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1 Introduction

One of the roles of parallel complexity theory is to investigate the problems which have
no efficient parallel algorithms. It has been observed that some problems do not seem to
allow any fast parallel algorithms although they are easily solvable in polynomial time by
sequential algorithms. These problems have been shown P-complete.

The class of problems with efficient parallel algorithms is understood to be NC [Pip-
penger, 1979]. The class NC is a subclass of P but, no mathematical proof has been
given that shows NC#P. Like NP#P question, we strongly believe that NC and P are
different. With the assumption that NC+#P, we can see that no P-complete problem is
in NC. By this observation, we can use P-completeness to show the inherent difficulty of
parallelization.

In recognizing the importance of P-completeness, we make a list of P-complete prob-
lems in a way similar to [Garey and Johnson, 1979] and [Greenlaw, Hoover and Ruzzo,
1989]. We hope this list would help to understand which problems have no efficient parallel

algorithms.



2 NC-Reducibility and P-Completeness

In this section we give some definitions and notions related to P-completeness.

Definition 1 A problem (or search problem) S with a size parameter h(n) is a family
{Sn}ns0 of binary relations S, C {0,1}" x {0,1}*® for n > 0. For n > 0, z € {0,1}" is
called an instance and an object y € {0,1}®) satisfying Sy (z,y), if any, is called a solution
for . For convenience, we assume that there exists y with S,(z,y) for each z € {0,1}".
If a solution y with S,(z,y) is unique for each z € {0,1}", then the problem of finding a
solution is exactly the same as computing the function defined by S. Moreover, if h(n) =1

for all n > 0, then the problem S is regarded as a decision problem.

Example 1 A mazimal independent set (MIS) of an undirected graph is a maximal set
U of vertices such that no two vertices in U are adjacent. The problem of finding a
MIS is formulated in the following way: A graph with n vertices is represented by an
n X n-adjacency matrix and a subset of vertices is represented by an n-bit vector. Then
MIS={MIS, },>0 is defined only for mtegers of the form n? as

T\/HSn_k C Ao, 1}" x {0, 1}”
where for (z,y) €MIS,2, = is a symmetric matrix representing an undirected graph with n

vertices and y a bit vector representing a MIS in the graph.

Definition 2 We say that a search problem S is polynomial time solvable if there is a
polynomial time computable function f : {0,1}* — {0,1}* such that S,(z, f(z)) holds for
all z € {0,1}" and n > 0. We denote by P the class of polynomlal time solvable search

problems.

A very common parallel computation model is the parallel RAM (PRAM) model in
which processors work together synchronously and communicate with a common random
access memory. By read and write access abilities, PRAMs are classified to CREW PRAM,
EREW PRAM and CRCW PRAM. In any case, we define as follows:

Definition 3 A parallel algorlthm on a PRAM solvmg a problem is eﬁ‘iczent if, gwen an
input of size n, it runs

(1) in time O((logn)¥) for some constant k > 0,

(2) with a polynomial number of processors.
This definition is based on the observation that the time O((logn)¥) is very fast and a

polynomial number of processors is feasible.
The class NC is defined by the uniform circuit model.
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Definition 4 A circuit a with n inputs and m outputs is a finite labeled directed acyclic
graph such that it has n input lines and m output lines and each node is labeled with a
gate such as AND gate, OR gate, NOT gate, etc. We denote by size(a) (resp., depth(a))
the size of a circuit a which is the number of nodes in a (resp., the depth of a circuit «
which is the length of the longest path from some input to some output). The function

fo:{0,1}™ — {0,1}™ computed by « is defined in an obvious way.

Definition 5 For a search problem S = {S,}n>0, we say that {a,}n>0 solves S if {an}n>0
computes a function {f,}n>0 such that S,(z, fu(z)) for all z € {0,1}" and n > 0, where

fn is the function computed by «,.

Several kinds of uniformities of circuits have been proposed [Ruzzo, 1980], [Cook, 1985].

We use the following definition because of its simplicity.

Definition 6 A circuit family {a,}.>0 is log-uniform (or simply, uniform) if, given n in
unary, the description of the nth circuit o, is computed by a deterministic off-line Turing

machine using O(logn) worktape space.

It is known that NC* defined below does not change by the choice of uniformity for
k > 2 [Ruzzo, 1980].

Definition 7

(1) NC*F={S | S is solvable by a uniform circuit family {c, }n>0 such that size(c,)
is bounded by some polynomial and simultaneously depth(a,) =

O((log n)")}.
(2) NC=Uy»oNC*.

The following theorem relates the class NC and efficient parallel algorithms.

Theorem 1 (Stockmeyer and Vishkin, 1984) NC is the class of problems solvable
by PRAM algorithms with polynomial number of processors and running time O((log n)*),

where k is an arbitrary constant.

Assuming that P#ZNC, we can prove that no P-complete problem allows any PRAM
parallel algorithm running in time O((logn)°®) with n®®) processors. Thus the P-
completeness plays a very important role to convince of the hardness of efficient paral-
lelization.

The knowledge that a problem is P-complete provides algorithm designers valuable
information about the approaches they should take. It would relieve wasting efforts for

devising drastically fast parallel algorithms and, instead, direct toward ways which lead to
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useful algorithms. Proofs of P-completeness may also tell us which parts of problems are
hard to parallelize.

The P-completeness due to [Cook, 1985] adopted the NC!'-reducibility that uses NC!-
computable O(logn) depth uniform circuits with oracle gates since it deals with reductions
between functions. Another commonly used reducibility is the many-one log space re-
ducibility for decision problems [Hopcroft and Ullman, 1979]. Here we use the following
definition of reducibility.

Definition 8 Let S and T be problems of size parameters g(n) and h(n), respectively. We
say that S is NC*-reducible to T, denoted S <V c* T, if there is a uniform circuit family

{o }n>0 satisfying the following conditions:

1. Each «, can involve several oracle gates which can solve T, where an oracle gate for

T is a gate such that, for each input bit sequence (y1,...,¥,), it produces an output

sequence (21, ..., Zx()) satisfying T5(y1,.. ., ¥r, 215 -+ - Zh(r))-

2. The depth of a, is O((logn)*), where the depth of an oracle gate with r input lines
is measured as [logr]. For each input = € {0,1}", the circuit ¢, outputs z with
Su(z, z) so far as the input-output relation satisfies T at each oracle gate. Namely,
the output z of a,, may differ according to the solutions selected at oracle gates, but

for any solutions the relation S,(z,z) holds.
We say that S is NC-reducible to T, denoted S <NVC T, if S <NG* T for some k.

Obviously, the NC-reducibility is an extension of the NC'-reducibility. It is also known
that if S is log space reducible to T  then S is NC2-reducible to T'. Hence the NC-reducibility
is stronger than these two kinds of reducibilities and can deal with reductions among
relations. However, all problems in the list of Section 4 can be shown P-complete via

NC2-reductions.

Fact 1
(1) The relation <N¢ is transitive.
(2) If S <N T and T €NC, then S €NC.

Definition 9 A problem T is said to be P-complete if the following conditions are satisfied:
(1) T is in P.
(2) For each problem S in P, § <N¢ T,

The importance of P-completeness is based on the following fact:
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Fact 2 No P-complete problem is in NC if PANC.

Finally we should remark that proving the P-completeness of a problem is just the
start of work on that problem. Even if a problem is shown P-complete, it tells us that no
drastic speed up may be expected theoretically. However, it does not deny the possibility

of reducing the degree of polynomial of the time complexity.

3 Proving P-Completeness
The following problem is the most widely used problem for proving P-completeness.

CIRCUIT VALUE PROBLEM (CVP)

INSTANCE: A circuit B = (By,..., B,), where each B; is either (i) B; = 1 (true) or 0
(false), (i) B; = ~B; (j < i), (iii)) B; = B; A By, (j, k <t), or (iv) B; = B; V By, (5, k < 1).
B, is called the output gate and the gates with true or false are called the input gates.
PrRoOBLEM: Decide whether the value of B,, is true.

Theorem 2 (Ladner, 1975) CIRCUIT VALUE PROBLEM is P-complete.

We note that CVP is complete for the class of search problems which have polynomial
time algorithms. The MONOTONE CIRCUIT VALUE PROBLEM (MCVP) is a restricted
version of the CIRCUIT VALUE PROBLEM for which instances are circuits with AND
and OR gates only [Goldschlager, 1977].

We give two examples of problems complete for P. The first one is originally a problem
of computing a function but it can be regarded as a decision problem. However, the second

problem does not seem to have an equivalent decision problem. Both of them are shown
P-complete by NC-reductions from MCVP.

LEXICOGRAPHICALLY FIRST MAXIMAL INDEPENDENT SET (LFMIS)
INSTANCE: A graph G = (V, E) with V = {1,...,n} and a vertex u.
ProBLEM: Decide whether u is contained in the lexicographically first subset U of V such

that no two vertices in U are adjacent.

Theorem 3 (Cook, 1985) LEXICOGRAPHICALLY FIRST MAXIMAL INDEPENDENT
SET is P-complete.

Proof. The following greedy algorithm solves LEMIS in polynomial time. An example of

the lexicographically first maximal independent set is shown in Fig. 1:



Fig. 1: The lexicographically first maximal independent set

begin /* G = (V,E) with V = {1,...,n} %/
U « 0;
for: «— 1 tondo
if U U {¢} is an independent set then U «— U U {z}

end

We give a reduction from MCVP to LFMIS. Let B = (By,..., B,) be a monotone circuit.
We construct a graph G such that each gate B; is associated with two vertices u; and v;.
A linear order < on vertices is defined so that u;,v; < u;,v; for : < j. We define edges of
GG and the order between u; and v; as follows:

(1) If B; = true (resp. false), then u; < v; (resp. v; < u;) and an edge {u;,v;} is
added.

(2) If B; = B; A Bg, with j, k < ¢, then u; < v; and edges {u;, v;}, {vj,u;}, and {vg,u;}
are added.

(3) If B, = B; V By with j, k < i, then v; < u; and edges {u;,v;}, {u;,v;}, and {ug,v;}
are added.
An example of construction from the monotone circuit in Fig. 2 is shown in Fig. 3. It is not
hard to see that this reduction is computable in NC and the lexicographically first maximal

independent set of GG includes u,, iff the value of B,, is true.O

The next problem is a search problem S = {5, },>0 such that a solution y with S,(z,y)

is not necessarily unique for z € {0,1}".



B B(0) B
pYave
B(Y)

Fig. 2: Monotone circuit

Fig. 3: Reduction from MCVP to LFMIS

MINIMUM FEEDBACK VERTEX SET FOR CYCLICALLY REDUCIBLE
GRAPHS
INSTANCE: A cyclically reducible directed graph D = (V, A).

ProBLEM: Find a minimum feedback vertex set of D.

Let D = (V, A) be a directed graph. A set X C V is a feedback vertex setif it contains at
least one vertex from every cycle in D. The associated graph of vertex = with respect to D,
denoted A(D, ), consists of  and all vertices which are not connected, after eliminating =
from D, by any path to vertices on the cycles. Let y,,...,y; be a sequence of vertices of D.
Then we define graphs D, ..., Dy inductively as follows: Do = D, D; = D;_1 — A(Di_1,yi)
fori =1,...,k. We say that the sequence yi,...,yx is a complete D-sequence of D if each
of A(Do,v1),---,A(Dk_1,yx) contains a cycle but Dy is acyclic. Note that D;_; contains a
cyclefori =1,...,kif yi,...,ys is a complete D-sequence. A directed graph D is cyclically

reducible if there exists a complete D-sequence for D.



Fig. 4: Reduction from MCVP

Theorem 4 (Bovet, de Agostino and Petreschi, 1988) MINIMUM FEEDBACK VER-
TEX SET FOR CYCLICALLY REDUCIBLE GRAPHS is P-complete.

Proof. [Wang, Lloyd and Soffa, 1985] found a sequential polynomial time algorithm finding
a complete D-sequence. Hence, the problem is in P. We give a reduction from MCVP. Let
B = (B,...,B,) be a monotone circuit. We construct a cyclically reducible graph D such
that each gate B; is associated with two vertices u; and v;. We define edges of D as follows:

(1) If B; = true (resp., false), then a loop edge (u;,u;) (resp., (vi,v;)) is added.

(2) If B; = Bj A By with j, k < ¢, then edges (u;,v;), (v, %), (Vk, ui), (vi, ur), (uk,v;),
(uj,v;), and (v;,u;) are added.

(3) If B; = B, V By with j,k < ¢, then edges (v;,u;), (v, ur), (ug, vi), (i, ve), (v, w;),
(vj,u;), and (u;,v;) are added.

(4) Finally, for each i = 1,...,n, edges (u;,v;) and (v;,u;) are added.
An example of construction from the monotone circuit in Fig. 2 is shown in Fig. 4. Any
minimum feedback vertex set of D has at least n vertices by (4). By induction on n, we
can show the following two facts:

(i) D has a unique minimum feedback vertex set having n vertices.

(i) The value of B; is true iff u; is included in this minimum feedback vertex set.0

It should be remarked that in the reduction of the proof of Theorem 4 a cyclically
reducible graph is constructed from a circuit so that the graph has a unique minimum
feedback vertex set. Hence the problem itself allows several solutions but an instance in

the reduction has only one solution. This is the reason why the reduction from MCVP has



succeeded.
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5 P-Complete Problems

We classify the problems into the following categories:

Circuits

Logic

Graph
Optimization
Formal Language
Algebraic Problems
Miscellaneous
Remarks

OO0 =1 O O W N

5.1 Circuits
5.1.1 CIRCUIT VALUE PROBLEM (CVP)

INSTANCE: A circuit B = (By,..., B,), where each B; is either (i) B; = true or false, (ii)
B; = -B; (j <1), (ili) Bi=B; A By (j,k <1),or (iv) B; = B; V By (5,k <1).

ProOBLEM: Decide whether the value of B, is true.

Reference: [Ladner, 1975].

Comment: The problem is still P-complete even when the instances are planar circuits
with NOT and AND gates (PLANAR CVP) [Goldschlager, 1977]. A circuit only with
AND and OR gates and constants true, false is called a monotone circuit. The circuit
value problem for monotone circuits (MONOTONE CVP) is P-complete [Goldschlager,
1977). MONOTONE CVP is P-complete even if each gate has fanout at most two and
B, is an OR gate. Moreover, MONOTONE CVP is P-complete for circuits such that
OR gates and AND gates appear alternatingly (ALTERNATING MONOTONE CVP).
It is also obvious that CVP with only NAND gates (resp., NOR gates) and constants is
P-complete (NAND CVP (resp., NOR CVP)). However, for the monotone planar circuits
defined in [Goldschlager, 1980], the problem falls in NC? [Goldschlager, 1980].

5.1.2 ARITHMETIC CIRCUIT VALUE PROBLEM (ARITHMETIC CVP)

INSTANCE: A circuit B = (By,...,B,), where each B; is either (i) B; = 1 or 0, (ii)
B; = B; * By (3, k < 1) (ili) B; = B; — Bi (4, k <1), or (iv) B; = B; + By (4, k < 1), where
x,—, + are arithmetic operations on integers.

PrROBLEM: Decide whether the value of B, is 1.

Reference: This problem is stated in [Greenlaw, Hoover and Ruzzo, 1989] as a private

communication of [Venkateswaran, 1983].
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Comment: Reduction from CVP by replacing true, false, mz, c Ay,zVy by 1,0,1 -z,

T*y,x +y— T *y, respectively.

5.1.3 MIN-PLUS CIRCUIT VALUE PROBLEM (MIN-PLUS CVP)

INSTANCE: A circuit B = (By,...,B,), where each B; is either (i) B; = 1 or 0, (ii)
B; = min{B;, By} (j,k < i), or (iii) B; = B; + By (5, k < 7).

ProBLEM: Decide whether the value of B, is 1.

Reference: This problem is stated in [Greenlaw, Hoover and Ruzzo, 1989] as a private
communication of [Venkateswaran, 1983].

Comment: Reduction from CVP by replacing true, false, z Ay, x Vy by 1, 0, min{z,y},
min{1,z + y}, respectively.

5.1.4 APPROXIMATION OF CIRCUIT DEPTH OF ONES

INSTANCE: A circuit B with AND and OR gates and constants 0 (false) and 1 (true),
and an integer K.

PrROBLEM: For a gate v of B, depth(v) is the length of the longest path from some input
to v. Let depth-ones(B) be max{depth(v) | the value of v is 1} called the depth of ones.
Then decide whether depth-ones(B) > K > ¢- depth-ones(B), where € is a fixed rational
number in (0, 1].

Reference: [Kirousis and Spirakis, 1988].

Comment: This problem is to approximate the depth of ones in a circuit with a performance
ratio 1/e. If e = 1 and K the depth of the output gate, the problem is the same as CIRCUIT
VALUE PROBLEM.

5.2 Logic
5.2.1 SOLVABLE PATH SYSTEM (SPS)

INSTANCE: A quadruple Q = (X, R, S,T) called a path system, where X is a finite set,
RCXxXxX,SCXandTCX.

PROBLEM: Let A be the least subset of X such that (a) S C A and (b) if z,y € A and
(z,y,z) € R then z € A. Decide whether ANT # .

Reference: [Cook, 1974].

Comment: This is the first problem that was shown P-complete by a generic reduction from
deterministic polynomial time oblivious Turing machines. An oblivious Turing machine is

a one-tape Turing machine such that the head position at time ¢ is determined only by the
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input length and is not dependent of the contents of the input.

5.2.2 UNIT RESOLUTION

INSTANCE: A set S = {C4,...,Cp} of clauses in the propositional calculus.

ProBLEM: Decide whether the empty clause O can be deduced from S by unit resolution.
Reference: [Jones and Laaser, 1977], [Dobkin, Lipton and Reiss, 1979].

Comment: A literalis an atom (positive literal) or the negation of an atom (negative literal).
A clause is a disjunction of literals. When a clause contains no literal, it is called the empty
clause denoted O. Let C' and C’ be the clauses of the foom ¢ = aV i V---V 3, and
C' = (~ a)Vy, V- --Vy,, respectively. The resolventof C and C'is fyV---V B,V V---V,.
This is called the unit resolvent in case p = 0 or ¢ = 0. A deduction by unit resolution
from S is a sequence Dy, ..., D, in which each D; is either a clause in S or follows from
two earlier clauses by unit resolution. Namely, a unit resolution is a deduction in which a
resolvent is obtained by using at least one unit clause, i.e., a clause consisting of a single

literal. Remains P-complete even if it is restricted to Horn clauses.

5.2.3 PROPOSITIONAL HORN SATISFIABILITY

INSTANCE: A set S of Horn clauses in the propositional calculus.

PrOBLEM: Decide whether S is satisfiable.

Reference: [Plaisted, 1984], [Kasif, 1986].

Comment: A Horn clause is a clause which has at most one positive literal. The positive
literal in a Horn clause (if exists) is called the head of the clause. The negative literals
(if exist) are called the body of the clause. S is satisfiable if there is a truth assignment
satisfying all clauses in S. Remains P-complete even if every clause in S has at most three

literals. The satisfiability problem for Horn clauses is also discussed in [Yamasaki and

Doshita, 1983].

5.2.4 DEPTH-RESTRICTED HYPER-RESOLUTION FROM PREDICATE
UNIQUE MATCH 2-HORN CLAUSES

INSTANCE: A set S of Horn clauses in the predicate calculus such that every clause has at
most two literals and S has unique matches, and an integer d in unary.

PrOBLEM: Decide whether there exists a hyper-resolution refutation (or natural deduction
refutation) of depth d from S.

Reference: [Plaisted, 1984].
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Comment: Here we deal with the predicate calculus. For necessary definitions, see [Plaisted,
1984] and [Chang and Lee, 1973]. A set S of Horn clauses has unique matches if for every
clause C in S and every literal L of the body of C, and every ground instance L’ of L,
there exists at most one clause D of S such that the head of D is unifiable with L'. A
hyper-resolution prooffrom a set S of Horn clauses is a sequence of positive literals in which
each literal in the sequence is an instance of a clause in S or is derived from previous literals
using the following rule: Suppose that L, ..., L have already been derived. Suppose that
My AMyA---AMy — M is a clause C of S expressed as an implication, where all M; are
positive literals. Let M] A Mj A --- A M — M' be the most general instance of C such
that M/ is an instance of L; for 1 <7 < k. Then we say that M’ is derived from L, ..., L.
The depth of a literal L in such a proof is zero if L is an instance of a clause of S. If M’
is as above, then the depth of M’ is one plus the maximum of the depths of the M/’s. The
depth of a proof is the maximum depth of any of its literals. A refutation is a proof of O.
If a formula is of the form Jy;3y, - - - Iy, VoV, - - - Vz,, A, where A is an expression not
containing any quantifier symbols, then we say that it is in Schénfinkel-Bernays form.

Remains P-complete even for clauses in Schonfinkel-Bernays form.

5.2.5 DEPTH-RESTRICTED HYPER-RESOLUTION FROM PROPOSITIONAL
3-HORN CLAUSES

INSTANCE: A set S of Horn clauses in the propositional calculus such that every clause
has at most three literals, and an integer d in unary.

PROBLEM: Decide whether there exists a hyper-resolution refutation (or natural deduction
refutation) of depth d from S.

Reference: [Plaisted, 1984].

Comment: This is a propositional calculus version of DEPTH-RESTRICTED HYPER-
RESOLUTION FROM PREDICATE UNIQUE MATCH 2-HORN CLAUSES.

5.2.6 UNIFICATION

INSTANCE: Two terms s and ¢ represented by a labeled directed acyclic graph D with two
specified vertices u; and u;.

ProOBLEM: Decide whether s and ¢ are unifiable.

Reference: [Dwork, Kanellakis and Mitchell, 1984]., [Yasuura, 1984]

Comment: Let V be an infinite set of variable symbols and F' an infinite set of function
symbols. The arity of f € F'is denoted by a(f). A function symbol g € F with a(g) =0

is called a constant. A term is defined inductively as follows:
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(a) A variable symbol z € V or constant ¢ € F' is a term.

(b) If f € F and t1,...,ta(y) are terms, then f(t4,...,1.)) is a term.

The set of terms is denoted by T'. A substitution ¢ is a mapping from V to the set of terms
such that o(z) = z for all but finitely many z € V. For a term s, o(s) also denotes the
term obtained by replacing every occurrence of a variable z by o(z). Two terms s and ¢
are unifiable if there is a substitution o, called a unifier for s and ¢, such that o(s) = o(t).
A substitution o is said to be more general than a substitution 7 if there is a substitution
p with 7 = poo. It is known [Robinson, 1965] that whenever terms s and ¢ are unifiable,
there is the most general unifier for s and t.

For the representation of a term, we consider a labeled directed acyclic graph (dag) D
labeled as follows: Each vertex is labeled with a variable symbol or a function symbol. A
vertex labeled with a variable symbol or a constant has no outedge. For a vertex labeled
with a function symbol of arity k, there are k outedges labeled with 1,...; k, respectively.
Then by specifying a vertex u; of D, we can associate, in a very natural way, a term ¢ with
‘the subgraph formed from the vertices and edges reachable from u;. In this way, a term is
represented by a labeled dag. k

The unification is P-complete even if both terms are linear, i.e., each variable appears at

- most once in each term, are represented by trees, and have all function symbols with arity
at most 2, but they may share variables. Moreover, this problem is P-complete even if both
terms are represented by trees, no variable appears in both terms, each variable appears at
most twice in some term and all function symbols have arity at most 2. In contrast, if there
are no sharings of variables and one of the terms is linear, then the problem can be solved
in NC [Dwork, Kanellakis and Stockmeyer, 1988]. A term s matches atermtift = a(s) for
some substitution o. The term matching is the problem of finding such substitution. An
O((logn)?) time CREW PRAM algorithm for term matching using O(M (n)?) processors
is known [Dwork, Kanellakis and Mitchell, 1984], where M(n) is the number of arithmetic
operations required for n X n matrix multiplieaﬁion. There is also a Las Vegas‘ parallel
term matching algorithm which runs in O((logn)?) time using M(n) processors [Dwork,
Kanellakis and Stockmeyer, 1988]. | o

5.2.7 LOGICAL QUERY PROGRAM

INSTANCE: An atom p(a,b) and a finite set of atoms kPE = {qg;,(ay, bl),.,.,an(an,bn)},
where g;, is a predicate symbol from {qo, 1} and a;, and b are constants for k = 1,...,n.
PROBLEM Decide whether p(a, b) is a theorem of P = Py U Pg for the following loglcal
query program FPr: ;

p(X,Y) : —a1(X, A),p(4, B),p(B,C), QI(Ca Y). |
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p(X,Y): —q(X,Y).
Reference: [Ullman and Van Gelder, 1988].
Comment: A logical query program is a function free Horn logic program. This problem
for the following program is also P-complete,
p(X,Y): —p(X, A),p(A, B), (B, C),p(C, D), ¢2(D, Y).
p(X,Y) : —go(X,Y).
The logical query program has the polynomial fringe property if every atom in the minimum
model of the resulting extended logic program has a derivation tree whose fringe defined as
the set of its leaves, is of polynomial length in n, where n is the number of atoms in Pg. A
logical query program which have a polynomial fringe property falls in NC. The following
logical query programs have the polynomial fringe property, hence, it is in NC,
(i) p(X,Y):—p(X,A),p(A,B),p(B,Y).
p(X,Y): —q(X,Y).
(i) p(X,Y): —p(X, A), (A, B),p(B,Y).
p(X,Y): —q(X,Y).
(iif) p(X,Y) : —qu(X, A),p(A, B),q:(B,C),p(C,Y).
p(X,Y): —q(X,Y).

5.2.8 UNIQUE RECOVERABILITY FOR INCOMPLETE TABLES OF IN-
FINITE TYPE

INSTANCE: A collection F' of functional dependencies on a finite attribute set {4y, ..., A, }
and a matrix T = (T};)o<i<n, 1<j<m called an incomplete table such that Tp; = Aj; for
1 < 7 < m and the value of each T;; is either a nonnegative integer or the null value * for
1<i<nandl1l<j<m.

ProBLEM: Decide whether T is uniquely recoverable under F' when the domain of each
attribute A; is the set of nonnegative integers.

Reference: [Miyano and Haraguchi, 1982].

Comment: If a table T' contains no null value and coincides with T' except in the entries
with the null Valué, T' is called an extension of T', where T7;, ..., T}, ; contains values in the
domain of A; for 1 < j < n. A functional dependency is of the form A; « A;,..., A;,.
We say that a table T satisfies A; «— A;,..., A

determine the value in the column A;. An incomplete table T" is uniquely recoverable under

;. 1if the values in the columns A;,,..., 4;,

F if there is exactly one extension 7" which satisfies all functional dependencies in F.
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5.3 Graph
5.3.1 AND/OR GRAPH ACCESSIBILITY PROBLEM (AGAP)

INSTANCE: An and/or graph D = (V, A) and vertices s and ¢ of D.
PRrROBLEM: Decide whether ¢ is reachable from s.
Reference: [Jones and Laaser, 1977].
Comment: This problem is essentially the same as TWO-PERSON GAME [Jones and
Laaser, 1977]. An and/or graph or alternating graph is a directed graph such that each
vertex is assigned a label from {A,V}. A vertex with label A (resp. V) is called an AND
vertez (resp. OR vertex). We say that t is reachable from s in an and/or graph D = (V, A)
if a pebble can be placed on the specified vertex ¢ by using the following rules: For v € V,
let pred(v)={u | (u,v) € A}.
(a) For a vertex v with pred(v)=0, we can place a pebble on v. We can also place a
pebble on s.
(b) For an AND vertex v, a pebble can be placed if all vertices in pred(v) are pebbled.
(c) For an OR vertex v, a pebble can be placed if at least one vertex in pred(v) is
pebbled.
This problem is also discussed in [Immerman, 1981]. A modified version of this problem is
considered in [Yasuura, 1983].
When the vertices of an and/or graph D = (V, A) is linearly ordered, the problem of
deciding whether the specified vertex ¢ is reachable from s and simultaneously the vertices

of D are breadth-first ordered is also P-complete [Lengauer and Wagner, 1987].

5.3.2 HIERARCHICAL GRAPH ACCESSIBILITY PROBLEM (HGAP)

INSTANCE: A hierarchical graph I = (Dy, ..., Dy) and two vertices s = (i1,.. ., im, u1) and
t = (J1,- .-, Jn,u2) of the expansion graph E(T).

PROBLEM: Decide whether there is a path from s to ¢ in the expansion graph E(T).
Reference: [Lengauer and Wagner, 1987].

Comment: The graph accessibility problem for directed graphs is complete for NLOG
[Savitch, 1970]. A hierarchical graph is a sequence I' = (Dy,..., D;) of directed graphs
D; = (V;, A;), 1 <1 <k, called subcells. An example is given in Fig. 5 and Fig. 6. As seen
in the example, each subcell D; consists of three kinds of vertices, pins (square vertices),
inner vertices (black round vertices) and nonterminals (labeled with j, j < 4, called type).
The pins are used to connect the corresponding subcell. The inner vertices just form a part
of the graph. Each nonterminal v of type ¢ stands for a copy of subcell D; and there is a

one-to-one correspondence between the neighbors of v and the pins of D;. The expansion

16



graph E(T') is defined by expanding Dy recursively. Namely, D; is expanded by replacing
each nonterminal with type 7, j < ¢, by a copy of the expansion of subcell D; through the
corresponding pins. By this definition of E(I'), a vertex s of the expansion graph E(I')
is represented by a tuple (i, ...,%n,u), where the sequence ¢; > --- > i,, represents the
hierarchical relation of expansion and w is the vertex of a copy of D;, corresponding to s in

E(T'). Some P-completeness results about hierarchical graphs are also shown in [Lengauer
and Wagner, 1987].

5.3.3 AND/OR CHROMATIC GRAPH ACCESSIBILITY PROBLEM

INSTANCE: An and/or graph D = (V, A), positive integers k, m, an edge coloring v : A —
{1,...,m}, and vertices s, t, where V is linearly ordered as V = {1,...,n}.

PrROBLEM: Decide whether (1) k < m < log |V|, (2) there are k different colors 7y, ..., in
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{1,...,m} such that ¢ is reachable from s in the graph restricted to the subgraph obtained
by removing the edges with colors other than 1, ..., .

Reference: [Lengauer and Wagner, 1987].

Comment: See AND/OR GRAPH ACCESSIBILITY PROBLEM. Remains P-complete
even if the vertices of D are breadth-first ordered. CHROMATIC GRAPH ACCESSIBIL-
ITY PROBLEM, which takes directed graphs as instances instead of and/or graphs, is
NLOG-complete. However, the problem becomes NP-complete if instances are hierarchical

graphs [Lengauer and Wagner, 1987].

5.3.4 LEXICOGRAPHICALLY FIRST DEPTH-FIRST SEARCH ORDER
(LFDFS-ORDER)

INSTANCE: A directed graph D = (V, A) with V = {1,...,n} and two vertices u and v.
PROBLEM: Decide whether u is visited before v by the following depth-first search algo-

rithm:

begin /[« V = {1,...,n} %/
1« 0;
for each v =1 to n do visit[v]« 0;
for each v =1 to n do DFS(v)

end
The procedure DFS numbers the vertices as follows:

procedure DFS(v)
/* For each v € V, we assume a fixed adjacency list ADJ(v) */
/* of vertices linked by an edge to v */
begin
if visit[v]=0 then
begin
local wu;
1—t+1;
visit[v]« ¢;
for each u €ADJ(v) in the increasing order
do DFS(u)
end

end

Reference: [Reif, 1985].
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Comment: Remains P-complete even for undirected graphs. But, constructing any depth-
first search tree is in RNC for an undirected graph [Aggarwal and Anderson, 1988] and
for a directed graph [Aggarwal, Anderson and Kao, 1990]. The algorithm runs in
O(TM M (n)(logn)?) time using PM M (n) processors, where TM M(n) and PM M (n) are
the time and the number of processors needed to find a minimum weight perfect match-
ing on an n vertex graph with maximum edge weight n. NC algorithms for depth-first
search are known for the following restricted classes of graphs. If G is an undirected planar
connected graph with n vertices, there exists a CREW PRAM algorithm for construct-
ing a depth-first spanning tree of G that runs in O((logn)?®) time using O(n*) processors
[Smith, 1986]. The number of processors of his algorithm can be reduced to O(n) [Ja’Ja’
and Kosaraju, 1988], [He and Yesha, 1988]. A CREW PRAM algorithm is also known
for a directed acyclic graph with n vertices. The algorithm runs in time O((logn)?) using
O(M (n)/logn) processors, where M (n) is the time complexity of n x n matrix multipli-
cation [Ghosh and Bhattacharjee, 1984]. But it contains an error and is corrected [Zhang,

19836].

5.3.5 LEXICOGRAPHICALLY FIRST MAXIMAL PATH

INSTANCE: A graph G = (V, E) with V = {1,...,n} and a vertex u.

PrROBLEM: Decide whether u is contained in the lexicographically first maximal path
(v1y ...y V).

Reference: [Anderson and Mayr, 1987].

Comment: The lexicographically first maximal path can be computed by the following
greedy algorithm:

begin
i 1; visit 7; U « {i};
while there is j € V — U with {i,5} € £ do
begin
let 7 be the least such vertex;
i« g; visit 2; U « U U {3}
end

end

The problem is P-complete even if the instances are restricted to planar graphs with degree
at most 3 [Anderson and Mayr, 1987]. The problem of finding any maximal (not necessarily
lexicographically first) path starting at a given vertex can be solved in RNC [Anderson,

1987]. For graphs with maximum degree D(n), where n is the number of vertices of an
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instance graph, the maximal path problem can be solved in O(D(n)(logn)?®) time using
O(n?) processors on a CREW PRAM. Furthermore, the maximal path problem for planar
graphs allows a parallel algorithm running in O((logn)?) time using O(n?) processors on a
CREW PRAM [Anderson and Mayr, 1987].

5.3.6 LEXICOGRAPHICALLY FIRST MAXIMAL INDEPENDENT SET (LFMIS)

INSTANCE: A graph G = (V, E) with V = {1,...,n} and a vertex u.

PROBLEM: Decide whether u is contained in the lexicographically first maximal indepen-
dent set U.

Reference: [Cook, 1985].

Comment: An independent set is a subset U of V such that no two vertices in U are
adjacent. A mazimal independent set is a independent set which is maximal with respect
to the order defined by the set inclusion relation. The lexicographically first mazimal
independent set is a maximal independent set which is the first maximal independent set
with respect to the lexicographic order on the family of all subsets of V = {1,...,n}. The
problem is P-complete even for the planar graphs with degree 3 or the bipartite graphs
with degree 3 [Miyano, 1989]. But it allows an NC? algorithm for forests [Miyano, 1988b].
On the other hand, the problem of finding any maximal independent set of a graph (MIS)
was shown to be in NC [Karp and Wigderson, 1985]. An NC? algorithm is devised using
the technique of transforming a random parallel algorithm [Luby, 1986]. MIS is solvable
in time O((logn)*) using O(n) processors on an EREW PRAM [Goldberg and Spencer,
1989]. A similar problem, LEXICOGRAPHICALLY FIRST MAXIMAL CLIQUE, is also
P-complete [Cook, 1985].

5.3.7 LEXICOGRAPHICALLY FIRST MAXIMAL SUBGRAPH PROBLEM
FOR 7 (LFMSP(r))

INSTANCE: A graph (resp., directed graph) G = (V, E) with V = {1,...,n} and a vertex
v.

PrOBLEM: Decide whether u is contained in the lexicographically first maximal (abbre-
viated to Ifm) subset U of V such that the vertex-induced subgraph G[U] of U satisfies
the property m, where 7 is assumed to be polynomial-time testable, hereditary on induced
subgraphs and nontrivial.

Reference: [Miyano, 1989].

Comment: A graph property 7 is said to be nontrivial if infinitely many instance graphs

satisfy 7 and at least one instance violates w. The property = is said to be hereditary
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on (resp., vertex-induced) subgraphs if, whenever a graph G satisfies =, all (resp., vertex-
induced) subgraphs of G also satisfy 7. For a polynomial-time testable property = which is
hereditary on induced subgraphs, LFMSP(r) is solved in polynomial time by the following

algorithm:

begin
U0
fori—1ton
if the induced subgraph of U U {:} satisfies 7 then U « U U {¢}

end

If the property # is nontrivial, hereditary on induced subgraphs and polynomial-time
testable, then LFMSP(r) is P-complete. The reduction is given from LEXICOGRAPHI-
CALLY FIRST MAXIMAL INDEPENDENT SET. The following properties all satisfy the
conditions the above: clique, independent set, planar, bipartite, outerplanar, edge graph,
chordal, comparability graph, forest, without cycles of length k, maximum degree k, acyclic,
etc. When a linear order is given on the edge set as £ = {e; < e < -+ < e,,}, we can de-
fine the Ifm edge-induced subgraph problems . There is no known general P-completeness
result similar to the Ifm vertex-induced subgraph problems. The lfm edge-induced forest
problem and the Ifm edge-induced bipartite subgraph problem are in NC2. But the lfm
edge-induced k-cycle free subgraph problem is P-complete for £ > 3. There are some prob-
lems termed with LEXICOGRAPHICALLY FIRST that are shown in NC [Miyano, 1988a,
1988b, 1988c, 1989], [Shoudai, 1989]. For example, the lexicographically first topological
order problem is complete for NLOG [Shoudai, 1989]. Therefore the problem is in NC2.

Similar problems are also discussed in [Greenlaw, 1990b].

5.3.8 LEXICOGRAPHICALLY FIRST MAXIMAL BOUNDED DEGREE SUB-
GRAPH PROBLEM

INSTANCE: A graph G = (V, E) with V = {1,...,n} and a vertex u.

PrOBLEM: Decide whether u is contained in the lexicographically first maximal subset U
of V such that the vertex-induced subgraph G[U] of U is of degree at most k, where k£ > 1
is a fixed integer.

Reference: [Miyano, 1989).

Comment: P-completeness follows from LEXICOGRAPHICALLY FIRST MAXIMAL SUB-
GRAPH PROBLEM FOR =. The problem of finding any maximal bounded degree sub-
graph is solvable in NC? for any degree bound k£ > 1 [Shoudai and Miyano, 1990] .
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When the edge set E is linearly ordered as £ = {e; < €3 < -+ < e}, we can consider
the lexicographically first maximal matching problem (LEXICOGRAPHICALLY FIRST
MAXIMAL MATCHING (LFMM)). In contrast with LFMIS, LFMM seems to be nei-
ther P-complete nor in NC. LFMM is shown CC-complete [stated as an indirect personal

communication of S.A. Cook in [Mayr and Subramanian, 1989]]. In the same way, LEX-
ICOGRAPHICALLY FIRST MAXIMAL BOUNDED DEGREE EDGE-INDUCED SUB-
GRAPH PROBLEM is CC-complete [Shoudai and Miyano, 1990] .

5.3.9 LEXICOGRAPHICALLY FIRST A+1 VERTEX COLORING

INSTANCE: A graph G = (V,E) with V = {1,...,n}, a vertex v and a color ¢ € C =
{1,..., A+ 1}, where A is the maximum vertex degree of G.

PROBLEM: Decide whether vertex u is colored with ¢ by the following sequential algorithm:

begin
for v <~ 1 ton do
color(v) « min{c € C | ¢ is not assigned to any vertex which is adjacent to v}

end

Reference: [Luby, 1986].

Comment: Any graph can be colored using no more than A 4 1 colors. There is a
CREW PRAM algorithm which computes A + 1 vertex coloring. with running time
O((log n)3loglog n) using O(n) processors [Luby, 1988]. G can be colored using at most A
colors iff G is not an odd cycle and G does not contain a complete subgraph on A+1 vertices
[Brooks, 1941]. There is an EREW PRAM algorithm which finds a A vertex coloring using
O(n*) processors in time O((logn)®) [Karloff, 1989]. The problem of deciding whether a
given graph can be colored with A — 1 colors is NP-complete [Garey and Johnson, 1979].

5.3.10 GREEDY BREADTH-DEPTH SEARCH ORDER

INSTANCE: A graph G = (V, E) with a numbering on the vertices in V, a start vertex s,
and two vertices u and v.

ProOBLEM: Decide whether u is visited before v by the greedy breadth-depth search algo-
rithm induced by the numbers in the numbering of V. |

Reference: [Greenlaw, 1990a].

Comment: Reduction from LEXICOGRAPHICALLY FIRST DEPTH-FIRST SEARCH
ORDER. The greedy breadth-depth search algorithm is described as follows:
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begin
/* A graph G = (V, E) with V = {1,...,n} is given */
/* For each v € V, we assume a fixed adjacency list ADJ(v) */
/* of vertices linked by an edge to v */
count « 1;
for 7 «— 1 to n do visit[z] « 0;
push s on stack S;
while S # null do
begin
vepop S;
for each u € ADJ(v) in the increasing order do
if visit[u]= 0 then
begin
visit[u]«count;
push u on S;
count«—count+1
end
end

end

5.3.11 MINIMUM FEEDBACK VERTEX SET FOR CYCLICALLY REDUCIBLE
GRAPHS

INSTANCE: A cyclically reducible directed graph D = (V, A).

PrROBLEM: Find a minimum feedback vertex set of D.

Reference: [Bovet, de Agostino and Petreschi, 1988].

Comment: A set X C V is a feedback vertex set if it contains at least one vertex from every
cyclein G. The associated graph of vertex x with respect to D, denoted A(D, z), consists of
z and all vertices not connected by any path to vertices included in cycles after eliminating
z from D. Let y, ...,y be a sequence of vertices of D. Then we define graphs Dy, ..., Dy
inductively as follows: Dy = D,D; = D;_y — A(D;_y,y;) for ¢ = 1,..., k. We say that
the sequence ¥y, ...,y is a complete D-sequence of D if each of A(Dg,v1),..., A(Dk_1,yx)
contains a cycle but Dy is acyclic. Note that D;_; contains a cycle for 7z = 1,...,k if
Yi,...,Yr is a complete D-sequence. A directed graph D is cyclically reducible if there

exists a complete D-sequence for D. The problem of finding a minimum feedback vertex

23



set for general directed graphs is NP-complete [Garey and Johnson, 1979]. A polynomial
time algorithm for finding a minimum feedback vertex set for cyclically reducible graphs is
presented by using the fact that {y;, ..., yx} is a minimum feedback vertex set if yy, ..., y; is
a complete D-sequence [Wang, Lloyd and Soffa, 1985]. There is a CREW PRAM algorithm
which runs in O(k(logn)?) time using O(n*) processors, where k is the cardinality of the

minimum feedback vertex set [Bovet, de Agostino and Petreschi, 1988].

5.3.12 HIGH DEGREE SUBGRAPH (HDS)

INSTANCE: A graph G = (V, E).

PrROBLEM: Decide whether there is a subset U C V of vertices such that the degree of
each vertex of the vertex-induced subgraph G[U] of U is at least k, where k£ > 3 is a fixed
integer.

Reference: [Anderson and Mayr, 1984], [Mayr, 1988].

Comment: HDS for k = 2 falls in NC [Mayr, 1988]. It is easy to see that the mazimum
size vertex-induced subgraph each of whose vertices is of degree at least k is unique. The
problem of deciding whether a given vertex u is in the maximum size high degree subgraph

is also P-complete.

5.3.13 MINIMUM DEGREE ELIMINATION SEQUENCE

INSTANCE: A graph G = (V, E).

PrROBLEM: Find a minimum degree elimination sequence.

Reference: [Vishwanathan and Sridhar, 1988].

Comment: Reduction from CIRCUIT VALUE PROBLEM with fanout at most 2. A
minimum (resp., mazimum) degree elimination sequence of a graph G is an ordering
v1, Vg, .. ., U, Of the vertices of G such that, for every i, the vertex v; is of minimum (resp.,
maximum) degree in the subgraph G; induced by the vertices {v;, v;41,...,v,}. A similar
problem, MAXIMUM DEGREE ELIMINATION SEQUENCE, can be shown P-complete.
For a directed graph, the minimum indegree elimination order problem can be defined and
it is also P-complete.

With a numbering on the vertices, the lezicographically first minimum (resp., mazimum)
degree elimination sequence v, ...,v, is defined by choosing the lowest numbered vertex v;
which is of minimum (resp., maximum) degree in the subgraph induced by V —{vy, ..., v;_1}
for 1 < i < n, where |V| = n. Obviously, the lexicographic version of these problems are
P-complete [Greenlaw, 1988]. Moreover, the following similar problems are considered

and some P-completeness results are shown in [Greenlaw, 1988]. For an integer £ > 1,
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the lexicographically first less than k (resp., greater than k) degree elimination sequence
V1, ...,v, is defined as follows: If the subgraph induced by V — {vy,...,v;_;} contains a
vertex of degree less than k (resp., greater than k) then v; is the lowest numbered such
vertex. Otherwise v; is the lowest numbered vertex in V' — {vy, ...,v;_1}. Then it is shown,
for example, that given a graph G = (V, E) with a numbering on the vertices, a vertex u
and an integer ¢ > 1, the problem of deciding whether u = v; and v; is of degree greater
than k for 1 <7 <t —1 but v; is of degree at most k in the lexicographically first greater

than k degree elimination sequence is P-complete.

5.3.14 FOUR COLOR INDEX

INSTANCE: A graph G.

ProBLEM: Decide whether the color index of G is at most 4.

Reference: [Vishwanathan and Sridhar, 1988].

Comment: Reduction from MINIMUM DEGREE ELIMINATION ORDER. The color
index of a graph G is the maximum, over all subgraphs H of GG, of the minimum vertex

degree of H.

5.3.15 CONGRUENCE CLOSURE

INSTANCE: A directed graph D = (V, A), vertices u, v and an equivalence relation C' on
V.
PrROBLEM: Decide whether u and v are equivalent under the congruence closure of C.
Referénce: [Kanellakis and Revesz, 1989].
Comment: The congruence closure of C' (denoted =) is the finest equivalence relation on
V that contains C such that for all vertices v and w with corresponding successors vy, wy
and vy, w, we have: v; &, wy, vy X, Wy => v X, w. An algorithm for solving CC is the
following: Let D and C, u and v be as above. We define symmetric and reflexive relations
E on pairs of vertices of D. This relation is represented by undirected edges added to D
and labeled E. For each vertices of u and v that are in the same equivalence class of C' we
add undirected edge uEv to the graph. Also, add undirected edge uFEwv if it is not present
and either
(a) us Evy and uy Fv, are present, where uy, uz, and vy, v, are the ordered successors of
u,v. In this case u and v are distinct vertices. This is called an up-propagation step uPuv.
(b) uEw and wEwv are present, where w is some vertex in D. In this case u and v are
distinct vertices. This is called a transitivity step uT'v.

The following characterization of the congruence closure relation is known:
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u =2, v iff undirected edge uFv is added after some finite sequence of up-propagation and
transitivity steps.

Remains P-complete even if C' is the reflexive, symmetric, and transitive closure of two
pairs of distinct vertices (we say that C' has two axioms). When C has no axioms, that is
‘each distinct vertex is an equivalence class, the problem is in NC2. When C has only one
axiom, then the complexity is open. ; i

If D is acyclic, the followings are known: (1) P-complete if C has three axioms. (2) NC?
if C has one axiom. (3) When C has two axioms, then the complexity is open. (4) When
D is a simple directed acyclic graph (simple dag) with k axioms (k > 2), the complexity is
open. A simple dag is a dag D such that the only vertices of D with indegree greater than

1 are leaves.

5.3.16 UNIFICATION CLOSURE

INSTANCE: A directed graph D = (V, A), vertices u, v of D and an equivalence relation C'
onV.

PROBLEM: Decide whether u and v are equivalent under the unification closure of C.
Reference: [Kanellakis and Revesz, 1989].

Comment: The unification closure of C' (denoted ~,) is the finest equivalence relation on
V that contains C such that for all vertices v and w with corresponding successors vy, w;
and v, wzk we have: v ~e W :> V1~ Wy,Ve ~c wy. II D has at most a fixed number of

leaves, then the complexity is in NC2.

- 5.3.17 ACYCLIC CONGRUENCE CLOSURE

INSTANCE: A directed graph D = (V, A), and an equivalence relation C on V.

- PrROBLEM: Decide whether the graph contracted by the congruence closure of C is acyclic.
Reference: [Kanellakis and Revesz, 1989]. ;
Comment: We say that D is acyclic under the equivalence relation C if the directed graph
we get by the contracting the vertices in each equivalence class of C is still acyclic. The

problem is in NC? if C has a fixed number of nontrivial equivalence classes.

5.3.18 ACYCLIC UNIFICATION CLOSURE

INSTANCE: A directed graph D = (V, A), and an equivalence relation C on V.
PROBLEM: Decide whether the graph contracted by the unification closure of C is acyclic.
Reference: [Kanellakis and Revesz, 1989)]. |

Comment: See ACYCLIC CONGRUENCE CLOSURE.
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5.3.19 GENERAL GRAPH CLOSURE

INSTANCE: A graph G = (V,E) andaset E'CV xV — E.

PrOBLEM: Decide whether the general closure ge(G, E’') of G contains an edge {u,v} of
E'.

Reference: [Khuller, 1989].

Comment: The general closure gc(G, E') of G is the graph obtained from G = (V, E) by
repeatedly adding an edge in E’ such that the sum of degrees of its two endpoints is at least
n, until no such edge remains. Obviously, the general graph closure gc¢(G, E’) is uniquely

determined.

5.3.20 HIGH VERTEX CONNECTIVITY SUBGRAPH (HVCS)

INSTANCE: A graph G = (V, E).

PrROBLEM: Decide whether G contains an induced subgraph of vertex connectivity at least
k, where k is any fixed integer with k£ > 3.

Reference: [Kirousis, Serna and Spirakis, 1989].

Comment: Reduction from ALTERNATING MONOTONE CVP with fanout 2 (see CIR-
CUIT VALUE PROBLEM). The vertez (edge) connectivity k(G) (A(G)) of a graph G is
the minimum number of vertices (edges) whose removal results in a disconnected or trivial
graph. A graph G = (V, E) is m-vertex (m-edge) connected if k(G) > m (A(G) > m).
The optimization version of HVCS (resp., HIGH EDGE CONNECTIVITY SUBGRAPH
(HECS)) asks what is the largest k such that there is an induced subgraph of vertex
(edge) connectivity k. Let HVCS(G) (resp., HECS(G)) denote this largest k. An approx-
imate solution to this problem is to find d such that HVCS(G)> d > ¢ HVCS(G) (resp.,
HECS(G)> d > ¢ HECS(G)) for some fixed ¢ < 1. This problem cannot be approximated
for ¢ > 1/2 (¢ > 1/2) in NC. However HVCS (resp., HECS) can be approximated in NC
for ¢ < 1/4 (resp., ¢ < 1/2).

5.3.21 HIGH EDGE CONNECTIVITY SUBGRAPH (HECS)

INSTANCE: A graph G = (V, E).
PROBLEM: Decide whether G' contains an induced subgraph of edge connectivity at least
k, where k is any fixed integer with k& > 3.

Reference: [Kirousis, Serna and Spirakis, 1989].
Comment: See HIGH VERTEX CONNECTIVITY SUBGRAPH.
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5.3.22 APPROXIMATION OF RELIABLY LONG PATH

INSTANCE: A directed acyclic graph D = (V, A), a vertex v, a subset U C V of vertices
and an integer K.

PROBLEM: Assume that for each u € U exactly one of the incoming edges to u fails with
probability 1/indegree(u). The length L of the reliably longest path is defined to be the
maximum number [ such that D has a path starting from v of length at least I, with
probability 1. Then decide whether I > K > eL, where € is a fixed rational number in
(0,1].

Reference: [Kirousis and Spirakis, 1988].

Comment: Reduction from APPROXIMATION OF CIRCUIT DEPTH OF ONES [Kirousis
and Spirakis, 1988].

5.3.23 UNARY NETWORK FLOW FOR VERTEX MULTIPLICITY GRAPHS

INSTANCE: A directed vertex multiplicity graph M = (V, A,b) with two distinguished
vertices, a source s and a sink ¢, a positive integer capacity ¢(u, v) represented in unary on
every edge (u,v) € A, and a positive unary integer K.

PrOBLEM: Decide whether there exists a flow of at least K units from s to ¢ in a directed
graph represented by M.

Reference: [Karpinski and Wagner, 1988|.

Comment: See MAXIMUM FLOW. Reduction from MAXIMUM FLOW. A directed vertex
maultiplicity graphis a triple M = (V, A, b), where V is a finite set, A is a subset of V xV and
bis a positive integer function on V. The directed vertex multiplicity graph M = (V, A, b)
represents a directed graph D = (V’, A") such that V' = {(v,7) |v € V and 1 < ¢ < b(v)}
and A" = {((v,?),(u,7)) | (u,v) € A,1 <1< b(v) and 1 < j < b(u)}. An undirected vertex
multiplicity graph is also defined similarly.

5.3.24 PERFECT MATCHING FOR VERTEX MULTIPLICITY GRAPHS

INSTANCE: An undirected vertex multiplicity graph M = (V, E,b).

PROBLEM: Decide whether there is a perfect matching in a graph represented by M.
Reference: [Karpinski and Wagner, 1988].

Comment: See UNARY NETWORK FLOW FOR VERTEX MULTIPLICITY GRAPH.
Remains P-complete even for undirected vertex multiplicity graphs which represent bipar-
tite graphs. It is known that this problem for usual graphs is in RNC [Karp, Upfal and
Wigderson, 1985], [Mulmuley, Vazirani and Vazirani, 1987], but not known to be in NC.
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5.3.25 PERFECT B-MATCHING WITH CAPACITIES

INSTANCE: A graph G = (V, E), functions b: V — {1,2,...} and ¢: F — {1,2,...}.
PROBLEM: Decide whether there is a function ¢ : E — {0,1,...} such that ¢/({u,v}) <
c({u,v}) for every {u,v} € E and ¥ ,eagju) € ({1, v}) = b(u) for all u € V.

Reference: [Karpinski and Wagner, 1988].

Comment: This problem was shown to be in P by [Grotschel, Lovasz and Schrijver, 1988].

5.4 Optimization
5.4.1 LINEAR PROGRAMMING (LP)

INSTANCE: An integer n X d matrix A, an integer n-vector b, an integer d-vector ¢ and an
integer B.

ProOBLEM: Decide whether there is a vector z such that Az < b and cz > B.

Reference: [Dobkin, Lipton and Reiss, 1979], [Khachian, 1979], [Dobkin and Reiss, 1980].
Comment: The number d represents the number of variables called the dimension and n
is the number of inequality constraints. This problem was shown to be in P by [Khachian,
1979], [Karmarkar, 1984]. For any fixed dimension d, LP with n inequalities can be solved
on a probabilistic CRCW PRAM with nd/(log d)? processors almost surely in O(d?(log d)?)
time [Alon and Megiddo, 1990]. The algorithm always finds the correct solution. The
probability that the algorithm will not finish within O(d?*(log d)?) time tends to zero expo-
nentially with respect to n. A parallel algorithm solving LP (not an NC algorithm) is also
developed [Vaidya, 1990].

5.4.2 LINEAR INEQUALITIES (LI)

INSTANCE: An integer n X d matrix A and an integer n-vector b.

PrROBLEM: Decide whether there is a rational d-vector z > 0 such that Az < b.
Reference: This problem is stated in [Greenlaw, Hoover and Ruzzo, 1989] as a private
communication with [Cook, 1982].

Comment: The reduction from CIRCUIT VALUE PROBLEM to LI is as follows: An input
z = true (resp. ¢ = false) is represented by the equation z = 1 (resp. = = 0). A NOT
gate y = —z with input z and output y is represented by the inequalities y = 1 — = and
0 <y < 1. An AND gate z = z A y with inputs =,y and output z is represented by the
inequalities 0 < 2 <1, 2<z,z2<y,andz+y—1< 2z
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5.4.3 MAXIMUM FLOW

INSTANCE: A directed graph D = (V, A) with two distinguished vertices, a source s and a
sink ¢, a positive integer capacity c(u,v) on every edge (u,v) € A, and a positive integer 1.
PrOBLEM: Decide whether the zth bit of the value of the maximum flow from s to ¢ in D
is 1. :

Reference: [Goldschlager, Shaw and Staples, 1982]. i ‘~
Comment: Reduction from MONOTONE CIRCUIT VALUE PROBLEM with fanout at
most 2. A flow f is an assignment of a nonnegative integer to each edge of D such that
(a) for every (u,v) € A, f(u,v) < c(u,v), and

(b) for every v € V — {s,t}, L v)eaf(%,v) = By wyea f(v, w)

The mazimum flow is a flow f whose total flow |f| = X, yeaf(v,t) is maximum. The
edge capacities defined in [Goldschlager, Shaw and Staples, 1982] are bounded by 2/V1.
It is an open question whether the problem for polynomial capacities or 0-1 capacities is
P-complete. The problem restricted to planar directed graphs can be solved in O((log n)?)
time using O(n*) processors or O((log n)?) time using O(n®) processors on a CREW PRAM
[Johnson, 1987]. A parallel algorithm for MAXIMUM FLOW that runs in O(n”logn)
time using O(n) processors on a CRCW PRAM is also known [Shiloach and Vishkin,
1982]. Constructing a maximum flow in a directed graph whose edge weights are given
in unary lies in RNC using the technique of maximum perfect matching [Karp, Upfal and
Wigderson, 1985]. It seems that the parallel complexity of the maximum flow problem
depends critically on whether the capacities are given in unary or in binary. Nevertheless,
there is a randomized parallel algorithm to construct a maximum flow in a directed graph
whose edge weights are given in binary, such that the number of processors is bounded by
a polynomial in the number of vertices and the time is O((logn)* log C) for some constant
k, where C is the largest capacity of any edge [Karp, Upfal and Wigderson, 1985]. The
maximum flow problem in the folloWing form is also P-complete: Givek‘n a directed graph
D = (V, A) with two vertices s and ¢, a capacity ¢(u,v) for (u,v) € A, and an integer K,

decide whether the maximum flow is as large as K [Lengau’erkand Wégner, 1987].

5.44 LEXICOGRAPHICALLY FIRST BLOCKING FLOW

INSTANCE: A directed acyclic graph D = (V, A) with a numbering on the vertices, two
distinguished vertices s and ¢, a positive integer capacity c¢(u, v) on every edge (u,v) € A,
and a positive integer .

ProOBLEM: Decide whether the ith bit of the value of the lexicographically first blocking

flow from s totin D is 1.
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Reference: [Cheriyan and Maheshawari, 1989].

Comment: See MAXIMUM FLOW. A flow f is a blocking flow if for every path from
s to t contains a saturated edge (u,v), i.e., f(u,v) = c(u,v). The lezicographically first
blocking flow is the flow which is generated by the sequential depth-first search blocking
flow algorithm [Dinic, 1970]: Find a path from s to ¢ by using the lexicographic depth-first
search method. Then find an edge e with the least capacity, say ¢, on the path from s
to t. Push the capacity ¢ on each edge of the path to saturate some edges including e
and delete all newly saturated edges from the graph. Repeat this procedure until ¢ is not
reachable from s. A maximum flow can be found by iterating any blocking flow algorithm
at most n times. There is a simple parallel algorithm for finding a blocking flow which
runs in O(n log n) time using m processors on an EREW PRAM, where m is the number of
edges [Goldberg and Tarjan, 1989]. A layered network is an acyclic graph in which all s-¢
paths have the same length. Remains P-complete even if D is a layered network of length

3 [Cheriyan and Maheshawari, 1989)].

5.4.5 SUPERINCREASING KNAPSACK PROBLEM

INSTANCE: An integer w and a sequence of integers wy, w,, ..., w, such that forall2 <7 < n
w; > Z;;ll w;.

PrROBLEM: Decide whether there is a sequence of 0-1 valued variables zq, 29, ..., 2, such
that w = 3°7_, z;w;.

Reference: [Karloff and Ruzzo, 1989)].

Comment: Reduction from NAND CIRCUIT VALUE PROBLEM. The general well-known
0-1 knapsack problem is NP-complete. Superincreasing knapsacks are known as the basis
for the Merkle-Hellman cryptosystem [Merkle and Hellman, 1978]. However, the system is

shown to be of questionable security [Adleman, 1983], [Shamir, 1982].

5.4.6 FIRST FIT DECREASING BIN PACKING

INSTANCE: A sequence py,...,p, of pieces with values vy,...,v,, respectively, which are
rational numbers satisfying 1 < vy > --+ > v, > 0 and an assignment [ : {py,....,p,} —
{b1, ..., b}, called a packing, of the pieces into bins by, ..., by, where the sum of the values
of the pieces in each bin must be <1, i.e., 32, er-14,)v; < 1for 1 <z < k.

PrROBLEM: Decide whether I is the packing produced by the first fit decreasing (FFD)
algorithm.

Reference: [Anderson, Mayr and Warmuth, 1989].

Comment: The FFD algorithm considers the pieces in the order of non-increasing size.
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Starting with vy until v,, the FFD algorithm places each piece into the first (lowest num-
bered) bin that has enough remaining capacity. It has been shown that the length of the
packing generated by FFD is at most 2OPT(I) + 3, where OPT([) is the optimal number
of bins for I [Garey and Johnson, 1979]. : : ~

5.4.7 GENERAL LIST SCHEDULING

INSTANCE: A list of jobs (Jiy..o, J0), a positive ihteger execution time 7'(J;) for each job,
and a nonpreemptive schedule L with m processors. - '
PROBLEM: Decide whether L is the schedule produced by the list scheduhng algorlthm
Reference [Helmbold and Mayr, 1987]. ;

Comment: In nonpreemptive scheduling, a job once begun must be executed to completion.
Whenever a processor becomes free, the scheduler simply performs a fixed directed scan-
of the list and assigns to the processor the first job encountered which has not yet been

executed and whose predecessors have all been completed.

5.4.8 HEIGHT-PRIORITY SCHEDULE

INSTANCE: A directed acyclic graph D = (V, A) and a proﬁle [
ProBLEM: Find a height-priority schedule for D and pu.
Reference: [Dolev, Upfal and Warmuth, 1986];
Comment: A profile p is a function p : {0,1,...} — {1,2,. }, where u(2) represents the
number of processors avaﬂable at the ith time slot. A proﬁle is called straight if it is a
constant function.

A schedule s for 2 dlrected acyclic graph D = (V, A) and a proﬁle 4 is an onto function
s:V —{0,1,....,1 — 1} for some [ satisfying (a) and (b). ;

(a) |s7Y(r)] < p(r) for each r in {0,1,...,] — 1}. This means that the number of
processors used at the rth time slot is at most p( )-

(b) If (z,y) € A, then s(z) < s(y).

Let ¢ be a function from V to {0,1,...}. A schedule is called a ¢-priority schedule if it
satisfies (c) (g is called a priority function).

(c) s(z) > s(y) and g(z) > ¢(y) implies that = is a successor of some vertex z with
s(z) = s(y). | ~

A height-priority schedule is a schedule with height(z) as a priority function, where
height(z) represents the length of the longest path starting at z.

A directed acyclic graph D is said to be an outforest (resp., inforest) if every vertex

has at most one immediate predecessor (resp., immediate successor). The problem is still
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P-complete even if D is an outforest and p is nondecreasing.

When the profile is assumed to be straight, the problem of finding the following schedule
is P-complete.

(1) A height-priority schedule for a graph consisting of an outforest and an inforest.

(2) A height-priority schedule for a graph in which the vertices of every component are
partitioned into levels according to the height of the vertices and the vertices of a level
precede all vertices of the same component of the levels below it.

(3) A weighted-priority schedule for a weighted outforest using only three different
weights, where the priority function is given by the weights on the vertices.

On the other hand, an optimal height-priority schedule for a straight profile and an out-
forest can be found by an O(log n) time (resp., O((logn)?) time) EREW PRAM algorithm

using n? processors (resp., n processors).

5.4.9 NEAREST NEIGHBOR TRAVELING SALESMAN PROBLEM

INSTANCE: A distance matrix (Djj)1<ij<n and a vertex vy, where 0 < D;; < oo is an
integer or the symbol co specifying the distance between vertices ¢ and j. If the distance
D;; = oo, it means that there is no edge between : and j.

ProOBLEM: Find a nearest neighbor heuristic tour starting at v,.

Reference: [Kindervater, Lenstra and Shmoys, 1989].

Comment: A sequence of vertices vy, ...,v, with {v1,...,v,} = {1,...;n} is called a near-
est neighbor heuristic tour starting at v; such that the distance D,,_,,, between v;_; and
v; is equal to min{D,,_,; | ¢ < j < n} for each 1 < ¢ < n. It should be noted that
there may be several nearest neighbor heuristic tours since the nearest neighbors are not
necessarily unique. However, the reduction is given from CVP so that the instance of
NEAREST NEIGHBOR TRAVELING SALESMAN PROBLEM transformed from a cir-
cuit has a unique solution.

A nearest neighbor heuristic tour is found by the following nearest neighbor heuristic:

1. Start at vertex v;.

2. Among all vertices not yet visited, choose as a vertex which is nearest to the current
vertex with respect to the distance matrix (D;;)1<ij<n. Repeat this step until all vertices
have been visited.

The problem is still P-complete even if the distance matrix satisfies the triangle in-
equality. On the other hand, the double minimum spanning tree heuristic and the nearest
addition heuristic described below can be implemented in NC.

(1) Double minimum spanning tree heuristic: Construct a minimum-weight spanning

tree, double its edges and construct an Eulerian circuit of this double edged spanning tree.
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Then start at a given vertex and traverse the Eulerian circuit, skipping vertices visited
before.

(2) Nearest addition heuristic: Start with a tour consisting of a given vertex with a
self-loop. Find vertices j not on the tour and k on the tour such that Dj; is minimum.
Then insert j directly before k. Repeat this step until all vertices are inserted.

However, it is not known whether the Christofides heuristic described below is in NC.
This is simply because the parallel complexity of the maximum matching problem is unre-
solved.

(3) Christofides heuristic:

1. Construct a minimum-weight spanning tree 7.

2. Find the vertices of odd degree and find the minimum perfect matching M in the
complete graph consisting of these vertices of odd degree.

3. Construct an Eulerian circuit of the multigraph with vertices 1,2, ...,n and edges in
T U M. Then start at a given vertex and traverse the Eulerian circuit, skipping vertices

visited before.

5.4.10 NEAREST MERGER TRAVELING SALESMAN PROBLEM

INSTANCE: A distance matrix (D;;)i<i,j<n, Where 0 < D;; < co is an integer or the symbol
oo specifying the distance between vertices ¢ and j.

ProBLEM: Find a nearest merger heuristic tour.

Reference: [Kindervater, Lenstra and Shmoys, 1989].

Comment: The nearest merger heuristic is described as follows:

1. Start with n partial tours, each consisting of a single vertex with a self-loop.

2. Find tours C and C’ such that the distance dist(C, C') between C and C’ is minimum,
where dist(C,C") = min{Dy, | i € C, k € C'}. Let {i,j} be an edge of C and {k,I} an
edge of C' for which D;x+ Dj; — D;j — Dy is minimum. Then merge C and C’ by replacing
edges {7,7} and {k,{} by {i,k} and {j,}, respectively. Repeat this step until a complete
tour is obtained.

Since tours C, C' and edges {1,7}, {k,!} are not necessarily uniquely determined, the
resulting tour depends on the choices of C, C’, {i,7}, and {k,l}. Therefore the above
heuristic does not specify a unique tour. A nearest merger heuristic tour is a tour obtained
by the above heuristic by appropriately specifying the choices in step 2. However, the
reduction is given from CVP so that a circuit is transformed to an instance of NEAREST
MERGER TRAVELING SALESMAN PROBLEM for which the nearest merger heuristic

is unique.
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The problem is still P-complete even if the distance matrix satisfies the triangle in-

equality.

5.4.11 NEAREST INSERTION TRAVELING SALESMAN PROBLEM

INSTANCE: A distance matrix (.Dij)l_(_i’jsn and a vertex v, where 0 < D;; < oo is an integer
or the symbol oo specifying the distance between vertices 7 and j.

ProBLEM: Find a nearest insertion heuristic tour starting at v.

Reference: [Kindervater, Lenstra and Shmoys, 1989].

Comment: A nearest insertion heuristic tour starting at v is a tour obtained by the nearest
insertion heuristic described as follows:

1. Start with a tour consisting of v with a self-loop.

2. Find a vertex not on the tour which is nearest to a vertex already contained in
the tour. Insert this vertex between two neighboring vertices on the tour in the cheapest
possible way. Repeat this step until the tour is complete.

By a reason similar to NEAREST MERGER TRAVELING SALESMAN PROBLEM,
the nearest insertion heuristic does not specify a unique tour. However, the reduction is
given from CVP so that a circuit is transformed to an instance of NEAREST INSERTION
TRAVELING SALESMAN PROBLEM which has a unique nearest insertion heuristic tour.

The problem is still P-complete even if the distance matrix satisfies the triangle in-

equality.

5.4.12 CHEAPEST INSERTION TRAVELING SALESMAN PROBLEM

INSTANCE: A distance matrix (D;;)1<i j<n and a vertex v, where 0 < D;; < oo is an integer
or the symbol oo specifying the distance between vertices z and j.
ProOBLEM: Find a cheapest insertion heuristic tour starting at v.
Reference: [Kindervater, Lenstra and Shmoys, 1989].
Comment: A cheapest insertion heuristic tour starting at v is a tour obtained by the
cheapest insertion heuristic described below. The cheapest insertion heuristic does not
necessarily specify a unique tour. However, CVP is reduced so that a circuit is transformed
to an instance of CHEAPEST INSERTION TRAVELING SALESMAN PROBLEM which
has a unique solution.

1. Start with a tour consisting of v with a self-loop.

2. Find a vertex not on the tour which can be inserted between two neighboring vertices
on the tour in the cheapest possible way. Insert this vertex between two neighboring vertices

on the tour in the cheapest possible way. Repeat this step until the tour is complete.
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The problem is still P-complete even if the distance matrix satisfies the triangle in-

equality.

5.4.13 FARTHEST INSERTION TRAVELING SALESMAN PROBLEM

INSTANCE: A distance matrix (Dij)lsi’jsn and a vertex v, where 0 < D;; < oo is an integer
or the symbol co specifying the distance between vertices z and j.

PROBLEM: Find a farthest insertion heuristic tour starting at v.

Reference: [Kindervater, Lenstra and Shmoys, 1989].

Comment: A farthest insertion heuristic tour starting at v is a tour obtained by the far-
thest insertion heuristic described below. By a reason similar to NEAREST MERGER
TRAVELING SALESMAN PROBLEM, the farthest insertion heuristic does not necessar-
ily specify a unique tour. The reduction is given from CVP so that the resulting instance
of FARTHEST INSERTION TRAVELING SALESMAN PROBLEM transformed from a
circuit has a unique solution.

1. Start with a tour consisting of v with a self-loop.

2. Find a vertex not on the tour for which the minimum distance to a vertex on the
tour is maximum. Insert this vertex between two neighboring vertices on the tour in the
cheapest possible way. Repeat this step until the tour is complete.

The problem is still P-complete even if the distance matrix satisfies the triangle in-

equality.

5.4.14 FINITE HORIZON MARKOV DECISION PROCESS

INSTANCE: A Markov decision process M = (S, ¢, p) and two integers T and K.
PrOBLEM: Decide whether there is a policy é such that the expectation of the cost
ST o c(se,8(sq, 1), 1) is at most K.

Reference: [Papadimitriou and Tsitsiklis, 1987].

Comment: A Markov decision process M = (5, ¢, p) consists of the following: S is a finite
set of states with a special state sq called the initial state. For each state s € .S, a finite
set D, of decisions is given. For each time ¢ = 0,1,2,..., each state s and each decision
i € D, an integer cost c(s,,t) is given. p(s,s’,7,t) denotes the probability that the process
transits from state s to state s’ with decision 2 € D; at time ¢t. For each time ¢, we denote
by s; the state at time ¢. The process is stationary if ¢ and p are independent of ¢, i.e.,
c(s,1,t) = c(s,1,t') and p(s,s,i,t) = p(s,s,¢,t) for all ¢,¢. A policy 6 is a mapping
which gives a decision 6(s,t) € D, for each time ¢ and state s. It is not known whether

the stationary finite horizon problem is in P. For deterministic cases, i.e., the probability
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is either 0 or 1, the stationary finite horizon problem (resp. nonstationary finite horizon

problem, discounted problem, average cost problem) is in NC.

5.4.15 DISCOUNTED MARKOYV DECISION PROCESS

INSTANCE: A Markov decision process M = (S, ¢,p), a rational number 0 < 8 < 1, and an
integer K.

PrROBLEM: Decide whether there is a policy § such that the expectation of the discounted
cost 3202, c(st,8(s¢,t),t) 3t is at most K.

Reference: [Papadimitriou and Tsitsiklis, 1987].

Comment: See FINITE HORIZON MARKOV DECISION PROCESS.

5.4.16 AVERAGE COST MARKOV DECISION PROCESS

INSTANCE: A Markov decision process M = (S, ¢, p) and an integer K.

PrOBLEM: Decide whether there is a policy § such that the expectation of the cost
limr_eo (XL, c(sy, 8(s4,t),1)) /T is at most K.

Reference: [Papadimitriou and Tsitsiklis, 1987].

Comment: See FINITE HORIZON MARKOV DECISION PROCESS.

5.5 Formal Language
5.5.1 CONTEXT-FREE GRAMMAR EMPTINESS

INSTANCE: A context-free grammar G = (N, X, P, S).
PROBLEM: Decide whether L(G) = 0.

Reference: [Jones and Laaser, 1977].

Comment: Reduction from GENERATABILITY.

5.5.2 CONTEXT-FREE GRAMMAR INFINITY

INSTANCE: A context-free grammar G = (N, X, P, S).

PRrROBLEM: Decide whether L(G) is infinite.

Reference: [Jones and Laaser, 1977].

Comment: Reduction from CONTEXT-FREE GRAMMAR EMPTINESS.

5.5.3 CONTEXT-FREE GRAMMAR MEMBERSHIP

INSTANCE: A context-free grammar G = (N, X, P, S) and z € £*.
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PROBLEM: Decide whether S =* z.

Reference: [Jones and Laaser, 1977].

Comment: Reduction from GENERATABILITY. For a fixed context-free grammar G, it
can be determined in NC? that a given string z is in L(G) or not with respect to |z| [Ruzzo,
1980].

5.5.4 STRAIGHT-LINE PROGRAM MEMBERSHIP

INSTANCE: A string z € ¥* and a straight-line program I with operations in ® = Y U
{{€},0,U,-}, where ¥ is a finite alphabet.

PROBLEM: Decide whether z is a member of the set constructed by the program I.
Reference: [Goodrich, 1983].

Comment: A straight-line program is a sequence of assignments of the following forms:
X—YUZ XY -Z, X0, X« {e}, X —{a}, wherea € ¥ and X, Y and Z are

variables.

5.5.5 STRAIGHT-LINE PROGRAM NONEMPTINESS

INSTANCE: A straight-line program I with operations in ® = X U {{¢},0,U, -}, where ¥ is
a finite alphabet.

PROBLEM: Decide whether the set constructed by the program I is not empty.
Reference: [Goodrich, 1983]. ‘ ’ ;

Comment: See STRAIGHT-LINE PROGRAM MEMBERSHIP.

5.5.6 LABELED GRAPH ACCESSIBILITY PROBLEM (LGAP)

INSTANCE: A directed graph D = (V, A) with edges labeled by st‘ringsk over {al, Gy, ag, 52}
and two vertices s and . \

PrOBLEM: Decide whether there is a path from s to ¢ such that the concatenation of its
labels on the edges is in the semi-Dyck set Ds. - | | |
Reference: [Greenlaw, Hoover and Ruzzo, 1985].

Comment: The semi-Dyck set Dy is the language generated by the context-free grammar
with productions S — Sa;5a;S|e (i = 1,2), where S is the start symbol. If D is acyclic,
the problem is complete for LOGCFL, the class of sets log space reducible to context-free

languages.
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5.6 Algebraic Problems
5.6.1 INTEGER ITERATED MOD (IIM)

INSTANCE: Binary positive integers a, by, b, ..., b,.

PrOBLEM: Decide whether ((-- - ((a mod b;) mod b;) - - - mod b,) = 0.

Reference: [Karloff and Ruzzo, 1989].

Comment: Reduction from NAND CIRCUIT VALUE PROBLEM. The integer iterated
mod problem is related to the problem of computing the greatest common divisor (gcd)
of two numbers. No NC integer gcd algorithm is known. The polynomial iterated mod
problem is: given univariate polynomials a(z), bi(z),...,b.(z) over a field F', compute the
residue ((-- - ((a(z) mod b;(z)) mod by(z))-- - mod b,(z)) = 0. The problem over any field
F is in Arithmetic-NC2, where Arithmetic-NC? is the class of problems solvable in time
O((log n)?) with O(n®W) processors by using the computation model in which inputs and
outputs are elements of the field F' and operations are the primitive field operations. The
problem is in NC? if F' is a fixed finite field or the rationals Q.

5.6.2 GENERATABILITY (GEN)

INSTANCE: A set X, a binary operation - on X, a subset § C X, and an element z € X.
PrOBLEM: Decide whether z is contained in the smallest subset of X which contains S
and is closed under the binary operation -.

Reference: [Jones and Laaser, 1977].

Comment: Reduction from UNIT RESOLUTION. The binary operation - in the reduction
is commutative but not associative. GENERATABILITY for associative - is complete for

NLOG.

5.6.3 UNIFORM WORD PROBLEM FOR FINITELY PRESENTED ALGE-
BRAS

INSTANCE: A finitely presented algebra A = (M,T") and terms z,y over M, where M is a
finite ranked alphabet and I is a finite set of unordered pairs of terms called the axioms.
PrROBLEM: Decide whether # =r y, z is equivalent to y under the congruence relation
generated by T'.

Reference: [Kozen, 1977].

Comment: Reduction from CIRCUIT VALUE PROBLEM. A finite ranked alphabet M
is a pair (X, a), where ¥ is a finite set of symbols and a assigns each symbol ¢ € ¥ a

nonnegative integer a(o) called the arity of o. A term over M is defined inductively as
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follows: (1) Every element o € ¥ with arity a(c) = 0 is a term. (2) If § € ¥ has arity
a(§) = m and z1,...,T, are terms, then 6(zq,...,2n) is a term. We denote the set of
terms over M by W(M). An axiom {u,v} € I is denoted by u =r v. The relation =r on
W(M) is the smallest congruence relation on W(M) satisfying the axioms in I'. Namely,
=r is the smallest equivalence relation satisfying (1) for each axiom {u,v} € I', u =r v and
(2) if 8 € ¥ has arity m and $; =r t1,...,m =r tm, then 6(sq, ..., $5) =r 0(t1, ..., ).

5.6.4 TRIVIAL ALGEBRA

INSTANCE: A finitely presented algebra A = (M, T).

PrOBLEM: Decide whether A is a trivial algebra, i.e., consisting of one element.
Reference: [Kozen, 1977].

Comment: See UNIFORM WORD PROBLEM FOR FINITELY PRESENTED ALGE-
BRAS.

5.6.5 FINITE ALGEBRA

INSTANCE: A finitely presented algebra A = (M,T).

PROBLEM: Decide whether A is finite.

Reference: [Kozen, 1977].

Comment: Reduction from CIRCUIT VALUE PROBLEM. See UNIFORM WORD PROB-
LEM FOR FINITELY PRESENTED ALGEBRAS.

5.6.6 SUBALGEBRA MEMBERSHIP

INSTANCE: A finitely presented algebra A = (M,I') and terms zy,...,2,,y.

PrOBLEM: Decide whether [y] is contained in the subalgebra generated by [z1],...,[z.],
where [z] denotes the equivalence class under =r.

Reference: [Kozen, 1977].

Comment: Reduction from GENERATABILITY. See UNIFORM WORD PROBLEM FOR
FINITELY PRESENTED ALGEBRAS.

5.6.7 UNIFORM WORD PROBLEM FOR LATTICES

INSTANCE: A finite set F of equations and an equation e; = es.
PROBLEM: Decide whether F |=e; = e5.
Reference: [Cosmadakis, 1988].
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Comment: A lattice is a set L with two binary operations +,- satisfying the following
axioms: For any z,y,z € L,

A)(z-y)-z=2-(y-2), (x+y)+2z==2z+ (y+ 2) (associativity).

(ii)z-y=y-z,z+y =y + ¢ (commutativity).

(iii) ¢ - ¢ = z, * + = = = (idempotence).

(iv)z+(z-y) =2,z (z+y) =z (absorption).
Let U be a countably infinite set of symbols. A term over U is defined inductively as
follows. The set of terms over U is denoted by W (U).

(1) If @ € U, then « is a term.

(2) If p,q € W(U), then (p+ ¢) and (p- ¢) are terms.
An equation is a formula of the form e; = ey, where e1,e2 € W(U). Given a lattice L,
a valuation is defined to be a function g : U — L and extended to W(U) by defining
p(p+q) = p(p)+ 1(q), u(p-q) = u(p)- p(q). Alattice L satisfies an equation e; = e, under
a valuation g, denoted L |=, e; = ey, if u(e;) = p(ez). We say that F implies e; = ey,
denoted E |= e; = ey, if for every lattice L and every valuation u such that L =, E, we
have L =, €1 = e;. Remains P-complete even if E = () and terms are represented by

directed acyclic graphs. But under the tree representation of terms, if F = (J, the problem

is solvable in DLOG.

5.6.8 GENERATOR PROBLEM FOR LATTICES

INSTANCE: A finite set F of equations and terms e, gq,..., g,.

PrOBLEM: Decide whether F |= gen(e, g1,.-.,gn)-

Reference: [Cosmadakis, 1988].

Comment: See UNIFORM WORD PROBLEM FOR LATTICES. Let X be a subset of
a lattice L. The sublattice generated by X is the smallest subset of L which contains X
and is closed under the operations +,- of L. Given a valuation p : U — L and terms
€,91,...,9n over U, we say that e is generated by ¢1,...,¢, in L under p, denoted L |=,
gen(e, g, ..., 9n), if p(e) is in the sublattice of L generated by the set {u(g;)| = 1,...,n}.
E = gen(e,g1,...,9,) if, for every lattice L and valuation p such that L |=, E, we have
L =, gen(e,91,...,9,). Remains P-complete even if E = () and terms are represented by

directed acyclic graphs. But under the tree representation of terms, if E = (), the problem

is solvable in DLOG.

5.6.9 GENERALIZED WORD PROBLEM (GWP)

INSTANCE: A finite subset U = {uy,...,u,} of (£ U X)* and a word z in (¥ U £)*, where
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¥ is a finite alphabet and ¥ = {@ | a € ©}.

PRrROBLEM: Decide whether z is in (U).

Reference: [Avenhaus and Madlener, 1984a].

Comment: Generic reduction. Let F' be the free group with generators ¥ in which only
trivial relations a@ = @a = e hold for a € ¥. (U) denotes the subgroup of F' generated by
U. The word problem WP is to decide for z whether z = e in F. It is known that WP is
solvable in DLOG [Lipton and Zalcstein, 1977]. The decision algorithm for GWP is based

upon the Nielsen reduction algorithm.

5.6.10 SUBGROUP

INSTANCE: Finite sets U and V of (L U £)*, where ¥ is a finite alphabet.

PROBLEM: Décide whether (U) is a subgroup of vy | |

Reference [Avenhaus and Madlener, 1984a). -

Comment: Reduction from GEN ERALIZED WORD PROBLEM It is s also P complete to
deade whether (U ) is a normal subgroup of (V).

5.6.11 SUBGROUP EQUALITY

INSTANCE: Finite sets U and V of (X U X)*, where ¥ is a finite alphabet.
PrOBLEM: Decide whether (U)=(V). ‘
Reference: [Avenhaus and Madlener, 1984a].

Comment: Reduction from SUBGROUP.

5.6.12 GROUP INDEPENDENT SET

INSTANCE: Finite set U of (X U £)*, where ¥ is a finite alphabet.

PrOBLEM: Decide whether U is independent, i.e., each € (U) has a unique freely reduced
representation.

Reference: [Avenhaus and Madlener, 1984a].

Comment: Generic reduction. A word is called freely reduced if it contains no segment aa

or aa, for any a € X.

5.6.13 SUBGROUP ISOMORPHISM

INSTANCE: Finite sets U and V of (£ U £)*, where ¥ is a finite alphabet
PrOBLEM: Decide whether (U) is isomorphic to (V).
Reference: [Avenhaus and Madlener, 1984a).
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Comment: Reduction from GROUP INDEPENDENT SET.

5.6.14 FINITE INDEX SUBGROUP

INSTANCE: Finite sets U and V of (£ U £)*, where X is a finite alphabet.
PROBLEM: Decide whether (U) is a subgroup of (V) that has finite index in (V).
Reference: [Avenhaus and Madlener, 1984a).

Comment: Reduction from SUBGROUP.

5.6.15 GROUP INDUCED ISOMORPHISM

INSTANCE: Finite sets U = {uy,...,un} and V = {v,...,v,} of (XU X)*, where ¥ is a
finite alphabet.

PROBLEM: Decide whether the mapping ¢ defined by ¢(u;) = v; (: = 1,...,m) induces an
isomorphism from (U) onto (V).

Reference: [Avenhaus and Madlener, 1984a].

Comment: Reduction from GROUP INDEPENDENT SET.

5.6.16 GROUP RANK

INSTANCE: Finite set U of (X U X¥)* and a positive integer k, where ¥ is a finite alphabet.
PROBLEM: Decide whether there is an independent set V' of size k such that (U)=(V).
Reference: [Avenhaus and Madlener, 1984a].

Comment: Reduction from GROUP INDEPENDENT SET.

5.6.17 GROUP COSET INTERSECTION

INSTANCE: Finite sets U and V of (¥ U £)* and words z and y in (£ U £)*, where ¥ is a
finite alphabet.

PRrROBLEM: Decide whether (U)z Ny(V) # 0.

Reference: [Avenhaus and Madlener, 1984b)].

Comment: It is also P-complete to decide whether (U)aN(V)y # 0 (resp., z(U)Ny(V) # 0).
Remains P-complete even if z =y = ¢, i.e., (U) N (V) # (e).

5.6.18 CONJUGATE SUBGROUPS

INSTANCE: Finite sets U and V of (¥ U £)*, where ¥ is a finite alphabet.
PROBLEM: Decide whether there is z € (X U £)* such that z=1{(U)z = (V).
Reference: [Avenhaus and Madlener, 1984b].
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Comment: It is also P-complete to decide whether there is z € (X UX)* such that z=3(U)z
is a subgroup of (V).

5.6.19 GROUP COSET EQUALITY

INSTANCE: Finite sets U and V of (£ U £)* and words z and y in (X U £)*, where ¥ is a
finite alphabet.

ProBLEM: Decide whether (U)z = y(V).

Reference: [Avenhaus and Madlener, 1984b].

Comment: It is also P-complete to decide whether (U)z = (V)y.

5.6.20 GROUP COSET EQUIVALENCE

INSTANCE: Finite sets U and V of (¥ U £)*, where I is a finite alphabet.

PrOBLEM: Decide whether there are z,y € (X U £)* such that (U)x :y(V)f

Reference: [Avenhaus and Madlener, 1984b]. B oha

Comment: It is also P-complete to decide whether there are z,y € (2 U E) such that
)z = (V).

5.6.21 GROUP CONJUGACY EQUIVALENCE

INSTANCE: Finite sets U and V of (£ U £)*, where X is a finite alphabet.

PROBLEM: Decide whether there is z € (¥ U £)* such that z=1(U)z = (V).

Reference: [Avenhaus and Madlener, 1984b].

Comment: It is also P-complete to decide whether there is z € (¥ UX)* such that 271(U)z
is a subgroup of (V). s :

5.7 Miscellaneous
5.7.1 ZIV-LEMPEL CODING

INSTANCE: A binary string S and a positive integer z.

PROBLEM: Decide whether there is a codeword, whose binary value is z, in the Ziv- Lempel
coding of S.

Reference: [de Agostino, 1990].

Comment: Reduction from CIRCUIT VALUE PROBLEM. A data compression method
called the Ziv-Lempel coding consists of a rule for parsing strings of symbols from a finite
alphabet into substrings and a coding scheme that maps these substrings into uniquely

decipherable words called the codewords. The parsing of the data string is executed by a
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procedure that creates a new phrase as soon as a prefix of the still unparsed part of string
differs from all preceding phrases. The first phrase is the first symbol of the string and the
last one is the ohly one 'allyowe‘d to be equal to a preceding one. We denote by p; the ith
phrase of the parsing (po is theernpty striri‘g).‘ For each "phrase Piy there is one nonnegative
integer j < 2z such that p;z = ‘p,-,‘ where z is the last symbol of pz-". Then, the codeword for Di
is composed by [log(ia)] bits that are the binary representation of the number ja + f(z),
where « is the cardinality of the alphabet and f a mapping from the alphabet onto the set
of the mtegers {0,...,a—1}. For example, for the worda bbaa ba b b cc, the ZlV Lemple

parsmg is the sequence a, b, ba, ab, abb, ¢, c.

5.7.2 MILLER-\WELGMAN CODING

INSTANCE: A binary string S and a positive integer z.

PrOBLEM: Decide whether there is a codeword, whose binary value is z, in the Miller-
Welgman coding of S.

Reference: [de Agostino, 1990]

Comment: Reduction from CIRUCIT VALUE PROBLEM. The Miller- VVelgman coding
is a variation of the er—Lempel coding in order to 1mprove compressmn efficiency. The
Miller-Welgman codmg is the following: A table is initialized to contain all strmgs of length
1 Then, the parsing rule creates as a new phrase p; the longest preﬁx of the still unparsed
part of string, that is matched in the table and encodes it with a codeword of [log(i + )]
bits that are the bmary representatlon of its concatenatlon of p; with the first character
of the next phrase Afterwards the table 1 is augmented by adding the strmg which is the
concatenatlon of pi with the first character of the next phrase For example for the word
abbaababbe c, the Mlller—Welgman parsing is the sequerce a, b b, a, ab, ab b, ¢ ¢
with the table a, b, e, ab bb, ba, aa, aba, abb be, cc.

5.7.3 CONVEX HULL

INSTANCE: A finite set S C Q" and = € Q", where Q is the set of rational numbers.
PrOBLEM: Decide whether « is in the convex hull of S. ‘

Reference: [Long and Warmuth, 1990].

Comment: The convezx hull of S is the set of all convex combinations on elements in S. By
using linear programming [Khachian, 1979] , one can test in polynomial time whether z is in
the convex hull of S. The reduction is from MONOTONE CIRCUIT VALUE PROBLEM

and the dimension n of Q™ depends on the number of gates in a circuit.
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5.74 ENVELOPE LAYERS

INSTANCE: A set of line segments L = {p1G1, P2Gz; - - - , Puln} in the plane, a distinguished
point = on some line segment of L and a positive integer k.

PrROBLEM: Decide whether the layer depth of a point z is k.

Reference: [Hershberger, 1990].

Comment: Reduction from MONOTONE CIRCUIT VALUE PROBLEM. A line segment
pq, where p and ¢ are points in the plane, is a linear combination ap + (1 — a)g (a €
R,0 < o <1). Remains P-complete even for a set which consists of disjoint segments. An
upper envelope is a collection of the most upper line segments, which consists of pieces of
segments in L. The set of line segments are scanned by repeatedly computing the upper
envelope and discarding the pieces of segments that appear on it. A layer depth of a point

on some segment in L is an iteration number at which it appears on the upper envelope.

5.7.5 GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING (GEPP)

INSTANCE: A matrix A with entries over the reals rounded up to two decimal places, and
integers ¢, .

ProBLEM: When Gaussian elimination with partial pivoting is done on A, decide whether
the pivot used to eliminate the jth column entries is taken from row :.

Reference: [Vavasis, 1989].

Comment: Reduction from NAND CIRCUIT VALUE PROBLEM. In Gaussian elimina-
tion, the elements along the diagonal are used to eliminate the entries in the columns
below them. The number a;; and position (z,2) on the diagonal of A used for elimination
are called the pivot value and the pivot position, respectively. A problem arises if zero or
a very small number appears in the pivot position. A solution to this problem with the
elimination algorithm is to swap the rows of the matrix before each selection of a new
pivot. In particular, when the algorithm starts to eliminate below the diagonal in column
7, it first searches all the entries in the column from ¢ downward to find the entry with
the largest magnitude, say at position (j,7). Then row ¢ is swapped with row j in order
to bring the larger number into the pivot position. This row-swapping technique is called
partial pivoting. A complete pivoting is to swap both rows and columns in order to bring
the largest element in the remaining uneliminated submatrix into the pivot position.
Gaussian elimination is the oldest and best known method for solving systems of linear
equations, and partial pivoting is the most common technique to make elimination numer-
ically stable.

The problem is also P-complete if complete pivotings are used. If exact rational arith-
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metic is used instead of arithmetic rounded to two decimals, the problem is again P-
complete. The problem of deciding whether the pivot value for column j is positive is
P-complete both for partial and complete pivotings.

If the problem uses scaling, it is not known P-complete. There are other numerical algo-
rithms that use interchanges; for example, column interchanges are used in QR-factorization
if rank-deficiency is a possibility. This may also lead to a P-complete problem.

If all the pivot positions were somehow known in advance, then the Gaussian elimination
could be carried out in NC. A parallel algorithm based on Newton iterations is shown [Pan
and Reif, 1985]. Their algorithm runs in O((logn)°™) time and O(n®) processors.

5.7.6 TWO-PLAYER GAME

INSTANCE: A 5-tuple J = (P, Py, Wy, s, M) called a two-player game, where Py N Py = (),
WoC PAUP,,se P,and M C PLx P,UP, x P,.

PrOBLEM: Decide whether s is a winning position for player one.

Reference: [Jones and Laaser, 1977].

Comment: Reduction from GENERATABILITY. Informally, P, (resp., P,) is the set of
positions in which it is player one’s (resp., player two’s) turn to move. Wy denotes the set
of positions in which player one has an immediate win, and s is the starting position. M
denotes the set of allowable moves: if (p,q) € M and p € P, (resp., p € P») then player
one (resp., player two) may move from position p to position ¢ in a single step. The set W
of winning positions for player one is defined inductively as follows: (1) Wy C W. (2) If
z € P, and (z,y) € M for some winning position y, then z is in W. (3) If z € P, and y is

a winning position for every move (z,y) in M, then z is in W.

5.7.7 STRATEGY ELIMINATION IN TWO PERSON GAME

INSTANCE: A two person game J = (A, B), where A = (a;;) and B = (b;;) ate m x n
matrices with integer entries, and an integer .

ProBLEM: Decide whether a strategy ¢ is eliminated in a reduced game.

Reference: [Knuth, Papadimitriou and Tsitsiklis, 1988].

Comments: Reduction from MONOTONE CIRCUIT VALUE PROBLEM. Player x chooses
arow ¢ from A (this choice is called a strategy) and player y simultaneously chooses a col-
umn j from B. We say that strategy ¢ (resp., j) of player = (resp., y) dominates strategy
i’ (resp., j') of the same player if a;; > ayy (resp., by; > bgy) for k = 1,...,n (resp.,
k=1,...,m). Agame J = (A, B) is reduced by eliminating the ¢th row (resp., jth col-

umn) from both matrices A and B if some row of A (resp., column of B) dominates row
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¢ of A (resp., column j of B). A reduced game is a game in which no further elimination
is possible. We note that the reduced game is unique up to row and column permutation.
Remains P-complete even for zero-sum games, i.e., A+ B = O. But it is easy to see that

the problem of deciding whether a game is already reduced is in NC.

5.7.8 GENERAL DEADLOCK DETECTION

INSTANCE: Two n x m matrices P = (P;;) and @ = (Q;;) and integers wy, ..., w,, with
P, Qij < wj for y =1,...,m, where P;; and Q;; denote, respectively, the number of units
of resource R; held and requested by process p; for i = 1, ..., n.

ProBLEM: Decide whether P and () represent a deadlock state.

Reference: [Spirakis, 1987].

Comment: We say that matrices P and () represent a deadlock state if there exists a subset
S C {p1,-..,pn} of processes such that every p; € S waits for some p;, € S (i # k) to release
resources, i.e., for every p; € S, there is a resource R; satisfying Q;; > w; —X,, csP;. There
is an NC algorithm for the problem restricted to single unit resources, i.e., w; = 1 for all j.
This algorithm takes O((logn)?) time using a CRCW PRAM of O(n?®/log n) processors for
instances which represent an expedient state, i.e., all satisfiable requests have been granted

and single unit requests are occurred.

5.7.9 BOOLEAN RECURRENCE EQUATION

INSTANCE: An m X n boolean matrix M, an n X n boolean matrix B, an n x 1 boolean
vector F', and an integer j (0 < 7 < n).

PROBLEM: Decide whether the first entry of M -Y; is 1, where Y] is an n x 1 boolean vector
defined inductively as Yo = F, Y, = B-Y;_; for k > 1 (Yk_l is a boolean vector obtained
by negating each entry of Y;_;).

Reference: [Bertoni, Bollina, Mauri and Sabadini, 1985].

Comment: If the integer j is in range 0 < j < (logn)* for some constant k, this problem
is complete for ACF, which is the class of sets computed by alternating Turing machines
with O((log n)*) alternations.

5.7.10 MOSTOWSKI EPIMORPHISM

INSTANCE: A directed acyclic graph D = (V, A) which satisfies the axiom of extensionality,
ie., VuVo((Vz[(z,u) € A & (z,v) € A]) = u = v), and two vertices 2, and z, € V.
PROBLEM: Decide whether Mp(z1) = Mp(z3), where Mp is the Mostowski epimorphism
for D.
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Reference: [Dahlhaus, 1988].

Comment: Reduction from MONOTONE CIRCUIT VALUE PROBLEM. For a finite set
V, we define V = U2V, where V5 = V and Viy; = V; U2Y% for ¢ > 0. A Mostowski
epimorphism for a directed acyclic graph D = (V, A) satisfying the axiom of extensionality
is a function Mp from V to V which satisfies Mp(z) = {Mp(y) | (y,z) € A}. A sequential

polynomial time algorithm which computes a Mostowski epimorphism is known.

5.7.11 STRONG BISIMILARITY

INSTANCE: A finite labeled transition system M = (Q,X,T) and two states p,q € Q.
ProOBLEM: Decide whether p and ¢ are strongly bisimilar.
Reference: [Alvarez, Balcézar, Gabarré and Santha, 1990].
Comment: A finite labeled transition system is a triple M = (Q,X,T'), where @ is a finite
set of states, ¥ is a finite alphabet of actions and 7' C @ x ¥ x @ is a set of transitions. A
relation S C @ x @ is a strong bisimulation if (p,q) € S implies, for all z € X, the following
bisimilarity conditions hold:

(a) If (p,z,p’) € T, then for some ¢’ € Q, (¢,2,¢') € T and (p',¢') € S.

(b) If (¢, z,¢') € T, then for some p' € Q, (p,z,p’) € T and (p',¢') € S.

The strong bisimilarity relation is defined as the union of all strong bisimulations.

The problem of deciding observation equivalence and the problem of deciding obser-

vation congruence of two states in a finite labeled transition system are also P-complete
[Alvarez, Balcazar, Gabarré and Santha, 1990].

5.8 Remarks

An NC° permutation is a one-to-one onto function f : {0,1}* — {0,1}* with f({0,1}") =
{0,1}" for each n > 0 such that some NC° family of circuits {Cy}n>0 computes {f,}n>0,
where f, = f |{o13»: £ — . There are NC° permutations whose inverses are as hard
to compute as the parity function [Boppana and Lagarias, 1987]. These permutations can
be said to be one-way since the parity function is known not to be computable even by
unbounded fanin polynomial size circuits of constant depth [Furst, Saxe and Sipser, 1984].
There is an NC° permutation f such that its inverse f~! is P-complete. The reduction is

given from CVP [Héstad, 1988].
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