
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Inductive Inference from Positive Data is
Powerful

Shinohara, Takeshi
Department of Artificial Intelligence Kyushu Institute of Technology

https://hdl.handle.net/2324/3127

出版情報：RIFIS Technical Report. 20, 1989-11-09. Research Institute of Fundamental
Information Science, Kyushu University
バージョン：
権利関係：



cal Report 

Inductive Inference from Positive Data is  Powerful 

Takeshi Shinohara 

November 9, 1989 

Research Institute sf Fundamental Information Science 
Myushu University 33 

Fukuoka 81 2, Japan 
E-mail: shino@ai.kyuiech.ac.jp BITNET:TI5!23@JPNKdSCI Phone: (0948) 28 5551 ex.219 



Inductive Inference from Positive Data is Powerful 

Takeshi SHESINOHAM 
Deparbent ~EArtificial intelligence 

Kgrushu Institute aof Technolorn 

Abstract 

Inductive inference from positive data is shown to be remarkably powerful 
using a frmework of elementary formal system, An elementaq fomal system, 

EFS for short, is a kind of logic pr ragm on Z+ co~sisting of finitely many axioms, 
Any context-sensitive ianag~age is definable by a restricted EFS, called length- 
bounded EFS, LenGh-bounded EFS's with a t  most rz axioms are considered to 
show that inductive inference from positive data works successfully for their 
models as well as for their lanpages, From this i"eollows that any class sf usual 
logic progrms, like Proiog programs, corresponding to length-bounded EFS" can 
be inferred -from positive facts. 

I. Introduction 

Inductive inference [3] is a process to guess an unknown rule from its 
exmples. Rules we consider in this paper are subsets sf a universal set U. For 
exmpie, U is the set Ci of all words over an alphabet T: if rules are languages, or 
the Herbrand base consisting of all ground abms if rules are models of logic 
p r o p m s .  Positive exannples of a rule R are elemen~s in R. Negative examples 
are the other elements. Inductive inference from positive data is a process to 
p e s s  a rule when only positive exanzples are available, We have a well-known 
theorem by Gold 573 that indicates the weakness of indhac6ve inference from 
positive data, I edfately from his theorem even the class of a19 regular 
lanpages, which is probably the smallest in Chomsky hierarchy, is not inferable 



from positive dak.  For a long  me inductive inference from positive dz&a had 
received few attentions. 

However, in suck a situation, h g l u i c  [I, 21 gave a theoarern charackrizing 
inferability from positive data and inLeresGng classes. By her theorem we know 
not a few possibilities remain in inductive inkrenee from positive dak, at  least in 

principle, Following her results, several studies have been developed. 
Nevertheless, the classes s h o w  to be inferable from positive dab are b o  POOP 

and nurow for many people io believe powerfulness of  inductive inference from 
positive data in reality. 

Recently the author and his eo-workers developed a unifying frmework [5] for 
inductcive inference, called e leme~tary  formal system (EFS for short), which is 
ori~azally devised by Ssznullym 1141 reconstruct recursion theory* In a word, 

EFS is a kind of lo@c p r o p  ing fansage  on Z+ [96], and is shown to be 
natural device Lo dehlse iamgdages [$I, Using this frmework we introduce a 
hierarchy of ' laneage classes that are charackrized by a syntactic res&ietion and 
the number of agoms, The class of pattern lanpages, which may be the first 
interesting class shown to be inferable from positive data [I], is located a t  the 

botbiom of the hierwchp. 
Here we give an exmple of EFS which is a fi;"nnite set. sf de5nite clauses. Let I? 

be ( p(a, b, e>*, p(ax, by, cz) +- ( x ,  y, z), ~ ( x y z )  +- P(X ,  y, Z )  where a, b, c are 
conshnt swmbo2s from an alphabet E, x, y ,  z are variables, and p and q are 

predicate s m o l s .  In EFSk we use two inference rules, one is an application of a 
substitution for variables by aonempty words, and the other is modus psnens. 
The language defined by r and g is L(r, y) = w C T;" j piw) is provable from r ) 
-- (a"bncG I P.i. 2 1 ), 

A definite clause A c B I ,  ... , B,  is called to 'be kaariable-bounded if variables in 

Br,  ... ,BE appear also in A, Variable-bounded EFS is the set sf variable-bounded 
clauses. The restricit-isn on variable-bounded EFSs does not essentially a&ct to 
the descriptive power of EFS in the sense t h a ~  every recursively enumerable 
I m p a g e  is de5na"ase by a variable-bounded EFS. The EFS r in the exmple 
above is variable-bounded. An definite clause A c- 231, ... , B, is called to be 

length-bounded if the b ta l  leng$h of Bae, ... , B,$ does not exceed the length of AB 
for a y  substi~ution 8, where the fen@h of am abna is the sum of the ieaaehs of 
k r m s  in it, The EFS I" in the exmple  above is Ben@h-bounded, The class of 

laneages definable by len&h-bounded EFSs coincides with the class of context- 

sens i~ve  lanpages, 
In this paper we deal wi& lenah-bounded EFS's consisting of at most pt 

clauses, to show b a t  the class of their d n i m a l  models and the class of their 



i m p a g e s  are inferable from positive dah. Although we put a restriction on the 
nulphber of clauses in EFS, i t  is no"tivial for such a class ta be inferable from 
positive data because the class consiss of infinitely many models or languages. 
On the other hand, for exmpie, the class of r e s l a s  lzcnmages aecepkd by finite 
state aubmata with a t  most pt states contains only finitely many languages, and 
  ere fore its inferability from positive data is obvious. 

First we show that the class of such EFS models is inferable from positive 

data, An obsemation from our d-iseussion below teaches us that the class of the 
usual lo$c p r o e m s  corresponding to our EFS's is inferable from pos i~ve  dak, 

However, this result is not enough for us to deal with inference of laneages 
because data in the context of language identification telhnothiag about 
preacsates other than one special predicate . For exmple,  no informagon about 

predicate spmbol p is avdailable from positive exmples of L(T, q)  above. Finally 
we show that our class of EFS languages is inferable from positive data. 
htespreting the latter result in terns of usual l o ~ c  prov  
such a class of logic p r o ~ m s  can be inferred from exmples about cane predicate 
in question witbout exzlmpies for other internal predicates, so called theoretical 

terms. 

2. Preliminaries 

We start with basic definitions on elementary fomal systems according to C5, 
161 and brief review of the articles on inductive inference from positive data [I, 2, 

12,13,151. 

2.1 Elementary formal systems 

Let Z, X, and be mueaally disjoint sets* We assume that X and E are Gnik, 

Elements in T;, X, and Hi are calked symbols, variables, and predicate symbols, 

respectively. W e  denote symbols by a, b, c, ... , variables by x, y, z, x l ,  xz, ... , and 
predicate symbols by p, q, pl, pz, ... . Each predicate symbol is associated with a 
nonnegative integer calied arity, 

Throughout in this paper we assume 22; X ,  and II are arbitrarily fixed. A' 
deno.&es the set of all nonempty Enite strings over a set A, 

DEFINITION A term is an element of (Chjm4* Each te rn  is denoted by n, nl, n2, 

... . Aground term is an element ofE1. Terns are also ealledpatterns and gound 
terms are also calHed words. 



DEFINITION An atomic formula (or atom for short) is an expression of .the form 

p(n3, ... : ngl)$ where L%ae arity of p C P3 i% n, and nl ,  ... , n, are kms, An abmg(ng, 

... , nn) is ground if eerms nl, ... , n, are all pound. 

We denote abms by A, A1, ~4.2, ... , B, B1, Bz, ... . Well-formed f"srmulas, 
clauses, e m p t ~  clause ( El 1 and ground clauses are defined in %he ordinal ways [8]. 

DEFINITION A definite clause is a clause afthe f o m  
A +B&$ 9 Bn3 

where n 2 0 asld A, 231, ... , and %an are ahnas, We call a b m  A the Read of a 

clause, and sequence of atoms B I ,  ... , B ,  the body. 

DEFINHTIOX An elementary formal system {EFS for short) is a finite set of 

definite clauses, which are called axioms, 

DEFIN~~TPON A substitution is a homomorphism from tems to t e m s  that maps 

each s p b o ?  a f Z "&o itself. By n8 we denote the image of a term n by a 

substitution tl, For an atom p(n1, ... , nn), and a clause 91 = A +- Ba, ... , B,, we 

define p(n1, ... , nn)$ = p(n18, ... , n,i-%) and C8 r= -48 c- BIB, ... , B,B, 

DEFINITIOK A clause C is pmvable from an EFS T', we write r !- C, if C is 

obtained from I7 by Enitely many applications of substitutions aad modus ponens, 

That is, we define the relation I' f- C inductively as follows: 
(1) If F C C then F k- 6, 
(2 )  Pf P" + C then F P 6%) for any substitution 8. 

(3)IfF F A  +=-I31 ,..., B,+land r + B , + ~ t h e n r  F A  +-%31. ..., BE, 

DEFINITION For an EFS F; andg 6 n"B with arity n, we deEne LIT, p) = Q (w1, ... 
w,) C (Z')" 1 F b p(w1, ... , w,) ), If p is unary then L(T, p]  is a language over 6, A 
lanflage E is definable by EFPS or an EFS language if such r and p exist, 

Let vbA) denote the  set of all variables in an atom A, In/ denote the length of a 
t e rn  rr, and o(x, n) denote the n u d e r  of all occurrences sf a variable x in a k r m  n, 
For an ahnn pa(n1, ... , a,), we define 

btw, .,, , n,)/ = i- a * + ]n,l, 

o(xSp(np,  ... , n,)) -- o(x, n:) 4- . - a 4- O(X, n,). 

DEFINITION A clause A +- B1, ... , B,  is uariable-bounded if 
v(A) 3 v(B,) (i=1, ... , n), 

Axl EFS r is variable-bounded if each &om of I' is variable-bounded. 



DEFINITION A clause A +- B1, ... , Bn is length-bounded if 

I A B p  1Blei i * * * +IB,ey 
for m y  substitution 8, An EFS F is length-bounded if each axiom of F is len&b- 
bounded, 

$fie concept of len@h-boundehem is characterized by the following Le 
by which we know that lern@h-bounded clauses are a'ii vafiable-bounded, 

LEMMA f [5] A clause A +BI, ... , B,  is len@fi.-bounded if and only if 

IAi 2 lBal + * -f- 

o(z, A) 2 O(X, B1S + a * -+ O(X, Bn) 
for any variable x ,  

Here we should note that each substitution may not erase m y  variable, that 
is, x8 may not be empty word for any variable x.  This is an essential point for our 

discussion in this paper, We need another discussion when we allow erasing 
substitutions as in 11, 

LEMMA 2 If a clause C = A +- B1, .., , B,  is provable from a lenah-bounded EFS 
and I', the2 C is len@h-bounded, 

The following theorem says that variable-bounded EFS's are powerful enough 

to  define laneages. 

THEOREM 3 [5] A language L a& Zt is deEnable by a variable-bounded EFS if 
and only if L is recursively enumerable. 

The class of lanmages defined by length-bounded EFS9s is characterized by 
the following &heorem. 

THEOREM 4 [5 j A language E C Z' is definable by a leng3;%n-bounded EFS if and 
only if L is context-sensitive, 

The Herbrand base, we denote by HB, is the set of all ground abrns. Every 

subset P c HB is called an Ngrbrand interpretation. The minimal model of an EFS 
9" is ~ v e n  by 

M ( r )  = ( M HB 1 M is an Werbrand interpretation of a' j. 

EPS model is am Herbrand interpretation 1 such that 1 = -M(H"b for some EFS f, 
As for usual lo@c prop  ing fansages, we can use a derivation procedure 

based on resolution principle, We define the S U G G ~ S S  sef of an EFS I? by 
SS(F) -- { A C HB 1 there exis-ts z refutation from + A  ), 



and the prouable set of F by 
PS(r> = ( A f  H B i F F A ) .  

On the relation between b ree  set defined above, the following theorem is known. 

By this theorem we need not disGnsish M(F), SS(r), and PSIH') from each sther. 
Fu&her more about ien&k-bounded EFS3s, we have the foulowing theorem, which 
is based on the fact that we can set 2; time bound for the derivation procedure, 

THEOREM 6 [5,16] If an EFS l? is leng&h-bounded then %Ig(r) is recursive, 

2,2fnductive injference from positive data 

We give basic definitions and resulb on inducd;ive inference from posieive data 

in slightly modified foms, since we will discuss in this paper inductive inference 
of EFS lanpages as well as EPS models, 

Let U be a set to which we refer as a uniuersai set, A subset R U is called a 

rule, JVhen we are dealing with EFS languages the universal set U is the set, Z'. 

For EFS modeis Iil" is the Herbrand base HB, 

DEFINITION A elass of rules C = Ra, Ra, ... is said to be an indexed family of 

recursiue rules if there exists a cornpugtable function f :  ATX U -+ (0,B) such that 

When rules are EFS languages, the index i oFRi can be considered as a pair of 
an EFS T. and a predicate symbol p &th ariw 1 sueh that L(T, p) = Ri. As the 
index of an EFS model we can use an EFS r such that M(T)  = Ri, Frcrn here on, 

the classes of rules are assumed to be an indexed fmi ly  of recursive rules, 

DEFINITION A complete presentation of a rule R is an infinite sequence (sl , t l) ,  
(sz,tg), ... such that t i  is 0 or 1, isi I ti=lj=R, and {si / ti=O)=U-R. A positiue 
presentation of a nonempty rule R is an infinib sequence of sl, sz, ... sueh that 
( S  1 s=siforsorne t )=R.  

h inference machine is an effective procedure that requests input from time 
to time and produces ou.tput from Gime Lo time. An output produced by an 

inference machine is cdied a guess. Let G = sl, s2, ... be an inEnite sequence, and 

gi, gz, be the sequence of gaesses produced by an inference machine iM when 



e'lernenk of a are successively ~ v e n  IM. Then we say that IM on i~ tpu i  CJ 

conueves to g, if the sequence gl, gz, ... of s e s s e s  is finite m d  ends with g, or 
fiere exisk a positive integer ko such %&at gk = g for all K 2 ko. 

DEFINITION A class of rules C = RI:  Rz, ... is said %o be infernable from positive 
lor complete) data if there e ~ s b  an inference machine IM such that HM on input o 

converges to g with Rg=Ri for any index 2 and any positive (or complete) 
presensbtion a of Ria 

Gold [7; showed that any indexed By of recursive rules is inferable from 

complete data. He also proved that inference from positive d a b  is no& possible for 
any class of rules that eonbins all fini-ke rules and at  least one in5nite rule. By 
his theorem we can easily show *at even the class sf r e s l a r  lansmages is not 
inferable from positive data. By this result most researchers in the field of 

atical inference had been disappoinkd until Angfuin [I, 21 gave a new life 
t o  inductive insferenee from positive data by presenting a theorem, which 
charackrizes classes inferable from positive data, rsnd nsntivial such classes 
including pattern lanpages, 

Here we @ve one ofthe sufEcient conditions shown by her for inferability from 

positive data, Using this condition she proved that the class sf pattern laneages  
is inferable from posi'tive data, For more details the reader should be referred to 
literatures [I, 21, We denote the number of elements in a set S by #S. 

DEFINITION A class C has finite thickness if #(RC C I ACR] is fanite for any AC U, 

THEOREM "71, 21 If a class sSr has finite thickness then e? is inferable from 

positive data, 

The a u ~ e s r  showed in his previous work [I21 that unions sf two pattern 
laneages are inferable from positive data, Wright [15] extended this result to 
unions of three or more lanpages by showing that the follo\ving condition i s  

suEcient for inferability from positive data and i t  is closed under union of 
lanmages. 

DEFINITION, A class @ has iafinite elasticity if there exist two inGnite sequences 
-/lo5 A1, Aa, ... and E l ,  Rz, R3, ... , where Ai C U, Ri C C, such that Aj < Rk if and 
only i f j  < k, C has finite elasticit39 if g7 does not have inBnite elasticity. 

Here we should note that Ao, Al,  Az, ... and Ra, Ra, R3, ... in the deGnition 
above have -to be mutual3y &stin@%. 



LEMMA 8 [I51 if a class C has finite thickness then C has frnik elasticity. 

THEOREM 9 [PSI If both of classes @I and Cg have fini"%e elasticity then the class 
of unions G = (Rn U & 1231 f 61 andRz C 6 2 )  has finite elaseicitgi. 

THEOREM 10 [I51 E a class C has finik elasGcity thear C is inferable from 
positive data, 

The author also showed a theorem, which is one of the special cases of our 
main result in this paper, "L%lat the class of lmg-rmages definable by EFS with a t  
most two axioms is inferable from positive data [%33. Such a result on EFSs does 

ediakly from Theorem 9, because models and larapages of EFS's 
are qaai te different from simple unions, 

3, Indue&ive inference of EFS models from positive data 

DEFINITION An EFS is reduced with resa~ecd to an Herbraad interpretation I if 
I M(F) but I M(Y) for any r' % F. 

LEMMA 81 Let F be a less@h-bounded EFS and C = A c B1, ... , B,  be a clause 
provable from F, Then the head of every axiom used to prove C is not longer &an 
the head A of @, 
Proof We show by ma&hematicaH induction sra the number of applications of 

inkrenee rule, Xote that ail clauses including C provable from f are len@h- 

bounded by Le 
IT we can prove a clause G by only one application of inference rule, then the 

clause C itself is an axiom of r, 
Otherwise, ;&he rule lastly used to prove C should be an application of a 

substitution or modus ponens. If C = C' 8 for some provable clause &I hand some 
smbstitu.eion 8, then the head of CYis not longer than the head of C. If C" A +- 

B I ,  ,., , B,, B,+l and B,+r are provable, then the head of C k n d  B,+n are not 
longer than the head of C, Therefore, it is elear that any head of axrioms used ko 
prove G9 and B, + 1 is not longer than the bead of C, 3 

LEMMA 12 Let 1 = (.A1, .,, , Ak) be a nornempty finite Herbrand interpretation 
and T: be a len@b-bounded EFS that is reduced with respect to I* Then for any 

axismA +-B-,, ... ,B,ofT, 5 max(/A1l, ... ,%Akl). 
Proof Ef EFS r contains an axiom A c B I ,  ... , B,  such that IAl > max ( IA;;, 
... , jAKf 1. Then, cdewly ii.m Ee~rma If the axiom can never be used fa pmve Ai 



from r. This contradicts our assupt ion  f i a t  f is reduced with respect b {AL -.. 
Ak). D 

a $2 and the fact that the n n b e r  of patksns shorter than a fixed 
fenah is finite, we have the followi~g, where we ignore duplicakd occurrences ~f 
abms in %he body of a clause. 

%EXMA 13 Given a nonempty finite Eerbsand interpretation I, there e%ist only 
finikiy many len$Gh-bounded EFS's that are redueed with respect to 1, 

THEOREM 14 For any n 2 1, the class M n  = ( M(F) I r i s  length-bounded EFS, 

#I' 5 a, bf(r) F G3 is inferable from positive data. 
Proof Note that By Theorem 6 the class M n  i s  an indexed f m i l y  of recursive 
rules, By mathematical induction on n, we show M a  has finite elasticity, 

If A C M(F),  #I'= 1, then F = ( B ), B i s  an. atom w.Nh the s m e  predicate 

s p b o i  as A, and A = B8 for some substitution. Therehre jBI 5 /A/, The n u h e r  
of such athams is Enite except renaming of variables, Thus M' has finite 
thickness, and therefore by Le a 8, finite elasticity. 

For any n < i ( i 2 2 1: we assume that M n  has finite elasticity, Let LV%have 
in5nits: eiasticity, Then there exist an infinite sequence of s o u n d  abms Ao, A1, 

A2, *.. and an infinite sequence of lenflh-bounded EFS% F l ,  Fz, r3, ... such that 
# r h  5 i and A;: f M\'Fkf if and only i f j  < h. Let di, be a function beEned by 

h(k )  = min { j  S k j f k is redueed with respect to { Ao, ... , AJ)  or j  = k ), 
We consider two cases depending on whether the set { h(h) 1 k = 1, 2, ... has a 

finite bound or not. 
Case 1, If( h(h) I k = I,%, .,. )has a finite bosnaadj~ such that h(k) 5 j o  for all k ,  

Then r k  should be reduced wit12 respect b { An, ... , Aj,) for all k > jo. However, 
a f 3 claims that the nl~xdlber of such EFS's is finite, This contradicts our 

assumption on the infinite elasticity of M L w  
Case 2,  If{ h(k)  1 k -- 1,2 ,  .., ) does not have any finite bound, then it contains 

an infinitely ascending sequence 1 < h(k l )  < de(k2) < ... such that kl < hz < ... . 
Clearly is not reduced with respect to { Ao, ... , Ah(ki)- 1 1. Therefore there 
exists I? 'hi g T k j  such that { Ao, ... , Ah(kj  - 1 1 M\'r'k,) but Ah(k,i e M(F9k,). Here 
we should note #I' 'hi S i - I. Thus we have two infinite sequences 

&(klb Ah(ii2), and F9k1r r'k2: r9k39 - = *  

%hat show the in5wite elasticity of M"-". This is a contradicLi~n to the inductive 
hypoe-hesis. 

Since we can show a contradiction in each case, M " has finite elasticity for 
any n 2 1. Therefore by Theorem 10 M n  is inferable from positive data, 



3. Inductive inference o f  EFS languages from positive data 

We have just proved in the previous section &at len@h-"sunded EFS models 
with a t  most n aXioms are inkrable from positive data, However this result is not 

suEcient for us to deal w i ~  lang~ages. To infer an EFS model, we can use 
exmples about all predicate smbols in it, as in %(415 by Shapiro 193. On the  o ~ e r  
hand, identiEcaGctn of an EFS l m p a g e s  should be worked on. words, which can 
tell nothing about pre&cate sjmbds but a special one. FofiunateHy we have the 
following t52eore;an that s a r m b e s  us to successfully infer l ansages  de5nable by 

Ben@h-bounded EFS's wi;tfi at mast n &oms from positive dab,  

THEOREM 15 For any n. 2 I, the class L " = ( L(r, p)  1 T is lienab-bounded, p is 
unay ,  #% 5 nn, kir, g) + Q ) is inferable from positive data. 
Proof lye should note that by Theorem 6 the class La is also an indexed faarnily of 
secursfve rules, Assume I, a has infinite elasticity. Then there exist an infinite 
sequence of \vords w ~ ,  wg, w2, ... and an infinite sequence of paim of length- 

bounded EFS and predicate symbol (TI, p), (Fa ,  pS, (F3, p3, ... such that # r k  5 i 
and wj C L(rk, p)  if and only ifj < 82. Here it should "n noted that we can assume 
that ail I m p a g e s  in the irai?nite sequence we deEned by a co 

symbol p without any loss of generality. It is clear that infinite sequence of 

ground abms ptwg), p(wa), p(wz), ... and inGnite sequence of lenm-bounded 
EF$% TI, r2, r3, ... show the infinite elasticity of M ". Thus we have a 

contradiction, Therefore L " has finite elastici-&gr, and again by Theorem 10, k " is 

inferable from positive data, D 

Thus we can reveal the powerfulness of inductive inference from positive data, 
Angluin m d  Smith [3 ]  pointed out that Chomslky hierarchy might not be suited 
for inductive inference. In our frmework of EFS2s we can construct a mew 

hierarchy remarkably suitable for inductive inference as well as Chsmsky 
keierarchy, 

In the usual i o ~ c  prog ing lansages  such as Prolog, almost the s m e  

discussion is valid for any class of logic p rourns  corresponding to our EFS". 
Such a p r o p a m  is called linear in f10] or reduci~tg in [63. Thus we can translate 
Theorem 14 i n b  another &eorem in kms of logic progr 
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