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Completeness of Diamond-Resolution

in Or-type Knowledge Bases

Hiroshi SAKAI
Department of Computer Engineering
Kyushu Institute of Technology,
Tobata Kitakyushu 804, Japan

Abstract

The framework of the 'or-type knowledge base' is proposed to deal with
disjunctive information in knowledge bases. Recently, it is an important problem
how effectively we use information which may have some incompleteness. In or-
type knowledge bases, the predicate symbols are only restricted to orm, where the
superscript m implies the arity, and any disjunctive information is included in a
predicate as arguments. ‘

The two systems are naturally defined for the incompleteness of the disjunctive
information. The one is a Box-system, where the incompleteness does not influence
the deduction and the refutation. The other is a Diamond-system, where the
incompleteness influences them. We have already developed the fixpoint theorem
and the completeness of resolution in the Box-system.

In this paper, we show the fixpoint theorem, and the completeness of resolution
in the Diamond-system. Furthermore, we present an actual question-answering in
an or-type knowledge base by a realized prover.

1. Introduction

The disjunctive information such as "At least, either A or B holds, but it is not
known which one holds" is a kind of knowledge, which we especially call the or-
type knowledge. The or-type knowledge can be used to deduce some facts. However,
it is not easy to deal with the or-type knowledge in knowledge bases, because the
semantics of the Horn logic does not hold for clauses containing or-type knowledge.
For example, let us consider the following program P,

P = { C<A;B, A;B. },
where A, B and C are propositional variables, and A;B is an or-type knowledge.
The Herbrand models of the program P are {A, C}, {B, C} {A, B, C}. The intersection
of all models, which is {C}, assigns false to A;B. Namely, the model intersection
property does not hold for the program P. Likewise, the atomic formula C is a
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logical consequence of P, but PU{«-C} does not have an SLD-refutation. Because,
neither the fact A nor the fact B can be deduced by the fact "A or B".

The near-Horn Prolog[1] and the disjunctive logic program[2] are proposed to
deal with or-type knowledge in knowledge bases. Likewise, we have proposed the
framework 'or-type knowledge base'[3]. In our framework, the predicate symbols
are only restricted to orm, where m implies the arity of the predicate. An or-type
knowledge base is a finite set of the rules and the facts of the forms:

rule: orm(ty,..., tym) < orn(sy,..., Sp),..., orh(ry,..., rn).

fact: ork(ty,..., tk).
For example, we represent an or-type knowledge "Tom lives at least in Tokyo, New
york or Paris" by an atomic formula,

or3(live(tom, tokyo), live(tom,new_york),live(tom, paris)).

The terms live(tom, tokyo), live(tom, new_york) and live(tom, paris) are compound
terms. An example of an or-type knowledge base, and the real question-answering
are presented in the appendix.

We assume the following two properties of the or-type knowledge in the
subsequent discussion.

(1) In case a ground atom orn(ty,..., tp) is true, atleast one ori(s) is true for a term
s€{ty,..., tn}, and orn+k(ty,..., tp, s1,..., Sk) is also true for any terms {sy,..., Sk }.

(2) In case a ground atom orn(ty,..., ty) is false, ork(sy,...,sk)is also false for any
terms {s1,..., Sk } C{t1,..., tn }. :

2. Problems and reviews of or-type knowledge bases

If all predicate symbols in an or-type knowledge base are or?, then the program
is a Horn logic program, and the framework of the or-type knowledge base contains
the framework of Horn logic. However, it is necessary to redefine the
interpretation, the model, the logical consequence, the deduction and the
derivation in or-type knowledge bases. It is also necessary to consider the following
two systems for the incompleteness of or-type knowledge.

(1) Box-system, where the incompleteness of or-type knowledge does not influence
the deduction and refutation,

(2) Diamond-system, where the incompleteness of or-type knowledge influences
the deduction and refutation.

The words box and diamond are used in the Modal logic, and they imply the
modalities 'certainty' and 'possibility’, respectively. We also use the words box and
diamond to express the modalities 'certainty’ and 'possibility’. It is necessary for us
to develop the semantics in each system. We prefix 'BOX-' and 'DMD-' to each
technical term in Box-system and Diamond-system, respectively.

Let us consider the fOllowing or-type knowledge bases 57 and S).

57 - {orl(a)«<or2(b, c), orl(c). },
= { orl(a)«<or2(b, c), or2(c, d). ;.
In Sy, or!(c) holds and so does or2(b, ¢) by the properties of or-type knowledge. The
orl(a) can certainly be deduced, and S;U{<o0r(a)} can certainly be refuted ( by
BOX-resolution [3]). Namely, the incompleteness of knowledge does not influence



the deduction of or’(a) and the refutation of S1U{<«-or1(a)}. However, in S5, or(c, d)
holds and or?(c) may hold. In case or’(c) holds, or’(a) can be deduced and
SoU{«or(a)} can be refuted in S,. The incompleteness of knowledge influences the
deduction and the refutation in $.

In [3], we have developed the semantics in the Box-system. Here, we will briefly
review the main results in the Box-system. Let S and Us be an or-type knowledge
base and the Herbrand universe of S, respectively. Let Fs be the set of compound
terms constructed by functors in S except orm(m=1, 2 ,...) and Us.

Bs = {orl(t)|t € Fs}
is the standard Herbrand base. We defined EBs as follows;
EBs = {orm(ty,..., tm) | {t1,..., tm} C Fs, m is arbitrary },
and called it the extended Herbrand base of S. In relation to EBs, we define the
interpretation of S, which assigns true, false or undefined to any atom in EBs. The
model of S is the interpretation which assigns true to all clauses in S, and the /east
model of S can be defined by the intersection of the restricted models[3] of S. We
also defined the BOX-derivation as follows. Let goal G be «<-A1,A),..., Ak, and rule |
C be A<B1,By,..., Bg, where Aj, A and Bj are in the form of orm(ty,..., tm).
ELE(orm(ty,..., tm)) implies a set {or1(t1),..., or!(tm)}, and R is a computation rule. If
there exists a substitution 0 such that
(1) ELE(AB) C ELE(A;D)
for a selected atom Aj by the computation rule R, then'we derive a new goal G'
G<(Ary,.., A1, B1,..., Bg, Ai+1,..., Ak )0.
We call G', a BOX-resolvent of G and C. We also call (1) and 6, a BOX-unification
and a BOX-unifier, respectively.

We have already shown the fixpoint theorem and the completeness of BOX-
resolution in the Box-system. In this paper, we show the fixpoint theorem and the
completeness of DMD-resolution in the Diamond-system.

3. Derivation in the Diamond-system

We first define the derivation in the Diamond-system. The problem in this
paper is to establish the model theory and the deduction corresponding to the
following derivation.

Definition 1. Let G be <A,A,.., Ak, C be A<By,B;,.., Bg and R be a
computation rule. If there exists a substitution 6 such that
(2) ELE(AB) N ELE(AB) O
for a selected atom A; by the computation rule R, then we derive new goal G'

G"«( Ay,..., Ai1, B1,..., Bg, Ai+1,..., Ak )B.

We call G', a DMD-resolvent of G and C. We also call (2) and 6, a DMD-unification
and a DMD-unifier, respectively.

Now we present an algorithm to calculate a DMD-unifier of two atoms by using
the standard unification algorithm(4].

DMD-unification algorithm ( for two atoms ork(ty,..., tx) and ord(sy,..., 5q) )
1. Let i be 1.



2. If i > k then stop. ork(ty,...tx) and ord(sy,..., sq) are not DMD-unifiable.
3. Take a term t; €{ty,..., tm}.
4. Successively unify the following pairs of atoms;

orq(tj, _,_,..., ) and orq(sy,..., Sq),
orq(_, tj,_,..., _) and orq(sy,..., 5q),
orq(_,_, ..., _,tj) and orq(sy,..., 5q)

by using the unification algorithm[4], where ,_, implies an anonymous
variable. If a unification succeeds and a unifier 0 is calculated, then stop.
ork(ty,..., tx) and orq(sy,..., Sq) is DMD-unifiable. 6 is a DMD-unifier.
Otherwise, let i be i+ 1, and goto 2.

A DMD-unifier is a most general unifier(mgu) for two atoms in step 4, because it
is calculated by the unification algorithm[4]. In the unification algorithm, an mgu
of two atoms is uniquely decided except variants. However, in the DMD-unification
algorithm, the mgu of two atoms except variants may not be uniquely decided. In
the SLD-refutation, a backtracking occurs due to the inappropriate selection of
input clauses. However, in the DMD-refutation, a backtracking may occur due to
the inappropriate selection of DMD-unifiers.

Let S be an or-type knowledge base, G be a goal, and R be a computation rule. A
DMD-derivation of SU{G} via R and a DMD-refutation of SU{G} via R are the same
asin [4]. An unrestricted DMD-refutation is a DMD-refutation whose DMD-unifier
may not be an mgu. According to the DMD-unification algorithm and the DMD-
refutation, we can conclude the following two lemmas.

Lemma 1. (Mgu lemma) Let S be an or-type knowledge base and G be a goal.
Suppose that SU{G} has an unrestricted DMD-refutation. Then SU{G} has a DMD-
refutation of the same length.

Proof. By definition of the DMD-unification algorithm, Lemma 8.1 in [4] is
directly applicable to this proof.

Lemma 2. (Lifting lemma) Let S be an or-type knowledge base, G a goal and 0 a
substitution. If there exists a DMD-refutation of SU{G6}, then there exists a DMD-
refutation of SU{G} of the same length.

Proof. It can be similarly proved by Lemma 8.2 in [4] and Lemma 1.

Definition 2. Let S be an or-type knowledge base. The DMD-success set of § is
the set of all atom orh(ty,..., tp) in EBs such that SU{<orh(t,..., tp)} has a DMD-
refutation.

4. Model theory in the Diamond-system
In order to discuss the model theory of the Diamond-system, we first consider

the following or-type knowledge bases 53.
S3 = {orl(a)«orl(b),ord(b, ).},



In 53, the least model in the Box-system, denoted by [J(S3), is {or2(b,c)}.
S3U{<-o0r2(a,e)} has a DMD-refutation. However, the truth value assigned to
orZ(a,e) is false by the interpretation Uac[(s;)ELE(A)(={or!(b), orl(c) }CBS3 ).
On the other hand, let ork(ty,..., tx) be any element in (Uac[](s)ELE(A))* for an or-
type knowledge S, where

(A)*={ B€EBs | the truth value assigned to B by the interpretation A is true }.
Then, there exists at least one or’(t) in ELE(ork(ty,..., tx)) such that the truth value
of orl1(t) is true by the interpretation Uac[J(s5)ELE(A), i.e., or1(t)€ ELE(A) for some
A€L1(S). Since A€L](S), SU{«<A} has a BOX-refutation, and ELE(ork(ty,..., tk))
NELE(A)F @, so SU{«ork(tq,..., tx)} has a DMD-refutation. Namely,

(Uae(s)ELE(A))* CDMD-success set of S.

Definition 3. Let S be an or-type knowledge base. A DMD-interpretation | of S
is an Herbrand interpretation of S which satisfies the following condition.

Condition: Let A be a ground atom, which is a fact or a head in a ground

instance of a rule. If the truth value assigned to A by the interpretation /is true,

then the truth value of each element in ELE(A) is also true, i.e., ELE(A)CI.

For example, the DMD-interpretations for a fact or2(b, ¢) are @ and {or1(b),
or1(c)}. An interpretation {or?(b)} assigns true to or2(b, c), but it is not a DMD-
interpretation. Let L be the set of all DMD-interpretations which assign true to the
following rule '

orm(ty,..., tm) <= orn(si,..., sp),..., orh(ry,..., rp).
Furthermore, let N be the set of all DMD-interpretations which assign true to the
following all rules.
orl(t7) < orn(s,..., Sn),..., orh(ry,..., rp).

orl(tm) < orn(sy,..., Sp),..., orh(rq,..., rp).
For the set of DMD-interpretations L and N, L CN holds.
For any atom A in EBs and any DMD-interpretation /, if ELE(A)NI# @&, then
the truth value of the atom A is true. Otherwise, the truth value of the atom A is
false. In this way, a DMD-interpretation assigns true or false to any atom in EBs.

Proposition 3. (Model intersection property) Let S be an or-type knowledge
base, M be a set of all DMD-interpretations which are models of S. Then, Njepp I is
also a DMD-interpretation and a model of S.

Proof. Since Bs is a model and a DMD-interpretation of S, M is always non
empty set. If an empty set is a model of S, namely S is a set of rules, then Njepr I is
also an empty set and a model of S. Now we consider the case that S contains at
least a fact. First we consider facts. Let orm(ty,..., tm) be any fact in S. By definition
of the DMD-interpretation,

ELE(orm(ty,..., tm))={orl(ty),..., orl(tm)} C I for any I€ M,
and therefore,
ELECorm(ty,..., tm)) C Mepm 1.
The interpretation Njeps | is a DMD-interpretation and a model of the fact
orm(ty,..., tm). Secondly we consider rules. Let orh(ty,..., th)< By,..., Bk be any rule
in S. We show that if the interpretation Njcpg/ assigns true to a ground instance of
the body (B7,..., Bk)0, then Njeps ! assigns true to the atom orh(ty,..., tp)0 and Niepg !



contains each element in ELE(orh(ty,..., tp)0). Since the truth value assigned to
(B1,..., BK)O by Nyep I is true, the truth value assigned to ELE(orh(ty,..., tp)0) by
Myepp 1 is true. Namely,
ELE(orh(ty,..., th)0) ={or1(t1)6,..., orl(tp)0} C I for any I€M,
which implies
ELE(orh(ty,..., th)B) C Myem 1.

We denote Nyepr I by <>(S), and call it the /east model of S in the Diamond-

system.

Definition 4. Let S be an or-type knowledge base. An atom A€EBs is a DMD-
logical consequence of S, if for every DMD-interpretation / of S, / is a model for §
implies that /is a model for the atom A.

Proposition 4. Let S be an or-type knowledge base.
(O(S)*={A€EBs| A is a DMD-logical consequence of S }.

Proof.
( =) Let orh(ty,..., tp) be an element in (< (5))*, then the truth value assigned to
orh(ty,..., tp) by the interpretation < (S) is true. Thus the truth value of orh(ty,..., tp)
is true by any DMD-interpretation which is also a model of S. Namely, orh(ty,..., tp)
is a DMD-logical consequence of S.
(<) Let orh(ty,..., th)€EBs be any DMD-logical consequence of S. By definition, the
truth value of orh(ty,..., tp) is true by any DMD-interpretation / which is a model of
S. If no orl(t) in ELE(orh(ty,..., tp)) satisfies or’(t)€/ for any DMD-interpretation /
which is a model of S, then or!(t)¢<>(S) for any orl(t) in ELE(orh(ty,..., tp)). Thus
the truth value assigned to orfi(ty,..., tp) by <>(S) is false, and it contradicts that
orh(ty,..., tp) is a DMD-logical consequence. Therefore, at least one element or(t) in
ELE(orh(ty,..., tp)) satisfies or!(t)€l for any DMD-interpretation / which is a model
of S. Hence the truth value assigned to orh(ty,..., tp) by the interpretation < (5) is
true.

5. Deduction in the Diamond-system

We define a mapping <Ts, and show the fixpoint theorem and the
completeness of DMD-resolution in the Diamond-system.

Definition 5. Let S be an or-type knowledge base. We define mappings < Ts
and O Rs as follows;
OTg: 2Bs — 2Bs, ORg @ 2Bs— 2EBs
ORs(h={AE€ EBSI
(1) A<Bj1,B>,..., Bqis a ground instance of a clause in §,
(2) ELE(B)N 1 @ holds for any B{1=i=q) },
OTs(=Uae Rg(NELE(A).
2Bs. which is the set of all Herbrand interpretations of S, is the complete lattice
under the partial order of set inclusion. Clearly, the mapping < Ts is continuous,
so <> Ts has the least fixpoint [fp(<> Ts), which corresponds to < Ts T w[4].



Proposition 5. Let S be an or-type knowledge base. Then / is a DMD-
interpretation and a model of S if and only if < T(/) CI.

Proof. I is a DMD-interpretation and a model for S iff for each ground instance
A<«B1,B,..., Bk of each clause in S, ELE(Bi0)NI# @ for any i(1=/i=k) implies
ELE(A)C | iff OTs(h) C 1.

Theorem 6. (Fixpoint theorem) Let S be an or-type knowledge base. Then,
OS)= Ifp(OTg) =OTsT w.

Proof.

O(8)

= glb{1€2Bs| | is a DMD-interpretation and a model of S }

= glb{ 1€2Bs| O Ts(1)Cl }, by Proposition 5

= Ifp(<> Ts), by Proposition 5.1 in [4]

= OTs 1w, by Proposition 5.4 in [4] and the continuity of < Ts.

Theorem 7. (Soundness of DMD-resolution) Let S be an or-type knowledge
base. If SU{G} has a DMD-refutation with answer substitution 6[4], then V(G0) is a
DMD-logical consequence of S.

Proof. Let G be a goal «-A1,A;,..., Ak and 071,..., O, be the sequence of mgu's used
in a DMD-refutation of SU{G} via a computation rule R. We show Y(G0) is a DMD-
logical consequence of S by induction of the length of the DMD-refutation.

Suppose first that n=1. This means that G is a goal of the form <Ay, and there
exists a fact A and substitution 07 such that ELE(A181)NELE(AO1)7* @. Since each
element in ELE(A101)NELE(AD1) is a DMD-logical consequence of S, Y(A107) is a
DMD-logical consequence of 5. Now suppose that the results holds for n-1. Suppose
01,..., On 1s the sequence of mgu's used in a DMD-refutation of SU{G} with length n.
Let A<Bj,..., Bg be the first input clause and Ap, the selected atom of G, which
satisfies ELE(AmB1)NELE(AB1)#* . By the induction hypothesis,

Y((A1,..., Am-1, B1,..., Bg, Am+1,..., Ak)01...0n)

is a DMD-logical consequence of S. Thus, if >0, then V((By,..., Bg)071...6p) is a
DMD-logical consequence of S. Consequently, each element in ELE(AB7...0,) is a
DMD-logical consequence of S. V(Ap01...8p) is a DMD-logical consequence of S,
because ELE(AmO1..00)NELE(ADO1...60)7F &. Hence Y((A7,Ap,..., Ak)B1..65) is a
DMD-logical consequence of S.

Theorem 8. Let S be an or-type knowledge base. Then,
(< (8))* =DMD-success set of S.

Proof. Let A(=o0rm(ty,..., tm)) be an element in EBs and SU{<A} has a DMD-

refutation via some computation rule. By Theorem 7, A is a DMD-logical
consequence of S. Thus, by Proposition 4, A is in (O (5))*.
Now, we show that (<(S))* is contained in the DMD-success set of S. Suppose
A€E(C(S)*. By Theorem 6, A€(< Ts T n)* for some n€w. We prove by induction on
n that A€(CO Ts T n)* implies SU{«<A} has a DMD-refutation. Suppose first that
n=1. A€({OTsT1)* means that ELE(A)NELE(B)* @ for some fact B in S.
Namely, SU{«<A} has a DMD-refutation. Suppose that the result holds for n-1. Let
A€(O Ts T ny*. By definition of & Ts, there exists a ground instance of a clause
B<-Bj,..., Bk such that



ELE(A)NELE(BO)# & and {B16,..., Bk6 } C(OTs 1 n-1)* for some 6.
By the induction hypothesis, SU{<-B;0} has a DMD-refutation for each i=1,..., k.
Because each B0 is ground, these DMD-refutations can be combined into a DMD-
refutation of SU{«(Bj,..., BK)0}. Thus SU{«-A0} has an unrestricted DMD-
refutation. The DMD-refutation of SU{<-A} can be obtained by the mgu lemma.

Lemma 9. Let S be an or-type knowledge base and A an atom. If Y(A) is a DMD-
logical consequence of S, then there exists a DMD-refutation of SU{<A} with the
identity substitution as the computed answer substitution[4].

Proof. It can be similarly proved by Lemma 8.5 in [4].

Theorem 10. (Completeness of DMD-resolution) Let S be an or-type knowledge
base. If V(GO) is a DMD-logical consequence, then there exists a computation rule
R, a computed answer substitution ¢ for SU{G} and a substitution 7 such that
0=o0y.

Proof. Let G be a goal «-A1,A,..., Ak. Since Y(GO)is a DMD-logical consequence

of S, Y(A;j0) is a DMD-logical consequence of S for i=1,..., k. By Lemma 9 there
exists a DMD-refutation of SU{<-A;0} with the identity substitution as the
computed answer substitution for i=1,..., k. We can combine these DMD-
refutations into a DMD-refutation of SU{G6} with identity substitution.
Suppose the sequence of mgu's of the DMD-refutation of SU{G6} is 01,..., 65. Then,
G0610,...6p =GO, because 070,...0, is an identity substitution. By the lifting
lemma, there exists a DMD-refutation of SU{G} with mgu's 61',6,',..., 6" such that
0016,...6,=01'02"...0,'y" for some substitution y'. Let o be 61'0,"...0,' restricted to
the variablesin G. Then 6 =0y, where y is an appropriate restriction of y'.

6. Concluding Remarks

We have proposed the framework of the or-type knowledge base in order to deal
with or-type knowledge. We have already shown the fixpoint theorem and the
completeness of BOX-resolution in the Box-system[3]. In this paper, we mainly
discussed the model theory, the deduction and the refutation in the Diamond-
system. We have shown the fixpoint theorem and the completeness of DMD-
resolution in the Diamond-system, which are the foundation of the or-type
knowledge bases. We have also realized a prover by prolog, whose derivation
depends on the BOX-derivation and the DMD-derivation.

However, another derivation which uses both BOX-unification and DMD-
unification may also be important. In such a derivation, the least model in the Box-
system is dynamically modified whenever the DMD-unification is used. The model
theory and the deduction for the new derivation are another theoretical issues. The
application of our theory to real expert systems is also an important theme,
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Appendix

Let us show the real question-answering in an or-type knowledge base. The
knowledge base, which deals with a knowledge for sessions in an annual
conference, is as follows;

rule 1: If a man attends at least session a,b or ¢, then he isin the first building.
rule 2: If a man attends at least session d or e, then he isin the second building.
rule 3: If X and Y are in the same building, then X meets Y, and Y meets X.
fact 1: tanaka attends at least session a or b.

fact 2: suzuki attends at least session b or c.

fact 3: yamada attends at least session a or d.

iRtk Op type knowledge base ¥ sktttttthirthist/
orl(place(X,first)):-or3(attend(X,session(a)),attend(X,session(b)),
attend(X,session(c))).
orl(place(X,second)):-or2(attend(X,session(d)),attend(X,session(e))).
orl(meet(X,Y)):-orl(place(X,X_place)),orl(place(Y,X_place)),orl(not(X,Y)).
or2(attend(tanaka,session(a)),attend(tanaka,session(h))).
or2(attend(suzuki,session(b)),attend(suzuki,session(c))).
or2(attend(yamada,session(a)),attend(yamada,session(d))).

/************************** EXECUtiOn Fdotckskekckkokcksolckol kR kek sk oksksorkeck ok |

| 7-set. /* initialization */

yes

| 2-box(orl(meet(tanaka,N))). /* ask a man who certainly meets tanaka*/
N = suzuki;

no

| 2-dmd(or1l(meet(tanaka,N))). /* ask a man who may meet tanaka except
N = yamada; suzuki ¥/

no



| 7-set. /* initialization */

yes
| 7-dmd(or1(meet(tanaka,N))). /* ask a man who may meet tanaka */
N = suzuki;

N = yamada;

no

| 7-set.

yes

| 2-box(orl(place(yamada,N))). /* ask a place where yamada certainly is */
no

| >-dmd(or1(place(yamada,N))). /* ask a place where yamada may be */
N = first;

N = second;

no

| ?-set.

yes

| 7-mix(box(orl(place(X,first))),dmd(orl(attend(X,Y)))).

X = tanaka, /* ask a man who certainly is in first
Y = session(a); building and a session the man may
X = tanaka, attend */ '
Y = session(b);

X = suzuki,

Y = gession(b);

X = suzuki,

Y = gession(c);

no
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