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COMPLETENESS OF DIAMOND-RESOLUTION 

    IN OR-TYPE KNOWLEDGE BASES

                       By 

               Hiroshi SAKAI* 

                    Abstract 

   The framework of the or-type knowledge base is proposed to deal with 
disjunctive information in knowledge bases. Recently, it is an important 
problem how effectively we use information which may have some incomplete
ness. In or-type knowledge bases, the predicate symbols are only restricted 
to orm, where the superscript m implies the arity, and any disjunctive infor
mation is included in a predicate as arguments. 

   The two systems are naturally defined for the incompleteness of the 
disjunctive information. The one is a Boxsystem, where the incompleteness 
does not influence the deduction and the refutation. The other is a Diamond
system, where the incompleteness influences them. We have already devel
oped the fixpoint theorem and the completeness of resolution in the Box
system. 

   In this paper, we show the fixpoint theorem, and the completeness of 
resolution in the Diamond-system. Furthermore, we present an actual ques
tionanswering in an or-type knowledge base by a realized prover.

I. Introduction 

   A disjunctive information such as "At least, either A or B holds, but it is not 
known which one holds" is a kind of knowledge, which we especially call an or-type 
knowledge. The or-type knowledge can be used to deduce some facts. However, it is 
not easy to deal with the or-type knolwedge in knowledge bases, because the semantics 
of the Horn logic does not hold for clauses containing or-type knowledge. For exam

ple, let us consider the following program P, 

P={C4—A;B,A;B}, 

where A, B and C are propositional variables, and A; B is an or-type knowledge. The 
Herbrand models of the program P are {A, C}, {B, C} and {A, B, C}. The intersection 
of all models, which is {C}, assigns false to A; B. Namely, the model intersection 
property does not hold for the program P. Likewise, the atomic formula C is a logical 
consequence of P, but P U {4—CI  does not have any SLD-refutation. Because, neither 
the fact A nor the fact B can be deduced by the fact "A or B".
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   The near-Horn Prolog [1] and the disjunctive logic program [2] are proposed to 
deal with disjunctive information in knowledge bases. Likewise, we have proposed the 
framework  ̀or-type knowledge base' [3]. In our framework, the predicate symbols are 
only restricted to orm, where m implies the arity of the predicate. An or-type knowl
edge base is a finite set of the rules and the facts of the forms: 

                  rule: orm(tl, ... tm) + or"(s1, ..., s"), ..., orh(r1, ..., rh) . 

                 fact: or'(t1, ..., tk) . 

For example, we represent an or-type knowledge "Torn lives at least in Tokyo, New york 
or Paris" by an atomic formula, 

            or3(live(tom, tokyo), live(tom, new_york), live(tom, paris)) . 

The terms live(tom, tokyo), live(tom, new_york) and live (torn, paris) are compound terms. 
An example of an or-type knowledge base and the real questionanswering are presented 
in the appendix. 

   We assume the following two properties of the or-type knowledge in the sub
sequent discussion. 

   (1) In case a ground atom or"(t 1, ... , t") is true, at least one or l (s) is true for a 
       term s e {t1, ..., t"}, and or"+k(t1, ..., t", sl, ..., sk) is also true for any terms 

{s1, .. , sk}. 
   (2) In case a ground atom or"(t1, ..., t") is false, ork(sl, ..., sk) is also false for any 

        terms {s1, ..., sk} c {t1, ..., t"}.

2. Problems and Reviews of Or-type Knowledge Bases 

   If all predicate symbols in an or-type knowledge base are orl, then the program is 
a Horn logic program, and the framework of the or-type knowledge base contains the 
framework of Horn logic. However, it is necessary to redefine the interpretation, the 
model, the logical consequence, the deduction and the derivation in or-type knowledge 
bases. It is also necessary to consider the following two systems for the incompleteness 
of or-type knowledge. 

   (1) Boxsystem, where the incompleteness of or-type knowledge does not influence 
      the deduction and refutation, 

   (2) Diamondsystem, where the incompleteness of or-type knowledge influences the 
       deduction and refutation. 

   The words box and diamond are used in the Modal logic, and they imply the 
modalities `certainty' and `possibility', respectively. We also use the words box and 
diamond to express the modalities ̀ certainty' and `possibility'. It is necessary for us to 
develop the semantics in each system. We prefix ̀ BOX-' and 'DMD-' to each technical 
term in Boxsystem and Diamondsystem, respectively. 

   Let us consider the following or-type knowledge bases S1 and S2. 

Sl = {or' (a) E— or2 (b, c), orl (c) } , 

S2 = {or'(a) 4— or2(b, c), or2(c, d)} .
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In S1,  or'  (c) holds and so does or2(b, c) by the properties of or-type knowledge. The 
or' (a) can certainly be deduced, and S1 U { < or 1(a) } can certainly be refuted (by BOX 
resolution [3]). Namely, the incompleteness of knowledge does not influence the 
deduction of or' (a) and the refutation of S1 U { 4— or 1(a) }. However in S2, or2(c, d) 
holds and or' (c) may hold. In case or1(c) holds, or' (a) can be deduced and 
S2 U { E or 1(a) } can be refuted in S2. The incompleteness of knowledge influences the 
deduction and the refutation in S2. 

   In [3], we have developed the semantics in the Boxsystem. Here, we will briefly 
review the main results in the Boxsystem. Let S and Us be an or-type knowledge base 
and the Herbrand universe of S, respectively. Let Fs be the set of compound terms 
constructed by functors in S except orm (m = 1, 2, ...) and Us. 

Bs = {or1(t)It E Fs} 

is the standard Herbrand base. We defined EBs as follows; 

EBs = {orm(t1, ..., t,„)I{t1, ..., t„,} c Fs, m is arbitrary} , 

and called it the extended Herbrand base of S. In relation to EBs, we define the 
interpretation of S, which assigns true, false or undefined to any atom in EBs. The 
model of S is the interpretation which assigns true to all clauses in S, and the least 
model of S can be defined by the intersection of the restricted models [3] of S. We 
also defined the BOXderivation as follows. Let goal G be 4- A1, A2, ..., Ak, and 
rule C be A <— B1, B2, ..., Bq, where Ai, A and A are in the form of orm(t1, ..., t„,). 
ELE(orm(t1, ..., t,„)) implies a set {or'(t1), ..., or' (t,„)}, and R is a computation rule. 
If there exists a substitution 0 such that 

(1)ELE(A0) c ELE(A,9) 

for a selected atom Ai by the computation rule R, then we derive a new goal G' 

G : <—(A1, ..., Ai-1, B1, ..., Bq, Ai+1, .., Ak 

We call G', a BOXresolvent of G and C. We also call (1) and 0, a BOXunification and 
a BOXunifier, respectively. 

   We have already shown the fixpoint theorem and the completeness of BOX
resolution in the Boxsystem. In this paper, we show the fixpoint theorem and the 
completeness of DMDresolution in the Diamondsystem.

3. Derivation in the Diamondsystem 

We first define the derivation in the Diamondsystem. The problem in this paper is to 
establish the model theory and the deduction corresponding to the following derivation. 

   DEFINITION 1. Let G be 4—A1, A2, ..., Ak, C be A <— B1, B2, ..., Bq and R be a 
computation rule. If there exists a substitution 0 such that 

(2)ELE(A0) fl ELE(A,O) 0 0 

for a selected atom A, by the computation rule R, then we derive new goal G'
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G': 4—(A1, ..., Ai_,, 131, ••,Bq,Ai+1,... ,Ak . 

We call G', a DMDresolvent of G and C. We also call (2) and 0, a DMDunification 
and a DMDunifier, respectively. 

   Now we present an algorithm to calculate a DMDunifier of two atoms by using 
the standard unification algorithm [4]. 
DMDunification algorithm (for two atoms ork(tl, ...., tk) and orq(s1, ..., so)) 

   1. Let i be 1. 
   2. If i > k then stop. ork(t1, ..., tk) and orq(s1, ..., sq) are not DMDunifiable. 

    3. Take a term ti e {tl, ... , tm}. 
   4. Successively unify the following pairs of atoms; 

or4(ti, —, —, ... , —) and orq(s1, ... , sq) , 

orq(—, ti, —, ..., —) and orq(s1, ... , sq) , 

orq(—, —, ..., —, ti) and orq(s1, ..., sq) 

      by using the unification algorithm [4], where ,—, implies an anonymous 
      variable. If a unification succeeds and a unifier 0 is calculated, then stop. 

ork(t1, ... , tk) and orq(s1, ... , sq) is DMDunifiable. 0 is a DMDunifier. Other
      wise, let i be i + 1, and goto 2. 

   A DMDunifier is a most general unifier (mgu) for two atoms in step 4, because it is 
calculated by the unification algorithm [4]. In the unification algorithm, an mgu of 
two atoms is uniquely decided except variants. However, in the DMDunification 
algorithm, the mgu of two atoms except variants may not be uniquely decided. In the 
SLDrefutation, a backtracking occurs due to the inappropriate selection of input 
clauses. However, in the DMDrefutation, a backtracking may occur due to the inappro

priate selection of DMDunifiers. 
   Let S be an or-type knowledge base, G be a goal and R be a computation rule. A 

DMDderivation of S U {G} via R and a DMDrefutation of S U {G} via R are the same 
as in [4]. An unrestricted DMDrefutation is a DMDrefutation whose DMDunifier 
may not be an mgu. According to the DMDunification algorithm and the DMD
refutation, we can conclude the following two lemmas. 

   LEMMA 1. (Mgu lemma) Let S be an or-type knowledge base and G be a goal. 
Suppose that S U {G} has an unrestricted DMDrefutation. Then S U {G} has a DMD
refutation of the same length. 

   PROOF. By definition of the DMDunification algorithm, Lemma 8.1 in [4] is 
directly applicable to this proof.• 

   LEMMA 2. (Lifting lemma) Let S be an or-type knowledge base, G be a goal and 8 
be a substitution. If there exists a DMDrefutation of S U {G0}, then there exists a 
DMDrefutation of S U {G} of the same length. 

PROOF. It can be similarly proved by Lemma 8.2 in [4] and Lemma 1. ^ 
DEFINITION 2. Let S be an or-type knowledge base. The DMDsuccess set of S 

is the set of all or"(t 1, ... , t") in EBs such that S U { 4– or"(t 1, ... , 4)1 has a DMD
refutation.
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4. Model theory in the Diamondsystem 

   In order to discuss the model theory of the Diamondsystem, we first consider the 

following or-type knowledge base  S3. 

                     S3 = {or' (a)+— or1(b), or2(b, c)} , 

In 53, the least model in the Boxsystem, denoted by ^(S3), is {or2(b, c)}. S3 U 
{ 4— or' (a, e) } has a DMDrefutation. However, the truth value assigned to or' (a, e) is 
false by the interpretation UA E ̂cs3) ELE(A) (= {or' (b), or 1(c) } c Bs3 ). On the other 
hand, let ork(t1, ... , tk) be any element in (UA E o(s)ELE(A))* for an or-type knowledge 
base S, where 

   (A)* = {B E EBs 1 the truth value assigned to B by the interpretation A is true} . 

Then, there exists at least one or1(t) in ELE(ork(t1, ..., tk)) such that the truth value of 
or1(t) is true by the interpretation UAEDRs>ELE(A), i.e., or1(t) E ELE(A) for some 
A e ^(S). Since A e ^(S), SU {4—A} has a BOXrefutation, and ELE(ork(t1, ..., tk)) fl 
ELE(A) 0 0, so S U {4—ork(t1, ..., tk)} has a DMDrefutation. Namely, 

                (UA E ̂(s)ELE(A))* c DMDsuccess set of S . 

   DEFINITION 3. Let S be an or-type knowledge base. A DMDinterpretation I of S 
is an Herbrand interpretation of S which satisfies the following condition. 

   Condition: Let A be a ground atom, which is a fact or a head in a ground 
instance of a rule. If the truth value assigned to A by the interpretation 1 is true, then 
the truth value of each element in ELE(A) is also true, i.e., ELE(A) c I. 

   For example, the DMDinterpretations of a fact or2(b, c) are 0 and {or1(b), or' (c)}. 
An interpretation {or1(b)} assigns true to or2(b, c), but it is not a DMDinterpretation. 
Let L be the set of all DMDinterpretations which assign true to the following rule 

orm(t1, ..., tm) <— or"(s1, ..., sn), ..., orh(r1, ..., rh) . 

Furthermore, let N be the set of all DMDinterpretations which assign true to the 
following all rules. 

or1(t1) +— or"(s1, ..., sn), ..., orh(ri, ..., rh) . 

                                                                                                           • or1(tm) +— or"(s1, ..., s"), ..., orh(r1, ..., rh) . 

For the set of DMDinterpretations L and N, L c N holds. 
   For any atom A in EBs and any DMDinterpretation I, if ELE(A) fl I 0 0 then 

the truth value of the atom A is true. Otherwise, the truth value of the atom A is false. 
In this way, a DMDinterpretation assigns true or false to any atom in EBs. 

   PROPOSITION 3. (Model intersection property) Let S be an or-type knowledge base, 
M be a set of all DMDinterpretations which are models of S. Then, n I E M I is also a 
DMDinterpretation and a model of S. 

   PROOF.Since Bs is a model and a DMDinterpretation of S, M is always non 

empty set. If an empty set is a model of S, namely S is a set of rules, then fl' E M Iis
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also an empty set and a model of S. Now we consider the case that S contains at least 
a fact. First we consider facts. Let  ort(t1,  ...,  tm) be any fact in S. By definition of 
the DMDinterpretation, 

ELE(orm(t1, ..., tm)) = {or'(t1), ..., orl(t,,,)} c I for any I E M , 

and therefore, 

ELE(orm(t1, ... , t,n)) c nIeMI • 

The interpretation n I E M 1 is a DMDinterpretation and a model of the fact ort(t 1, 
... , t,„). Secondly we consider rules. Let or"(t 1, ... , t") 4— B1, ..., Bk be any rule in 
S. We show that if the interpretation n I E M 1 assigns true to a ground instance of the 
body (B1, ... , Bk) 9, then nIeMIassigns true to the atom or"(t l , ..., t")0 and n I e M I 
contains each element in ELE(or"(tl, ..., t")8). Since the truth value assigned to 
(B1, ..., Bk)9 by n I E M 1 is true, the truth value assigned to ELE(or"(t 1, ..., t") 9) by 
nIeMIis true. Namely, 

ELE(or"(t1, ..., t")8) = {orl(t1)e, ..., orl(t")9} c I for any I e M , 

which implies 

ELE(or"(tl, ..., t")8) c fIEM I. • 

   We denote nIeMI by 0(S), and call it the least model of S in the Diamond
system. 

DEFINITION 4. Let S be an or-type knowledge base. An atom A e EBs is a 
DMDlogical consequence of S, if for every DMDinterpretation I of S, I is a model for S 
implies that I is a model for the atom A. 

    PROPOSITION 4. Let S be an or-type knowledge base. 

(Q (S))* = { A e EBs I A is a DMDlogical consequence of S} . 

   PROOF. (=) Let or"(tl, ..., t") be an element in (0(S))*, then the truth value 
assigned to or"(t 1, ..., th) by the interpretation O(S) is true. Thus the truth value of 
or"(t1, ..., t") is true by any DMDinterpretation which is also a model of S. Namely, 
or"(tl , ..., th) is a DMDlogical consequence of S. 
(~) Let or"(tl, ..., t") e EBs be any DMDlogical consequence of S. By definition, the 
truth value of or"(tl, ..., t") is true by any DMDinterpretation I which is a model of 
S. If no or' (t) in ELE(or"(t1, ..., t")) satisfies orl (t) e I for any DMDinterpretation I 
which is a model of S, then orl(t) 0 0(S) for any or1(t) in ELE(or"(t1, ..., th)). Thus the 
truth value assigned to or"(t 1, ..., th) by O(S) is false, and it contradicts that or"(t 1, ... , 
th) is a DMDlogical consequence. Therefore, at least one element or' (t) in ELE(or"(t 1, 
... , th)) satisfies orl (t) e I for any DMDinterpretation I which is a model of S. Hence 
the truth value assigned to orh(ti, ..., th) by the interpretation 0(S) is true.•

5. Deduction in the Diamondsystem 

   We define a mapping 0 Ts, then we show the fixpoint theorem and the complete
ness of DMDresolution in the Diamondsystem.
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   DEFINITION 5. Let S be an or-type knowledge base. We define mappings  0 Ts 
and 0 Rs as follows; 

0 Ts: 25s —' 25s, 0 Rs: 2Bs - 
0Rs(1) = {A E EBsI 

     (1) A E B1, B2, ..., Bk is a gound instance of a clause in S, 
    (2) ELE(BB) fl I # 0 holds for any Bi (1 < i 5 k)}, 

0 Ts(I) = UA E ORs(I) ELE(A). 

2Bs, which is the set of all Herbrand interpretations of S, is the complete lattice under 
the partial order of set inclusion. Clearly, the mapping 0 Ts is continuous, so 0 Ts has 
the least fixpoint lfp(0 Ts), which corresponds to 0 Ts I co [4]. 

   PROPOSITION 5. Let S be an or-type knowledge base. Then I is a DMD
interpretation and a model of S if and only if 0 Ts(I) c I. 

   PROOF. I is a DMDinterpretation and a model for S iff for each ground instance 
A 4— B1, B2, ..., Bk of each clause in S, ELE(B10) (1 I � 0 for any i (1 S i < k) implies 
ELE(A) c I iff 0Ts(I) c I.• 

   THEOREM 6. (Fixpoint theorem) Let S be an or-type knowledge base. Then, 

                   O(S)= fP(OTs)= OTsTw. 

    PROOF. 

0(S) 

        = glb{I e 2Bs I I is a DMDinterpretation and a model of S} 

       = glb {I e 2Bs 1 0 Ts(I) c I}, by Proposition 5 

       = lfp(0 Ts), by Proposition 5.1 in [4] 

        = 0 Ts T co, by Proposition 5.4 in [4] and the continuity of 0 Ts .• 

   THEOREM 7. (Soundness of DMDresolution) Let S be an or-type knowledge base. 
If S U {G} has a DMDrefutation with answer substitution 0[4], then V(GO) is a DMD
logical consequences of S. 

   PROOF. Let G be a goal 4—A1, A2, ..., Ak and 01, ..., On be the sequence of mgu's 
used in a DMDrefutation of S U {G} via a computation rule R. We show V(GO) is a 
DMDlogical consequence of S by induction of the length of the DMDrefutation. 
Suppose first that n = 1. This means that G is a goal of the form 4—A1, and there exists 
a fact A and substitution 01 such that ELE(A101) (1 ELE(A01) � 0. Since each element 
in ELE(A101) 11 ELE(A01) is a DMDlogical consequence of S, V(A 101) is a DMDlogical 
consequence of S. Now suppose that the results holds for n — 1. Suppose 01, ..., 0„ 
is the sequence of mgu's used in a DMDrefutation of S U {G} with length n. Let 
A — B1, ..., Bq be the first input clause and Am the selected atom of G, which satisfies 
ELE(Am01) 11 ELE(A01) 0 0. By the induction hypothesis, 

`d((A
1, ..., Am-1, 131, ..., Bq, Am+1, ..., Ak)01 ... 0„) 

is a DMDlogical consequence of S. Thus, if q> 0, then `d((B1, ..., Bq)01 ... 0„) is a 
DMDlogical consequence of S. Consequently, each element in ELE(A01 ...0„) is a
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DMDlogical consequence of S.  d(AmOi ... 0„) is a DMDlogical consequence of S, 
because ELE(AmOI ... 0,,)n ELE(A01 ... 0„) 0 0. Hence d((A1, A2, ..., Ak)O, ... On) is a 
DMDlogical consequence of S.• 

    THEOREM 8. Let S be an or-type knowledge base. Then, 

(O(S))* = DMDsuccess set of S . 

    PROOF. Let A(= or"'(t1, ..., tm)) be an element in EBs and SU {4—A} has a DMD
refutation via some computation rule. By Theorem 7, A is a DMDlogical consequence 
of S. Thus, by Proposition 4, A is in (Q(S))*. Now, we show that (O(S))* 
is contained in the DMDsuccess set of S. Suppose A e (O(S))*. By Theorem 6, 
A E (Q Ts T n)* for some n e co. We prove by induction on n that A E (0 Ts T n)* implies 
SU {4—A} has a DMDrefutation. Suppose first that n = 1. A e (Q Ts T 1)* means that 
ELE(A) fl ELE(B) 0 for some fact B in S. Namely, SU {4—Al  has a DMDrefutation . 
Suppose that the result holds for n — 1. Let A e (0 Ts T n)*. By definition of Q Ts, 
there exists a ground instance of a clause B  B1, ..., Bk such that 

ELE(A) fl ELE(BO) 0 0 and {B10, ... , 401 c (Q Ts T n — 1)* for some 0 . 

By the induction hypothesis, SU {4—B4O1  has a DMDrefutation for each i = 1, ... , k. 
Because each B4O is ground, these DMDrefutations can be combined into a DMD

refutation of SU {4—(B1, ..., Bk)0}. Thus SU {<—AO} has an unrestricted DMD
refutation. The DMDrefutation of SU 14—Al  can be obtained by the mgu lemma. • 

. LEMMA 9. Let S be an or-type knowledge base and A be an atom. If V(A) is a 
DMDlogical consequence of S, then there exists a DMDrefutation of SU {+-A} with the 
identity substitution as the computed answer substitution [4]. 

   PROOF. It can be similarly proved by Lemma 8.5 in [4].• 
   THEOREM 10. (Completeness of DMDresolution) Let S be an or-type knowledge 

base. If V(GO) is a DMDlogical consequence, then there exists a computation rule R, a 
computed answer substitution a for S U {G} and a substitution y such that 0 = ay. 

   PROOF. Let G be a goal 4—A1, A2, ..., Ak. Since V(GO) is a DMDlogical 
consequence of S, V(24,0) is a DMDlogical consequence of S for i = 1, ... , k. 
By Lemma 9 there exists a DMDrefutation of SU {4—A0} with the identity substitu
tion as the computed answer substitution for i = 1, ... , k. We can combine these 
DMDrefutations into a DMDrefutation of SU {GO} with identity substitution. Sup
pose the sequence of mgu's of the DMDrefutation of S U {GO} is 01, ..., On. Then, 
G00102 ... On = GO, because 0102 ... 0„ is an identity substitution. By the lifting 
lemma, there exists a DMDrefutation of S U {G} with mgu's 0 , O2, ..., O;, such that 
00102 ... 0n = Oi 02 ... O„y' for some substitution y'. Let a be 01'02 ... 0;, restricted to 
the variables in G. Then 0 = ay, where y is an appropriate restriction of y'.•

6. Concluding Remarks 

   We have proposed the framework of the or-type knowledge base in order to deal 
with or-type knowledge. We have already shown the fixpoint theorem and the complete
ness of BOXresolution in the Boxsystem [3]. In this paper, we have mainly discussed
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the model theory, the deduction and the refutation in the Diamondsystem. We have 

shown the fixpoint theorem and the completeness of DMDresolution in the Diamond

system, which are the foundations of the or-type knowledge bases. We have also 

realized a prover by prolog, whose derivation depends on the BOXderivation and the 

DMDderivation. 

   However, another derivation which uses both BOXunification and DMDunification 

may also be important. In such a derivation, the least model in the Boxsystem is 

dynamically modified whenever the DMDunification is used. The model theory and 

the deduction for the new derivation are another theoretical issues. The application of 

our theory to real expert systems is also an important theme.
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                            Appendix 

   Let us show the real questionanswering in an or-type knowledge base. The 

knowledge base, which deals with a knowledge of sessions in an annual conference, is 

as follows; 

   rule 1: If a man attends at least session a, b or c, then he is in the first building. 

   rule 2: If a man attends at least session d or e, then he is in the second building. 

   rule 3: If X and Y are in the same building, then X meets Y, and Y meets X. 

   fact 1: tanaka attends at least session a or b. 

   fact 2: suzuki attends at least session b or c. 

   fact 3: yamada attends at least session a or d.

/******************** Or-type knowledge base **********************/ 
 orl  (place(X,first)):or3(attend(X,session(a)),attend(X,session(b)), 

attend(X,session(c))). 

or (place(X,second)):or2(attend(X,session(d)),attend(X,session(e))). 
or 1(meet(X,Y)):-orl (place(X, X_place)), or l (place(Y,X_place)),orl (not(X,Y)). 

or2(attend(tanaka,session(a)),attend(tanaka,session(b))). 
or2(attend(suzuki,session(b)),attend(suzuki,session(c))). 
or2(attend (yamada,session(a)), attend(yamada, session(d))).

/************************** Execution *****************************/ 
I ?-set./* initialization */ 
yes 

?-box (or 1 (meet (tanaka,N))). /* ask a man who certainly meets tanaka */ 
N = suzuki; 
no 

?-dmd(or 1 (meet(tanaka,N))). /* ask a man who may meet tanaka except 
N = yamada;suzuki */ 
no 

?-set./* initialization */ 

yes 
?-dmd(or 1 (meet(tanaka,N))). /* ask a man who may meet tanaka */ 

N = suzuki; 
N = yamada; 
no 
 ?-set. 

yes 
?-box(or 1 (place(yamada,N))). /* ask a place where yamada certainly is */ 

no 

I ?-dmd(or 1 (place(yamada,N))). /* ask a place where yamada may be */ 
N = first; 
N = second; 
no 
 ?-set. 

yes
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1 ?-mix(box(orl(place(X,first))),dmd(orl  (attend  (X,  Y)))). 
X = tanaka,/* ask a man who certainly is in first 
Y = session(a);building and a session the man may 
X = tanaka,attend */ 
Y = session(b); 
X = suzuki, 
Y = session(b); 
X = suzuki, 
Y = session(c); 
no

(*) Comments were added to logging data after execution.


