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Abstract

Inductive inference from positive data is shown to be remarkably powerful
using a framework of elementary formal system. An elementary formal system,
EFS for short, is a kind of logic program on Z* consisting of finitely many axioms.
Any context-sensitive language is definable by a restricted EFS, called length-
bounded EFS. Length-bounded EFS’s with at most n axioms are considered to
show that inductive inference from positive data works successfully for their
models as well as for their languages. From this it follows that any class of usual
logic programs, like Prolog programs, corresponding to length-bounded EFS’s can
be inferred from positive facts.

1. Introduction

Inductive inference [3] is a process to guess an unknown rule from its
examples. Rules we consider in this paper are subsets of a universal set U. For
example, U is the set Z* of all words over an alphabet I if rules are languages, or
the Herbrand base consisting of all ground atoms if rules are models of logic
programs. Positive examples of a rule R are elements in R. Negative examples
are the other elements. Inductive inference from positive data is a process to
guess a rule when only positive examples are available. We have a well-known
theorem by Gold [7] that indicates the weakness of inductive inference from
positive data. Immediately from his theorem even the class of all regular
~ languages, which is probably the smallest in Chomsky hierarchy, is not inferable



from positive data. For a long time inductive inference from positive data had
received few attentions. ,

However, in such a situation, Angluin [1, 2] gave a theorem characterizing
inferability from positive data and interesting classes. By her theorem we know
not a few possibilities remain in inductive inference from positive data, at least in
principle. Following her results, several studies have been developed.
Nevertheless, the classes shown to be inferable from positive data are too poor
and narrow for many people to believe powerfulness of inductive inference from
positive data in reality.

Recently the author and his co-workers developed a unifying framework [5] for
inductive inference, called elementary formal system (EFS for short), which is
originally devised by Smullyan [14] to reconstruct recursion theory. In a word,
EFS is a kind of logic programming language on Z* [16], and is shown to be
natural device to define languages [4]. Using this framework we introduce a
hierarchy of language classes that are characterized by a syntactic restriction and
the number of axioms. The class of pattern languages, which may be the first
interesting class shown to be inferable from positive data [1], is located at the
bottom of the hierarchy.

Here we give an example of EFS which is a finite set of definite clauses. Let T
be { p(a, b, c)«, plax, by, cz) < p(x, y, 2), q(xyz) < p(x, y, 2) }, where a, b, c are
constant symbols from an alphabet Z, x, y, z are variables, and p and q are
predicate symbols. In EFS’s we use two inference rules, one is an application of a
substitution for variables by nonempty words, and the other is modus ponens.
The language defined by I and q is L(T, q) = {w € £* | p(w) is provable from I' }
={a""c"|n=1}.

A definite clause A « By, ..., B, is called to be variable-bounded if variables in
Bi,...,Bp appear alsoin A. Variablé-bounded EFS is the set of variable-bounded
clauses. The restriction on variable-bounded EFS’s does not essentially affect to
the descriptive power of EFS in the sense that every recursively enumerable
language is definable by a variable-bounded EFS. The EFS T in the example
above is variable-bounded. An definite clause A « By, ..., B, is called to be
length-bounded if the total length of B16, ... , B0 does not exceed the length of A®
for any substitution 8, where the length of an atom is the sum of the lengths of
terms in it. The EFS T in the example above is length-bounded. The class of
languages definable by length-bounded EFS’s coincides with the class of context-
sensitive languages.

In this paper we deal with length-bounded EFS’s consisting of at most n
clauses, to show that the class of their minimal models and the class of their



languages are inferable from positive data. Although we put a restriction on the
number of clauses in EFS, it is not trivial for such a class to be inferable from
positive data because the class consists of infinitely many models or languages.
On the other hand, for example, the class of regular languages accepted by finite
state automata with at most n states contains only finitely many languages, and
therefore its inferability from positive data is obvious.

First we show that the class of such EFS models is inferable from positive
data. An observation from our discussion below teaches us that the class of the
usual logic programs corresponding to our EFS’s is inferable from positive data.
‘However, this result is not enough for us to deal with inference of languages
because data in the context of language identification tell nothing about
predicates other than one special predicate . For example, no information about
predicate symbol p is available from positive examples of L(T', q) above. Finally
we show that our class of EFS languages is inferable from positive data.
Interpreting the latter result in terms of usual logic programming, we know that
such a class of logic programs can be inferred from examples about one predicate
in question without examples for other internal predicates, so called theoretical

terms.

2. Preliminaries

We start with basic definitions on elementary formal systems according to [5,
16] and brief review of the articles on inductive inference from positive data [1, 2,
12,13, 15].

2.1 Elementary formal systems

Let I, X, and I be mutually disjoint sets. We assume that £ and II are finite.
Elements in X, X, and II are called symbols, variables, and predicate symbols,
respectively. We denote symbols by a, b, c, ..., variables by x, y, 2, x1, x2, ..., and
predicate symbols by p, g, p1, p2, ... . Each predicate symbol is associated with a
nonnegative integer called arity.

Throughout in this paper we assume Z, X, and II are arbitrarily fixed. A*
denotes the set of all nonempty finite strings over a set A.

DEFINITION A termis an element of (ZUX)*. Each term is denoted by m, my, ng,
.... A ground termis an element of Z*. Terms are also called patterns and ground
terms are also called words.



DEFINITION An atomic formula (or atom for short) is an expression of the form
p(my, ..., ny), where the arity of p € Il is n, and ny, ..., 1, are terms. An atom p(my,
.., ) is ground if terms oy, ..., o, are all ground.

We denote atoms by A, A1, Ag, ..., B, By, By, ... . Well-formed formulas,
clauses, empty clause ( [ ) and ground clauses are defined in the ordinal ways [8].

DEFINITION A definite clause is a clause of the form

A «<By,...,B,,
wheren = 0 and A, By, ..., and B, are atoms. We call atom A the head of a
clause, and sequence of atoms Bj, ..., B, the body.

DEFINITION An elementary formal system (EFS for short) is a finite set of
definite clauses, which are called axioms.

DEFINITION A substitution is a homomorphism from terms to terms that maps
each symbol a € I to itself. By n6 we denote the image of a term n by a
substitution 6. For an atom p(ny, ..., iy), and a clause C = A « By, ..., By, we
define p(ny, ..., 1p)0 = p(1116, ..., 1,6) and C6 = A6 « B16, ..., Bp0.

DEFINITION A clause C is provable from an EFS T, we write I' = C, if C is
obtained from I by finitely many applications of substitutions and modus ponens.
That is, we define the relation T' - C inductively as follows:

(DIfT € CthenT +C.

(2)IfT + C then T + C6 for any substitution 6.

(8)IfT —A «<Bj,...,Bpr1and T —Bp4+1thenT' = A « By, ..., B,

DEFINITION For an EFST and p € II with arity n, we define L(T, p) = {(wy, ...,
wp) € (Z)*| T - p(wi, ..., wn) }. If pis unary then I(T, p) is a language over Z. A
language L is definable by EFS or an EFS language if such I and p exist.

Let v(A) denote the set of all variables in an atom A, |n| denote the length of a
term 11, and o(x, 1) denote the number of all occurrences of a variable x in a term m.
For an atom p(ny, ..., 1,), we define

|p(na1, ..., mp)| = |ma| + -+« + oy,
ol(x, p(t11, ... , 1mp)) = olx, m1) + « -+ + olx, mp).

DEFINITION A clause A « By, ..., Bpisvariable-bounded if
v(A) Du(B)) (i=1, ...,n). \
An EFS T isvariable-bounded if each axiom of I' is variable-bounded.



DEFINITION A clause A « By, ..., B, is length-bounded if

|A8| = [B16] + - - - + |Bnf)|
for any substitution 6. An EFST is length-bounded if each axiom of T is length-
bounded.

" The concept of length-boundedness is characterized by the following Lemma,
by which we know that length-bounded clauses are all variable-bounded.

LEMMA 1[5] A clause A < Bj,..., B, islength-bounded if and only if
A Z [B1] + -+ + |Bal, and
o(x,A) Z o(x,B1) + -+ + o(x, Bp)
for any variable x.

Here we should note that each substitution may not erase any variable, that
is, x0 may not be empty word for any variable x. This is an essential point for our
discussion in this paper. We need another discussion when we allow erasing
substitutions asin [].

LEMMA 2 Ifaclause C = A « Bj,..., B, is provable from a length-bounded EFS
and T, then Cis length-bounded.

The following theorem says that variable-bounded EFS’s are powerful enough
to define languages.

THEOREM 3 [5] A language L C I* is definable by a variable-bounded EFS if
and only if L is recursively enumerable.

The class of languages defined by length-bounded EFS’s is characterized by
the following theorem.

THEOREM 4 [5] A language L C Z* is definable by a length-bounded EFS if and
onlyif L is context-sensitive.

The Herbrand base, we denote by HB, is the set of all ground atoms. Every
subset I C HB is called an Herbrand interpretation. The minimal model of an EFS
T'is given by

M) ={M C HB|Mis an Herbrand interpretation of I" }.
EFS model is an Herbrand interpretation I such that I = M(T') for some EFST.
As for usual logic programming languages, we can use a derivation procedure
based on resolution principle. We define the success set of an EFS T by
SS(T) = { A € HB | there exists a refutation from «< A },



and the provable set of T' by
PS(I) ={A €HB|T+A}
On the relation between three set defined above, the following theorem is known.

THEOREM 5 {5, 16] M(I') = SS(I') = PS(I).

By this theorem we need not distinguish M(T"), SS(I"), and PS(T") from each other.
Further more about length-bounded EFS’s, we have the following theorem, which
is based on the fact that we can set a time bound for the derivation procedure.

THEOREM 6 [5, 16] Ifan EFST islength-bounded then M(T) is recursive.
2.2Inductive inference from positive data

We give basic definitions and results on inductive inference from positive data
in slightly modified forms, since we will discuss in this paper inductive inference
of EFS languages as well as EFS models.

Let U be a set to which we refer as a universal set. A subset R C Uiscalled a
rule. When we are dealing with EFS languages the universal set U is the set 7.
For EFS models U is the Herbrand base HB.

DEFINITION A class of rules C = Ry, Rg, ... is said to be an indexed family of
recursive rules if there exists a computable function f: N XU — {0, 1} such that

-~
§

1,if s¢R;
£, 9) ={ |

0, otherwise.

When rules are EFS languages, the index i of R; can be considered as a pair of
an EFS T' and a predicate symbol p with arity 1 such that L(T', p) = R;. As the
index of an EFS model we can use an EFS I' such that M(I") = R;. From here on,
the classes of rules are assumed to be an indexed family of recursive rules.

DEFINITION A complete presentation of a rule R is an infinite sequence (s1,£1),
(s2,t2), ... such that t;is O or 1, {s; | t;=1}=R, and {s; | t;=0}=U—R. A positive
presentation of a nonempty rule R is an infinite sequence of si, sg, ... such that

{s|s=s;forsomei}=R.

An inference machine is an effective procedure that requests input from time
~ to time and produces output from time to time. An output produced by an
inference machine is called a guess. Let 0=s3, sg, ... be an infinite sequence, and
g1, 2, ... be the sequence of guesses produced by an inference machine IM when



elements of o are successively given to IM. Then we say that IM on input o
converges to g, if the sequence g1, g9, ... of guesses is finite and ends with g, or
there exists a positive integer kg such that g, = gforall k = k.

DEFINITION A class of rules C = R1, Ry, ... is said to be inferable from positive
(or complete) data if there exists an inference machine IM such that IM on input ¢
converges to g with Rg=R; for any index i and any positive (or complete)
presentation o of R;.

Gold [7] showed that any indexed family of recursive rules is inferable from
complete data. He also proved that inference from positive data is not possible for
any class of rules that contains all finite rules and at least one infinite rule. By
his theorem we can easily show that even the class of regular languages is not
inferable from positive data. By this result most researchers in the field of
grammatical inference had been disappointed until Angluin [1, 2] gave a new life
to inductive inference from positive data by presenting a theorem, which
characterizes classes inferable from positive data, and nontrivial such classes
including pattern languages.

Here we give one of the sufficient conditions shown by her for inferability from
positive data. Using this condition she proved that the class of pattern languages
is inferable from positive data. For more details the reader should be referred to
literatures[1, 2]. We denote the number of elements in a set S by #S.

DEFINITION A class C has finite thickness if #{R€C | A€R} is finite for any A€ U.

THEOREM 7 [1, 2] If a class C has finite thickness then C is inferable from
positive data.

The author showed in his previous work [12] that unions of two pattern
languages are inferable from positive data. Wright [15] extended this result to
unions of three or more languages by showing that the following condition is
sufficient for inferability from positive data and it is closed under union of
languages.

DEFINITION. A class C has infinite elasticity if there exist two infinite sequences
Ag, A1, Ag, ... and Ry, Rg, R3, ..., where A; € U, R; € C, such that A; € Ry if and
only ifj < k. Chas finite elasticity if C does not have infinite elasticity.

Here we should note that Ag, A1, Ag, ... and R1, R, R3, ... in the definition
above have to be mutually distinct.



LEMMA 8 [15] If a class C has finite thickness then C has finite elasticity.

THEOREM 9 [15] If both of classes C; and Cg have finite elasticity then the class
of unions C = {R1 U R3|R; € C1 and R2 € C3 } has finite elasticity.

THEOREM 10 [15] If a class C has finite elasticity then C is inferable from
positive data.

The author also showed a theorem, which is one of the special cases of our
main result in this paper, that the class of languages definable by EFS with at
most two axioms is inferable from positive data [13]. Such a result on EFS’s does
not follow immediately from Theorem 9, because models and languages of EFS’s
are quite different from simple unions.

3. Inductive inference of EFS models from positive data

DEFINITION An EFST is reduced with respect to an Herbrand interpretation I if
ICMM)butlIZ M(I")foranyI"C T

LEMMA 11 LetT be a length-bounded EFS and C = A « By, ..., By, be a clause
provable from I. Then the head of every axiom used to prove C is not longer than
the head A of C.

Proof We show by mathematical induction on the number of applications of
inference rule. Note that all clauses including C provable from I' are length-
bounded by Lemma 2.

If we can prove a clause C by only one application of inference rule, then the
clause Citselfis an axiom of T'.

Otherwise, the rule lastly used to prove C should be an application of a
substitution or modus ponens. If C = C’ 6 for some provable clause C’ and some
substitution 6, then the head of C’ is not longer than the head of C. If C’ = A «
Bi, ..., By, Bp+1 and By, +1 are provable, then the head of C’ and B, +1 are not
longer than the head of C. Therefore, it is clear that any head of axioms used to
prove C’ and B, +1 is not longer than the head of C. [

LEMMA 12 LetI = {Ajy, ..., Ax} be a nonempty finite Herbrand interpretation
and T be a length-bounded EFS that is reduced with respect to I. Then for any
axiom A «<B1, ...,Bpof T, |A] = max {]|A1], ..., |Ax] }.

Proof Ifan EFST contains an axiom A « By, ..., B, such that |A| > max {]|A4],
... ; JA%| }. Then, clearly from Lemma 11, the axiom can never be used to prove A;



from I". This contradicts our assumption that I' is reduced with respect to {41, ...,
Ap}. O

From Lemma 12 and the fact that the number of patterns shorter than a fixed
length is finite, we have the following, where we ignore duplicated occurrences of
atoms in the body of a clause.

LEMMA 13 Given a nonempty finite Herbrand interpretation I, there exist only
finitely many length-bounded EFS’s that are reduced with respect to I.

THEOREM 14 For any n = 1, the class M" = { M(T') | I" is length-bounded EFS,
#I' = n, M(T") # @ }isinferable from positive data.

Proof Note that by Theorem 6 the class M " is an indexed family of recursive
rules. By mathematical induction on n, we show M ” has finite elasticity.

IfA € M), #I'=1, then I' = { B }, B is an atom with the same predicate
symbol as A, and A = B6 for some substitution. Therefore |B| = |A|. The number
of such atoms is finite except renaming of variables. Thus M! has finite
thickness, and therefore by Lemma 8, finite elasticity.

Forany n < i(i = 2), we assume that M " has finite elasticity. Let M* have
infinite elasticity. Then there exist an infinite sequence of ground atoms Ag, A1,
Ag, ... and an infinite sequence of length-bounded EFS’s I';, I'g, I'3, ... such that
#I'p = iand Aj € M(T'p) ifand only ifj < k. Let & be a function defined by

h(k) = min {j = k| Tt isreduced with respect to { Ag, ..., Aj}orj = k}.
We consider two cases depending on whether the set { h(k) | k = 1,2, ...} hasa
finite bound or not.

Case 1. If { h(k) | k = 1, 2, ... } has a finite bound jg such that h(k) = jo for all k.
Then T'; should be reduced with respect to { Ag, ..., 4;,} for all £ > jo. However,
Lemma 13 claims that the number of such EFS’s is finite. This contradicts our
assumption on the infinite elasticity of M".

Case 2. If { h(k) | k = 1, 2, ... } does not have any finite bound, then it contains
an infinitely ascending sequence 1 < h(k1) < h(kg) < ...such that k1 < kg < ....
Clearly ij is not reduced with respect to { A, ... , Ah(kj)—l }. Therefore there
exists I'’g; C T, such that {Ay, ..., Ah(kj)-l} - M(I"kj) but Ah(kj) ¢ M(I'’k). Here
we should note #I'; = i—1. Thus we have two infinite sequences

Ao, Anky), An(kg)s oo and T, Thy, Tk, .
that show the infinite elasticity of M -1, This is a contradiction to the inductive
hypothesis.

Since we can show a contradiction in each case, M " has finite elasticity for
any n = 1. Therefore by Theorem 10 M " is inferable from positive data. [



3. Inductive inference of EFS languages from positive data

We have just proved in the previous section that length-bounded EFS models
with at most n axioms are inferable from positive data. However this result is not
sufficient for us to deal with languages. To infer an EFS model, we can use
examples about all predicate symbolsin it, as in MIS by Shapiro [9]. On the other
hand, identification of an EFS languages should be worked on words, which can
tell nothing about predicate symbols but a special one. Fortunately we have the
following theorem that guarantees us to successfully infer languages definable by
length-bounded EFS’s with at most n axioms from positive data.

THEOREM 15 Foranyn = 1, theclass L” = { L(T, p) | I is length-bounded, p is
unary, #I' = n, L(T, p) # @ }isinferable from positive data.

Proof We should note that by Theorem 6 the class L " is also an indexed family of
recursive rules. Assume L has infinite elasticity. Then there exist an infinite
sequence of words wp, wi, wg, ... and an infinite sequence of pairs of length-
bounded EFS and predicate symbol (I'1, p), (T'g, p), (I'3, p), ... such that #T'y = i
and wj € L(T', p) if and only ifj < k. Here it should be noted that we can assume
that all languages in the infinite sequence are defined by a common predicate
symbol p without any loss of generality. It is clear that infinite sequence of
ground atoms p(wp), p(wy), p(wg), ... and infinite sequence of length-bounded
EFS’s 'y, I'g, I's, ... show the infinite elasticity of M ». Thus we have a
contradiction. Therefore L " has finite elasticity, and again by Theorem 10, L " is
inferable from positive data. [

4. Discussion

Thus we can reveal the powerfulness of inductive inference from positive data.
Angluin and Smith [3] pointed out that Chomsky hierarchy might not be suited
for inductive inference. In our framework of EFS’s we can construct a new
hierarchy remarkably suitable for inductive inference as well as Chomsky
hierarchy. ,

In the usual logic programming languages such as Prolog, almost the same
discussion is valid for any class of logic programs corresponding to our EFS’s.
Such a program is called linear in [10] or reducing in [6]. Thus we can translate
Theorem 14 into another theorem in terms of logic programming.
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