SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Efficient Multiple String Replacing with
Pictures

Takeda, Masayuki

Interdisciplinary Graduate School, of Engineering Science, Kyushu University

https://hdl. handle. net/2324/3119

HhRI1EZR : RIFIS Technical Report. 13, 1989-03-14. Research Institute of Fundamental
Information Science, Kyushu University
N— 30

HEFIBAMR

RIFIS-TR-CS-13

RIFIS Technical Report

Efficient Multiple String Replacing with Pictures

Masayuki Takeda
March 14, 1989

Research lnsti"tute of Fundamental Information Science
Kyushu University 33
Fukuoka 812, Japan

E-mail: arikawa@rifis.sci.kyushu-u.ac.jp Phone: 092(641)1101 Ext.4470

Efficient Multiple String Replacing
with Pictures

Masayuki TAKEDA

Interdisciplinary Graduate School of Engineering Science

Kyushu University 39, Kasuga 816, Japan

March 14, 1989

Abstract

This paper gives a correct proof of the validity of Arikawa-Shiraishi’s mul-
tiple key replacement algorithm (1984), and then modify the algorithm by
using the idea of patterns with pictures.

1. Introduction

When editing texts, we are faced frequently with the need for replacing some words
by other words. Arikawa-Shiraishi[2] presents an efficient algorithm for this, which
uses a generalized sequential machine. The machine is constructed in nearly the
same manner as Aho-Corasick’s pattern matching machine[1], and does multiple key
replacement in a single pass through the text. Even if the keywords have overlaps,
it searches the text from left to right for the longest possible first occurring keyword
and replaces it by the paired word. The process is repeated until the end of the
text.

Suppose that we wish to change ‘child’ to ‘children’. Naive replacement of
‘child’ by ‘children’ produces a wrong word ‘childrenren’ when the text con-
tains ‘children’. Contrary to this, the algorithm possibly produces the desired
result by only giving the two replacement pairs (‘child’, ‘children’), (‘children’,
‘children’).

The algorithm has been implemented as the REPLACE command in the text
database management system SIGMA [3], and it is quite useful for editing large

texts.

However, suppose that we would change ‘19007, ‘19017, ... to *(1900)’, ‘(1901)’,
.... By this method, we have to give all replacement pairs such as (‘1900°, *(1900)"),
(‘1901°, €(1901)7), ..., the number of states of the machine to be produced grows
accordingly very large.

Such replacement is represented as follows:

19NN = (19NN).

where N is a picture for the numeric letters. In this case, we have to search the
pattern 19N N. Then, more generally, we shall consider the matching problem for
patterns with pictures, problem which will be formally defined in the next section.
For example, let A be a picture for a, b, ...,z and N for 0, 1, ..., 9. Then we treat
patterns like 19NN, abAN1, ..., etc.

Takeda[4] describes an algorithm for constructing an efficient pattern matching
machine for such patterns. The machine is built easily and quickly, but the number
of states is decreased as possibly we can without the state minimization technique.
By combining the ideas of the two algorithms, we present an algorithm for replacing
keywords with pictures.

This paper is organized as follows: Section 2 gives the definition of the matching
problem for patterns with pictures and briefly sketches the algorithm[4] to solve it.
Section 3 introduces the Arikawa-Shiraishi multiple key replacement algorithm{2],
and Section 4 gives a correct proof of its validity because the ‘proof’ given in [2] is

incomplete. Then a new algorithm is presented in Section 5.

2. Matching problem for patterns with pictures

Let ¥ be a finite alphabet and let £* be the free monoid generated by 2. We call an
element w of ©* a string and the length of w is denoted by |w|. Let T = £* — {¢}
where ¢ is the empty string. We say that u is a prefiz and v is a suffiz of uv, where
u, v are strings. PRE{w) denotes the set of all prefixes of a string w, and similarly
SUF(w) denotes the set of all suffixes of w. For strings u, w, we say that u occurs
at position 7 in w iff there exist strings z, y such that w = zuy and ¢ = |z| + 1.

Let A = {Ay,...,A,} be a collection of disjoint nonempty subsets of X, i.e.,
0 £ A, CYand A;NA; =0 (i £ j). Bach A; in A is called a picture. A pattern
is chosen from (X U A)*, and a tezt from ¥*. Suppose 7 is a pattern. Let w be a
string. We say that © occurs at position i in w iff there exists a string w in 7 such
that v occurs at position ¢ in w.

Then, we consider the following problem:

2

Given a collection of patterns I' = {my,..., 7} and a text T', to find all
positions of occurrences of each pattern 7; in 7" for: =1,... k.

Note that, when all of the patterns are strings, the above becomes the same as
a well-known problem, called the multiple string searching problem, and the Aho-
Corasick algorithm can efficiently solve it by using a pattern matching machine. We
shall then consider to construct a machine that solves the above problem. When
the patterns consist only of pictures, we can easily build a machine by treating each
picture as a character. But it is difficult when the patterns contain both characters
and pictures. The naive solution is to build a machine from all strings belonging to
the patterns. That is, for the pattern aA a machine is built from strings aa, ab, ...,
az. This method, however, increases the number of states very large.

The algorithm[4] simply constructs an efficient machine for multiple patterns
with pictures. Suppose the set of patterns is I' = {A1,.aAc,ab}. The algorithm first
builds the goto graph as in Fig. 1 (a), by taking each picture as a character (denoted
by the outline letter). Then, it makes the goto edges branching off to complete the
machine as in Fig. 1 (b). The details will be found in [4].

3. Multiple key replacement

This section briefly describes the Arikawa-Shiraishi algorithm for multiple key re-
placement [2]. As stated before, the algorithm simultaneously replaces all occur-
rences of multiple keywords by the paired words in one pass through the text. When
the keywords have overlaps, it works according to the following rules:

(1) Replace the leftmost occurrence of the keywords.

(2) If two or more keywords begin at the same position in the text, then
replace the longest one.

The algorithm uses a generalized sequential machine. The machine (rpmm, for
short) is built in nearly the same manner as the Aho-Corasick pattern matching
machine, and consists of the three functions: goto, failure and output, denoted
by g, f and out, respectively. The first two are nearly the same as those of the
Aho-Corasick machine, but the third is used to emit the replaced text string.

The algorithm consists of the two parts. The first part (Algorithm 1, 2) con-
structs the rpmm from the replacement pairs. The second part (Algorithm 3) is to
run it on the text and replace the keywords by the paired words.

(b)

The solid arrows represent the goto function, and the broken ar-

rows represent the failure function. The underlined strings below

the states mean the outputs from them.

Fig. 1: The machine for {A1,aAc,ab}

Algorithm 1 Construction of the goto function

input: A collection of pattern pairs I = {(z1,v1),. .., (%, ¥x)}-
output: Goto function ¢ and a partially computed function out.
method:
{

nst := 0;

for i := 1 to k do enter(zi,v;);
for Ve € ¥ such that g(0,¢) = fail do ¢(0,¢) :=0

}
procedure enter(biby...bny,y):
{
state := 0;
for j:=1 to m do {
if g(state,b;) # fail then {
state := g(state,b;)
telse {
g(state,b;) := nst;
state := nst;
nst:=nst+1
}
}
out(state) 1=y
}

Algorithm 2 Construction of the failure function

input: Goto function g and a partially computed function out
from Algorithm 1.

output: Failure function f and output function out.

method:

{

queue = empty;
for Ve € T such that ¢(0,¢) = s # 0do {
queue := queue - S;
f(s) :=0;
if out(s) is undefined then out(s) := ¢
}
while queue # empty do {
let queue = r - tail
queue := taul;
for Ve € ¥ such that g(r,c) = s # fail do {
queue := queue - 8;

if out(s) is defined then {

f(s):=0
telse {
fst = f(r);

out(s) := out(r);

while g(fst,c) = fail do {
out(s) := out(s) - out(fst);

g g

f(s) := g(fst, c);
if f(s) = 0 then out(s) := out(s) - ¢

(a) The goto and failure functions

The solid arrows represent the goto function, and the broken ar-
rows represent the failure function, where the broken arrows to
the state 0 from the states all but 0, 2, 3.

st | out(st)

0 | undefined

1 A

2 A (out(1))
3 A

4 AaD (out(3) - out(10)-D)
3 a

6 C

7 CD (out(6)-D)
8 8

9 B

10 ¥

(b) The output function

Fig. 2: The rpmm for II = {(ABCDE, «), (CDE, £), (BC, 7)}

Algorithm 3 Pattern matching machine for replacing strings

input: A text string T = aqa2 . .. a, and a pattern matching machine M
with functions g, f and out.
output: A replaced text string T".
method:
{
state := 0;

for ¢:=1 to n do {
while g(state,ay) = fail do {
print out(state);
state := f(state)

}

state := g(state,ay);

if state = 0 then print q,
}
while state # 0 do {

print out(state);

state := f(state)

Fig. 3: The move of the rpmm

For example, from the input II = {(ABCDE, «), (CDE, 3), (BC, v)} we construct
the rpmm as in Fig. 2. It runs on the text “DABCDCBCE” as in Fig. 3. It should
be mentioned that, after reading the fourth character of the text, M is in state 3
and the keyword “BC” is found, but M tries to find another keyword “ABCDE” which
contains “BC” as a substring. However, since the sixth character is not “E”, M fails
from 4 to 0 and emits “A -~ -D” where 7 is the paired word with “BC”.

4. The validity of the Arikawa-Shiraishi algorithm

Arikawa-Shiraishi[2] discusses the validity of the algorithm, but the ‘proof’ is in-
complete especially with respect to the characterization of the failure and output
functions. These functions must be correctly characterized for our purpose, i.e., to
modify the algorithm by using the idea of patterns with pictures. In this section,
we shall give a correct proof.

The following lemma, given by Aho and Corasick in [1], holds for the failure
function of their pattern matching machine.

Lemma 1 (Aho-Corasick). Suppose that in the goto graph state s is represented
by the string u and state ¢ is represented by the string v. Then, f(s) = ¢ iff v is the
longest proper suffix of u that is also a prefix of some keywords.

Arikawa-Shiraishi [2] uses the lemma again to characterize the failure function of
the rpmm, but obviously it does not hold for this function. (Consider the failure
value of the state 4 in Fig. 2 (a)).

Let us see the differences of the constructions of these two failure functions. The

failure function f of the Aho-Corasick machine is recursively computed as follows:
Basis. Set f(s) := 0 for each state s of depth 1.

Recursive Step. Let s be a state of depth d (d > 1). We assume that f(t) are
already defined for all states ¢ of depth less than d. Let r be the father of s,
and let ¢ be the label on the goto edge from r to s. Let fst be the nearest
state from r which is reachable by consecutive failure transitions and which
has a goto edge labeled ¢ to any state. Then, set f(s) := g(fst,c).

On the other hand, in the basis of the rpmm, we set f(s) := 0 for the states s
corresponding to the right ends of the keywords, as well as for the states of depth
1. The recursive step is the same as above except the states whose failure value is
already defined in the basis.

How these two functions differ owing to such differences of the bases? To see
that, and to give a correct proof of the validity of the rpmm, we shall first introduce
some notions.

Let K be a finite subset of ¥, elements of which are called keywords. Let ¢ be

a mapping from K to ¥*. Here, we assume that ¢ is defined by giving the collection
of all pairs Il = { (e, p(a)) | € K }.

Definition 1. Consider a keyword-occurrence in string u
u=zay (a€ K, z,yei*),

where the dot “-” is used to separate the keyword a from u. We say that this
keyword-occurrence is the LL-occurrence (Longest-Leftmost occurrence) iff:

(1) no keyword begins more left position than the a, and
(2) the « is the longest keyword which begins at the position.

We also call such factorization of u the LL-factorization of u (on K).

Let M(u) denote the string to be emitted from the rpmm M on an input u.
Then, the validity of M can be defined as follows:

Definition 2. We say that rpmm M is valid for (K,) iff the following holds for

any string u:

10

If u contains some keywords, suppose that the LL-factorization of u is
u=zay (a€ K, zyel*),

then,
M(u) = z-p(a) M(y);

Otherwise,

M(u)=u.

We shall define sets and a mapping as follows: For the set of the keywords K,
put
W = | J PRE(z).

zeK

Define a mapping state recursively by

{ state(e) = 0

state(ua) = g(state(u),a) (veW,a€ X, uacW).

Put S = {state(u) | u € W}. Note that W is the set of all prefixes of the keywords
and S is the set of states. Note also that the mapping state from W to .S is obviously
a bijection.

We need two more definitions.

Definition 3. We say that the LL-occurrence of u
u=zay (e € K, z,y € ¥7)
is independent iff for any string w € ¥,
uw = zra-(yw)

is the LL-factorization of uw. Also, we call such LL-factorization the independent-

LL-factorization of u (on K).
Definition 4. We say that a factorization of u
U= T1°Q1° T2 Q" . Ty O y-v (M >0)
is the rfactorization of u (on K) iff the following conditions (1)~(4) hold.

(1) z; €, ;€ K(1<t<m),and y,v € ¥*.

11

(2) m=0(e,u=yw)iff PRE(u)NK = 0 and u has no independent-
LL-factorization.

(3) When m > 1, we put

U = TiQGt Tty (1=1,2,000,m),

Umpt1 = YU

Then,

Uy = T1°¢Q1°Ug

is the LL-factorization of uy, and if z; # ¢ then it is independent. For
each ¢ with 2 <17 < m, if exists,

Ui = Ti"Q Uiq

is the independent-LL-factorization of u;. Also, u,,+; has no independent-

LL-factorization.
(4) The v is the longest string in (SUF(yv) — {u}) N W.

We are now ready to characterize the failure and output functions produced by
Algorithm 1, 2.

Lemma 2. Let st € 5, st # 0, and let st = state(u). Suppose that
U= T1°0q T Q" . Ty v (M >0)
is the r-factorization of v on K. Then,
f(st) = state(v)

and

out(st) = zy-¢p(aq) 2o () ... Tm p(am)y.

Proof. Induction on the length of u. It is clear when |u| = 1. Suppose that
lu| > 1. It is clear for u € K, so we shall assume that u ¢ K. Let u = u'c (v’ € ©F,
¢ € ¥), and put r = state(u’). Then, there exists a finite sequence of states

ro,T1,-- .,y such that
Tro=Tr,
ri = f(ric1) (1 <0< n),
g(ri,e) =fail (1 <i<n-—1),

Now, put ©{9 = v/, and suppose that for each i with 1 < ¢ < n, the r-factorization
of vl ig

L1 = x@-a?’- e x;?aﬁ?y

().,(8)
By the induction hypothesis, we obtain for each ¢ with 1 <17 < n,

r; = state(v(),

out(ri_y) = -0 x40,
where 651) = c,o(cyg-i)). It is straightforward that the r-factorization of u, if v(” = ¢
and c ¢ W, is

U = xgl),agl). o -xﬁ}-(y(l)xgz))-a?)- o 'xiﬁi'agfi'(y(n)d's,
otherwise, is
u = xgl)'agl)' o xgg -(y{l):v?))-a?)- o 'xgl'agﬁ'y(n)'(v(n%))

So it is clear. O

From the above lemma the next theorem follows.

Theorem 1. The rpmm M produced by Algorithm 1, 2 is valid for (K,) when it
runs according as Algorithm 3.

Proof. Straightforward. O

5. Replacement using patterns with pictures

Consider the replacement

1NN = (19INN).

Using (K, ¢) notation, it can be written as {1SNN,), where p(z) = ‘-z)’
for all z in 1SN N. More generally, let I' = {my, 73, ..., 7%} be a set of patterns with
pictures, i.e., m; € (EUA)T, 1 <7 < k. Suppose that for each 7, a mapping ¢; from
7; to 2* is defined in a simple way. Put K = 7y Umy U ... U m,. Let us define a
mapping ¢ from K to ¥* by

o(z) = ¢;(z), where j is the largest index with z € 7;. (1)

Then, our problem is to construct a machine M for (K, ¢).

The Arikawa-Shiraishi method may increase the number of states of A{ very
large. Then we shall modify it by using the idea of [4], briefly sketched in Section 2.
Our new algorithm for constructing M is shown in Algorithm 4 and 5.

Suppose I' = {19NN}. The machine to be produced is as follows:

13

Algorithm 4 Construction of the goto function

input: A collection of patterns T' = {my,..., 7% }.
output: Partially computed functions g and out.
method:
{

nst := 0;

for i:= 1 to k do enter(r;,1);
for Ve € A U X such that g(0,¢) = fail do ¢(0,¢):=0

¥
procedure enter(B1Bs ... Bp,):
{
state := 0;
for j:=1tomdo{
if g(state, B;) # fail then {
state := g(state, B;)
telse {
g(state, B;) := nst;
state 1= nst;
nst :=nst+ 1
}
¥
out(state) = [K, ¢]
}

14

Algorithm 5 Construction of the failure function

input: Partially computed functions ¢ and out.
output: Functions ¢,f and out.
method:

/* The symbol o means “concatination” of lists. */
{
queue := empty;
for VP € A such that g(0,P)=s# 0 do
for Ve € P such that ¢g(0,¢) =t # 0 do
copy_subtree(s,t);
for Vc € ¥ such that g(0,¢) = s # 0 do {
queue = queue - s;
f(s) :==0;
if out(s) is undefined then out(s) := [B,1]
}
for VP € A such that g(0,P) = s # 0 do {
queue := queue - s;
fls) :=0;
if out(s) is undefined then out(s) := [B,1];
for Ve € P such that g(0,¢) = 0 do ¢(0,¢) :=s
}
while queue # empty do {
let queue = r - tail
queue := tazl;
for VP € A such that g(r,P) = s # fail do
for Ve € P such that g(r,c) =t # fail do
copy_subtree(s,t);
for Ve € X such that g(r,¢) = s # fail do {
queue = queue - s;
if out(s) is defined then {

f(s):==0
telse {
fst:= f(r);

out(s) := out(r);
while g¢(fst,c) = fail do {
out(s) := out(s) o out(fst);
} fst:= f(fst)
f(8) = g(fst,c);
if f(s) = 0 then out(s) := out(s) o [B,1];

135

for VP € A such that g(r,P) = s # fail do {
queue := queue - S ;
if out(s) is defined then {
f(s) :=0;
for Ve € P such that g(r,c) = fail do g(r,c) := s
telse {
fst:= f(r);
out(s) := out(r);
while g(fst, P) = fail do {
out(s) := out(s) o out(fst);
[S
f(s) = g(fst, P);
if f(s) = 0 then out(s) := out(s) o [B, 1];
for Ve € P such that g(r,c) = fail do {
fst = f(r)
temp := out(r);
while g(fst,c) = fail do {
temp 1= temp o out(fst);
fst:= f(fst)
}
st = g(fst,c);
if st = 0 then temp := tempo [B,1];
if st # f(s) then {
new := nst;
nst := nst 4 1;
copy_subtree(s,new);
g(r,c) == new;
queue = queue - new;
f(new) := st;
out(new) := temp
telse {
g(r,c):=s
}

16

procedure copy_subtree(stl,st2) :
{
queue? := {(stl, st2)};
while queue2 # empty do {
let queue2 = (r1,r2) - tasl
queue2 := tail;
let out(rl) = [K,n1] and out(r2) = [K,ns]
if ng > ny then out(r2) := out(rl);
for VX € AU X such that g(r1,X) = s # fail do {
if g(r2, X) = fail then {

st := nst;

nst := nst + 1;

9(r2,X) := st
telse {

st = g(r2, X);

queue := queue2 - (s, st)

The goto and failure functions are the same as those of the Arikawa-Shiraishi. How-

ever, the output function should be different because each edge may be labeled by

two or more characters. Suppose that M is in state 3 and the next character is not
numeric. Then, M fails to 0 by the failure function f, but the string to be emitted
cannot be determined without knowing the character causing the transition from 3

to 4. Hence, we shall use a cyclic buffer, from which we read the characters required

17

Algorithm 6 Pattern matching machine for replacing strings

input: A text string 7' = @[l : n] and a pattern matching machine M
with functions ¢, f and out.
output: A replaced text string 7.
method:
{
state := 0;

for ¢:=1 to n do {
while g(state, a[q]) = fail do {
print_output(q — 1, state);
state := f(state)
}
state := g(state, alq]);
if state = 0 then print a[g]
}
while state # 0 do {
print_output(n, state);
state := f(state)

}
}
procedure print_output(p, state):
{
let out(state) = [B,i1]o[K,n1]o...0[B,in]o[K,nn]o[B,imy1]
[:= p — depth(state);
for j:=1 to m do {
print all + 1 : 1+ 4;];
i=1+15;
len := length(mn;);
z:=all+1:1+ len];
print ¢, (z);
l:=1+len
}
print a[ll + 1 : 1+ tpy1];
}

18

to emit the output strings.
The output function may have a linked-list structure such as

state

| B[4 F—K[2 [F+—{B[5]]

Here, B means ‘buffer’ and K means ‘keyword’. The entire list represents as follows:

Emit 4 characters from the buffer, replace the occurrence of 7, by the corresponding
string and emit 5 characters again. The algorithm to make the obtained machine
run on a text is summarized in Algorithm 6.

We shall mention the properties of our machine. Define sets W,.S and a mapping
state as in Section 4. This time the mapping state from W into S is not a bijection,
then let

rep(s) = {u € W|state(u) = s }.

Then, the following lemma holds for the failure function f and the output function
out produced by Algorithm 4, 5.

Lemma 3. Let s,z € S, s #0, f(s) = ¢. Then, for any u in rep(s), the following
holds:

Suppose that the r-factorization of u on K is
U= T 0 T Qg . Ty oy v (m > 0).

Then,
v € rep(t)

and out(s) equals to
(B, [21]] o [K,num(as) Jo... 0 [B,|zm|] o [K,num(an)]o[B,y|],
where num(a) = max{i|1 <i <k, a € 7;}

Proof. Similar to the proof of Lemma 2. O

6. Conclusions

We have proved the validity of the multiple key replacement algorithm by Arikawa-
shiraishi[2], and have modified the algorithm by using the idea of patterns with

19

pictures. The obtained algorithm replaces the longest first found pattern by the
corresponding word. When the patterns have intersections, like aA and Aa, re-
placement will be done according to their priorities given by the user.

Our algorithm requires as input the list of pairs (71, 1), (72, 92), - - -, (%k, V&),
where each 7; is a pattern and ¢; is a mapping from 7; into X*. It is most suited
when each 7; contains pictures and ¢;(z) can be simply expressed with z, such as

wi(z)=C-z-9),
vj(xz) = z- ‘\index{" -z -},

and so on. If there is no apparent way to describe ; other than to store for each
z € m; the value @;(z), then, the Arikawa-Shiraishi method would be applied for
the input II = {(z,¢(z))|z € K}, where K = 7y U...U 7} and ¢ is defined by
Equation (1) in Section 5. However, our method is possibly substituted for it with
little loss of the running speed.

References

[1] A. V. Aho and M. J. Corasick. Efficient string matching: An aid to bibliographic
search. Comm. ACM, 18(6):333-340, June 1975.

[2] S. Arikawa and S. Shiraishi. Pattern matching machines for replacing several
character strings. Bull. Inform. Cybern., 21(1-2):101-111, 1984.

[3] S. Arikawa et al. SIGMA: A text database management system. Technical Re-
port RIFIS-TR-CS-4, Res. Inst. of Fundamental Information Science, KYUSHU
University, June 1988.

[4] M. Takeda. A fast matching algorithm for patterns with pictures. Technical Re-
port RIFIS-TR-CS-11, Res. Inst. of Fundamental Information Science, KYUSHU
University, March 1989.

20

