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Abstract

SLDNF-resolution procedure is not complete with respect to the perfect model se-
mantics for logic programs in general. In this paper, we introduce two classes of logic
programs containing function symbols, reducing programs and weakly reducing pro-
grams, which are characterized by the size of atom. For these classes of programs, we
prove the completeness of the derivation procedure which makes use of depth-bound.
First, we introduce the local finiteness of Herbrand base of a program, and prove the
finite fixpoint property for the class of programs which satisfies the local finiteness.
Further, we show that the class of weakly reducing programs, a subclass of locally
stratified programs, has some syntactic conditions, and prove that it has the finite
fixpoint property. Using the finite fixpoint property, we prove the completeness of
depth-bounded derivations for weakly reducing programs. In particular, we prove
the completeness of unbounded derivations for reducing programs.

1. Introduction

The completeness of the derivation procedure is an important problem in logic programming.
Any Turing machine can be simulated by a definite program([15]. Since the termination
problem of Turing machines is undecidable, the completeness of a derivation procedure in
logic programming does not hold in general. However, there are some completeness results
for restricted classes of logic programs.

SLDNF-resolution is complete for the class of allowed hierarchical programs [10], which
can not represent any recursion. QSQR/SLS query evaluation procedure[7] and OLDTNF-
resolution[14] are complete for the class of allowed stratified databases[1], which is the class of
programs containing no function symbols. The class has enough power to express deductive
databases. However, many of small efficient logic programs like list-operation programs are
not contained in the class, because the function-freeness prevents us from using complex
terms representing data structures such as List and Binary-Tree. The allowedness rejects

many of “acceptable” programs[5],[11] including the above mentioned small efficient logic



programs. For example, the program P1 below is neither function-free nor allowed.

Pl — { member(z, cons(z, z)) }

member(z,cons(y,z)) «— member(z, z)

The stratifiedness is a condition to ensure the freedom from recursive negation. The
following program P2 satisfies the freedom and has a clear declarative semantics, that is,

even numbers represented by the successor function. However, it is not stratified.

by { Zzzzgggz)) — —even(z) }

In this paper, we discuss the iterative fixpoint semantics and the procedural semantics for
these natural and efficient logic programs, not for deductive databases. More precisely, we
discuss three conditions, “local stratified”, “locally finite” and “local-variable-free” instead
of “stratified”, “functions-free” and “allowed”, respectively.

First, we extend the notion of the finiteness of Herbrand base to the local finiteness
and prove the finite fixpoint property for locally finite stratified programs. Further, we
introduce two classes of logic programs, weakly reducing programs and reducing programs,
which are characterized by the size of atom. These classes include many of small efficient
logic programs. We give some syntactic conditions of two classes and prove that these classes
are locally finite stratified and local-variable-free. Moreover, we prove the completeness of
depth-bounded derivation procedures for weakly reducing programs using finite fixpoint
property for locally finite programs. In particular, we prove the completeness of unbounded

derivation procedures for its subclass, reducing programs.

2. Preliminaries

A program clause is a clause of the form A« Lq,...,L,. A goalis a clause of the form
— Lqy,...,L,, where A is an atom and L,,..., L, are literals. A program is a finite non-
empty set of program clauses.

A definite program clause is a clause of the form A «— Ay,..., A,. A definite goal is a
clause of the form « A;,..., A,, where A and A,,..., A, are atoms. A definite program is
a finite non-empty set of definite program clauses.

A ground term is a term containing no variables. Similarly, a ground atom is an atom
containing no variables. Let L be a first order language. The Herbrand base By, is the set of
all ground atoms. (In case L has no constants, we add some constant “a” to the first order
language L.) Let P be a program. The Herbrand instantiation of P, denoted by ground(P),
is the set of all ground instances of a program P. An Herbrand model M is a subset of Bp
which is a model of P. In this paper, we only deal with Herbrand models, so we call an

Herbrand model a model.



Locally stratified programs were introduced by Przymusinski[12], who generalized the

class of stratified programs. A program P is locally stratified if there is a partition
Bp=Ho+ Hy+ -+ Hot oo (a<w)

of an Herbrand base which satisfies the following three conditions for every program clause

A« Ly,...,L, € ground(P) and any i = 1,...,n:
1. A€ H, (k>0),
2. D; € U{H;| j < k}, if L; is positive literal D;,
3. D; € U{H;| jy < k}, if L; is negative literal = D;.

We call the partition Hy,...,H,,... the local stratification of Bp, and the partition
Po,..., Pa,...of ground(P) the local stratification of ground(P), where

P,={A<A,,...,A € ground(P)|A € H,,q > 0}

and a < w. The level of a positive literal A is a if A€ H,, and the level of a negative literal
-Ais a+1if A€ H,. Every stratified program is locally stratified.

In this paper, we consider the perfect model semantics as the semantics for locally strat-
ified programs. The perfect model is a minimal model with respect to a preference order
between models. A locally stratified program has a unique perfect model independent of the
stratification.

We now define the perfect model. Let P be a program, A, B,C, D € Bp. Then, priority

orders < and < on Herbrand base Bp is given as follows:

1. (condition I.) A < B if there exists a program clause A «— A;,...,—B,..., A, €
ground(P) (n > 0). (We say this clause defines A < B.)

2. (condition II.) A =< B if there exists a program clause A « A;,...,B,..., A, €
ground(P) (n > 0). (We say this clause defines A < B.)

3. (transitivity of <) AL Cif A< Band B=<C.
4. (transitivity of <) A< C (D <B)if AXBand B<C (D < A).
5. (x=>=)If A< B then A=< B.

6. (closure axiom) < and < are only the relations defined above.

Let M, N be distinct models of P. M is preferable to N if for every A € M — N there
exists a B € N — M such that A < B. We call a model M a perfect model of P if no other
model of P is preferable to M.



The perfect model can be characterized by the fixpoint of a mapping Tp : 287 — 2B
for logic programs containing negative literals in the bodies of clauses. We define ordinal

powers of the mapping Tp by

A« Ly,...,L, € ground(P)

for some literals Ly A ... A Ly,
and M =L A...AN L,

Tp(I) = { A€ B(P)

Tpr0(D) = I,
Tpta(l) = Tp(TpT (a—1)(I)) U TpT (@ —1)(I), if ais a successor ordinal,
Tpta(I) = J{Tp1BI)|B<a}, if aisa limit ordinal.

An ordinal v, is the closure ordinal if 7, is a least ordinal such that

Tp, T7(I) = Tp, T (7o + 1)(I).

For a locally stratified program, the closure ordinal v, < w for any a < w. Now we

define the fixpoint model of a locally stratified program|[4].

Definition 1. Let P be a locally stratified program, Po,..., Pa,... (@ < w) be a local
stratification of ground(P). A fizpoint model Mp is defined as follows:

MO = TPOT w(d’)’
M, = Tp,Tw(My_1) (a<w),
Mp = | JM.|a <w}.

Note that w is the closure ordinal. The following proposition characterizes the model

Mp of a locally stratified program P [4].

Proposition 1 (Cavedon89). Let P be a locally stratified program. Then Mp is the

unique perfect model of P.

Hereafter we call this fixpoint model Mp a perfect model. The perfect model semantics
is a kind of closed world assumption (CWA) [13]. In the semantics, an atom is assigned true
if it is in the perfect model Mp of a program P. Otherwise the atom is assigned false.

Let P be a program and M be an Herbrand model of P. A derivation procedure D is
sound with respect to M if for all A € Bp the following (a) and (b) hold:

(a) If there exists a successful derivation sequence for P U {« A} then A is true in M.
(b) If every derivation sequence for P U {« A} is failed then A is false in M.

A derivation procedure D is complete with respect to M if for all A € Bp the following
(c) and (d) hold:



(c) If Ais true in M then there exists a successful derivation sequence for P U {+ A}.
(d) If A is false in M then every derivation sequence for P U {« A} is failed.

Note that the derivation sequence may be infinite for logic program in general.

We introduce some notations for our discussions. An expression is either a term, a literal,
a conjunction or disjunction of literals. The size of an expression e, denoted by |e|, is the
total number of occurrences of variable symbols, constant symbols, function symbols and

predicate symbols in e. Note that |-A| = |A| for negative literal —A.

Example 1. Let z and y be variable symbols, a and [] be constant symbols, cons be a

function symbol and p be a predicate symbol. Then,
l:l:l =1, Ial =1,

|cons(a,cons(z,[]))| = 5,
|=p(2)| = 2.

Let o(z, A) be the number of all occurrences of a variable z in an atom A, and let v(A)

be the set of all variables in atom A. Let §(.S) be the number of elements in a set .S, and let
Sl ={A € S|]|A| <n},

where S is a set of expressions.
An order < is noetherian if there exists no infinite sequence dy,d,,ds,... such that

di <dy<ds3=<... .

3. Locally Finite Stratified Programs

In this section, we consider the termination problem in logic programming. If Bp is finite
then the closure ordinal 7 of the mapping Tp is finite. However, Bp may be infinite if a
program P contains function symbols. Thus, ¥ may not be infinite. Originally the notion
of stratification was introduced for the consistency problem of the completed programs. On
the other hand, we will use it for the termination problem of programs. Now we define the

notion of the locally finite stratification.

Definition 2. Let P be a locally stratified program and Hy,...,H,,... (o < w) be the
local stratification of Bp. P is locally finite stratified if

H* = J{Hj|j < o}

is a finite set for any o < w. We call Hy, ..., H,,... (o < w) the locally finite stratification
of Bp, and the corresponding local stratification of ground(P) the locally finite stratification

of ground(P).



For a definite program P, Bp is a local stratification of Bp. Thus, definite program
is locally stratified. However, Bp may not be the locally finite stratification for a definite

program P if P contains function symbols.

Example 2. The definite program

p(f(2z)) < p(z)

P3 = p(z)  ple)

p(a)
has Bpg as a trivial local stratification of Herbrand base. However, Bpg is not a locally
finite stratification because Bpg = {p(f*(a) | ¢ < w} is not finite. On the other hand, there
is another local stratification Hy, ..., H,,... (o < w) of Bpg such that H, = {p(f*(a)}.
Since H* = {p(fi(a) | + < «} is finite for any o < w, the local stratification Ho, ..., H.,,...

is a locally finite stratification. Hence, P3 is a locally finite stratified program, and has

countably infinite strata.

Lemma 2. Let P be a locally stratified program, Py, ..., Ps,... (o < w) be the local strati-
fication of ground(P) and M C Bp. Then,

Tp,15(M) C Tp,T(j +1)(M).

Proof. By the definition of ordinal powers of Tp, the result immediately holds. O

Lemma 3. Let P be a locally stratified program, Py, ..., P,, ... (a < w) be the local strat-
ification of ground(P) and A € Bp. Suppose Mp, = Tp,_, T w(Mp,_,) and Mp_, = ¢. If

there exists a k < w such that
Tp, T(k)(My—1) 2 Tp, T(k+1)(My_q),

then for any 3 > k
Tp, T(k)(Ma-1) 2 Tp,T(j)(Ma-1).

Proof. It suffices to prove only the case j = k + 2. First suppose A € Tp, T(k+2)(M,_;).
Then,
A€ Try(Tp 1 (k4 1)(Marr)) UTp, 1 (k + 1)(Maes).

If AeTp, T(k+1)(My_1) then it immediately holds. Thus, we suppose
AeTp,(Tp, T(k+1)(My_y)).
There is a clause A « Lq,..., L, € P, such that
Te, T(k+1)(My1) EL1A...ANL,.

There are two cases to be considered for each L;.

6



1. If L; is a positive literal B then B € Tp, T(k+1)(M4_;). By the assumption of lemma,
B eTp, T(k)(My_v).

2. If L; is a negative literal =B then B ¢ Tp, T(k+1)(M,_1). By the definition of ordinal
powers of the mapping, B & Tp, T(k)(My_1).

By the above 1 and 2, Tp, T (k)(Ma-1) E L1 A... AL, Weobtain A € Tp, T(k+1)(My_1)-
By the assumption of lemma, A € Tp, T (k)(M,_1). Thus,

Tp, T(k)(Maz1) 2 Tp, T(k+2)(Msr).

The remainder of the proof proceeds on in the same way by an induction on j. O

Definition 3. Let P be a locally stratified program, Ho,..., H,,... (o < w) be the local
stratification of Bp, and let Mp, = Tp, , T w(Mp,_,) and Mp_, = ¢.

Then, we define a lattice
Ao ={M,,UIl| ICH,}.

Lemma 4. Let P be a locally finite stratified program, Hy, ..., H,, ... (a < w) be the locally
finite stratification of Bp. If

S CS5C...CS C... (S;€A,,1>0)
then there exists a k < §(Hy) such that S; = Sy for any j > k.

Proof. By the definition of A,, we can assume that S; = M,_, U I; for some I; C H, and
any ¢ > 0. Then [, C L C...C L C... (: >20). Since I; C H, for any ¢ > 0, there exists
a k < f(H,) such that I; = I for any j > k. Then S; = S, for any j > k. O

Lemma 5. Let P be a locally finite stratified program, Hy, ..., H,,... (o < w) be the locally
finite stratification of Bp. Then, the closure ordinal vy, < §(H,) for any a < w.

Proof. By Lemma 2, for any j < w
Tp, T0(Moc1) € ... CTp, Ti(Moet) CTp, 15+ 1(Muor) C ... CTp, Tw(My_y).

By definitions of the local stratification of ground(P) and ordinal powers of Tp, Tp, T
J(Ms_y) € A, for any j < w. By Lemma 3 and Lemma 4, there exists a k& < f(H,) such
that Tp, Tk(M,_1) is a fixpoint Tp, Tw(M,_1). O

The closure ordinal 7, corresponding to each H, is finite for a locally finite stratified

program. Now we show the finite fixpoint property for locally finite stratified programs.



Theorem 6. Let P be a locally finite stratified program, Hy,...,Hy,... (o < w) be the
locally finite stratification of Bp and P, ..., Py, ... (a < w) be the locally finite stratification
of ground(P). If v, is the closure ordinal of a mapping Tp, : A, — A, for any a < w, then

Yo+ -+ e < H(HT).

Proof. By Lemma 5, if Tp, Tw(M,_1) = Tp, 17a(M4_1) for any a < w then v, < §(H,).

Hence,

Yot e < H(Ho) + ...+ H(H)
= f§(HoU...UH,)
= J(H).

The above corollary asserts that we can decide whether a ground atom in H, is true or
false on the perfect model of a program P by applying operators Tp, (j =0, ..., ) at most
§(H*) times. The following corollary is an extension of the theorem in Yamamoto[17] for

elementary formal systems|2].

Corollary 7. Let P be a definite program, and let P be locally finite stratified, Hy, ..., H,,... (a <
w) be the locally finite stratification of Bp and A € Bp. If A€ H, then

AeTtw(g) = AecTTn(¢)
for the finite ordinal n = §(H®).
Proof. We consider the increasing sequence
Te, T0(é)y-- -, T, TY0(8)s - -, Ty T Y Ma-1)-

Since a definite program has no negative literals in the body of a clause, we can consider the
lattice 27 whose least element is ¢, instead of the sequence Aq, ..., A, of lattices. Thus,

the increasing sequence above is reduced to the sequence

To10(6), -, TrT70(6)s -, Tr T (o + - - +7)(8).

Hence, the result holds by Theorem 6. O

4. Depth-Bounded BFNF-Derivation

We introduce the notion of depth-bounded BFNF-derivation to discuss the termination
property of logic programs more precisely. “BF” stands for “Breadth First”, and “NF”



stands for “Negation as Failure”. A BFNF-derivation is a variant of the usual SLDNF-
resolution, where in each goal all literals are selected. This computation rule ensures that
every derivation is a fair[9] derivation.

We define a BFNF/d-derivation for programs, which is an extension of the (P, E)-
derivation[6]. The BFNF/d-derivation sequence is a BFNF-derivation sequence which is
bounded by the depth-bound d, where d is an ordinal. Throughout this paper, we assume
d < w.

Definition 4. Let G be a goal « Ly,..., L, (L; is a literal) and P be a program. If there
are a substitution § and an n-tuple (C1,...,Cy) (each C; is a literal) such that the following
conditions 1, 2 and 3 hold for every ¢ = 1,...,n, then a goal — Ry,..., R, is derived from
G and P using the most general unifier (mgu) 6.

1. # is an mgu of conjunctions of literals (Ly,..., L,) and (Ci,...,C,).
2. If L; is a positive literal A then

(a) Cj is a positive literal B and there is a clause B « M, ..., M, (¢ > 0) which is
a variant of a clause in P. (We call each M; (j = 1,...,¢) a child of L;.)

(b) R; is a conjunction of literals (M, ..., M,)6.
3. If L; is a ground negative literal = A then

(a) C;is =A and every BFNF/d-derivation sequence for P U {«— A} is failed. (If a
literal M is a child of A in the BFNF/d-derivation sequence for P U {« A} then
we call M the child of L;. Moreover, we call derivation sequences for P U {« A}

partial derivation sequences for P U {« —A}.)
(b) R; is empty.
Definition 5. Let P be a program, G be a goal and d < w be a depth-bound. A BFNF/d-

derivation sequence for P U {G} consists of a sequence Gy = G, Gy, ...,Gy,... of goals and
a sequence 6y, 0s,...,0,,... (@ < d) of mgus such that each Gy, is derived from G; and P
using 6;4;.

A derivation sequence G, G, ... is successful if there is an n such that G,, is an empty
clause. A derivation sequence Gy, Gy, ... is floundered if there is an n such that GG,, contains
non-ground negative literals. A derivation sequence Gy, Gy, ..., G, is failed with length n if
either any goal cannot be derived from G, which contains no non-ground negative literal (in
this case the sequence is finitely failed), or n = d and a goal G, is not empty (in this case
the sequence is depth-bound-failed). Otherwise a derivation sequence Gy, Gy, ... has infinite
length.

A BFNF/d-derivation is successful if there exists a successful BFNF/d-derivation se-
quence for P U {G}. A BFNF/d-derivation is failed if there exists an n such that every
BFNF/d-derivation sequence for P U {G} is failed within length n.

9



We define a BFNF/d-tree for measuring only the time derivation procedure requires.

Definition 6. Let P be a program, G be a goal and D be a BFNF/d-derivation sequence
Go, G, ... for PU{G}. A BFNF/d-tree T for D is a tree defined as follows:

1. aroot of T is a literal in G,
2. every node in T is a literal in D or in partial derivation sequences of D,

3. if a literal B is a child of a literal A in D or in a partial derivation sequence of D then

Bisachildof AinT.
The depth of a BFNF/d-tree T is the maximum length of branches in 7.

We define an unbounded BFNF-derivation and a depth-bounded BFNF-derivation. If
a depth-bound d is the smallest limit ordinal w then we call the derivation sequence an
unbounded BFNF-derivation sequence. If d < w then we call the derivation sequence a
depth-bounded BFNF-derivation sequence with depth-bound d. We define successful, floun-
dered, failed, infinite derivation sequences and BFNF-trees in the same way as above. Note
that a failed unbounded BFNF-derivation sequence is a finitely failed unbounded BFNF-
derivation sequence. Because an unbounded BFNF-derivation has no derivation sequence
which is depth-bound-failed. Note also that a depth-bounded BFNF-derivation has no infi-
nite derivation sequence.

An unbounded BFNF-derivation is sound like the usual SLDNF-resolution. We show
the soundness of a successful unbounded BFNF-derivation and a finitely failed unbounded
BFNF-derivation.

Proposition 8. Let P be a local-variable-free program, Mp be the perfect model of P, and
L be a ground literal. Then the following (a) and (b) hold:

(a) If there ezists an unbounded BFNF-derivation for PU {« L} then Mp = L.

(b) If there exists an n such that every unbounded BFNF-derivation for P U {« L} is
finitely failed within the length n then Mp |= —L.

Corollary 9. An unbounded BFNF-derivation for a local-variable-free program is sound

with respect to its perfect model semantics.

A depth-bounded BFNF-tree has no infinite branch, since a depth-bound d is less than

w.

Lemma 10. Let P be a locally stratified program, L be a literal, and d be a depth-bound. If
the level of L is a and a depth-bound d < w then a depth-bounded BFNF-tree for P U {G}
is a finite tree whose depth is at most (a + 1) -d.

10



Proof. The length of each depth-bounded BFNF-derivation sequences and partial deriva-
tion sequences with depth-bound d is at most d. On the other hand, the number of strata
whose level is lower than or equal to « is at most o + 1. Hence, the length of every branch
of the depth-bounded BFNF-tree is less than or equal to (e +1)-d. O

5. Weakly Reducing Programs and Reducing Programs

Definition 7. A program clause A < Lq,..., L, is weakly reducing if for any substitution
0 and any ¢ = 1,...,n the following conditions 1 and 2 hold:

1. |AB| > |L:0| if L; is a positive literal.

2. |Af| > |L;0| if L; is a negative literal.

A program clause A <+ Lq,..., L, is reducing if
for any substitution 6 and any: =1,...,n.

A program P is weakly reducing (reducing) if every program clause in P is weakly reducing

(reducing).

Example 3. A program P1 and a program P2 shown in Section 1 are reducing programs.

Every reducing programs are also weakly reducing programs.

The proposition below provides some syntactic conditions that programs be weakly re-

ducing and reducing.

Proposition 11. Let P be a program. Suppose P contains at least one function symbol.
A clause A «— Lq,...,L, in P is weakly reducing (reducing) if and only if the following

conditions (a),(b) and (c) hold for any variable z in the clause and any i =1,...,n:
(a) o(z,A) > o(z, L;).

(b) |A| > (>) |Ls|, if L; is a positive literal.

(c) |A| > |Li| , if Li is a negative literal.

Suppose P contains no function symbols. Then a clause A «— Lq,...,L, in P is weakly
reducing (reducing) if and only if above conditions (b) and (c¢) hold for any variable z in the

clause and anyt1=1,...,n.

11



Proof. Let C be a program clause A «— Ly,...L, (n > 0), v(C) be a set of variables
{z1,...z,} and 8 be a substitution. We assume that 8 is a substitution restricted to variables

in C without loss of generality. Let § = {z; :=¢;| 7 =1,...,¢}. Then,for¢e=1,...,n
q
|A0] = 1L:6] = D (olxj, A) — o(zj, L)) (1t;] — |z;1) + [A] = |Lil.
7=1

(= part) Suppose P contains function symbols, and conditions (a),(b) and (c) hold for
any ¢ = 1,...,n. Since [¢;| — |z;| > 0, the following conditions (d) and (e) hold for any :

(d) |A6]| > | L6, if L; is a positive literal.
(e) |A8] > |L;8|, if L; is a negative literal.

Thus, C is weakly reducing. If there exists no function symbols then (b) and (c) imply (d)
and (e). Thus, C is weakly reducing.

(< part) Suppose C is weakly reducing. We show that if there is an ¢ (1 < 7 < m)
such that one of the conditions (a),(b) and (c) does not hold then contradiction is derived.
Suppose first thereis an i (1 <7 < m) such that neither (b) nor (c) holds. Then contradiction
is immediately derived for an identity substitution §. Therefore, conditions (b) and (c) hold
for any ¢ = 1,...,n. This is independent of existence of function symbols.

Suppose next there are k and m (1 <k < ¢,1 < m < n) such that o(zg, A) < o(zy, L)
We take a substitution o = {z; :=¢;| j =1,...,¢} such that

f) if § # k then ¢; is either a constant symbol or a variable symbol,
J

(g) if § = k then t; is a term that satisfies

|A] = |Lm|
it > e Ty —oen )

Since P contains at least one function symbol, there exists such a substitution o. Hence,
|Ao| < |L,o| for the substitution o. This contradicts the assumption. Thus, the condition
(a) holds for any : = 1,...,n. O

Example 4. Every propositional program not containing negation is weakly reducing. A
program
P4 = P2U {even(z) « even(z)}

is weakly reducing. P4 has the same perfect model semantics as that of P2. P4 U {«
even(s'(0))} has no finite SLDNF-tree, while every SLDNF-tree for P2 and a ground goal

is finite.

Throughout this paper, we only consider weakly reducing programs and reducing pro-

grams containing function symbols.

12



6. Freedom from Recursive Negation for Weakly
Reducing Programs

The local stratifiedness ensures the freedom from recursive negation. Przymusinski[12] gave

a condition:

Proposition 12 (Przymusinski88). A program P is locally stratified if and only if the

priority relation < on Bp is noetherian.

The class of locally stratified programs is undecidable[4]. However, for weakly reducing
programs the priority relation < on Bp is reduced to the partial order on ground atoms with

respect to their sizes. Hence, we immediately obtain the following theorem.
Theorem 13. FEvery weakly reducing program is locally stratified.

Proof. Let P be a weakly reducing program, A, B,C, D € Bp. It suffices to prove that
the priority relation < on Bp is noetherian. If A < B then the following 1, 2 or 3 hold by
the definition of <:

1. There exists a clause which defines A < B.
2. There exist C such that A < C <X B and a clause in ground(P) which defines A < C.

3. There exist D such that A < D < B and a clause in ground(P) which defines D < B.

We consider the case 1. Let A «— A;,...,—=B,..., A, (n > 0) be a clause to define A < B.
Then |A| > |B| by the definition of weakly reducing programs. In cases 2 and 3, we also
prove that if A < B then |A| > |B| in the same way. Thus, the relation < can be reduced to
the relation >. Therefore an increasing sequence with respect to < is reduced to a decreasing

sequence of natural numbers. Since > is noetherian, so is <. O

Combining the result in Przymusinski[12] and the theorem, we can conclude that a

weakly reducing program has a unique perfect model.

7. Safeness for Negation of Weakly Reducing Programs

A variable in a program clause is local if it appears only in the body of the clause. The
condition “local-variable-free” is an alternative to the condition “allowed” with respect to
occurrences of variables. Goals in a derivation sequence turn ground in a top-down man-
ner for local-variable-free programs, while goals in a derivation sequence turn ground in a

bottom-up manner for allowed programs.
Definition 8. A program clause A « Ly, ..., L, is local-variable-free if
v(A) Dv(Li) (1 =1,...,n).
A program P is local-variable-free if every program clause in P is local-variable-free.
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Example 5. The program P1 is a local-variable-free program.
Local-variable-free programs are also acceptable programs[5],[11].

Definition 9. Let P be a program, G be a goal and d be an ordinal. P U {G} is safe for
negation if any BFNF /d-derivation and any partial derivation for P U {G} do not flounder.

We give a condition under which P U {G} is safe for negation. First we give a lemma for

local-variable-free programs.

Lemma 14. Let P be a local-variable-free program and G be a ground goal. Then, every
goal in a BFNF /d-tree for P U {G} is ground.

Proof. Since P is a local-variable-free program, a goal G;;; which is derived from a ground
goal G; is ground. Thus, the result holds. O

Hence, the next lemma follows immediately from Lemma 14.

Lemma 15. Let P be a local-variable-free program and G be a ground goal. Then P U{G}

is safe for negation.

By the condition (a) in Proposition 11, a weakly reducing program containing function

symbols is local-variable-free. Thus, we have:

Lemma 16. Let P be a weakly reducing program contains function symbols and G be a

ground goal. Then P U {G} is safe for negation.

8. Termination Properties of Reducing Programs

In Section 6 and Section 7, we have shown that both a weakly reducing program and a
reducing program are locally stratified and safe for negation. In this section, we show that
the termination property of unbounded BFNF-derivations for reducing programs, which is

a subclass of weakly reducing program. First we have:

Lemma 17. Let P be a program. Then, a partial order |A| > |B| (A,B € Bp) is noethe-
rian, and the length of the decreasing sequence |Ay| > |Ag| > - -+ is at most |A,].

Lemma 18. Let P be a reducing program containing function symbols and L be a ground
literal. Then, every BFNF /d-tree for P U {« L} s finite, and the depth of that tree is at
most |L|.

Proof. Let L be ground. Since a reducing program containing function symbols is local-
variable-free, every goal in a BFNF/d-tree for P U {« L} is a ground goal. We consider a
branch in the BFNF/d-tree. Since this branch is a decreasing sequence with respect to >,
the length of it is at most |L| by Lemma 17. O
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By Lemma 15 and Lemma 18, for a reducing program and a ground goal there is neither
an unbounded BFNF-derivation which flounders nor an unbounded BFNF-derivation which

has infinite length. By those lemmas and Proposition 9, we can prove the following theorem:

Theorem 19. Let P be a reducing program containing function symbols, Mp be the perfect
model of P and L be a ground literal. Then, the following (a) and (b) hold:

(a) MpEL +—
there is a successful unbounded BFNF-derivation for P U {« L}.

(b) MpfE-L =
there is an n such that every unbounded BFNF-derivation for P U {— L} is finitely
failed.

Proof. By Proposition 8 in Section 4, both a successful unbounded BFNF-derivation
sequence and a finitely failed unbounded BFNF-derivation sequence are sound. Hence, we
only show “=7” part.

(a) Let L be a ground literal. Since a reducing program is weakly reducing, P U {« L}
is safe for negation. On the other hand, every unbounded BFNF-derivation sequence for
a reducing program and a ground goal has a finite length by Lemma 18. Thus, every
unbounded BFNF-derivation sequence for PU{« L} is either successful or finitely failed. Let
Mp = L. Then, there is no n such that every unbounded BFNF-derivation sequence for P U
{« L} is finitely failed within length n by the soundness of finitely failed unbounded BFNF-
derivation sequence. Thus, there is a successful unbounded BFNF-derivation sequence for
P U {« L}. Hence, part (a) holds.

(b) Combining the soundness of successful unbounded BFNF-derivation sequences and
the finiteness of unbounded BFNF-derivation sequences, part (b) can be proved in the same

way as in the above. O

Corollary 20. Let P be a reducing program containing function symbols, and L be a ground
literal. Then, an unbounded BFNF-derivation for PU{« L} is complete with respect to the

perfect model semantics.

Now we consider the termination property of the usual SLDNF-resolution, instead of
the BENF-derivation. Cavedon[4] introduced the notion of locally w-hierarchical programs,
which is an extension of hierarchical programs. He showed that every fair SLDNF-resolution
for locally w-hierarchical programs terminates, and that if moreover a program and a goal
are allowed then the SLDNF-resolution is complete with respect to the perfect model se-
mantics. In fact, our reducing programs are locally w-hierarchical, so we can also obtain the
termination property of the SLDNF-resolution for reducing programs in the same way as in
Cavedon[4].
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9. Termination Properties of Weakly Reducing
Programs

In this section, we give the solution of the termination problem of weakly reducing programs
containing function symbols, and prove the correctness of depth-bounded derivations for the
class.

Since a weakly reducing program is safe for negation and a depth-bounded BFNF-tree
for weakly reducing programs is finite, a depth-bounded BFNF-derivation procedure returns
either success or failure in finite time. Though the depth-bounded derivation may not be
sound for an arbitrary depth-bound d, we can show that for a given program and a ground
goal, there is a computable bounded-depth d such that the depth-bounded BFNF-derivation

is complete. First we show that the subset of Bp bounded by the term size is finite.

Lemma 21. Let L be a first order language, ¥ be the set of all constant symbols and all
function symbols, and I be the set of all predicate symbols in L. If both ¥ and Il are finite
then BL|, is finite and there ezists a computable function f(n) such that §(BL|,) < f(n) for
any n > 0.

Proof. Let S(n) be the number of all ordered trees each of which has n nodes. Knuth[8]

showed the following:
1 —
Stn) = X ( 2(n—1) )

n n—1

3

= 04" -n72).

Now we regard a ground atom as an ordered tree whose node is labeled with the element of
(ITUX). Since the total number of assignments of elements of (IIUYX) to labels in an n-node

tree is §(IT U X)), the total number of atoms of size < n is less than or equal to

S HITU ).
k=1

Therefore,
H(Bul) = O(n - U )" F),
Thus, we show the local finiteness of weakly reducing programs.
Theorem 22. FEvery weakly reducing program is locally finite stratified.
Proof. By Theorem 13, a weakly reducing program P is locally stratified. Let
H,={A€Bp| |Al=a+1} (a <w).
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Then, Hy,..., Hy,... (o < w) is the local stratification of Bp. By Lemma 21,

HY = | J{H;|j<a}
= {A€Bp| |A|<a+1}

= BP‘a+1

is finite. Then P is locally finite stratified. O

Since the perfect model of a locally stratified program is independent of its stratification,
we only consider the local stratification used in the above proof. Now we define the term-size

stratification.

Definition 10. Let P be a weakly reducing program. We call the local stratification
Ho,...,H,,... (& < w) of Bp such that

H,={A€Bp| |Al=a+1}

the term-size stratification of Bp. Further we call P, ..., P,,... (& < w) corresponding to

this stratification the term-size stratification of ground(P).
We have a property of depth-bounded BFNF-derivation procedures.

Lemma 23. Let P be a weakly reducing program containing function symbols, L be a ground
literal, and d < w be a depth-bound. Then a depth-bounded BFNF-derivation sequence is

either successful or failed.

Proof. This follows immediately from Lemma 10 and Lemma 16. O

Though a depth-bounded BFNF-derivation is neither sound nor complete for an arbitrary
depth-bound d, we can show that there exists a depth-bound d such that a depth-bounded

BFNF-derivation is sound and complete with respect to the perfect model of the program.

Theorem 24. Let P be a weakly reducing program containing function symbols, Py, ..., P,, ...
(o < w)be the term-size stratification of ground(P), v« be the closure ordinal of Tp,, A € Bp,
and d be a depth-bound. If A is the level k < w and d > §(Bp||a)), then the following (a),(b)
and (c) hold:

(a) There is a successful depth-bounded BFNF-derivation sequence of
length n for PU{— A} =
A€ Tp, Tn(Mg_1).

(b) AETPan(Mk_1> Gnd70+...+7k_1+n§d =
there is a successful depth-bounded BFNF-derivation sequence of
length <o+ ...+ Y1 +n <d for PU{— A}.
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(c) AeTp Tn(My_1) andd <y +...+W-1+n =
there is a successful depth-bounded BFNF-derivation sequence of
length < d for PU {« A}.

Proof. Parts (a),(b) and (c) are proved simultaneously by an induction on the level & of
A.

(Base step) Suppose the level of A is 0. Then, P, is a definite program. Restricting the
result of Jaffer et al.[6] to the case where E is an equality relation on ordinary first order

terms and P is a definite program, we can directly obtain the following (a’) and (b’),

(a’) there is a successful (P, E)-derivation sequence of length n for P U {«— A}
= AecTpTn(9),

() n<dand A€ Tp Tn (¢)
= there is a successful (P, F)-derivation sequence of length < n for P U {+ A},

where P is a definite program. For a definite program P, an unbounded BFNF-derivation
coincides with a (P, F)-derivation[6] in case E is an equality relation on ordinary first order
terms. Furthermore, a successful depth-bounded BFNF-derivation sequence of length n < d
is a successful unbounded BFNF-derivation sequence. Hence, parts (a) and (b) immediately
follows from the soundness (a’) and the completeness (b’) of a successful (P, E')-derivation
sequence above.

Now we consider part (c). Suppose n > d and A € Tp, T n(¢). Since P is a weakly
reducing program, Py is locally finite stratified. Thus, A € T Td(¢) by Corollary 7. Hence,
part (c) follows from part (b).

(Induction step) Suppose each part of the theorem holds for any atom of level < k, and
the level of A is k + 1. Combining parts (b) and (c) of this hypothesis, for any atom A’
of level < k and any n < w if A" € Tp, T n(My_1) then there is successful depth-bounded
BFNF-derivation sequence of length < d for P U {« A’}. Thus, the following (d) holds for
any atom A of level < k.

(d) Every depth-bounded BFNF-derivation sequence for P U {« A} is
failed with depth-bound d > §(Bp|j4)) =
A ¢ Tp, Tve(Mi-1).

(part (a)) We assume that there is a successful BFNF/d derivation sequence of length
n < dfor PU{« A}.

Suppose first n = 1. Then there exists a clause A « —By,...,~B, € ground(P) (¢ > 0)
such that every depth-bounded BFNF-derivation sequence for P U {« B;} is failed for any
¢=1,...,q. Since P is weakly reducing, B; is level < k and d > §(Bp|4) > #§(Bp|j5;)- By
part (d) of main induction hypothesis,

B; & Tp, Tve(Mg-1)-
18



As ~; is the closure ordinal of Tp,, Tp, TYk(Mi—1) = M. Therefore My |=-By A...A—B,.
Hence, Tpk_'_1 Tl(Mk)
Suppose next n > 1, and the result holds for all successful depth-bounded BFNF-

derivation sequences of length < n — 1. Suppose Gy =« A,Gi,...,G, is the successful
depth-bounded BFNF-derivation sequence for P U {« A} of length n. Since P is local-
variable-free, the derivation sequence G, ..., G, consists of ground goals. Let a ground goal

G1 be « L4q,...,L,. By the definition of derivation sequences, G, ..., G, is the successful
depth-bounded BFNF-derivation sequence of length n — 1 < d for P U {« Lq,...,L,},
and there is a clause A «— Ly,...,L, € ground(P). Since Gy,...,G, is ground and P is
local-variable-free, we can construct a successful depth-bounded BFNF-derivation sequence
of length <n —1for PU{« L;} (¢ =1,...,¢q). There are three possibilities for each L;.

1. If L; is a positive literal B; € H; (j < k) then there is a successful depth-bounded
BFNF-derivation sequence of length n — 1 for P U {« B;}. By part (a) of the main
induction hypothesis, B; € Tp, T (n — 1)(Mj_1). Since P is locally stratified, B; €
Trppo 1 (n = (M),

2. If L; is a positive literal B; € Hyy1 then there is a successful depth-bounded BFNF-
derivation sequence of length n — 1 for P U {« B;}. By part (a) of the secondary
induction hypothesis, B; € Tp,,, T(n — 1)(My).

3. If L; is a negative literal =B; (B; € Bp), then B; is level < k and every depth-
bounded BFNF-derivation sequence for P U {« B;} is failed. Since P is weakly
reducing, d > §(Bp|4)) = t(Bpli;). Thus, B; € Tp, Tyx(Mi_1) = M; by part (d) of
the main induction hypothesis. Since P is locally stratified and the level of B; < &,
B; ¢ Tp,, T(n — 1)(My).

By 1,2 and 3 above, Tp,,, T(n—1)(My) = L1 A...AL,. Thereisa clause A « Lq,...,L, €
ground(P). Hence, A € Tp,,, Tn(My).

(part (b)) We assume that A € Tp,,, T n(Mg) and % + ... + 7 +n < d. Suppose
first n = 1. Then, there exists a clause A «— Ly,...,L, € ground(P) (¢ > 0) such that
My = Ly A ... A L. There are two possibilities for each L;.

1. If L; is a positive literal B; € H; (j < k) then B, € My = Tp, T v(My_1) and
Yo + ...+ v < d. By part (b) of the main induction hypothesis, there is a successful
depth-bounded BFNF-derivation sequence of length < 5+ ... 4+ v for P U {« B;}.

2. If L; is a negative literal —B; (B; € Bp), then B; € Tp,,, T (n — 1)(M}). Since P is
locally stratified, B; € H; for some j < k and B; ¢ M. By part (a) of the main
induction hypothesis, if for some n < d there is a successful depth-bounded BFNF-
derivation sequence of length < n for P U {« B;} then B; € Tp, T n(M;_,). Since
B; ¢ Tp, Tn(Mj_4) for any n < w, for any ! < d there is no successful depth-bounded
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BFNF-derivation sequence of length < [. Then every depth-bounded BFNF-derivation
sequence for P U {« B;} is failed by Lemma 23.

Combining these 1 and 2, there is a successful depth-bounded BFNF-derivation sequence
of length < ~g+ ...+ 4 for PU{« L,,...,L,}. Since this derivation sequence is ground,
there is a successful depth-bounded BFNF-derivation sequence of length < 4o +... 4+~ +1
for PU {« A}

Suppose next 1 <n < d. Then there exists a clause A «— Ly,...,L, € ground(P) (¢ >
0) such that Tp,,, T(n — 1)(My) = Ly A ... A L,. There are three possibilities for each L;.

1. If L; is a positive literal B; € H; for some j < k then B; € My = Tp, Tye(My_1) and
Yo + ...+ 7 < d. By part (b) of the main induction hypothesis, there is a successful
depth-bounded BFNF-derivation sequence of length < o + ...+ 4 for P U {« B;}.

2. If L; is a positive literal B; € Hyyy then B; € Tp,,, T(n — 1)(My) and vo+ ... + v +
(n — 1) < d. By part (b) of the secondary induction hypothesis, there is a successful
depth-bounded BFNF-derivation sequence of length < ~vy + ... + 9 + (n — 1) for
PU{« B;}.

3. If L; is a negative literal =B; (B; € Bp), then B; & Tp,,, T(n — 1)(My). Since P is
locally stratified, B; € H; for some j < k and B; ¢ M. By part (a) of the main
induction hypothesis, if for some n < d there is a successful depth-bounded BFNF-
derivation sequence of length < n for P U {« B;} then B; € Tp, T n(My_1). Since
B; ¢ Tp, Tn(My_,) for any n < w, for any [ < d there is no successful depth-bounded
BFNF-derivation sequence of length < [. Then every depth-bounded BFNF-derivation
sequence for P U {« B;} is failed by Lemma 23.

Combining these 1, 2 and 3, there is a successful depth-bounded BFNF-derivation se-
quence of length < yo+ ...+ + (n — 1) for PU{« Lq,...,L,}. Since this derivation
sequence is ground, there is a successful depth-bounded BFNF-derivation sequence of length
<qvo+...+9 +nfor PU{— A}

(part (c)) We assume that A € Tp,,, Tn(Mi) and d < v9+ ...+ v + n. Since P is
a weakly reducing program, P is locally finite stratified by Theorem 22. By Theorem 6,
A€ Tp,,, TYr41(My) and

Yot o+ W+ Yo < HHF.

Since §( H**1) < d,
Yo+ oo+ + e S d

By part (b) of this theorem, there is a successful depth-bounded BFNF-derivation sequence
of length < o+ ... 4+ v + Yk+1 < d. Hence, part (c) is proved. O

Now we show the completeness of the depth-bounded BFNF-derivation procedure.
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Corollary 25. Let P be a weakly reducing program containing function symbols, L be a
ground literal, and d be a depth-bound. If d > §(Bp| ) then a depth-bounded BFNF-

derivation for P U {« L} is complete with respect to the perfect model semantics.

By Lemma 21, the depth-bound §(Bp|z) is computable. Thus, the perfect model Mp for
a weakly reducing program containing function symbols is computed by the depth-bounded
BFNF-derivation.

Example 6. The program P4 is a weakly reducing program containing function symbols:

even(s(z)) « —even(z)
P4 = { even(z) « even(z) .

even(0)

Its Herbrand base Bpy = {even(s*(0)) | « < w}, and

[ ¢ (n <2),
Boule = | foventoi) 1 <n-2) (15 2)

Thus, §(Bpy|x) is at most n —1. An atom even(s(s(0))) is contained in the perfect model of
P4, and |even(s(s(0)))| = 4. Hence, P4U{« even(s(s(0)))} has a successful depth-bounded
BFNF-derivation with the depth-bound 3(= §(Bpyls) = 4 — 1).
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