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Introduction 

One of the roles of parallel complexity theory is to investigate the problems which have 

no efficient parallel algorithms. It has been observed that some problems do not seem to 

allow any fast parallel algorithms although they are easily solvable in polynomial time by. 

sequentid algorithnas. These problems have been shoavn P-complete. 

The class of problems with efficient parallel algorithms is understood to  be NC [Pip- 

penger, 19791, The class NG is a subclass of P but, no mathema"cica1 proof has been 

given that shows NC#P, Like NP#P question, ave strongly believe that NC and P are 

different. '1Yiiih the assumption that N C I P ,  we can see that no P-complete problem is 

in NC. By this observation, we can use P-completeness to show the inherent difficulty of 

paralleiizat ion. 

In recognizing the importance of P-completeness, we make a list of P-complete prob- 

lems in a avay similar to [Garey and Johnson, 19791 and [Greenlaw, Hoover and Ruzzo, 

19891. We hope this list would help to understand which problems have no efficient parallel 

algorithms. 



2 NC-Reducibility and P- Completeness 

In this section we give some definitions and notions related to P-completeness. 

Definition 1 A problem (or search 5' with a size parameter h(nj is a family 

(S.l)nLo of binary relations Sn (0, I), x ( 0 ,  l )h in )  for n > 0. For n 2 0, I E 10, I);? is 

called an instance alid an object y E 10, i)qn) satisfying S,(XJ). if any. is called a solution 

for rc. For convenience, me assume that there exists y with S,(z, y) for each rt: E (0, l )" .  

If a solutio~l y ~ i t h  S,(Z; y) is unique for each rc E (0, i jn ,  then the problem of finding a 

solution is exactly the same as computing the function defined by S ,  Moreover, if h(n) = 1 

for all n 2 0; then the problem S is regarded as a decision problem, 

Exan~~ple 1 A maximal independent set ( M I S )  of an undirected graph is a maximal set 

t' of vertices such that no two vertices in ii are adjacent. The proisiem of finding a 

>I15 is formulated in the follo~ving way: A graph i v i t  n vertices is represented by an 

n x 12-adjacency matrix and a subset of vertices is represented by an ??-bit vector. Then 

MIS=(hlIS,),>o - is defined only for integers of the form n2 as 

Y1iSn2 C ( O , l  jn2 x {0) !jn, 
where for (m, y)  ~&iilS,2. n. is a symmetric matrix representing an undirected graph with 7% 

r-ertices and y a bit vector representing a MIS in the graph, 

Definition 2 We say that a search problem S is poiynorrzial time solvable if tilere is a 

polynomial time col~nlputabie function f : (0,I)" i (0. I)" such that Sn(x, f ( r ) )  holds for 

all n: E { O ;  and n > 0, iVe denote by P the class of polg~nornial time solvable search 

problems. 

A s7ery comnon parallel computation model is the parallel RAM (PRASJ) model in 

I\-hich processors work together synchronously and communicate with a common random 

access memory. By read a:ld write access abilities. PRA4Ms are classified to CREW PRAMs 
EREU- PRAXI and CRCW PR-4hl. in any case. we define as follows: 

Definitio1-a 3 A parallel algorithm on a PRAM solving a problem is eficient if, given an 

input of size n. it runs 

(1) in time Oi'log njk) for some constant il. > 0, 

(2) with a polynomial number of processors. 

This definition is based on the observation that the time O((1ogn)" is very fast and a 

polynomial number of processors is feasible. 

The class NC is defined by the uniform circuit mode!. 



Ibefi~lition 4 A circvit a with n inputs and rn outputs is a finite Labeled directed acyclic 

graph such that it has az input lines and .sn output lines and each node is labeled with a 

gate such as AKD gate, OR gate, KOT gate, etc. IYe denote by size(aj  (resp., depth(a)) 

the size sf a circuit a which is the number of nodes in a (resp., the depth of a circuit cr 

which is the length of the longest path from some input to some output). The function 

f a  : (0,73" t ( Q , l E m  computed by a is defined in an obvious way. 

Definition 5 For a search problen S = (Sn),20, we say that (a,)n,20 solves S if (Q,) ,~o 

computes a function (fn]nlo such that S,(z:,fnjz)) for a13 z f (O,lln and n > 8, where 

fn is the function computed by a,. 

Several kinds of uniformities of circuits have been proposed [Ruzzo, 19801, [Cook, 19851. 

'lye use the following definition because s f  its simplicity. 

Definition 6 A circuit family is log-unitorsnz (or simply, uniform) if. given n in 

unary, the description of the nth circuit a, is computed by a deterministic off-line Turing 

machine lasing 0 (log n )  worktape space. 

it is knoivrz that N G q e f i n e d  below does not change by the choice of uniformity for 

k 2 2 [Ruzzo, 19801. 

(1) NC"=(S j S is solvable by a uniform circuit, family such that size(a,) 
is bounded by some polynomial and simultaneousiy depth(a,) = 

si irog n)"!). 
(2) N C = ~ ~ ~ ~ N C ~ .  

The folloiving theorem relates the class NG and efficient parallel algorithns. 

Theoren1 I (Stockl~eyer and Vishkin, 1984) NC 4s the dass of problems solvable 

by PRAA4 algorithms 1~4th polynomial number o f  processors and running time O((Log nIk)), 

$&ere k is an arbitrary constant, 

Assuming that P#NC, we can prove that no P-complete problem ailoivs any PRAM 
parallel algorithm running in time O ( ( l ~ g n ) ~ ( ' ) )  with no(') processors. Thus the P- 

completeness plays a very important role to convince of the hardness of efficient paral- 

lelizat ion. 

The knowledge that a problem is P-complete provides algorithm designers ~7altiable 

information about the approaches they should take, It would relieve wasting efforts for 

devising drastically fast parallel algorithms and, instead, direct toward ways which lead to  



useful algorithms. Proofs of P-completeness may also tell us which parts of problems are 

hard to parallelize. 

Tfie P-completeness due to  [Cook, 19851 adopted the NC1-reducibility that uses NC1- 

computab!e O(log n) depth uniform circuits with oracle gates since it deals with reductions 

between functions. Another commonly used reducibiliey is the many-one log space re- 

ducibility for decision problems [Hopcroft and Vlimam, 19791. Here rXt7e use the folforving 

definition s f  reducibility. 

Definition 8 Let S and T be problems s f  size parameters g ( n )  and h(n) ,  respectively. T k  

say that S is i~Ck-ladneibie to T: denoted 5' < N C k  T ,  if there is a uniform circuit family 

( C V , ] , ~ ~  satisfying the following conditions: 

I. Each a, can i~~rrolve several oracle gates which can solve T ,  where an oracle gate for 

T is a gate such that, for each input bit sequence ( y l y . .  . ; y,), it produces an output 

secjuence (xl:. . . , zh(r))  satisfying Tr(;yl:. . . , y,, z4,. . . , zhi,)). 

2. The depth of a, is O((log n ) k ) ,  \&ere the depth of an oracle gate with r input lines 

is n~easured as [log r ] ,  For each input z E {0,1)", the circuit a, outputs z with 

S,(z, z )  so far as the Input-output relation satisfies 7 a t  each oracle gate. Namely. 

the output z of a,  may differ according to the solutions selected at oracle gates, but 

for any solutions the relation ,S,(zy z )  holds. 

"tVe say that S is Arc-reci"uc?ble to denoted S ~'"' T ,  if ,S <WCk - T for some I; 

Obviously, the KC-reducibility is an extension of the KC1-reducibility. It is also known 

that if S is log space reducible to T then S is I"b'C"-reducibie to 7'. Hence the NC-reducibility 

is stronger than these two kinds of reducibilities and can deal wit11 seductions among 

relations. Hovrever, all problems in the list of Section 4 can be sfiorvn P-complete via 

NC2-reductions. 

Fact 1 

(1) The relation sNC is transitive. 

(2) If S sNC T and T ENC, then S E N C .  

Deffnition 9 A problem T is said to be P-complete if the foliorving conditions are satisiied: 

(1) T is in P. 

(2) For each problem S in P, S sNC T. 

The importance of P-completeness is based on the following fact: 



Fact 2 Xo P-cornpled-e pro bdem is in NC if P#NG. 

Finally we should remark that proving the P-completeness of a problem is just the 

start of work on that problem. Even if a problem is shown P-complete, it tells us that no 

drastic speed up may he expected theoretically. Hourever, it does not deny the possibility 

of seducing the degree of polynomial of the time complexity. 

3 Proving P-Completeness 

The follow-ing problem is the most tvidely rased problem for proving P-completeness. 

CIRCUIT VALUE PROfiLEbI (CVP) 

IKSTANCE: A circuit B = ( E l l r . .  B,), where each B, is either (i) B, = 1 ( t rue )  or 0 

(false), (ii) B, = l B j  ( j  < i ) ,  (iii) B, = B3 (4 Bk ( j ,  k < i ) ,  or (iv) B, = B3 V BA ( j s  k < i j .  

3, is called the output gate and the gates with true or false are called the input gates. 

PROBLEM: Decide whether the value of Bn is true.  

Theorem 2 (Eadner, 1975) C1RCli:TT K4k. i7E PRBBLEAI is P-complete. 

We note that CVP is complete for the class of search problems which have poiynolniai 

time algorithms. The hIONOTONE CIRCUIT VALUE PROBLEM (RICVP) is a restricied 

version of the CIRCUIT VALGE PROBLEM for which instances are circuits ttrith AND 

and OR gates only [Goldschlager, 19771, 

llTe give ttvo examples of problems complete for P. The first one is originally a problem 

of computing a functlon but it can be regarded as a decision problem. However, the second 

psohien~ does not seem to ha\-e an equivalent decision problem. Both of them are shown 

P-complete by NC-reductions from MCVP. 

LEXICOGRAPHICAEW FIRST MAXIMAL INDEPENDENT SET (LFMIS) 

In .s~ar ;c~:  A graph G = (11. E )  wit11 V = ( I , .  . . , n )  and a vertex t k .  

PROBLEM: Decide whether 21 is contained in the lexicographically first subset U of I,' such 

that no two vertices in ti are adjacent. 

Theorem 3 (Cook, 1985) EEXICQ3GRAPHICC4LLY FIRST AfAXThJAE SNDEPENDE~\TT 

SET is P-complete. 

P7.ooJ The following greedy algorithm solves LFMIS in polynomial time. An example of 

the lexicographically first maximal independent set is shown in Fig. 1: 



Fig. 1: The lexicographically first maximal independent set 

begin /*  G = (V,Ej wish V = (1; .... n) */ 
L ' c  @; 

for i + 1 Lo n d o  

if h- U {i) is an independent set then U t C' L! (i) 

e n d  

bye give a reduction Goln MCVP to LFMIS. Let B = (B1, .  . . , B,, j be a monotone circuit. 

We construct a graph G such that each gate B, is associated wit11 two vertices u, and rL. 

A linear order -: on vertices is defined so that u,, v, -: ti,, v, for i < j. We define edges of 

G and the order be-cween u; and v; as follows: 

(1) If B, = t r u e  (resp. fa lse) .  then zr, -: v, (resp. 2)' -< u,) and an edge ( t ~ l ,  v ~ )  is 

added. 

(2) if B, = E?, BL with j ,  k < 2 ,  then 71, -: v, and edges {u, .  u , ) ,  (c,, u , ) ,  and (vk.u,)  

are addecl. 

(3) If B, = B3 V Eik with j ,  k < 2 ,  the11 L', 4 U, and edges {u,. e, ] ,  (aa,  vz), and illk, v,) 

are added. 

An example of construction horn the monotone circuit in Fig. 2 is shown in Fig. 3. It is not 

l-iard to see thar this reduction is computab2e in NC and the lexicographically first n-iaxirnal 

independent set of G il~cludes u, iff the value of B, is twe.a 

The next problem is a search prohiern S = {S,),>o - such that a solution y with S,(z, y) 

is not necessarily unique for z E { O .  1)". 



Fig. 2: %lonotone circuit 

Fig. 3: Recluction from MCVP to LFiCIIS 

MINIh1UM FEEDBACK VERTEX SET FOR CYCLICALLY REDUCIBLE 

GRAPHS 

Inis~..ii.;c~: A cyciicallp reducible directed graph 6) = (17, A). 

PROBLE~IVI: Find a rninim'tzrn feedback vertex set of D. 

Let D = (17, A) be a directed graph. A set _Y C V7 is a feedback vertex set  if it contallls at 

least one vertex from every cycle in D. The associated graph of vertex z with respect t o  I), 

denoted AjD,  z), consists of z and all vertices ~vhich are not connected. after eliminating J: 

from D,  by any path to vertices on the cycles. Let y l ,  . . . , y k  he a sequence of vertices of D. 
Then we define graphs Do,.  . . , Dk inductively as follows: Do = D. D, = D,-l - A(D,-l, y,) 

for i = 1,. . . , F. We say that the sequence y l ; .  . . , y k  is a complete  D-sequence of D if each 

of A(Do,  gl), . . . , A(Dk-lr  yk) contains a cycle but Dk is acyclic. Note that D,-l contains a 

cycle for i = 1,. . . ; k if yl, . . . , yk is a complete D-sequence. A directed graph 1) is cyclically 

reducible if there exists a complete D-sequence for D. 



Fig. 4: Reduction from MCVP 

Theorelm 4 (Bovet, de Agostino and Petrescl-si, 1988) 12.IIi\TI5_ItTi2/J FEEDBB4CIi VER- 

TEX SET FOR CYCLICALLY REDCCIBLE GR-APNS' is P-complete, 

Prooj j'5FTang, Lloyd and S o h .  19851 found a sequential polynomial time algorithm finding 

a complete D-sequence. Hence, the problem is in P. We give a reduction from 31C-Z7P. Let 

B = (B1,. . . ,B,) be a monotone circuit, 5TTe construct a cyclically reducible graph D such 

that each gate B, is associateci with ;\TO vertices u, and v,. We define edges of D as foiloivs: 

(1) If B, = t rue  (resp., f a i s e  j. then a loop edge ju,; 11,) iresp.. (u,, v,)) is added. 

(2) If B, = B, A Bk with j ;  k < i, then eclges (u, ,  .,;Ii (v,, vk). jvk. u,). (v,, u k ) ,  ( u k ,  v,). 

(u,. 2 4 ) .  and (v,, u,) are added, 

( 3 )  If B, = Bj ?' Bk with j ,  F < i 7  then edges (v, . uj), iu, , uxj, (uk, v,), (u,, uk), ( v L ,  u:) ,  

(v,. u"), and (u,. vj) are added. 

(4) Finally, for each z = 1. .... n, edges iu,, v,) and (v,. u,) are addeci, 

,A3 example sf  construction from the monotone circuit in Fig. 2 is shoivn in Fig, 4. Any 

minimum feedback i~er tes  set of D has at least n vertices by (4). By induction on n. we 

can show the following two facts: 

(i) 6, has a unique minimum feedback vertex set having TL vertices, 

(ii) The value of B, is true iff u, is included in this minimum feedback vertex set.O 

It si~ould be remarked that in the reduction of the proof of Tl-ieorem 4 a cyclicai2y 

reducible graph is constructed from a circuit so that the graph has a unique rnir,imum 

feedback vertex set. Hence the problem itself allows several solutions but an instance in 

the reduction has only one solution. This is the reason why the reduction from MGVP has 



succeeded. 
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5 P-Complete Problems 

We classify the problems into the following categories: 

Circuits 
Logic 
Graph 
Optimization 
Formal Language 
Algebraic Problems 
hflscellaneo-us 
Remarks 

%,I Circuits 

5.1.1 CIRCUIT VALUE PROBLEM (@VP) 

PKSTANCE: A circuit B = ( B I ,  . . . , B,). where each B, is either (i) B, = true or f atlse. jii) 

B, = i B ,  (;I < k ) ,  (iii) B, = B j l \ B p  ( j , F < i ) , o r  jiv) B, = B ,  V B k  ( j , k  <i). 

PROBLEM: Decide whether the vaiue of B, is true. 

Referelice: [Ladner, 19751. 

Comment: The problem is still P-complete even when the instances are planar circuits 

wit11 XOT and A?liC-D gates (PLANAR GVP) [Goldschlager, i97+7]. A circuit only with 

AKD and OR gates and constants true. fci'se is called a monotone circuit. The circuit 

value problem for rnolisione circuits (R40KOTOTE CVP) is P-complete jGoidsc1ilager. 

i977j. SIONOTBXE CVP is P-compieie even if each gate has fanout at most two and 

B, is an OR gate. Moreover, RIONOTONE GYP is P-complete for circuits such that 

OR gates and A S D  gates appear alternatingiy (ALTERNATISG MOXOTONE CVP). 
It is also obvious that CVP with only NAND gakes (resp., SOR gates) and constants is 

P-complete (NAKD GYP (resp., KOR CVP)), Howet~r ,  for the monotone planar circuits 

defined in [Goldschlager, 19801, the problem falls in K@"Goldschlager, 19801. 

5.1.2 ARITHMETIC CIRCUIT VALUE PROBLEM (ARITRhIETIC CVP) 

INSTANCE: A circuit B = (Ill.. , . ,B,), where each B, is either ( i j  B, = 1 or 0, (iij  

Bz = B, *Bk ( j , k  < i) (iii) B, = BJ -Bk ( j , k  < i ) , o r  (iv) B, = B,+Bk ( 3 . k  < z ) .  where 

*, -, + are arithmetic operations on integers. 

PROBLER~: Decide whether the value of B, is 1. 

Refere~ace: This problem is stated in [Greenlaw, Hoover and Ruzzo. 19891 as a private 

communication of [Yenkateswaran. 19831. 





input length and is not dependent of the contents of the input. 

5.2,2 UNIT RESOLUTION 

INSTANCE: il set S = (C1, .. ., Cm) of clauses in the propositional calczllus, 

PROBLEM: Decide whether the empty clause can be deduced from S by unit resolution. 

Reference: [Jones and Laaser, 1977j, [Dobkin, Lipton and Reiss, 19?9]. 

Comment: A literalis an atom (positive literal) or the negation of an atom (negative Iiteral), 

A clause is a disjunction of literals. JVhen a clause contains no literal. it is called the empiiy 

clause denoted a. Let C and @"be the clarises of the form C = a ?I PI V * - .  V 1 9 ~  and 

C' = ( N  a)\J-yl V. = -LlniP. respectively. The resolvent of C and C5is B1 L/. a -V$pVyl  \.la - *V?,. 
ry nhis is called the unit resolvent in case p = O or q = 8. A deduction b y  unit resolution 

from S is a sequence Dl, ..., La, in which each D, is either a clause in S or follows from 

two earlier clauses by unit resolution. Narneiy, a unit resolution is a deduction in which a 

resolvent is obtained by using at least one unit clause; i.e.. a clause consisting of a single 

literal. Remains P-complete even if It is restricted to Horn clauses. 

5 - 2 3  PROPOSITIONAL HORN SATPSFIABILITY 

INSTANCE: A set S of Horn clauses in the propositional calculus. 

PROBLEM: Decide whether S is satisfiable. 

Reference: [Plaisted, 19841, [Kasif, 19861. 

Comment: A Horn clause is a clause which has at most one positive literal, The positive 

lit,eral in a Horn clause (if exists) is called the head of the cliiz~se. The negative literals 

(if exist j are called the body of the clause. S is satisfiable if there is a truth assignment 

satisfying all clauses in S.  Remains P-complete even if every clause in S has at most three 

literals, The satisfiabiiiry problem for Horn clauses is also discussed in [Uarnasaki and 

Doshita, 19831. 

5.2.4 DEPTH-RESTRICTED HYPER-RESOLUTION FROM PREDf GATE 

UNIQUE MATCH 2-HORX CLAUSES 

INSTANCE: A set S of Born clauses in the predicate calculus such that every clause has at 

most two literals and S has unique matches, and an integer d in unary. 

PROBLEM: Decide whether there exists a hyper-resolution refutation (or natural deduction 

refutation) of depth d from S, 
Reference: [Plaisted, 19841. 



Cornmen t: Here we deal with the predicate calculus. For necessary definitions, see [Plaisted, 

19841 and [Chang and Lee, 19731. A set S of Horn clauses has unique matches if for every 

clause C in 5" and every literal 1 of the body of C ,  and every ground instance Li of k, 
there exists at most one clause D of S such that the head of D is unifiable with L'. A 
hyper-resolution prooffrom a set S of Horn clauses is a sequence of positive literals in which 

each Literal In the sequence is an instance of a clause in S or is derived from previous literals 

using the following rule: Suppose that kj4, ..., La have already been derived, Suppose that 

ilfl A iW2 A - Afk 4 144 is a clause G of S expressed as an implication, where all Aft are 

positive literals. Let 111; r\ 41; A , . . A -9,gb 4 A%' be the most general instance of C such 

that M: is an instance of %, for 1 5 % 5 k. Then we say that i\Piis derived from L1, ..., Lk.  
The depth of a literal L in such a proof is zero if & is an instance of a clause of S. If iW' 
is as above, then the depth of i%ff is one plus the maximum of the depths of the Bf:'s. The 

depth of a proof is the maximum depth of any of its literals. A ~ e f ~ t a t i n n  is a proof of D. 

If a formula is of the form 3y13yzS .  = 3y,Vslb"z2 - - iiz,A, where A is an expression not 

containing any quantifier symbols, then we sag that it is in Schri'refinkel-Beynays form. 

Remains P-complete even for clauses in Sch6nfinkel-Bernay form. 

5.2.5 DEPTH-RESTRICTED HYPER-RESOLUTION FROM PROPOSITIONAL 

3-MORN CLAUSES 

INSTANCE: A set 5' of Horn clauses in the propositional calculus sucll that every clause 

has at most three literals: and an integer d in unary. 

P R O B L E ~ ~ :  Decide whether there exists a hyper-resolution ref~tation (or natural declmction 

refutation) of depth d from S. 
Refire~zce: [Plaisted, 1984j. 

Comment: This is a propositional calculus version of DEPTH-RESTRICTED HYPER- 

RESOLVTIOT": FROXI PREDICATE UXIQ'IJE hIATCR 2-NORK CLAUSES, 

5.2.6 UNIFf CATION 

INSTANCE: Two terms s and t represented by a labeled directed acyclic graph D with two 

specified vertices us and ut. 

PROBLEX;~: Decide whether s and t are unifiable. 

Reference: [Dwork, Kanellakis and Mitchell, 1984]., [Yasuura, 19841 

Comment: Let V be an infinite set of variable symbols and F an infinite set of function 

symbols. The arity of f f F is denoted by a ( f ) .  A function symbol g E F with a ( g )  = O 

is called a constant. term is defined inductively as follows: 



(a) A variable symbol x f V or constant g E F is a term. 

(b) If f E F and t l , .  . . , t,(j) are terms, then f ( t l t . .  . ta(i)) is a term, 

The set of terms is denoeed by T. A substitution a is a mapping from V to the set of terms 

such that o(x) = z for all but finitely many z E V. For a term s, ~ ( s )  also denotes the 

term obtained by replacing every occurrence of a variable z by ajz). Two terms s and t 
are unifiable if there is a substitution 0, called a unifier for s and t, such that a j s )  = a(t), 

A substitution a is said to  be more general than a substitution T if there is a substitution 

p aGth T = p o a .  It is known [Robinson, 19651 that whenever terms s and -t are unifiable, 

there is the most general unifier for s and t .  
For the representation of a term. we consider a labeled directed acyclic graph (dag) D 

labeled as follows: Each vertex is labeled with a variable symbol or a function symbol. -A 
vertex labeled with a variable symbol or a constant has no outedge. For a vertex labeled 

with a function symbol of arity k ,  there are k outedges labeled with I, ..., k ,  respectiveiy, 

Then by specifying a. vertex ut of D, we can associate, in a very natural way, a term t tiii~ili 

the subgraph formed from the vertices and edges reachable from ut. In this way, a term is 

represented by a labeled dag. 

The unification is P-complete even if both terms are linear, i,e.; each variable appears at 

most once in each term, are represented by trees, and have all function symbols with arity 

at most 2, bzt they may share variables. Aloreover, this problem is P-complete even if both 

terms are represented by trees, no variable appears in both terms, each variable appears at 

most twice in some tern1 and all function symbols have arity ax most 2. In contrast, if there 

are no sharings of variables and one of the terms is finear, then the problem can be solved 

in NG [Dwork, Manellakis and Stockmeyer, 19883. -4 term s matches a term t if -t = a ( s )  for 

some substitution a. The term matchitag is the problem of finding such substitiltion. An 

Q((iog z ) ~ )  time CREIV PRAM algorithm for term matching using O(,a/b(n)" processors 

is lilacawn [Diirork. Kanellakis and hlitcheil, 19841, where :W(nj is the number of arithmetic 

operations required for n x n matrix multiplication. There is also a Las Vegas parallel 

term matching algorithm which runs in O ((log n)" time using ilil jn j processors [Dsvork, 

Kanellakis and Stockmeyer, 19881. 

5.2.7 LOGICAL QUERY PROGRAM 

INSTANCE: An atom p(a,  b )  and a finite set of atoms PE = {qj, (al, b l ) . .  . . ; en(ci,,, b,)); 

where qj, is a predicate symbol from (go, yl) and a;, and bk are constants for Ji. = i: . . . , a .  

PROBLE~I:  Decide whether p(a,  bj is a theorem of P = PI U PE for the following logical 

query program PI: 

pix,  Y) : -ql(X, A),P@, Cj, ql(C: Y). 



p(X,  Y) : -yo(X, V ) .  
Reference: [Ullrnan and t7an Geider, 1968j. 

Comment: A logical query program is a function free Horn Logic program, This problem 

for the following program is also P-complete, 

P ( X ,  Y, : -P(X,  A ) , P ( ~ ,  B), g 1 4 ~ 3  @ ) > P ( C - ~ ) ,  q2(D; Y)* 
p ( X ,  Y) : -go(X, Y). 

The logical query program has the polynomial fringe prqer t y  if every atom in the minimum 

model of the resulting extended logic program has a deri-dation tree whose fringe defined as 

the set of its leaves, is of polynomial length in n, where n is the number of atoms In PE. A 

logical query program which have a p o l y n o ~ a l  fringe property falls in KC. The follo~ving 

logical query programs have the polyno~laial fringe property? hence. it is in NC. 

(i> pix ,  Y) : -p(X, A),piL4. B):p(B,  Y ) .  
p(X.  Y) : -q0(X, Y-1- 

(ii) p(X, 1') : -p(X, A) ql(A. _Ed j, pjB, Y), 
pix, Y) "qo (X ,  Y ) .  

(Ei) p(X, Y) : -ql(Xi A),p(A, B), qz(B,  C), p(C, Y ) .  

p ( X ,  Y ' )  : -q,(X, 4'3. 

5.2.8 UNIQUE RECOVERABILITY FOR INCOMPLETE TABLES OF IN- 

FINITE TYPE 

INSTANCE: A collection F of f~~nctional  dependencies on a finite attribute set (Al, ..., A,) 

and a matrix T = (z3)05tln, 1531m called an incomplete table such that To, = A, for 

1 < j 5 m and the value of each TI, is either a nonnegative integer or the null value T for 

l < i L n a r n d I < j < m .  

PROBLEM: Decide whetber T is uniquely recoverable under F when the domain of each 

attribute AJ is the set of nonnegative integers. 

Reference: [Miyano and Haraguchi, 19821. 

Comment: If a table T' contains no null value and coincides with T except in the entries 

16th the null value, T' is called an extension of T. where Ti,, ..., TA, contains values in the 

domain of A, for 1 < j I: n. A funetioaal depeszdeney is of the form A, t A,,, ..., Atk.  

We say that a table T satisfies A, +- A,,, .... A,, if the values in the columns A,,, .... A,, 

determine the value in the column A,. An incomplete table T is uniquely recovernbie under 

F if there is exactly one extension T' which satisfies all functional dependencies in F.  
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Fig. 6: E(F') 

graph Ejr) is defined by expanding ,!Ii, recursively. Namely, D, is expanded by replacing 

each nonterminal with type j ,  j < i, by a copy of the expansion of subcell D, through the 

corresponding pins. By this definition of E(F), a vertex s of the expansion graph E ( r )  

is represented by a tuple (il,. . . , i,, zt), tvhere the sequence il > . . = > i, represents the 

hierarchlcai relation of expansion and w is the vertex of a copy of Din3 corresponding to s in 

E(F). S o m  P-completeness results about hierarchical graphs are also shown in [Eengauer 

and Wagner, 1987j. 

5 . 3 3  AND/OR CHROMATIC GRAPH ACCESSIBILITY PROBLENI 

INSTANCE: An and/or graph D = (I/, A), positive integers b,  m: an edge coloring 3: : :I+ 
(1,. . . , m) ,  and vertices s, t ,  where T7 is linearly ordered as V = (1:. . . , n) .  

. . 
PROBLEM: Decide whether (1) k 5 m 5 log j17j, (2) there are k different colors i l i  . . . , ln 



{ l i  . . . , m }  such that t is reachable from s in the graph restricted to the subgraph obtained 

by removing the edges with colors other than il, . . . , ik. 
Reference: [Lengauer and LiTagner , 198'ij. 
Comment: See -AND/OR GRAPH ACCESSIBILITY PROBLEM. Remains P-complete 

even if the vertices of D are breadth-first ordered. CHRBhIATIC GRAPH ACCESSIBIL- 

ITY PROBLEXI, which takes directed graphs as instances instead of and/or graphs. is 

NLOG-complete, Hoiivever, the problem becomes NP-compieie if instances are hierarchical 

graphs [Lengauer and Wagner, 19871. 

5.3.4 LEXICOGRAPHICALLY FIRST DEPTH-FIRST SEARCH ORDER 

(EFDFS-ORDER) 

INSTANCE: -4 directed graph D = (V. AA) with a/ = (1; ..., n) and t:;ro vertices u and r, 

PROBLE~I: Decide whether u is visited before v by the following depth-first search algo- 

rithm: 

begin VV = (1,. . . : ? I )  c /  

2' + 0 ;  

for each v = 1 to  n do visitlvjc 0; 

for each v = I t o  n do DFS(u) 

end 

The procedure DFS numbers the vertices as follows: 

procedure DFS(v) 

J* For each 2: E V, n7e assume a fixed adjacency list ADJ(c) * J  
/* of vertices linked by an edge to v c j' 

begin 

if visit[v]=0 then 

begin 

local u: 

i + - i + 1 ;  

visit [v] t- i; 

for each u EADJ(v) in the increasing order 

do DFS(u) 

end 

end 

Reference: [Reif, 19851. 



Comment: Remains P-complete even for undirected graphs. But, constructing any depth- 

first search tree is in RNC for an undirected graph [Aggarwal and Anderson, 19881 and 

for a directed graph [Aggarwal, Anderson and Kao, 19901. The algorithm runs in 

O(TM&f(n)(log n)') time using P;VJAJ(n) processors, where Tl%f?d(n) and PhIiVIjn) are 

the time and the number of processors needed to find a minimum weight perfect match- 

ing on an n vertex graph with maximum edge weight n. KC algorithms for depth-first 

search are known for the foilov~ing restricted classes of graphs. If G is an undirected planar 

connected graph with n vertices, there exists a CREIV PRAhl algorithm for construct- 

ing a depth-first spanning tree of G that runs in O((log n13) time using O(n4) processors 

[Smith, 19861. The number of processors of his algorithm can be reduced to 0 ( 7 2 )  [Ja9Ja9 

and Kosaraju, 19881, [Me and k'esha. iS8Sj. A GREW PRAM algorithm is also known 

for a directed acyclic graph with n vertices, The algorithm runs in time O((log nI2) using 

&)jAf(aa)J log n) processors, where ,14(n) is the time compBexity of n x n matrix multipli- 

cation [Ghosh and BBlattacharjee, 19841. But it contains an error and is corrected [Zhang. 

19861. 

5.3,5 LEXICOGRAPHICALLU FIRST h3AXIMAL PATH 

INSTANCE: A graph G = (I/, E) with V = {I,. . . , n )  and a vertex u. 

PROBLEM: Decide whether u is contained in the lexicographically first maximal path 

( v ~ ,  . . .  ,vt).  

Reference: [Anderson and Mayr, 29871. 

Comment: The lexicographically first maximal path can be computed by the follosving 

greedy algsri thm: 

begin 

i + 1: visit i; u + {i); 

while there is j E V - U with ( i , j )  E E do 

begin 

let j be the least such vertex: 

i + j ;  visit i; U t U U (i) 

end 

end 

The problem is P-complete even if the instances are restricted to  planar graphs with degree 

at most 3 [Anderson and AJayr, 19871. The problem sf finding any maximal (not necessarily 

lexicographically first) path starting at  a given vertex can be solved in RWC [Anderson, 

19871, For graphs with maximuna degree Din), where n is the number of vertices of an 



instance graph, the maximal path problem can be solved in O(Djn)(log nI3) time using 

O ( n 2 )  processors on a CREW PRAM. Furthermore, the maximal path problem for planar 

graphs allo-rvs a parallel algorithm running in O((log nI3) time using 8(n2 )  processors on a 

CREW PRAM [Anderson and hIayr, 19871, 

5.3.6 LEXICOGRAPHICALLY FIRST MAXIMAL INDEPENDENT SET (LFMIS) 

IXSTANCE: A graph G = (Ti, E )  with V = ( I , .  . . , n )  and a vertex u. 

PROBLEM: Decide whether u is contained in the lexicographicaliy first maximal indepen- 

dent set U .  

Ref i rence:  [Cook, 19851. 

C o m m e n t :  An independent  set  is a subset C' of 'i7 such that no two vertices in t' are 

adjacent. -4 maximal independent  set  is a independent set which is maximal with respect 

to the order defined by tile set inclusion relation. The lezicographieally first max ima l  

independent  se t  is a maximal independent set which is the first maximal independent set 

with respect to the lexicographic order on the family of all subsets of V = ( I ,  ... :n). The 
problem is P-complete even for the planar graphs with degree 3 or the bipartite graphs 

with degree 3 [Alfiaiyano, 19891. Bui it allows an KC? algorithm for forests [Miyano, 1988b]. 

On the other hand. the problem of finding any maximal independent set of a graph (R4IS) 

was shown to be in S C  [Karp and Wigdersori, 19851. An NC2 algorithm is devised using 

the technique of transforming a random parallel algorithm [kuby. 19861. hIIS is solvable 

in time O ( ( 1 0 g n ) ~ )  using O ( n )  processors on an EREW PRAh'l [Goldberg and Spencer, 

19891. A similar problem: LEXICOGRAPHICALLY FIRST MAXIMAL CLIQUE. is also 

P-complete [Cook, 19851. 

5,3.9 EEXI68GRAPHICAELY FIRST STAXIMAL SUBGRAPH PROBLERRI 

FOR 7: (LFMSP(7:)) 

INSTANCE: A graph jresp., directed graph) G = (ii, E )  with k7 = (1,. . . , n )  and a vert.ex 

PROBLEM: Decide whether u is contained in the lexicographically first maximal (abbre- 

viated to Em) subset I;' of I/ such that the vertex-induced subgraph Gjlij of U satisfies 

the property .;;, where 7: is asslumed to he polynomial-time testable, hereditary on induced 

subgraphs and nontrivial. 

Reference: [Miyano, 19891. 

Conzment:  A graph property T is said to be nontrivial if infinitely many instance graphs 

satisfy 7; and at least one instance violates 7i. The property r is said t,o be hereditary 



on (resp,, vertex-induced) subgraphs if, whenever a graph G satisfies T, all jresp., vertex- 

induced) subgraphs of 6 also satisfy n. For a polynomial-time testable property A which is 

hereditary on induced subgraphs, LFMSP(n) is solved in polynomial time by the following 

algorithm: 

begin 

ti +- 8; 
for i + l Lo n 

if the induced subgraph of U L! {i) satisfies x then U t U U (i3 

end 

If the property n is nontrivial, hereditary on induced subgraphs and pofj-nomia!-tim 

testable, then LFMSP(r3 is P-complete, The reduction is given from EEXICOGRAPHI- 

@ALLY FIRST PIAXIMAL INDEPESDENT SET. The fsllo~ving properties all satisfy the 

conditions the abos-e: clique, independent set, planar, bipartite. outerplanar, edge graph, 

chordal, coillparability graph, forest; without cycles sf length k, maximum degree E .  acyclic. 

etc. Tf7hen a linear order is given on the edge set as E = (el < ez < a . < em), .sTe can de- 

fine the Lfm edge-induced subgraph problems . Tliere is no known general P-completeness 

result similar to the lfm vertex-induced suhgraph problems. The ifm edge-induced forest 

problem and the Lfm edge-induced bipartite subgraph probiem are in NC2, But the lfm 

edge-induced E-cycle free subgraph prohiem is P-complete for F 2 3. There are some prob- 

lems termed with LEXICOGRAPHICALLY FIRST that are shown in NC [Miyano, 1988a, 

1988b, 1988~.  19891, [Shoudai, 19891. For example, the lexicographically first topol~gical 

order problem is complete for NLOG [Shoudai, 1989]. Therefore the problem is in KCz- 

Sinlilar problems are also discussed in [Greenlait-, l990bI. 

5 3 . 8  LEXICOGRAPHICALLY FIRST &IAXIMAL BOUNDED DEGREE SUB- 

GRAPH PROBLEM 

INSTANCE: A graph G = (11. EE) with V = ( I ,  ...: n> and a vertex u, 

P R O B L E ~ ~ :  Decide whether u is contained in the lexicographically first maximal subset U 
of V such that the vertex-induced subgraph G[U] of li is of degree at  most k i  where k > 1 

is a fixed integer, 

Reference: [Miyano, 19891, 

Comment: P-completeness follossrs honl LEXICOGRAPHICALLY FIRST MAXIMAL SUB- 
GRAPH PROBLEM FOR 7 ; .  The prohiem of finding any maximal bounded degree sub- 

graph is solx~able in NC2 for any degree bound k > 1 [Shoudai and biliyano, 19901 . 



JVhen the edge set E is linearly ordered as E = ( e l  < e:! < * < em): we can consider 

the lexicographically first maximal matching problem (LEXICOGRAPHICALLY FIRST 
iB,IAX%MAL 9IXTCBIYG (LFMM)), In contrast with LFMIS, EFMkl seems to be nei- 

ther P-complete nor in NC. LFhIM is sho-cvn CC-complete [stated as an indirect personal 

communication of S.A, Cook in [kifayr and Subramanian, 198931. In the same way, LEX- 

TCOGRAPBIGALLY FIRST l~f\;fAXIh1-4L BOUYDEQ DEGREE EDGE-INDUCED SUB- 
GRAPH PROBEERS is GC-complete [Shoudai and Miyano, 19901 . 

5,3,9 LEXICOGRAPHIC-ALLY FIRST A + l  VEPSTEX COLORING 

INSTANCE: A graph G = ( % f , E )  with 41 = ( I , .  . . , n ) ,  a vertex u and a color r: E C = 

(1 . . . , A + I), where A is the maximum vertex degree of G. 
PROBLEM: Decide whether vertex u is colored rvitb c by the follotving sequential algorithm: 

begin 

for v t 1 to  n do 

colorjti) t min(c E C 1 c is not assigned to any vertex which is adjacent to  u j  

end 

Refirenee: [Luby, 19861. 

Comment: Any graph can be colored using no more than A + 1 colors, There is a 

CRE3'i7 PRAM algorithm which computes A i 1 vertex coloring. with running time 

O(jlog ? z j 3  log log n) using Oln)  processors [Euby, ISSE]. 6' can be colored using at most A 

colcrs iff G is not an odd cycle and G does not contain a complete subgraph on A i l  vertices 

[Brooks, 19411, There is an EREkV PRAM algorithm 'ivhich finds a A vertex coloring using 

Ce(n4) processors in time O((log nI5) [Karloff. 19893. The problem of deciding whether a 

given graph can be colored with A - 1 colors is NP-complete [Garey and Johnson. 19791. 

5.3.18 GREEDY BREADTH-DEPTH SEARCH ORDER 

INSTANCE: A graph G = (5: E) with a numbering on the vertices in V. a start vertex s i  

and two vertices ad, and v. 

PROBLEM: Decide whether u is visited before z* by the greedy breadth-depth search algo- 

rithm induced by the numbers in the numbering of V .  

Reference: [Greenlaw. 1990a]. 

Comment: Reduction from LEXICOGRAPHICALLY FIRST DEPTH-FIRST SEARCH 
ORDER. The greedy breadth-depth search algorithm is described as fol1o.c~~: 



begin 

J* A graph G = (V, E )  with V = (1, ..., n) is given */ 
J* For each v f we assume a fixed adjacency list ADJ(u) */ 
/* of vertices linked by an edge to u */ 
count c 1; 

for i c l to 92 do visit[i] c 0; 

push s on stack S; 
while S f null do 

begin 

v t p o p  S; 
for each u E ADJ(t7) in the increasing order do 

if visit[uj= 0 then 

begin1 

visit [a$]  ccorint; 

push 21 on S; 
count -count +I 

end 

end 

end 

5.3.11 MINIMBJhq FEEDBACK VEIRa'EX SET FOR CYCLICALLY REDUCIBLE 

GRAPHS 

IWST.~NCE: A cyclicaliy reducible directed graph D = (K ',A). 

PROBLEM: Find a minimum feedback vertex set of D ,  

Reierence: [Bovet, de Agostino and Petreschi, 19881. 

C o m m e n t :  A set X 2 8: is a feedback vertex set  if it contains at least one s-ertex from every 

cycie in G. The associaied graph of vcr iez  J: with  respect to D, denoted ,4(1). z). consists of 

n: and all vertices not connected by any path to vertices included in cycles after eliminating 

x from D. Let yl,  . . . , yk be a sequence of vertices of D. Then we define graphs Do,.  . . . Dk 
inductively as foflows: Do = D, D, = D,-l - A(D,-l. y,) for i = 1,. . . , k .  VvVe say that 

the sequence yp, . . . , y k  is a complete D-sequence of D if each of A(Do, yn), . . , A(Dk-l; yk) 

contains a cycle but Dk is acyclic. Note that D,-l contains a cycie for i = I, , . , , il- if 

yl.. . . , y k  is a complete D-sequence, A directed graph D is cyclically reducible if there 

exists a complete D-sequence for D. The problem of finding a minimum feedback vertex 



set for general directed graphs is NP-complete [Garey and Johnson. 19791. A polynomial 

time algorithm for finding a minimum feedback vertex set for cyclically reducible graphs is 

presented by using the fact thao(y l , .  . . ; yk) is a minimum feedback vertex set if y 1 7 . .  . , y k  is 

a complete D-sequence [IVang, Lloyd and So&. 19851. There is a GREkV PRAM algorithm 

which runs in O(k(log n)2) time using O(n4) processors, where k is the cardinality of the 

minimum feedback vertex set [Eovet, de Agostino and Petreschi. 19881. 

5.3.12 HIGH DEGREE SUBGRAPH (NDS) 

INSTANCE: X graph G = (I/; E ) ,  
PROBLEM: Decide whether there is a subset U 2 I/- of vertices such rhat the degree of 

each vertex of the vertex-induced subgraph G[U] of U is at  Least k ?  where F 2 3 is a fixed 

integer. 

Reference: [Anderson and Mayr, 19841, [AIayr, l938j. 

Comment: MES for k = 2 falls in KC [Mzyr, 19881. It is easy to see that the mi~zimzlm 

size vertex-induced subgraph each of whose vertices is of degree at least k is unique. The 

problem of deciding whether a given vertex u is in :he maximum size high degree subgraph 

is also P-complete. 

5.3,13 MINITcrltTM DEGREE ELIhTINATIOPU' SEQUENCE 

INSTANCE: A graph G = (Ti: E )  

P R O B L E ~ ~ :  Find a minimum degree elimination sequence. 

Reference: [Vish~vanathan and Sridhar, 19885, 

Comment: Reduction from CIRCUIT VALUE PROBLEkI with fanout at  most 2. A 

minimum jresp.. mnzimumj degree eelimination sequence of a graph G is an ordering 

vl: vz, . . . , G, of the vertices of G such that, for every i :  the vertex c, is of minimum (resp., 

maximum) degree in the subgraph G; induced by the vertices {u;, u ,+~ ,  . . . v,). A similar 

problem, MVHAXIVIUM DEGREE ELIMINATION SEQUENCE, can be shown P-complete. 

For a directed graph, the minimum indegree elimination order problem can be defined and 

it is also P-complete. 

With a numbering on the vertices, the lexicographically jrst minimum (resp,, maximum) 

degree elimination sequence Y ,  ..., v, is defined by choosing the lowest n u d e r e d  vertex v, 

which is sf minimum (resp.: maximumj degree in the subgraph induced by V- {gl, ..., v ; - ~ ]  

for 1 _< i 5 n, where ]V /  = n. Obviously, the lexicographic version of these problems are 

P-complete [Greenlaw; 19881. Moreover, the folloi%-ing similar problems are considered 

and some P-completeness results are shown in [Greenlaw, 19883. For an integer K. 2 1; 



the lezicographically first less than k (resp., greater than k )  degree elimination sequence 

vl, ..., v, is defined as foIlows: If tire suhgraph induced by 57 - (vl, ...: v,-1) contains a 

vertex of degree less than E (resp., greater than k) then v: is the lowest numbered such 

vertex. Other~vise v; is the lowest nunhered vertex in V - (vl, ..., v,-1). Then it is shotvam, 

for example, that given a graph G = (V, E )  with a numbering on the vertices, a vertex u 

and an integer it 2 1, the problem of deciding whether u = vt and v, is of degree greater 

than k for I < 2: 5 t - 1 but v, is of degree at most k in the Lexicographically first greater 

than k degree elimination sequence is P-complete. 

5,3,14 FOUR COLOR INDEX 

INSTANCE: A graph 6. 
PROBLEM: Decide whether the color index of G is at most 4. 

Reference: [Vishwanathan and Sricihar, 19881. 

Gom~nent:  Reduction from RIIKIMUM DEGREE EEIYIIN14TIOK ORDER. The color 

index  of a graph - G is the maximum; over ail subgraphs fd of G7 of the minimum vertex 

degree of X. 

5.3.15 CONGRUENCE CLOSURE 

INSTANCE: ,4 directed graph D = (V, /,A$, vertices u, v and an ecjuivalenee relation C" on 

I f .  
PROBLE~I:  Decide ivfiether u and v are equivalent under the congruence closure of C. 

Reference: [Kaneliakis and Revesz, 19891, 

Com7nent: The congruence closure of C (denoted E,) is the finest equivalence relation on 

that contains C such that for all vertices v and .ru with corresponding successors vly wl 

and v2, w2 we have: vl FZ, wl, v2 m, Z L ' ~  ==+ z? mc u:, An algoritl-irn fur solving CC is the 

folloiving: Let I) and C, u and v be as above, We define symmetric and reflexive relations 

E on pairs of vertices sf D. This relation is represented by undirected edges added to D 
and ?abeled E. For each vertices of u and v that are in the same equivalence class of C we 

add undirected edge uEv to the graph. Also, add undirected edge uEv if it is not present 

and either 

(a) rialEvl and u2Ev2 are present, where ul, UZ? and vl; va are the ordered successors of 

ti, u. In this case 11 and v are distinct vertices. This is called an up-propagation step .zPv. 

jh) uEw and wEv are present, where au is some vertex in D,  In this case 21 and v are 

distinct vertices, This is called a tmnsitivity step uTv. 

The following characterization of the congruence closure relation is known: 



u m=;, il? iff undirected edge uEtl is added after some finite sequence of up-propagation and 

transitivity steps. 

Remains P-complete even if C is the reflexive, symmetric, and transitive closure of two 

pairs of d i s t i~c t  vertice~ (we say that C has two axioms). byhen C has no axioms, that is 

each distinct vertex is an equivalence class, the problem is in XC2. 14rhe1-i C has only one 

axiom, then the complexity is open. 

If D is acyclic, the followings are known: (1) P-complete if @ has three axioms. (2) SC" 
if Z" has one axiom. (33 %-hen C has tivo axioms, then the complexity is open. 34) 1FThen 

D is a simple directed acyclic graph (simple dag) with k axioms (k > 2), the complexity is 

open. A simple dag is a dag D such that the only vertices of D with indegree greater than 

1 are leaves. 

5.3.16 UNIFICATION CLOSURE 

INSTAXCE: A directed graph D = (K -41, vertices u,  v of 6, and an equivalence relation C 

on V. 
PROBLEM: Decide whether .u and v are equivalent ~ ~ n d e r  the unification closure of C. 
Reference: [Kanellakis and Revesz. 19891. 

Comment: The uni5cation closure of C (denoted wCj is the finest equivalence relation on 

V' that contains C such that for all vertices v and tu with corresponding successo- ~s v1, w1 

and v2, wz we have: v wC w -=;, ~1~ ~2 NC ~ 2 %  If D has at most a fixed number of 

lea~es ,  then the complexity Is in NC2. 

5.3,1"7A@YGLIC CBNGRUEhT@E CLOSURE 

IKSTANCE: A directed graph D = (V, A), and an equivalence relation C on V .  
PROBLEM: Decide whether the graph contracted by the congruence closure of C is acyclic. 

Rejerenee: [I<aneliakis and Revesz, 19891. 

Comment: t% say that D is acyclic under the equivalence relation G if the directed graph 

we get by the contracting the vertices in each equivalence class of C is still acyclic. The 

problem is in KC2 if C has a fixed n u d e r  of nontrivial equivalence classes. 

5.3.18 ACYCLIC -t3NIFPCATIBhT CLOSURE 

INSTANGE: A directed graph D = (V, A); and an equivalence relation C on V. 
PROBLEM: Decide whether the graph contracted by the unification closure of C is acyclic. 

Refereface: [Kanellakis and Revesz, iSSS]. 

Comment: See ACYCLIC CONGRUENCE CLOSURE. 



5.3.19 GENERAL GRAPH CLOSURE 

INSTANCE: A graph G = (V, E )  and a set Ef C V x V - E. 

PROBLEM: Decide whether the general closure gc(G, E6) of @ contains an edge (u, v) of 

El. 

Reference: [Khuller, 19893. 

Comment: The general ciosure yc(G, E y  of G is the graph obtained from G = (If? EE) by 

repeatedly adding an edge in Ehszrch that the sum of degrees of its two endpoints is at least 

n, until no such edge remains. Obviously, the general graph closure ye(G, E') is unicjuefy 

determined, 

5.3.20 HIGH VERTEX CONNECTIVITY SUBGRAPH (HVCS) 

IKSTAXCE: A graph G = (V: El. 

P R O B L E ~ ~ :  Decide -cirrhether @ contains an induced subgraph of vertex connectivity atleast 

k ,  where k is any fixed integer with k 2 3, 

Reference: [Kirousis, Serna and Spirakis, 19391. 

Chmment: Reduction from ALTERNATING hIONOTONE CVP with fanout 2 (see CIR- 

CUIT "t774L%-E PROBLEM). The vertex (edge) connectivity k(G) (h(G)) of a graph G is 

tile rninimirrn number of vertices (edges) ivhose removal results in a disconnected or trivial 

graph, A graph G = ( V , E )  is m-vertex (m-edge) connected if k ( 6 )  2 m (,A(&;) 2 m). 
The optimization version of I-IVCS (resp,, HIGH EDGE COXNEGTIVITY SUBGRAPH 
(E-IECS)) asks what is the largest F srech that there is an irsciuced subgraplr of vertex 

(edge) connectivity k. Let HVCS(G) (resp,, RECS(G')) denote this largest k ,  An approx- 

imate solution to this problem is to find ci" such that RI7CS(G)2 d 2 c HV@S(G) (resp., 

HECS(G)> d 2 5: HECS(G)) for some fixed c < 4 .  This problem cannot be approximated 

for e > I/% (e: > 1/2) in YC, Hoi~ever HVCS (resp., HECS) can he approximated in KC 

for c < 1J4 (resp., c: < 3/2), 

5.3,21 HIGH EDGE CONNECTIVITY SUBGRAPH (HECS) 

INSTANCE: A graph G = (V: El. 

PROBLEE~I: Decide whether G contains an induced subgraph of edge connectivity at least 

6:  where k is any fixed integer with k 2 3. 

Reference: [Kirousis, Serna and Spirakis, 19891, 

Comment: See HIGH VERTEX COXYEGTIVITU SUBGRAPH. 



5.3.22 APPRBXIMATIBN OF RELIABLY LONG P14TI-I 

HNSTANCE: A directed acyclic graph D = (V, A), a vertex v, a subset U C V of ~er t ices  

and an integer K .  

PROBLEM: Assume that for each u E U exactly one of the incoming edges to u fails with 

probability l l%ndegree(u) .  The length L of the reliably longest path is defined to be the 

maximum number k such that D has a path starting from 2: of length at least I. with 

probability 1. Then decide whether L 2 K 2 EL, where c is a fixed rational number in 

(07 I]* 
Reference: [Kirousis and Spirakis. 19881. 

Comment: Reduction from APPRBXIA~l.4TION OF GlRCClT DEPTH OF OKES [l<irousis 

and Spirakis, 19881. 

5.3.23 UNARY NETWORK FLOMT FOR VERTEX MUETIPLHCITY GRAPHS 

INSTANCE: A directed vertex multiplicity graph iVf = jV,A,b) with two distinguisized 

vertices, a source s and a sink 1,  a positive integer capacity c(u, v) represented in unary on 

e17ery edge (11,  v) E A, and a positive unary integer K. 
PROBLENI: Decide whether there exists a flow of at feast K units from s to t in a directed 

graph represented by i"l. 

Refirenee: [Karpinski and Wagner, 19881. 

Comment: See 1,IAXISIUM FEOJIT. Reduction from 31A4XIMU21 FFLOiV. A directed vertex 

m~ltiplieity graph Is a triple LCl = ( y  -4, b) ,  where V is a finite set, A is a subset of V x V and 

b is a positive integer function on V .  The directed vertex multiplicity graph llf = (17. A. l i j  

represents a directed graph D = (V', A') such that V L  {(v, i >  I v E V and 1 < i 5 6(v)) 
and ,4' = (((v. i), (us j>> 1 (u, 2:) E A. 1 2 i 5 b(v)  and 1 5 j < b(u)). An undirected vertex 

mzlltiplicity graph is also defined sirnilasiy. 

5.3.24 PERFECT &I-ATCHBNG FOR VERTEX i\/IULTIIaEI@P'P'Y GRAPHS 

INSTANCE: An undirected vertex multiplicity graph iW = (I/: E ;  b) .  

PROBLEM: Decide whether there is a perfect matching in a graph represented by M. 
Refirence: [Karginskl and Wagner, i988j. 

Comment: See VNARY NET17tiORK FLOW FOR VERTEX &IULTIPLIGITk' GRA4PB. 

Remains P-complete even for undirected vertex mltiplicity graphs which represent bipar- 

tite graphs. It is known that this problem for u s ~ ~ a l  graphs is in RNC [Karp, Tipfaf and 

T't'igderson, 19851, [Mulmuley. Vazirani and Vazirani, f 9871. but not known to be in NC. 



5.3.25 PERFECT B-MATCHING WITH CAPACITIES 

INSTANCE: A graph G = (V, EE), functions b : V E (1,2, .  . .) and c : E E (1,2,.  . .). 
PROBLEM: Decide whether there is a function ci : E E { O ,  1, . . .) such that c'((u; v)) < 
c(ju: v)) for every (u ,  uj E P and CoEudijil) c"i(u: v)) = bju) for all ti E V. 

Rekrence: [I<arpi~-iski and JT7agner: 19881. 

Comment: This problem was shown to be in P by [Gr6tschel, Lovasz and Schrijver, 19881. 

5,4 Optimization 

5.4-1. LINEAR PROGRAhq&lfMG (LP) 

IKSTANCE: An integer n x d matrix A, an integer n-vector b. an integer d-vector c ancl an 

integer B. 
PROBLEM: Decide whether there is a vector n: suclr that Az < b and cz 2 B. 

Refereace: [Bobkin, Lipton and Xeiss; 19991, [lchachian, 19391. [Dobkin and Reiss, 19SOj. 

Comment: The n u d e r  d represents the number of variables called the dimension and l z  

is the nun-rber of inequality constraints. This problem was shown to be in P by [Khachian, 

19'793, [Karmarkar, 19841, For any fixed dimenslo11 d, LP with n inequalities can be solved 

on a probabilistic QIRCJV PRAM with nd/(log dl2 processors almost surely in O(d2(?og dl2) 

time [_Alan and hIegiddo, 19901. The algorithm always finds the correct solution, The 

probability that the algorithm will not finish within O (dz(log d)2$  time tends to zero expo- 

nentially v~ith respect to  n. A parallel algorithm solving LP (not an NC algsritilm) is also 

developed [Vaidya, 19901. 

5.4.2 LINEAR INEQUALITIES (EI) 

IKSTAKCE: An integer n x d matrix .4 and an integer n-vector b, 

PROBLEL~: Decide whether there is a rational d-vector z > O such that Az < b. 

Referelace: This problem is stated in [Greenlaw, Hoover and Ruzzo, 19891 as a private 

comm~~nication with [Cook, 19521. 

Comment: The reduction from CIRCUIT VA4LUE PROBLE31 to LI is as fo l lo~~s :  An input 

rr: = true (resp. x = f a l s e )  is represented by the equation z = 1 (resp, z = 0). A NOT 
gate y = l x  with input z and output y is represented by the inequalities y = 1 - x and 

0 5 y < 1. An AND gate z = z i\ y with inputs rc ,  y and output z is represented by the 

inequalities O < z < 1, z 5 2, z 5 y,  and z $ y - 1 < s. 



INSTANCE: A directed graph D = (I[, A) with two distinguished vertices; a source s and a 

sink t ,  a positive integer capacity c(u, v) on every edge (u ,  u) E A; and a positive integer i. 

PROBLEM: Decide whether the i th bit of the value of the rnaximum flow from s to t in D 

is 1. 

Reference: [Goldschiager, Shaw and Staples, 19821. 

Comment: Reduction from kIONBTONE CIRCUIT VALUE PROBLEM with fanout at 

most 2. A yRow f is an assignment of a nonnegative integer to each edge of D such that 

(a) for every (u, v) E A, f (u, v) < c(u, v), and 

(b) for every u E $7 - (s, $1, C(zL,.LjEAf(~,  ?j i  = CiV,W)fAf(O: w). 

The maximam flow is a flow f wl-iose "total flow = C(v , t )EAf (~ ,  t )  is maximum. The 
edge capacities defined in [Gold~chlages~ Sham7 and Staples, 19821 are bounded by 2i"i. 

It is an open question whether the problem for polyaomial capacities or 0-1 capacities is 

P-complete, The problem restricted to planar directed graphs can be solved in B((Log T L ) ~ )  

time using Ofn" processors or O((log ~ 2 ) "  time using 0 ( n 6 )  processors on a GREW PRAM 
[Johnson, 19871. A parallel algorithm for 3IXXIhIUM FLOIV that runs in 0 ( n 2  1ogrz) 

time using Ojn)  processors on a CRCW PRAM is also known [Shiloach and Yishkin, 

19825. Constructing a maximum flow in a directed graph whose edge weights are given 

in unary lies in RXC using the technique of maximum perfect matching [Karp. Upfal and 

tI7igderson, 19851. It seems that the parallel complexity of the maximum Bow problem 

depends critically on whether the capacities are given in unary or in binary. Pievertheless, 

there is a randomized parallel algorithm to construct a maximum flow iin a directed graph 

whose edge sireigl-its are given in binary. such that the number of processors is bounded by 

a polynomial in the number of vertices and the time Is B(jlog n)"og C )  for some constant 

k ,  where @ is the largest capacity of any edge [Marp, Upfal and ZVigderson, 19851. The 

rnaximum Bow problem in the following form is also P-complete: Given a, directed graph 

D = (TJ. A) with two vertices s and ti a capacity c(u ,  "L:) for (u ,  V )  f A, and an integer K ,  

decide whether the rnaximum flow is as large as K [Lengauer and &iiiagner, 19871. 

5 - 4 4  LEXICOGRAPHICALLY FIRST BLOCKING FLOW 

INSTANCE: A directed acyclic graph D = (If,/:) wirh a numbering on the vertices. two 

distinguished vertices s and t ,  a positive integer capacity c(u, v) on every edge ju, v) E A; 
and a positive integer i. 

PROBLEM: Decide whether the ith bit of the value of the lexicographically first blocking 

flow from s to t in D is 1. 



Rehrence: [Gheriyan and Mahesharvari, P989], 

Comment:  See 34XXIMU%I FLOtV. A flow f is a blocking Bow if for every path from 

s to -t contains a saturated edge (u, v), i.e., f (u, v) = c(u,  v). The leaicog~aphieably first 

biocbiizg flow is the fiow which is generated by the sequential depth-first search blocking 

flow algorithm [Dinic, 19701: Find a path from s to t by using the lexicographic depth-first 

search method, Then find an edge e with the least capacity, say c,  on the path from s 

to t ,  Push the capacity c on each edge of the path to saturate some edges including e 

and delete all newly saturated edges from the graph, Repeat this procedure until t is not 

reachable from s. A maximum flow can be found by iterating any blocking flow algorithm 

at most n times, There is a simple parallel algorithm for finding a blocking Bow rvhicfi 

runs in O(n  log n) time using rn processors on an ERE157 PRAhI. where m is the number of 

edges [Goldberg and Tarjan. 19891, A layered network is an acyclic graph in which all s-t 

paths have the saKe length, Remains P-complete even if D is a layered network of length 

3 [Gheriyan and Mal-ieshawari. 19891. 

5.4.5 SUPERINCREASING KNAPSACK PROBLEM 

INSTAKCE: An integer w and a sequence of Integers w1,2~'2. .... au, such that for all 2 5 i 5 n 

ZL.; > E;: w1 D). 

PROBLEM: Decide whether there is a sequence of 0-1 valued variables zl, ~ 2 ,  .... 2 ,  such 

that w = C,X=, z,w,. 

Rejerence: [Eiarloff and Ruzzo, 19891. 

Comment: Reduction from XAND CIRCUIT VALUE PROBLEM. The general v+~eil-knorvn 

0-1 knapsack problem is NP-complete, Superincreasing knapsacks are known as the basis 

for the Merkie- Wellman cryptosystem [Merkle and Hellman, 19751. However, the system is 

shown to be of questionable security [Adleman, 19831, [Shamir, 19821. 

5.4.6 FIRST FIT DECREASING BIN PACKING 

INSTANCE: A sequence p1 ..., y, of pieces with vaiues vl, ..., v,; respectively, which are 

rational nunhers satisfying 1 5 cl > . > v, > 0 and an assignment 1 : (p,. ...,p,) 4 

(bl,  ..., b k ) ,  cailed a packing, of the pieces into bins bl, . . . . bk. where the sum of the values 

of the pieces in each bin must be 5 I, i.e., Cp3 E I - ~  jbLj vj 5 1 for 1 5 i 5 k. 
P R O B L E ~ ~ :  Decide whether 1 is the packing produced by the first fit decreasing (FFD) 

algorithm. 

Reference: [Anderson, Mayr and k17armuth? 19891. 

Comment:  The FFD algorithm considers the pieces in the order of non-increasing size, 



Starting with vl until u,, the FFD algorithm places each piece into the first (lowest num- 

bered) bin that has enough remaining capacity. It has been shorvn that the length of the 

packing generated by FFD is at  most yOPT(I) + 3. where 0P'i';l) is the optimal n ~ ~ m h e r  

of bins for I iGarey and Johnson, 19791. 

5,4.7 GENERAL LIST SCHEDULING 

IXSTANCE: A list of jobs ( J l , .  . . , J,), a positive integer execution time T(Ji) for each job: 

and a nonpreemptive schedule L with m processors. 

P R O B L E ~ ~ :  Decide whether L is the schedule produced by the list scheduling algorithm. 

Reference: [Helmbold and hlayr, 1987'I. 

Commeiit: In nonpreemptive scheduling, a job once begun must be executed to completion. 

Whenever a processor becomes free, the scheduler simply performs a fixed directed scan 

of the list and assigns to the processor the first job encountered which has not yet been 

executed and whose predecessors h a i ~  all been cornplered. 

5.4.8 HEIGHT-PRIORITY SCHEDULE 

INSTANCE: A directed acyclic graph D = (V, A) and a profile $1. 

PROBLEM: Find a height-priority schedule for D and p. 

Reference: [Dolev, Cpfal and W-armuth, 19861, 

Comment: A profile is a function p : ( 0 , i ;  ...I 4 {I, 2, ...), where p ( i j  represents the 

number of processors available at the itih time slot, A profile is cailed straight if it is a 

const ant funct io~.  

A schedule s for a directed acyclic graph D = (I/; A) and a profile is an onto f~~nc t ion  

s : V -. (0,1. .. ., I - 1) for some d satisfying (a) and (b). 

(a) js-'(;r) j 5 ~ ( T J  for each r in (0,1, ..., 1 - 1). This means that the number of 

processors used at the r th  time slot is at most p j r ) ,  

(b) If jz,y) E A, then s(z)  < s(y) .  

Let q be a function Gom V "i {(O, 1, ...), A schedule is called a q-priority schedule if it 

satisfies (c) ( q  is cailed a priority fanctisn), 

(c) S(Z) > ~ ( y )  and q(x) > q(y)  implies that rr: is a successor of some vertex z with 

s(z) = s(y) .  

A heiglzt-p?*iority scjzedule is a schedule with heig h t ( z )  as a psiorit y function, where 

heighh'(z)  represents the length of the longest path starting at x. 

A directed acyclic graph D is said to be an outforest (resp., inforest) if every vertex 

has at most one immediate predecessor (resp., immediate successor). The problem is still 



P-complete even If D is an outforest and p is nondecreasing. 

byhen the profile is assumed to be straight, the problem of finding the following schedule 

is P-complete, 

(I)  A height-priority schedule for a graph consisting of an out-forest and an inforest. 

(2) A height-priority schedule for a graph in which the vertices of every component are 

partitioned into levels according to the height sf the vertices and the vertices of a level 

precede ail vertices of the same component of the levels below it. 

(3) A sveighted-priority schedule for a weighted outforest using only three different 

weights, where the priority function is given by the weights on the vertices. 

On the other hand, an optimal height-priority schedule for a straight profile and an out- 

forest can be found by an 0 (log n)  time (resp., O((log n)" time) EREIY PRAM algorithm 

using 3z2 processors (resp,, n processors). 

5.4.9 NEAREST NEIGHBOR TRAVELING SALESMAN PROBLEM 

HKSTAWCE:  A distance matrix jO;,)ll;,,l, and a vertex vl ,  where 0 5 P;;;, < cs is an 

integer or tile symbol co specifying the distance between vertices i and j .  if the distance 

DZj = m, it means that there is no edge between i and j .  

PROELE~I:  Find a nearest neighbor heuristic tour starting at  GI.  

Reference: [Mindervater, Eenstra and Shmoys, 19891. 

Comment: A sequence of vertices ul, ..., V, ' i~~i th  (vl, .... r3,) = (1, ..., n) is called a near- 

est neighbor izeuristic tour starting at  q such that the distance B,,-,,8 between and 

t:, IS equal to rnin(D j i - < j - < n )  for each I < 2 < n. It should be noted that 

there may be several nearest neighbor heuristic tours since the nearest neighbors are not 

necessarily unique. Hot-i-ever, the redlrction is given from CVP so that the instance of 

NEAREST NEIGHBOR TR;%\iELING SALESXILAX PROBLEM transforl~led from a cir- 

cuit bas a rrniyue solution, 

A nearest neighbor heuristic tour is found by the following nearest lzekhbor heuristic: 

1. Start at  vertex vl. 

2. Among all vertices not yet visited, choose as a vertex which is nearest to the current 

vertex with respect to the distance matrix (k),,)15,,,s,, Repeat this step until ail vertices 

h a w  been visited. 

The problem is still !-complete even if the distance matrix satisfies the triangle in- 

equality. On the other hand, the double minimum spanning tree heuristic and the nearest 

addition heuristic described below can be implemented in NC. 

(1) Double minimum spanning tree heuristic: Construct ?I, minimum-weight spanning 

tree, double its edges and construct an Euierian circuit of this double edged spanning tree. 



Then start at a given vertex and traverse the Eulerian circuit, skipping vertices visited 

before. 

( 2 )  iziearest addition heuristic: Start with a tour consisting of a given vertex with a 

self-loop. Find vertices j not on the tour and E on the tour such that Qk is minimum, 

Then insert j directly before k. Repeat this step until all rrertices are inserted. 

Hoi,'i7ever. it is not known whether the Christofides heuristic described below is in XC. 

This is siwLpiy because the parallel complexity of the maximum matching prohiern is unre- 

solved. 

( 3 )  Christ0~5des heuristic: 

1. Construct a rniiai~~um-weight spanning tree T .  

2. Find the vertices of odd degree and find the minim~~m perfect matching ibf in the 

complete graph consisting of these vertices of odd degree. 

3. Construct an Eulerian circuit of the multigraph with vertices 1,2, . .. , n and edges in 

T t' 114. Then start a t  a given vertex and traverse the Eulerian circuit, skipping vertices 

visited before. 

5.4.10 NEAREST MERGER TRAVELING SALESMAN PROBLEM 

INSTANCE: A distance matrix (D,j)15;,, where 0 5 DZ, < m is an integer or the symbol 

m specifying the distance between vertices i ancl j .  

PROBLEM: Find a nearest merger heuristic tour. 

Reference: [Kindervater, Eenstra and Shmoys, 1989j. 

Comment: The nearest merger heuristic is described as follows: 

1. Start with n partial tours, each consisting of a single vertex with a self-loop. 

2. Find toerrs C and C' such that the distance dist(6,  C') between CI ar,d C 9 s  mlninmm, 

t-vhere dist(6,  C') = rnin(D,, 1 i E C ,  K E C']. Let ( 2 , j )  be an edge of C and (E,  173 an 

ecige of C' for +t~hich Drk + Dgi - D,, - Dki is nxinim~~rn. Then merge C and C' by replacing 

edges (i, j )  and (k, b )  by (i, k) and { j ,  I), respectively. Repeat this step until a complete 

tour is obtained. 

Since tours C ,  6' and edges { i , j ) ,  ( k ,  I) are not necessarily uniwely determined, the 

resulting tour depends on the choices of C ,  &'I, (i, j ) ;  and (k, I). Therefore the above 

heuristic does not specify a unique tour, A nearest merger heuristic tour is a tour obtained 

by the above heuristic by appropriately specifying the choices in step 2. However. the 

reduction is given from CVP so that a circuit is transformed to an instance of NEAREST 

MERGER TRAVELING SALESMAN PROBLEM for which the nearest merger heuristic 

is unique. 



The problem is still P-complete even if the distance matrix satisfies the triangle in- 

equality. 

5.4.11 NEAREST INSERTION TRAVELING SALESMAN PROBLEM 

INSTANCE: A distance matrix (D;, jlii,,i, and a vertex v, where 0 5 Daj  5 co is an integer 

or the symbol cxj specifying the distance between vertices i and j .  

PROBLEK~: Find a nearest insertion heuristic tour starting at  v. 

Reference: [Kindervates, Lenstra and Shmoys, 19891. 

C'omment: A nearest insertion heuristic tour starting at  v is a tour obtained by the nearest 

insertion heuristic described as follows: 

4. Start with a tour consisting of v ivith a self-loop. 

2. Find a vertex mot on the tour .;-hich is nearest to a vertex already contained in 

the tour. Insert this vertex between trji,~o neighboring vertices on the tour in "ee cheapest 

possible way. Repeat this step until the tour is complete. 

By a reason sianilar to KEAREST MERGER TRAVELING SALESMA4K PROBLEbl. 

the nearest insertion lieuristic does not specify a unique tour, However, the reduction is 

given from CVP so that a circuit is transformed to an instance of KEAREST INSERTION 

TRAJIEEIXG SALESLtAN PROBLEM which has a unique nearest insertion heuristic tour. 

The problem is still P-complete even if the distance matrix satisfies the triangle in- 

equality. 

5.4,12 CHEAPEST INSERTION TRAVELING SALESfidAN PROBLEM 

INSTANCE: A distance matrix (D,,)l<;,,<, and a vertex v. where 0 5 D,, 5 w is an integer 

or the symbol a specifying the distance between vertices i and j. 

P R O B L E ~ ~ :  Find a cheapest insertion heuristic tour starting at ti. 

Reference: [Kindervater. Lenstra and Shmoys, 19893. 

Comment: A cheapest insertion heuristic tour starting at v is a tour obtained by the 

cheapest insertion heuristic described below. The cheapest insertion heuristic does not 

necessarily specify a unique tour. However, CVP is reduced so that a circuit is transformed 

to an instance of CHEAPEST IKSERTHON TRA"L7ELIN@ SALESM,;PN PROBLEM which 

has a unique solution, 

1, Start with a tour consisting of v with a self-loop. 

2. Find a vertex not on the tour which can be inserted between two neighboring vertices 

on the tour in the cheapest possible way. Insert this vertex between two neighboring vertices 

on the tour in the cheapest possible way. Repeat this step until the tour is complete. 



The problem is still P-complete even if the distance matrix satisfies the triangle in- 

equality. 

5-4-13 FAR%HEST INSERTION TRAVELING SALESMAN PROBLEM 

IKSTANCE: A distance matrix (D;,)15;~j5, and a vertex u, where O 5 Dij < rx! is an integer 

or the symbol CLC specifying the distance between vertices i and j, 

P R B B L E ~ ~ :  Find a farthest insertion heuristic tour starting at  v. 

Reference: [Kindervater, Lenstra and Shmoys, 19891. 

Cornmeat: A farthest insertion heuristic tour starting at  v is a tour obtaisded by the far- 

thest insertion heuristic described below. B y  a reason similar to NEAREST MERGER 

TR-AVELISG SALESllfAN PROBLERI, the farthest insertion heuristic does not necessar- 

ily specify a unique tour. The reduction is given from CVP so that the resulting instance 

of F14RTHEST IYSERTIOX I-SRAITELHNG SALEShlAN FROBLELl transformed from a 

circuit has a unique solution. 

1. Start with a tour consisting of a with a self-loop. 

2. Find a vertex not on the tour for which the minimum distance to a I-ertex on the 

tour is maximum, Insert this vertex between two neighboring vertices on the 'tour in the 

cheapest possible \Tray. Repeat this step until the tour is complete. 

The problem is still P-complete even if the distance matrix satisfies the triangle in- 

equality. 

5.4.14 FINITE HORIZON h4ARKOV DECISION PROCESS 

INSTAXGE: A Markov decision process 114 = (J, c ,p )  and two integers T and I<. 

PROBLEM: Decide whether there is a policy S such that the expectation of the cost 

cF=~ cis,, &(s t ,  i t) ,  i) is at most li. 

Reference: EPapadimitriou and Tsitsikiis; i987j. 

Comment: A Rlarkov decision process A1 = (S, c, JI )  consists of the following: S is a finite 

set of states xvliith a special state so called the initial state. For each state s E S. a finite 

set @, of decisions is given. For each time it = 0 ,1 ,2 , .  . .. each state s and each decision 

i E D,. an integer cost C ( S ,  i ;  t )  IS given. p(s ,  st, i, t) denotes the probability that the process 

transits from state s to state s5vith decision i E D, at time r .  For each time t, we denote 

by st the state at time t. The process is stationary if c and p are independent of it, i.e., 

c ( s , i ,  t) = c(s ,  i, t') and p(s,  st, ii tj = p(s, 5'; i, t') for all t ,  t'. A policy S is a mapping 

which gives a decision S(s ,  t j  E D, for each time t and state s. It is not known whether 

the stationary finite horizon problem is in P. For deterministic cases, i.e., the probability 



is either O or 1, the stationary finite horizon problem (resp, nonstaiionary finite horizon 

problem, discounted problem, average cost problem) is in NC. 

5.4.15 DISCOUNTED MARKOV DECISION PROCESS 

IKSTAXCE: A Markov decision process 1191 = (S, c,p) .  a rational number O < P < 1, and an 

integer K. 
PROBLEM: Decide t~hether there is a policy S such that the expectation of the discounted 

cost Czo e(st ,  &(st, t ) ,  t)$"is at most I<. 

Reference: [Papadinlltriou and Tsitsikiis, 19873. 

Comment: See F I N I T E  HORIZON MARMOV DECISIOS PROCESS. 

5,4.16 -AVERAGE COST MARKOBI DECISION PROCESS 

INSTANCE: A Markosr decision process -14 = ( S ,  e,pj and an integer I{. 

PROBLE~I:  Decicle whether there is a policy 6 such that the expectation of the cost 

limri,,j~lT,o c(s,? b(sa,  i), 2))lT is at most K .  
Reference: [Papadil-43itriou and Tsitsikiis, 19871. 

Gmment: See FINITE BBRIZOK hJARKBV DECISION PROCESS. 

5 ,s  Formal Language 

5.5.1 CONTEXT-FREE GRAMMAR EMPTINESS 

II\;STANGE: A context-free gra ar G = ( N ,  C, P, S). 
P R O B L E ~ ~ :  Decide whether L(G) = id .  
Rejewnce: [Jones and Laases, 19771. 

Comment: Reduction from GEKERL4TAB4LITP'. 

5.5.2 CONTEXT-FREE GRAMMAR INFINITY 

INSTANCE: A context-free grammar G = (:V+ C, Pi S). 
PROBLEM: Decide whether L(G) is infinite. 

Reference: [Jones and Laaser, 19771. 

Comment: Reduction from GOKTEXT-FREE GRAb4hlL4R EMPTINESS. 

5.5.3 CONTEXT-FREE GRAMMAR &4E%EBERSHIP 

INSTANCE: A context-free grammar G = ( N :  C, B, S) and n: E C", 



P R O B L E ~ ~ :  Decide whether S J" z. 

Refirences [Joqes and Laaser, 19771. 

Comment: Reduction from GESERATABILITY. For a fixed context-free grammar G, it 
can be determined in NC2 that a given string z is in L(G) or not with respect to 1x1 [Ruzzo, 

1980j. 

5,5.4 STRAIGHT-LINE PROGRAM MEMBERSHIP 

IKSTANCE: A string z f C" and a straight-line program I with operations in @ = C U 

{(c), @. U, .)? where C is a finite alphabet. 

PROBLEM: Decide whether z is a member of the set constructed by the program I ,  

Reference: [Goodrich, 19831. 

Comment: X straight-line program is a sequence of assignments of the foliowing forms: 

X c Y U Z, X + I" - Zi X + fl; X t (t), X + ( a ) ,  where a E C and X, Y and Z are 

variables, 

5 ,5 .5  STRAIGHT-LINE: PROGRAb-3: NQNEMPTINESS 

INSTAKGE: A straight-line program I with operations in a) = C ii { ( E ) ~  8, U, -1; where C is 

a finite alphabet. 

P R O B L E ~ ~ :  Decide whether the set constructed by the program I is not empty. 

Reference: [Goodrich, 19831. 

Comment: See STRAIGHT-LINE PROGRA3I hIIIIEMBERSMIP. 

5.5.6 LABELED GRAPH ACCESSIBILITY PROBLEM (LGAP) 

INSTAXGE: A directed graph D = ( I f ,  A) with edges labeled by strings over (al, al, az, a2)  
and two vertices s and t ,  

PROBLEM: Decide whether there is a path from s to t such that tile concatenation of its 

labels on the edges is in the semi-Dyck set D2, 
References [Greenlaw, Hoover and Ruzzo, 19851. 

Comment: The semi-Dyck set Dz is the language generaxed by the context-free grammar 

with productions S 4 S&'a,Slt (i = 1,2), where S is the start symbol. If D is acyclic, 

the problem is complete for LBGCFL. the class of sets log space reducible to context-free 

languages. 



5,6 Algebraic Problems 

5.6.1 INTEGER ITERATED MOB (IIM) 

Inrs~..r;cz: Binary positive integers a ,  bl ,  b2, ..., b,, 

PROBLEM: Decide whether ( I . .  ( ( a  mod b l )  mod b2:) . = mod b,) = 0. 

Reference: [Karloff and Ruzzo, 19891. 

Comment: Reduction from KAXD CIRCUIT VAECE PROBLEM. The integer itemted 

nzod problem is related to the problem of computing the greatest common divisor (gcd) 

of two numbers. No KC integer gcd algorithm is known, The polynomial iternted mod 

problem is: given univariate polynomials a(z ) ,  bl(z), ..., b, (x) over a field F ,  compute the 

residue ((- + . ((a(rt.1 mod bl jz)) nlsd b 2 ( 2 ) )  - a mod b , ( ~ j )  = 0. The problem over any field 

F is in -4rithmetic-NC2, where Arithmetic-WC2 is the class of problems solvable in time 

O(,jlog ?sj2) with O(n@ill) processors by using the computation model in which inputs and 

outputs are elements of the field F and operations are tile primitive field operations. The 

problem is in KC2 if F is a fixed finite field or the rationals &. 

5.6.2 GENERATABILITY (GEN) 

INSTAPI'CE: A set X, a binary operation - on X, a subset S la', and an element z E _X7. 
PROBLEM: Decide whether z is contained in the smallest subset of A' which contains S 
and is closed under the binary operation -, 

Reference: [Jones and Laaser, 19773. 

Comment: Redriction from UNIT RESOLUTION. The binary operation - in the reduction 

Is commutative but not associative. GEEERAT.ABILfTY -for associative . is complete for 

NLOG. 

5 . 6 3  UNIFORM WORD PROBLEM FOR FINITELY PRESENTED ALGE- 

BRAS 

IXSTANCE: A finitely presented algebra A = ( M ,  r) and terms 2, y over ilf, where ild is a 

finite ranked alphabet and r is a finite set of unordered pairs of terms called the axioms. 

PROBLEM: Decide whether z =r y, z is equivalent to y under the congruence relation 

generated by T. 

Reference: [Kozen, 19371. 

Comment: Reduction from CIRCUIT IrALtiE PROBLEhf. A finite ranked alphabet i\f 

is a pair (C,Q), where C is a finite set of symbols and a assigns each symbol cr E C a 

nonnegative integer a (0 )  called the arity of 0. A term over llf is defined inductively as 



follows: (I  j Every element a E C with arity a(cr) = 0 is a term. (2) If B E C has arity 

a(Q) = m and zl:. . . , z, are terms; then O ( r c l , .  . . ,z,) is a term. T,Ve denote the set of 

terms over .,I4 by bV(-M). An axiom {u, v) E T is denoted by ?_e =r v. The relation G r  on 

W(114) is the smallest congruence relation on W(&I) satisfying the axioms in I'. h'amely. 

Gr is the smallest equisialenee relation satisfying (1) ior each axiom (u. v) E F'; u Gr v and 

( 2 )  if B E C has arity m and sl rf tl ,,... s, E r  i,, then 8(s1, ..., s,j Gr 8 ( t l ,  ..., t,). 

5.6,4 TRIVIAL ALGEBRA 

IKSTAKCE: A finitely presented algebra A = (151, T), 
PROBLEL~: Decide whether A is a trivial algebra, i.e., consisting of one element. 

Referefxce: [Kozen, 19771. 

Comment: See UUIFORM IYORD PROBEEhI FOR FITITEL'Y' PRESENTED ALGE- 

BRAS. 

5,6.5 FHPrT%TE ALGEBRA 

IXSTANCE: A finitely presented algebra A = (nil, I?). 
PROBLEM: Decide whether A is finite. 

Refere~1.c~: [Kozen; 19771. 

Comme~at: Recluction from CIRCUIT "c7ALtTE PRBBLEIl. See UNIFORM l;i,TORD PROB- 

LEM FOR FSKITELY PRESENTED ALGEBRAS. 

5.6.6 SUBALGEBRA 1-EMBERSHIP 

INSTANCE: A finitely presented algebra A = ( A f ,  I') and terms XI.. . . , xn4 ga 

PROBLEM: Decide whether [y] is contained in the subalgebra generated by jzl]. . . . . [z,] , 
where [z]  denotes the equivalence class under ~ i . .  

Reference: [Kozen, 19771. 

Comment: Reduction from GENERATABILXTY, See UNIFORM JVORD PROBLERd FOR 

FINITELY PRESEXTED ,.ZLGEBRAS, 

5.6.7 UNIFORM kV8RD PROBLEM FOR L-ATTICES 

INSTANCE: A finite set E of equations and an equation el = &a .  

PROBLEM: Decide .\viaether E /= el  = e2. 

Reference: [Cosmadakis, 19881. 



Comment: A lattice is a set L with two binary operations +, - satisfying the foilowing 

axioms: For any z, y , z  E L,  

(i) (z . TJ> - z = x (y z ) ,  (z $ y) $ z  = z + (y $ z )  (associativity), 

(ii) z a y = y . z, z $ y = y $ z (cornmutati~~ity). 

(iii) z * rc = z, z + z = z (idempotence). 

(iv) z + (LC - y) = x, x (,x $ y) = x (absorption). 

Let U be a countably infinite SeT of symbolse X t e r m  over U is defined inductively as 

follows. The set of terms over U is denoted by ;ct7i[U). 

(1) I f a  E G, then a is a term, 

(2') If p, q E IV(U) ,  then (p $ q )  and ( p .  q )  are terms. 

An equation is a formula of the form el = ez ,  where e l ,  ea E IV(U). Given a lattice Z, 

a valuation is defined to be 2 function ,u : t' -+ L and extended to Fl,ib.'(CT) by defining 

p ( p  + y) = p ( p )  + p ( q ) ;  p(p - y) = p ( p )  - ;1(4). A lattice L satisfies an equatioil el = e2 under 

a valuation p ,  denoted L /=, el = " 2 .  if p ( e l )  = p ( e 2 ) ,  We say that E implies el = ez. 

denoted E j= el  = ez, if for every iattice L and ex7ery valuation p  such that Bi kp E, we 

have L, I=, el = ea. Remains P-complete even if E = 8 and terms are represented by 

directed acyclic graphs. But under the tree representation of terms, if E = 0, the problem 

is solvable in DLOG. 

5,6.8 GENERATOR PROBLEM FOR LATTICES 

INSTANCE: A finite set E of equations and terms e, g l , .  . . ,g,. 
PROBLEM: Decide whether E i= y e n  je. gl, . . . , g,). 

Reference: [Cosrnadakis, 19883. 

Comments See UNlFORhf WORD PROBLE~JI FOR LATTICES. Let X be a subset of 

a lattice L, The subfaitice generated by X is the smallest subset of L which contains X 

and is closed under the operations +, - of L. Given a sraiuation ;t : ti' t E and terms 

e , g l , .  . . ,g, over U, we s a ~ l  that e  is generated by 9 1 , .  . . ,g, in L under pC1, denoted L +, 
genje, gl, . . . , g,), if p ( e )  is in the sublattice of I, generated by the set { p i g , )  li = 1, . . . n). 
E I= ge?zje,gl . .  . . ,g,) if; for every lattice L and valuation p such that L I=, E, me have 

L k, g e n j e ,  gl, . . . , 9,). Remains P-complete ex7en-i if E = @ and terms are represented by 

directed acyclic graphs, But under the tree representation of terms, if E = 8 ,  the problem 

is solvable in DEOG. 

5.6.9 GENERALIZED WORD PROBLEM (GWP) 

INSTANCE: A finite subset U = ( u l , .  . . , a,) of (C ti Cj' and a word z in (C 'J z)", where 



C  is a finite alphabet and C = (a 1 a E C ) .  

PROBLEM: Decide whether x is in (U). 

Reference: [Avenhaus and h%adlener, i 984a]. 

Comment: Generic reduction. Let F be the free group -4th generators C in which only 

trivial relations a% = aa = e hold for a E C, (U) denotes the subgroup of F generated by 

ti. The word problem iVP is to decide for x rvhether z = e in F ,  It is known that '9,"rQ? is 

solvable in DLOG [Lipton and Zalcstein, 19773. The decision aigorith~n for GMTP is based 

upon the Nielsen reduction algorithm. 

5.6.10 SUBGROUP 

ISSTAXGE: Finite sets U and V of (C U z)', where C is a finite alphabet, 

PROBLEM: Decide whether (U) Is a subgroup of (I/). 

Rejerence: tAvenhaus and Madfener, 19S4aj, 

Comment: Reduction horn GENERALIZED WORD PROBLEM. It is also P-complete to 

decide whether ( U )  is a normal subgroup of (V). 

5,6.11 SUBGROUP EQUALITY 

IKST-~NCE: Finite sets t' and 87 of ( C  U El*, where C is a finire alphabet. 

PROBLEM: Decide whether (U)=(V) . 
Reference: [Avenhaus and BIadlener, 1984a], 

Cbmment: Reduction from SUBGROUP. 

5.6.12 GROUP INDEPENDENT SET 

INSTANCE: Finite set Lr of (C U El*, where C is a finite alphabet. 

PROBLEM: Decide whether ti is independent, 9.e., each rc E (U) has a unique freely reduced 

represent at ion, 

Refireace: [Avenhaus and AIadlener, 1984a]. 

Comment: Generic reduction. A word is called freely reduced if it contains no segment aa 

or Gn, for any a E C. 

5.6.13 SUBGROUP ISOMORPHISM 

INST-~NCE: Finite sets ti and V of (C U z)", where C is a finite alphabet. 

PROBLEM: Decide whether ( U )  is isomorphic to (V). 
Reference: [Avenilaus and hfadiener, i 984a], 
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Comment: It is also P-complete to decide whether there is z E ( C  U %)* such that z-'(t')x 

is a subgroup sf (I7). 

5,6.19 GROUP COSET EQUALITY 

INSTANCE: Finite sets h- and V of (C U C)" and words x and y in (C LI I", where f: is a 

finite alphabet. 

PROBLEM: Decide whether ( U ) z  = y ( V ) .  

Reference: [Xvenhaus and Madiener, 1984bI. 

Commenir: It is also P-complete to decide whether (Ujz = (V)y. 

5.6.20 GROUP COSET EQUI%'ALENCE 

INSTANCE: Finite sets U and V of (Z: Li Zj*, where C is a finite alphabet. 

PROBLEM: Decide whether t h e  are z, y E (C U Cj" such that jl;)~ = yjI/'), 

Referen ee: [Avenhaus and hfadiener, 1934b]. 

Comment: It is also P-complete to decide whether there are rc ,  y E (C U E)" such that 

(U}z  = (V)y. 

5.6,21 GROUP CONJUGACY EQUHl3ALENCE 

IXSTANCE: Finite sets &7 and V of (X U 2)"; where C is a finite alphabet. 

PROBLEM: Decide whether there is x E (C b C)" such that x-'i;U)a: = (V- ) .  

Refel-ence: [A.crenhaus and Lladlener, 2984b]. 

Commenii: It is also P-complete to decide whether there is .a: E ( C  U C)" such that x-'(l/-)x 

is a subgroup of (V). 

5.7.1 ZI'lr-EEMPEL CODING 

ISSTANCE: A binary string S and a positive integer z. 

PROBLE~I: Decide \&ether there is a codeword. whose binary value is z, in the Ziv-Lernpel 

coding of S. 
Reference: [de Agostino, 19901. 

Comment: Reduction from CIRCUIT VALUE PROBLEhI. A data compression method 

called the Ziv-fiempel coding consists of a rule for parsing strings of symbols from a finite 

alphabet into substrings and a coding scheme that maps these substrings into uniquely 

decipherable words called the codewords. The parsing of the data string is executed by a 



procedure that creates a new phrase as soon as a prefix of the still unparsed part of string 

differs from a91 preceding phrases. The first phrase is the first symbol of the string and the 

last one is the only one ailowed to be equal to a preceding one. We denote by pi the ith 

phrase of the parsing ( p o  is the empty string). For each phrase p;, there is one nonnegatis~e 

integer j 5 i such that pjx = p;, where z is the last symbol of pz. Then, the codeword for pi 

is composed by rloggiajl bits that are the binary representarion of the number ja $ f ( r c ) ,  

where a is the cardinality of the alphabeband f a mapping from the alphabet onto the set 

of the integers (0, . . ., a - 1). For example, for the ivord a b b a a b a b b c c, the Zlv-Lemple 

parsing is the sequence a ,  b, ba, ab, abE: c, c. 

5.7.2 MILLER-5VELGMAN CODING 

INSTANCE: -4 binary string S and a positive integer z.  

PROBLE~I:  Decide whether there is a ~~~~~~ord, whose binary value is z ,  in the Miller- 

Viie4gman coding of S. 

Reference: lde Agostins, 1990j. 

Comment: Red~~ction from GIRCCIT VALUE PRBBEEllI, The &filler- T l i e l m a  coding 

is a variation of the Zis7-Lempel coding in order to improve compression efficiency. The 

AIiller-i'lkigman coding is the following: A tabie is initialized to contain all strings of length 

I Then, the parsing rule creates as a, new phrase g, the longest prefix of the still unparsed 

part of string; that is matched in the tabie and encodes it with a codeword of jlog(i $ a)]  

bits that are the binary representation of its concatenation of p, with the first character 

of tile next phrase. Afterwards, the table is augmented by adding the string which is the 

concatenation of p, with the first character of the next phrase. Far example, for the word 

a b b a a I. a b b c c, the Miiier-iVeEgma,n parsing is the sequence a ,  b, b, a ,  ab, ab,  b, c, c 

with the tablea, b, c, ab, bb, ba, an, uba, abb, b,. r CC. 

5.7.3 CONVEX HULL 

INSTANCE: A finite set S C $" and n: E Q", where Q is the set of rational numbers. 

PROBLEAI: Decide whether rr: is in the convex hull of S. 

Reference: [Long and IITarmuth, 19901, 

Comment: The convex hull of S is &he set of all convex combinations or, elements in 5'. By 

using linear programing [I<hachian, 19791 , one can test in po%ynomiai time whether x is in 

the convex hull of S. The reduction is from h18NOTg9XE CIRCUIT VALUE PROBLEBI 

and the dimension n of $" depends on the number of gates in a circuit. 



5.7.4 ENVELOPE LAYERS 

INSTAR'GE: A set of line segments L = {m, m, . . . , m) in the plane, a distinguished 

point z on some line segment of L and a positive integer k. 

PROBLEM: Decide whether the layer depth of a point z is k. 

Reference: [Hershberger, 19901. 

Comment: Reduction from MONOTOKE CIRCUIT PROBLEM. A line segment 

pq, where p and q are points in the plane, is a linear combination a p  + (1 - a)q (a  E 

R, 0 5 a 5 1). Remains P-complete even for a set which consists of disjoint segments. An 

upper envelope is a collection of "ce most ripper Line segments* which consists of pieces of 

segments in L. The set of Line segments are scanried by repeatedly computing the upper 

envelope and discarding the pieces of segments that appear on it. A layer depth of a point 

on some segment in i is an iteration number at  which it appears on the upper envelope. 

5.7,5 GAUSSIAN ELIMINATION tVITH PARTIAL PI%'fBP"ING (GEPP) 

INSTANCE: A matrix A with entries over the reds rounded up to two decimal places, ancl 

integers i ,  j .  

PROBLEM: When Gaussian elimination with partial pivoting is done on A, decide whether 

the pivot used to eliminate the j t h  colulxn entries is taken from rotx] i. 

Reference: [Vavasis, 19891, 

Comment: Reduction horn N A N D  CIRCUIT VALUE PROBLEM. In Gaussian elimina- 

tion, the elements along the diagonal are used to eliminate the entries in the columns 

below them. The number a,; and position ( i ,  i )  on the diagonal of A used for elinGnation 

are called the pivot value and the pivot position, respectiveiy. A problem arises if zero or 

a very small n u d e r  appears in the pivot position. A solration to this probiem with the 

elimination algorithm is to swap the rows of the matrix before each selection of a new 

pivot. In particular, when the algorithm starts to eliminate below the diagonal in column 

i ,  it first searches all the entries in the column from i downtvard to find the entry with 

the iargesr magnitude, say at position ( j .  i ) .  Then row i is swapped with row j in order 

to bring the Larger number into the pivoQosition. This row-s~vapping technique is called 

partial pivoting.. A esrnplete pivoting is to swap both rows and columns in order to bring 

the largest element in the remaining uneliminated submatrix into the g i r ~ ~ t  position. 

Gaussian elimination is the oldest and best known method for solving systems of linear 

equations, and partial pivoting is the most common technique to make elill7ination numer- 

ically stable. 

The problem is also P-concpiete if complete pivotings are used, If exact rational arith- 



metlc is used instead of arithmetic rounded to two decimals, the problem is again P- 

complete. The problem of deciding whether the pivot value for column j is positive is 

P-complete both for partial and complete pivotings, 

If the problem uses scaling, it is not known P-complete. There are other numerical algo- 

rithms that use interchanges; h r  exa~nple, colrimn interchanges are used in QR-factorization 

if rank-deficiency is a possibility. This may also lead to a $-complete problem. 

If ail the pivot positions were somehow known in advance, then the Gaussian elimination 

could be carried out in NC. A parallel algorithm based on rjewton iterations is shon-n [Pan 

and Reif, 19851. Their algorithm runs in 0 ((log n)'('jj time and O b 3 )  processors. 

5 ,T .G  TWO-PL-slYER GAME 

INSTAXCE: A %tuple 9 = j f i ;  P2, T;E/3, s , M )  called a t~oo-player game, where PI I? P2 = @, 
bVo 2 PI U P 2 ,  s E fi, and ,%I c PI x P2UP2 x PI. 
PROBLE~Z: Decide whether s is a winning position for player one. 

Reference: [Jones and Laaser, 19771, 

Comment: Reduction from GESERATABILITY. Informally, PI (resp., P2) is the set of 

positions in 1~l1ic91 it is player one's (resp.; player trvo'sj turn to nlOxie, I'Ilb denotes the set 

of positions in which player one has an immediate s v h ,  and s is the starting position. 

denotes the set of allotvable mox-es: if ( p ,  q )  E 151 and p E PI (respa, p E P21 then player 

one jresp,, player t t ~ o )  may move from position p to position q in a single step. The set JT 

of winning positions for player one is defined inductively as follows: ( I )  & CVY. (2) If 

z E Pi and (z, y)  E 114 for some winning position y, then z is in TI'. (3) If z E P2 and y is 

a winning position for every move ( T ,  Y) in 134, then z is in W .  

5.7,7 STRATEGY ELIMINATION IN TWO PERSOhT GA-ME 

INSTANCE: A tw person game J = (A, B), where A = (aij) and B = (bij) are rn x n 

matrices with integer entries; and an integer i, 

P R O B L E ~ ~ :  Decide whether a strategy i is eliminated in a reduced game. 

R e f e ~ e n c e s  [Knuth, Papadimitriou and Tsitsiklis. 19881. 

Com~nenis: Reduction from MOKOTONE CIRCUIT "G'AECE PROBLELI. Player z chooses 

a row i from A (this choice is called a strategy) and player y simultaneously chooses a col- 

umn j from B. We say that strategy i (resp,, j )  of playem (resp., y) dominates strategy 

i9 (resp., j ' )  of the same player If a;k 2 a i j k  (resp., bkj 2 bkJt) for k = I,. . . , n (resp., 

k = I , .  . . , m). A game J = (A, B) is reduced by eliminating the ith r0n7 jresp., j th  col- 

umn) from both matrices A and B if some row of A (resp., column of 8)  dominates row 



i of A (resp., column j of B). A reduced game is a game in which no fx~rther elimination 

is possible. 'kVe note that the reduced game is unique up to row and column permutation, 

Remains P-complete even for zero-sum games, i,e,, A +- B = 0, But it is easy to see that 

the problem of deciding whether a game is already reduced is in KC. 

5.7.8 GENERAL DEADLOCK DETECTION 

INSTANCE: Two n x rn matrices P = (P,,) and $ = I&,,) and integers wl , .  . . . w ,  with 

R3, Q23 5 w3 for j = .... m, where P2, and $,, denote, respectively, the number of units 

of resource R, held and requested by process p, for i = 1, ...; n. 

P R O B L E ~ ~ :  Decide whether P and Q represent, a deadlock s t a~e .  

Reference: [Spirakis, 19871, 

Comment: We say that matrices P and Q represent a deadlock state If there exists a subset 

S G (pl, . . . :p,) of processes such that every p, E S waits for some pk E S (i # k) to release 

resources, i.e,. for every p, E S, there is a resource dE, satisfying $,, > w, - CPkEsPk3. There 

is an XC algorithm for the problem restricted to single unit resources, i,e,, Ej. = i for all j ,  

This algorithm takes O((Log 7~)~') time using a CRCW PRAM of O(n3/  log n)  processors ifor 

instances which represent an expedient state, i.e., all satisfiable requests have been granted 

and single unit requests are occurred. 

5.7-9 BOOLEAN RECURRENCE EQUATION 

INSTANCE: .An m x n boolean matrix 114, an n, x n boolean matrix B, an n x 1 boolean 

vector F .  and an integer j (8 5 j 5 n) .  

P R O B L E ~ T :  Decide whether the first entry of iW = Y ,  is 1, where 1; is an n x I boolean vector 

defirled iilductiveiy as 1; = F, I.:, = B - for X: 2 1 is a boolean vector obtained 

by aegating each entry of 

Refirence: [Bertoni, Boliina, Mauri and Sabadini, 1985j. 

Conzment: Tf the integer j is in range 0 j < (log rz)"or some constant k, this problem 

is complete for ACL7 which is the class of sets computed by alternating Turing machines 

with O((log n l k )  alternations. 

INSTANCE: A directed acyclic graph D = (V. A) which satisfies the axiom of extensionality, 

i.e., biuVv[("di(x, u) f A H ( 2 ,  ?;) E A])  + ti = v), and two vertices sl and x2 E V ,  

PROBLEM: Decide whether ,\4D(zl) = A/lrj(xz), where iMD is the Mostoevski epimorphism 

for D. 



Refirence: [Dahihaus, 19851. 

Comment: Reduction from MONOTOTJE CIRCUIT VALUE PROBLET\/III. For a finite set 
7 - 
V ,  we define = iigOT$, where & = V and T&l = tr 2 K  for i 2 0, A ~Ifostowski 

epimorphism for a directed acyclic graph D = (V, A) satisfying the axiom of extensionality 

is a function AID from I.' to f7 which satisfies hlD(z )  = j A l o ( y )  1 (y, r) E A). A sequential 

polynomial time algorithm which computes a &lostowski epimorghism is known. 

5.7,1'6 STRONG BISIMILARITU 

I R ' S T ~ ~ C E :  A finite labeled transition system _If = (Q, C, T') and two states p ,  q E Q .  

PROBLEM: Decide whether p and q are strongly hisimilar. 

Reference: iAlvarez, Balc&zar, Gabarr6 and Santha, 19901. 

Conzment: A finite labeled transition system is a triple ill = (&; C, T ) ,  where $ is a finite 

set of states. C is a finite alphabet of actions and T 2 & ,: C x & is a set of transitions. A 

relation S & x & is a strong bisimulation if (p, q )  E S implies, for all z E C, the following 

klsimilarity conditions hold: 

(a'-) If (p:z;p" E fT, then for some y ' ~  &. (q ,x ,q t )  E T ancl (p ' ,q ' )  E S. 
(b) if (q ,  z, qd)  E T, then for some p' E Q; ( p .  2 ,  p') E T and (p ' ,  q') E E.  
The strong bisimilarity relatior2 is defined as the union of all strong bisimuiations. 

The problem of deciding ohervaeion equivalence and the problem of deciding obser- 

vation congruence of two states in a finite labeled transition system are also P-complete 

iAlvarez, BalcAzar. Gabarid and Santha, 19901. 

5*8 Remarks 

An NC0 permutation is a one-to-one onto fiunction $ : {O, 1)" + (0,1)" with f ((0, I)") = 

(0. I)" for each 72. 2 0 such that some NCo family of circuits {C;:,j,20 computes (fn).n20, 

where fn = =f l (o~lln:  Cn -+ Cn. There are NCo pernlutations whose inverses are as hard 

to compute as the parity function [Boppana and Eagarias, 19871. These permutatior~s can 

he said to be one-way since the parity function is known not to be computable even by 

unbounded fanin polynomial size circuits of constant depth [Furst, Saxe and Sipser, 19841, 

There is an NCo permutation f such that its inverse f-' is P-complete. The reduction is 

given from CVP [Bbstad, 19881. 
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