 

any  n > 0. 

Proof. Let S in )  be the number of all ordered trees each of which has n nodes. KnuthjS] 

shotr7ed the following: 

Now we regard a ground atom as an ordered tree -rvhose node is labeled with the element of 

(El U C). Since the total n u d e r  of assignments of elements of (TI ii C) to labels in an n-node 

tree is l(rl ti c)"("), the total number of atoms of size 5 n is less than or equal to 

Therefore, 

fl(B~l,) = O ( n  - g(n u ~ j ~ ~ ' ~ - ~  ). 

Thus, we show the local finiteness of weakly reducing programs. 

Theorem 22. Every weakly reduci~sg program is locally finite stratified. 

Proof. By Theorem 13, a weakly reducing program P is locally stratified. Let 



Then, Ho, . . . Ha,  . . . (a  < w j  is the local stratification of Bp. By Lemma 21, 

is finite, Then P is locally finite stratified. 

Since the perfect model of a locally stratified program is independent of its stratification, 

we only consider the local stratification used in the above proof. Now we define the term-size 

stratification. 

Definition 18. Let P be a weakly reducing program. Vt'e call the local stratification 

HQ,.  . . , H",. . , (a  < d) of Bp such that 

the term-size stratification of Bp. Further we call Po,. . . . P,.. . . ( a  < U J )  corresponding to 

this stratification the term-size stratification of gro~72d(P) .  

'&Te have a property of depth-bounded BFXF-derivation procedures. 

Lemma 23.  Let P be a weakly reducing program coaztainingfunction symbolsJ L be a ground 

literal, and d < ~ c !  be a depth-bound. Then a depth-bounded BFlVF-derivation seque~zce is 

either successful or failed. 

Proof. This follows irmediately from Lemma 10 a ~ d  Lemma 16. 

Though a depth-bounded BFSF-derivation is neither sound nor complete for an arbitrary 

depth-bound d ,  we can show that there exists a depth-"usund d such that a depth-bounded 

BFNF-derivation is sound and complete with respect to the perfect model of the program. 

Thesreln 24. Let P be a weakly reducingprogram containingfunctzon symbols, &, . , P,, . . . 
( a  < w )  be  the term-size stratification c4fground(P), y, be the closure ordinai d T p , ,  A f Bp, 
and d be a depth-bound. I f A  i s  the level k < iv' and d 2 If(BpiiAl), then the following jaj,(bj 

and (c) hold: 

(a) There is a successfib depth-bounded BFlVF-derivation sequence of 

kefzgth n for P U (c A) =$ 

A E Tp, ;P n(iV&-l). 

(h) E Tq, Tn(1Mk-13 and 70 -t . . . +- Y~-I + n I d * 
there is u successfub depth-bounded BFNNF-derivation sequelzce of 

length 5 70 I - .  . . i ~ ~ - ~  $ n 5 d for P u (- A).  



jcj A E T f i  Tn(Mk-1) and d < yo + . . . +- ~ l e - I  +- n * 
there is a swccessful depth-bo7snded BFlaiF-derivation sequence of 

length 5 d for P U {t A). 

Proof. Parts (a),(b) and (c) are proved simuitaneously by an induction on the level k of 

A. 

{Base step) Suppose the level of A is 0. Then, Po is a definite program. Restricting the 

result of Jaffer et ai.l6] to the case where E is an equality relation on ordinary first order 

terms and P is a definite program, we can directly ob-cain the following (a9) and (b'), 

a there is a successful (P, E)-derivation sequence of lengt,h n for P ti (t A] 
* A E G T n i d ) ,  

(b') n 5 d and A E Tp Tn (0 )  

there is a successful (P,  E)-derivation sequence of length < n for P ti j c  A), 

where P is a definite program. For a definite program P, an unbounded BFKF-derivation 

coincides with a (P3 E)-derlvationCG] in case E is an equality relation on ordinary first order 

terms. Furthermore, a successfuful depth-bounded BFNF-derivation sequence of iengt h n 5 rl 

is a successful unbounded BFNF-derivation sequence. Hence, parts (a) and (b) imedia te ly  

foilows from the soundness (a ' )  and the completeness (b') sf a successful (P ,  El-derivation 

sequence above. 

So\\- we consider part jc). Suppose n > d and -4 E Tpo njq5). Since P is a weaki? 

reducing program, Po is focally finite stratified. Thus, A f Tp, f d(9)  by Corollary 7 .  Hence. 

part (c) follows from part (b). 

(Induction step) Suppose each part of the theorem holds for any atom of level 5 k ,  and 

the level of A is F + 1. Combining parts (bj  and ( c )  of this hypothesis, for any atom A' 

of level 5 k and any n < w if ,4% Egq, n(Mk-1) then there is successf~d depth-bounded 

BFKF-derivation sequence of length < d for P ci (+ A'). Thus, the foilowing (d) holds for 

any atom A of level < k. 
jd) Every depth-bounded BFKF-derivation sequence for P U {e- A) is 

failed with depth-bound d > l(BPIJAI) ===+- 

A 6 Gk 7 7 k [ f i 1 k - l ) .  

(part (a)) Q7e assume that there is a successful BFNF/d derivation sequence of length 

n < dfor  P i! (t A). 

Suppose first n = 1. Then there exists a clause A t 7B1, . . . , -IB, E ground(P) ( q  2 0) 
such that every depth-bounded BFNF-derivation seqnence for P U {+ B,) is failed for any 

i = I,. . . , q. Since B is weakly reducing; B, is level < k and d 2 $(BpilAi) 2 d(BPjia,l). By 

part (dl of main induction Irypothesis. 



As ~k is the closure ordinal of Tp,, Tpk ~ ~ k ( l W k - l  j = A l k .  Therefore il& I= lB1 A . . . A TB,. 

Hence, Tp,,i i (/\Ik). 

Suppose next n > 1, and the result holds for all successful depth-bounded BFXF- 

derivation sequences of length < n - 1. Suppose Gc, =c A. GI, .  . . ,G, is the successful 

depth-bounded BFKF-derivation sequence for P U j r  A) of length n. Since P is locai- 

variable-free, the derivation sequence Go, . . . ,6, consists of ground goals. Let a ground goal 

GI be t L1,. . . J,. By the definition of derivation sequences, GI , .  . . . G, is the successful 

depth-bounded BFNF-derivation sequence of length n - i < d for P U {c LI , . . . , L,); 

and there is a clause A t il,. . . . L ,  E ground(P).  Since GI , .  . . . G, is ground and P is 
local-variable-free, we can construct a successful depth-bounded BFNF-derivation sequence 

of Length 5 n - 1 for P U {t L ; )  (i = 1,. . . , qj .  There are three possibilities for each 5;. 

1. If L; is a positive literal B, E If, jj < kj then there is a successful depth-bounded 

BFNF-derivation sequence of Length n - 1 for P ti (t B,). By part (a) of the main 

induction hypothesis, B, E T f i  (n - l)(i14k-l). Since P is locally stratified, B, E 

T ( n  - I)(l%fk). 

2. If L, is a positive literal B, E Hk+l then there is a successfuarl depth-bounded BFNF- 

derivation sequence of length n - 1 for P U {t B;). By part (a) of the secondary 

induction hypothesis, Bi E TPk,, 7 (n - l j ( i l fk) .  

3. If L, is a negative literal 4 3 ,  (B,  E Bp), then 43, is level < k and every depth- 

bounded BFNF-derisyation sequence for P U (+- B,) is failed. Since P is weakly 

reducing, d > ji(BiDl 2 t(BpIlB, [). Thus. B, 6 Idpk 'I' ?k(.'tfit-lj = -%Ik by part jd) of 

the main induction hypothesis. Since P is locally stratified and the level of B, < k ,  

Bt $ Tpk*l ( n  - l)(l%fk). 

By 1, 2 and 3 above, TFk+i 7 (n - Ij(ilfk) I= L1 A .  . . A E,. There is a clause A t Ll. . . . . L, E 

grobnd(P). Hence, A E ;Pq,,, yn(ikfk). 

(part jb)) We assume that A E Tpk+i 1' n(i%Ik) and 70 + . . . -+ 7, $ n 5 d .  Suppose 

first n = 1. Then, there exists a clause -4 c k I , .  . . , L, E ground(P) ( q  2 0) such that 

I\Ik L1 f, . . . A Lp. There are tn-o possibiliries for each L,. 

I .  If L; is a positive literal B; E H j  ( j  < F j  then B; E A f k  = ;Pp, 1 yit(A&k-I) and 

30 + . . $ yk < d. By part (b) of the main induction hypothesis. there is a successful 

depth-bounded BFNF-derivation sequence of length < $ . . . + yk for P U (+- B;). 

2. If L ,  is a negative literal TB,  (%I, E Bp), then B, @ TS,,, T (n  - l ) ( _ M k ) .  Since P is 

locally stratified. B, E HJ for some j < k and B, @ IVcfk. By part (a)  of the main 

induction hypothesis, if for some n 5 cl there is a successful depth-bounded BFNF- 

derivation sequence of length < n for P U (+ B,) then B, E TF?, 1 njiZfk-l). Since 

B, t$ T-pk n(l%fk-l) b r  any n < w ,  for any E < d there is no successful depth-bounded 



BFNP-derivation sequence of length 5 b. Then every depth-bounded BFNF-derivation 

sequence for P ii (c B;) is failed by Lemma 23. 

Combining these 1 and 2, there is a successful depth-bounded BFNF-derivation sequence 

of length 5 +ro + . . . + ̂ /k for P U (c- L1,. . . , L,). Since this derivation sequence is ground, 

there is a successful depth-bounded BFKF-derivation sequence of length < -10 + . . . + n/k + 1 

for P U (t A) 

Suppose next 1 < n < d.  Then there exists a clause A c Li, . . . , L, E groundjPj j q  2 
0) such that TpF,, T (n - 1)(fWk) i L1 A . . . A L,, There are three possibilities for each L,, 

1. If L; is a positive literal B; f H, for some j < k then B, f i%fk = Tpk ~'-'k(l?lk-l) and 

+ . . . + ~k 5 d. By part (bj of the main induction hypothesis, there is a successful 

depth-bounded BFKF-derivation sequence of length < ̂ ~ o  $ . . . -t' T r ~  for P U {t BZ). 

2. If L; is a posi-cive literal B; f -hlk+l then Bi E a'&+, 7 ( n  - l ) ( iWk)  and yo + . . . + gk + 
(17, - 1) < d.  B y  part (b)  of tlie secondary induction hypothesis, there is a successfui 

depth-bounded BFNF-derivation sequence of length < 740 + . . . -+ yk + (72 - 1) for 

P U (+ B,:). 

3. 4f L, is a negative literal TB, (B$ E Bp) .  then B, 4 TPk+l jn - l)jiVfk). Since P is 

locally stratified, B, E HJ for some j < k and B, # Adk. By part ( a )  of the main 

induction l-iypothesis, if for some n 5 d there is a successful depth-bounded BFNF- 

derivation sequence of length 5 n for P U (t B,) then B, E Tpk 7 n(lldk-l) .  Since 

B, # Tq, ?;n(Alk-i) for any n < u; for any E 5 d there is no successful depth-bounded 

BFKF-deris-ation sequexce of length < I .  Then every depth-Sounded BFNF-derivation 

sequence for P U {t B,) is failed by Lemma 23. 

Combining these 1. 2 and 3, there is a successful depth-bounded BFKF-derivation se- 

quence of length < ?o + . . . + yk + (n - 1) for P U (t kl.. . . , L,).  Since this derivation 

sequence is ground, there is a successful depth-bounded BFKF-derivation sequence of length 

< y o + . . . + ~ k + n f o r P U ( t A )  

(part jc)) 'i;tye assume that E TPk+, I Z ( ~ $ I ~ )  and d < 7 0  + . . . + ~k + n,  Since P is 
a weakly reducing program. P is locally finite stratified by Theorem 22. By Theorem 6. 

A f Tp,,, T ?k+l (K?) and 

+ . . . + 3.k + Yk+l < $ ( N ~ + ~ ) .  

Since # (Hk+l )  < di 
yo + . . . + "ik 3 Yk+l  < d ,  

By part (b) of this theorem, there is a successful depth-bounded BFNF-derivation sequence 

of length < 70 $ . . . + yi, + yk+l < d ,  Hence, part ( c )  is proved. 

Now we show the completeness of the depth-botlnded BFNF-derivation procedure. 



Corollary 25. Let P be a weakly reducing program containing b n c t i o n  symboEs, L be a 

ground literal: and d be a depth-bound. If d > i(BpilLl) then a depth-bounded BFihTF- 

derivation for P ?J (t L ]  is complete with respect to the perfect model semantics. 

By Lemma 21, the depth-bound Ij(BpjlLI) is computable. Thus, the perfect model iIgp for 

a weakly reducing program containing function symbols is computed by the depth-bounded 

BFKF-derivation. 

Example 6. The program P4 is a weakly reducing program containing function symbols: 

Its Herbrand base Bp4 = ( even j sa (0 ) )  1 a < w ) ,  and 

Thus, d(Bp4 1.) is a: most n - 1. An atom even(s(s(0))) is contained in the perfect mode! of 

P4, and leven ( s ( s ( 0 j ) )  1 = 4. Hence, P4 U (c e v e n ( s ( s ( 0 ) ) ) )  has a successfu-i? depth-Sounded 

BFXF-derivation with the depth-bound 3(= #(Bpqi4> = 4 - 1). 
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