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Abstract 

This paper gives a correct proof of -ihe validity of Arikatva-Shiraisll's mul- 
tiple key replacement algorithm (1984). and then modify the algorithln by 
using the idea of patterns irixh pictures. 

Mihen editing texts, we are faced frequently with the need for replacing some words 

by other words. Arikawa-Shiraislli[2] presents a11 efficient, algorithm -for this. which 

uses a generalized sequential machine. The machine is constructed in nearly the 

same manner as Aho-Corasick's pattern matching machineilj, and does m l t i p l e  key 

replacement in a single pass through the test.  Ei~eil if the iieyxords have overlaps, 

it searches the test  from ieR to  right for the longest possible Erst occlzrring key-word 

and replaces it by rhe paired n~ord. The process is repeated until the end of the 

t est  . 
Suppose that r ~ e  wish to change 'chllcii to ' ch i ldren ' .  Naive replacement of 

' ch i ld '  by ' ch i ldren '  produces a wrong word 'chilcirenren' when the test  con- 

tains 'chi ldren ' .  Contrary to this, the algorithm possibly produces tile desired 
resuit by only givi1;g rhe two replacement pairs ( ' ch i ld ' ,  ‘children') , ( 'chi ldren ' .  

'chi ldren ') .  

The algoritbnl has been implemented as the REPLACE command in the test 

database rnanagel~ent system SIGAIA [3], and it is quite useful for editing large 

t e n s .  



Hen-ever, suppose that Itre tt~ould change '1900', '1901', . , . to '(1900)', '(2901) ', 
. . . . By this method. we have to  give all replacement pairs such as (99007,  Y (1900) '1, 
('1901', !(i9C1)'), . . ., the n u d e r  of states of the machine to be produced grows 

accordlngiy very large. 

Such replacement is represented as follows: 

where -9T is a picture for the numeric letters. In this case, tr7e have to search the 

pattern 19NK.  Then. Inore generally, we shall consider tile matching problem for 

pattenzs w~i'h pictures, problem which svill be formaliy defined in tlie next section, 

For example, let A be a picture for a, b, . . ., z and 121 for 9, 1. . . ., 9. Then we treat 

patterns like i91ViY, ab,li\'i. . . ., etc. 

Takeda141 describes an algoritl-irn for const,ructing an efficient pattern matching 

machine for such patterns. The machine is built easily and quicl;ly, but the number 

of states is decreased as possibly v;e can xvithout the state rnini~ization technique. 

By combining the ideas of the two algoritilms, we present an algorithm for replacing 

1;eyt~ords with pictures. 

This paper is organized as fo1iot~s: Section 2 gives the definition of the matching 

problem for patterns with pictures and briefly sketches the algorithm/-lj to solve it. 

Section 3 introduces the Arikawa-Sliiraishi multiple key replacement aIgoritllrn[2], 

and Section 4 gives a correct proof of its validity because tlie 'proof9 given in ["I is 

incomplete. Tlien a cew algorithm is presented in Section 5. 

2 .  Matching problem for patterns with pictures 

Let Y be a finite alphabet and let Yx he the free monoid generared by C,  VTe call an 
element w of C" a string and tile length of tu is denoted by /to/. Let Cf = C" - ( -c> 
~vhere E is the e n ~ t y  stling. IVe say that u is a pre-fix and v is a su.@x of uv, where 

ui u are strings. PRE\/w) denotes the set of all prefixes of a string to, and similarly 

SI IF(w)  denotes the set of all suEses of w. For strings u. zc. \r-e say that tl occurs 

at position i zn w iff there exist strings a .  y such that w = z u y  and i = js / + 1. 
Let A = (A1.. . . . -4,) be a collection of disjoint nonempty subsezs of Z. i.e., 

!J f A, C C and A, n -4, = O (z f j ) .  Each A, in 3 is called a pzcture. pattern 

is cl~osen from (C i! A)+. and a text  from C". Suppose .i; is a pattern, Let w he a 

strirrg. We say that x ~ c c u r s  at position z in Lo iff there exists a string in T i;such 

that u occurs a t  position z in to. 

Then, vVTe consider the followiiig problem: 



Given a collection of patterns I? = { T ~ , .  . . , ~ , k )  and a text T ,  to find ail 

positions of occurrences of each pattern xTT, in T for i = 1,. . . , k .  

Note that, when ail of the patterns are strings, the above becomes the same as 

a well-l;nown problem; called the muliiple strzng searching problem, and the Aho- 
Corasicl; a1gorithrn can efficiently sois~e it by using a pattern matching machine. 5Ve 

shall then consider to construct a machine that solves the above problem. When 

the patterns consist only of pictures, we can easily b-i~ild a macl~ine by treating each 

picture as a character. But it is difficult when the patterns contain both characters 

and pictures. The naive solution is to build a machine from all strings belonging to 

the patterns. That is. for the pattern aA a machine is built horn strings aa, ab, . . ., 
az. This method, hoi~~es-er. increases the number of states very large, 

The algorithm[.l] simply constructs an eficient machine for ml t ip le  patterns 

with pictures. Suppose the set of patterns is F = ( A l ,  aAc, eb). The aigorithn first 

builds the goto graph as in Fig. 1 (a). 53- taking each picture as a character (denoted 

by the outline letter). Tlier,, it makes the goto edges branciling off to com-plcte the 

machine as in Fig. 1 (h). Tile details i17ill be foucd in [4]. 

3 .  Multiple key replacement 

This section briefly describes the Ariliawa-Shiraishi algorithm for 111ultiple key re- 

piacer-nent 12;. As stated before, the algorithm sim~~leancously replaces all occur- 
rences of ~nultipie Lieywords by tile paired words in one pass through the  text. 'VVhen 
the keyv,~ords have ot~crlaps, it xvorlis according to tile fol io~~ing rules: 

(1 $ Replace the left most occurrence of the l;eyx-or&. 

(2) If trvo or more keyi~ords begin a t  the same position in the text, then 

replace the longest one. 

The algorithm muses a generalized secjuential machine. The machine (rl,mnz, for 

short) is built in nearly the same lnanller as the Aho-Corasicli pattern matching 

machine. and collsists of the three functio~~s: goto, failure and output, denoted 

by y, f and o:ct, respectively. The first t s ~ o  are nearly the same as those of the 

-4110-Corasicl; machine, but the third is used to elnit tile replaced test string. 

The algorith~n consists of the two parts. Tlie first part (Xlgoriti~m 1. '2) con- 

structs the rpmm from tile replacement pairs. The seco~zci part (Algorithm 3j is to 

run it on the test and repiace the keg-words by the paired words. 



The solid arrows represent the goto function, and the broken ar- 

rows represent the failure function. Tize underiined strings below 

the states mean the outputs from them. 

Fig. I: The machine for {Al, aAc, ab) 



Algorithm 1 Construction of the goto functiol? 
input: -4 coilection of pattern pairs II = ( ( z l ,  y l ) ,  . . . , ( z k ,  y,)). 
output: Goto fxinction g and a partially computec! funcxior, out. 

method: 

n s t  := 0 ;  
for i := i to  k d o  e n t e r ( z ; .  y;); 
for Yc E C such that g(0.c) = fail do y(0.c) := 0 

procedure e;.ater(hibz . . . b,; y): 

i 
state := 0; 
for j := 1 to m do ( 

if gr<s-tr~te, h;, 1 1 fail then ( 
state := g(.itate, b, j 

)else ( 
g js ta te ,  b,) := n s t ;  
state := nst: 
n.st := n s t  $ I 

1 



Algorithm 2 Co~~struct ion of the failtare function 
input: Goto function g and a partiaily computed function out 

from Algorithm 1. 
output: Failure function f and output function out,  
method: 

queue := empty; 
for Yc E C such that g(O,c) = s  f O do ( 

queue := cjilelue. s ;  
f ( s )  := 0; 
if o z ~ t ( s )  is undefined then out(sj  := c 

1 
while queue # empty do ( 

let queue = T - tail 
queue := tail; 
for Yc E Y such that  g ( r ,  c )  = s f fail do ( 

gucz~e := queue . s: 
if o11tj.s) is defined then ( 

f i s )  := 0 
)else { 

fst := f (7.1; 

ou t l s )  := out(r) ;  
while g( f s t ,  c )  = fail do ( 

out is )  := out is )  . out(, f s t ) ;  
* f s t  := f ( f - . t )  

J 

f ( s )  := g( f s t ,  c ) ;  
if f ( s )  = 0 then out(s)  := out js )  - c 



(a) The goto and failure functions 

The solid arrows represent the goto function, and the broken ar- 

rows represent the failure fznction. where the broken arrows t o  

the state 0 from the states all but 0, 2, 3. 

/ out(s t j  
1 undefined 

(b) The output function 

Fig. 2: The rpmm for IT = ((ASCDE, a), (CDE, L?), (EC, 7 ) )  



Algorithm 3 Pattern matching n~achine for replacing strings 
input: _A text string T = a l a z . .  . a ,  and a pattern matching machine 171 

with filnctiol-is g, f and out. 
output: A replaced text string Ti. 
method: 

I 

state := 0;  
for y := l to n do ( 

while g(state, a , )  = fail do ( 
print out(statej;  
state := f ( s ta te)  

state := gjstate, a,); 
if state = 8 the11 print a,, 

1 
while state f O d o  ( 

print out(siate);  
state := f ( .s faie)  



Fig. 3: The move of the rpmm 

For example, from the input IT = {(ABCDE; a), (GDE, P ) ,  (BC, me construe: 
the rpmm as in Fig. 2. It runs on the text '9DkBCDCBCE" as in Fig. 3, It should 

be mentioned that, after reading the fourth character of the test, :%!I is in state 3 
and the keyword 6%BC" is found, but ikf tries to find another keyword "'ABCDE" -cvhich 
coctains "EC" as a substring. Hoivever, since tile sixth character is not "En, il/I fails 
from 4 to 0 and emits "A . -/ . I)" where is the paired word with "BC". 

4. The validity of the Arikawa-S hiraishi algorithm 
. . 

Arikawa-Shiraishim discusses the validity of the algorithm; but the -proof' is In- 

cozplete especially with respect to the characterization of the failure and output 
functions. These functions must be correctly characterized for our purpose, i.e., to 
modify the algorithm by using the idea of patterns with piczures. In this section, 

we shall give a correct proof. 
The following l e m a ,  given by Ahc and Corasick in [I]: holds for the failure 

f~~nc t ion  of their pattern nlatching rnaciiine. 

Lemma 1 (AL-io-Corasick). Suppose that in the gots graph state s is represented 
by the string ti and state t is represented by the string v. Then, f(sj = t iff v is the 
longest proper suffix of u tl-iat is also a prefix of some keywords, 

-4rikawa-Shiraishi [2j uses the lemma again to characterize the failure hnction of 
the r p m ,  but obviously it does not hold for this function. (Consider the failure 

value of the sxate 4 in Fig. 2 (a)). 



Let us see the differences of the constructions of these t\sro failure functions. The 

failure function f of the Aho-Corasick machine is recu~sively computed as follows: 

Basis. Set f ( s )  := 0 for each state s of depth 1 

Recursive Step. Lei s 'be a state of depth d ( d  > I). Jve assume that f (t) are 

already defined for all states t of depth less than d.  Let r be rhe father of s ,  

and let c be the label on the goto edge horn 1- to s. Let f st be the nearest 

staxe from r \ ~ i ~ i c h  is reachable by conseciitive failure transitio~is aizcl whicl-i 
has a goto edge labeled c to any state. Then. set f i s )  := g(fs- t ,  c) .  

On the o~iier  hand, in the basis of the rpmm, w7e set j ( s )  := 0 for the states s 

corresponding to the right ends of the keyxvords, as s'lell as for the states of depth 

i. The recursive step is the same as above except the states s~liose failure ~ a l u e  is 

already defined in the basis. 

How these tn7o f~~fi-lncxions differ owing to sucli differences of the bases? To see 

that,  and to give a correct proof of the balidity of the rpmm. we sl-iali first introduce 

some notions. 
Let in' b e  e bite subset of CS, elements of which are called Reyxords. Let p be 

a mapping from I< to C". Here, sve assume that 9 is clefinec! by giving the collection 

of ali pairs ii = ( (a;  p ( a > )  1 Q E I< >. 

Definition I, Consider a keys~ord-occurrence in string u 

u = 2 . a - y  ( a  E I(, 2,y  E C*) ,  

where the do"cC-" is used to separate the lieyisrord a from u. We say that this 

key~~'ord-occ~rreriix is the LL-oczurren ce (longest-leflmost ocewr?~ence) iff: 

(1) no Iteysvord begins Inore left position than the 0,  and 

( 2 )  the a is the longest i;eyword ~11ich begins a t  tile position. 

W e  also call such factorization of -u tile LL-fi1ctori:ation of ti (on K j .  

Let M ( u )  denote the string to be emitted from the rpmm A4 on an input u. 

Tiien, the validity of Arl can be defined as follor~~s: 

Defillition 2. TVe say that rpmm :?I is ualid for (I<;', p) iff the hllosving holds for 

any string u: 



i f  u contains some keyrvords7 suppose that the LL-factorization of u is 

then, 
l~t(uj = ; 

I I T e  shall define sets and a mapping as follows: For the set of the keg-IT,-ords I<, 
put 

IV = U PKE(a:). 
ZEK 

Define a mapping state recursively by 

Put S = {state(u) j w E TV). Xote that iY is the set of a!! prefixes of tile keynrords 

and S is the set of states. Xote also that the mapping s tate  from kT; to S is ob1:iously 

a bijection. 

TT'e need two more definitions. 

Definition 3.  We say that the LL-occurrence of u 

is i l zdependeiz t  iff for any string w E C", 

is the LL-factorization of uw. Also, we call such LZ-factorization the i n d e p e l z d e ~ z t -  

LL-factorization of u (on 10. 

Definition 4, TITe say that a factorization of u 

is the r-factorization of u (on K j  iff the follosving conditions (1)-(4) hold. 

(1) rc, E C",  a; E I< (1 5 i 5 ~ n ) ,  and g,v E Cx . 



( 2 )  rn = O (i.e., u = iff P R E ( z )  n I{ = fl and u has no independent- 

LL-factorization. 

( 3 )  TTIThen m 2 1, we put 
z ~ 

26, = 2,"a;" . . . 'Z,,'Q,'y"IU ( 2  = I ,  2 , .  . . , m),  
W m + 1  = y'v. 

Then, 
U 1  = xlaa1"u2 

is the Ll-factorizatio~~ of ul ,  and if eel # E then it is independent. For 

each i -5th 2 < i < rn. if exists. 

is the independent-LL-factorization of u,. Also. u,i+l has no inclependent- 

LL-factorizaticn. 

(4) The v is the longest string in jSUF(yv) - { u ) j  3 11'. 

]Fie are now ready to characterize the failure and outpilt functions produced by 
Algorithm 1; 2~ 

Len131xa 2 .  Let st  E S, st # 0: and let st  = s t a t e (%) .  Suppose that 

is the r-factorization of u on I<. Then, 

and 
i J outjs t)  = x l - W ( a 1 ) - x 2 = p ( q  . . . .z , .p(aJn).~.  

Proof. Induction on the length of u. It is clear when iul = 1. Suppose that 

lul > 1. It is clear for u E K, so .ire shail assume that u # I{. Let u = u'c ju' E Xi, 
c E C).  ancl put r = state(z1'). Then, there exists a finite secjuence of states 

1.0. TI,. . . , T, S U C ~  that 

= I ' ,  

ri = f ( ~ ; - ~ )  (1 5 i < nj; 
g(r; ,  c )  = fail (1 < i 5 n - I ) ,  
g(yn> C) # fail. 



Now, put viol = u', and suppose that for each i with 1 < i 5 7 2 .  the r-factorization 
of vi"-l) is 

- 1  = . , . . ( 1  * (i) (4 .u(i)o 
na; a m ;  Y 

By the induction hypothesis, we obtain for each i with 1 5 i < i.-, 

. C 
e r e  pi) = a .  It is straightforxvard illat the r-fuctori~at~ion of t r ,  11 v(") = E 

and G $ TV, is 
i t  

(1) ,Qlli. 1 6 1 2 ( 2 )  * . (n) ,Q(,n) a / (n) U = x1 1  . . .  , J xi 1-011 . - .  ?)Zn "ill :Y c)-, 

otherwise, is 

= a1 , . . .  1 )  1 1  . .i.(n) =Q(n) .g (q : .  juI") . 
ml 

X I  GI . . . 
v'n mn C> 

SG it is clear. 3 

From the lemr?=a the next theorem follo\~s. 

Theorean I. The rpmm 41 produced by Algorithm 1, 2 is I-alid for (I<, p) i ~ l ~ c n  it 
runs according as Algorithm 3.  

Proof. Straightfor\\-ard. o 

5 .  Replacement using pat terns with pictures 

Consider the replacement 

Csing (I{* pj notation, it can be written as (1SNN. y )  , +?-here y(x) = ' ( . s . ' > ' 
for a!i x in 19Nn'. More generally. let I' = (71, ~ 2 , .  . . , r k )  be a set of patterns with 
pictures, i.e.. 7, E (C  U A)+, i 5 z 5 k .  Suppose that for each 2 ,  a mapping 9, fro111 
zL to  Z x  4s defined in a simple way Put ii = Li ;rz U . . . U zx Let us define a 
mapping p from I< to C" by 

p jx j  = p,(x), where j is tile largest index tvith x E r,. !I, 

Then, our problem is to construct a machine _\I for (I<, p). 
The Arilcaxr-a-Slliraishi ~l:etl~od may increase the number of slates of 111 very 

large. Then we shall modify it by using the idea of [4], briefly sketched in Section 2. 
Our nen7 aalgoritf-rm for constructing 111 is shown in Aigorithrn 4 and 5. 

Suppose r = (19n'N). The machine to be produced is as foilo~i-s: 



Algorithm 4 Construction of the glots furnetion 
input: -4 collection of patterns T = ( x l  , . . . , xk.. I 

output: Partially computed functions g and oat. 
metllad: 

i 
nst  := 0:  
for h' := 1 to  k do enie.r.(x,,i); 
for Y e  E A U Z such that g(0, e j  = fail do g(O, c) := 0 

i 

procedure e.tzter(BIBa . . . B,, ij: 

i 
state := 0 ;  
for j : =  I to  m do { 

if gjsiate,  B j )  f -fail then ( 
state := y(stute, B j )  

)else ( 
g(s-tute, B j )  := ns t ;  
state := ns t ;  
nst := n s t  + 1 



Algorithm 5 Gonstruction s f  the failure hneQion 
input: Partially computed faxctions g and out. 
output: Functions g,f and out. 
method: 

J+ The s:irnbol o means "concatination" sf lists, * /  

quezre := empty; 
for YP E A such that g(O, P )  = s  f 0 do 

for Vc f P such that g(0.  c)  = t # O do 
cspysubtree(s;  t ) ;  

for Vc E C such that g(8,c) = s  f 13 do { 
qiLeue := qmue  . s;  
f ( s )  := 0;  
if out ( s )  is ulzdefined then out(s)  := [B, 11 

J 

for VP E A such that g(O, P )  = s # 0 do ( 
queue := queue . s;  
f ( s j  := 0; 
if  out!.^) is undefined the11 oat(s)  := [B, I]: 
for Ye E P such that g(O, c) = O d o  g(O, c )  := s 

i 
while queve f empty d o  ( 

let queue = r . tinil 
queue := tail: 
for YP E A such that g ( r , P )  = s # fail do 

fur b'c f P such that g(r,c)  = t  f fail d o  
copysubtreejs, t ) ;  

for b'c E 2: such that g(r.6) = s # fail do ( 
queue := queue s: 
if outjs)  is defined then ( 

f ( s )  := 0 
)else { 

f s t  := f ( r ) ;  
out(s)  := out(?.); 
while g('st, c)  = fail d o  { 

.,lt(.3, := out(s)  0 out(f  s t ) :  
f s i  := f ( f s t )  

i 
S(S) := g i f s t ,  c ) ;  
if f ( s >  = 0 t hen out(s)  := out(s)  o [B, I]; 



for VP E A such that g ( r , P )  = s # fail d o  ( 
queue := queue . s ; 
if ou t ( s )  is defined then { 

f ( s )  := 0; 
for b'c E P such that g(r ,c)  = fail do y(r,cj := s 

)else ( 
f s t  := f ( r ) ;  
oztt(sj := ou;S(r); 
while g ( f s t , P )  = fail d o  ( 

out(,) := ou-t(s) 0 out( f s t ) ;  
fsi: := !($st)  

i 

f ( s )  := g( f s t ,  P); 
if f ( s )  = 0 then ou t ( s )  := ou-t(s) o jB7 ij; 
for Vc E P such that g(r ,e)  = fail d o  ( 

f.st := J ( r ) ;  
t emp  := out jr ) :  
while g ( f s t .  c j  = fail do { 

t emp  := t e n p  o o u t ( f s i ) ;  
f s t  := f ' ( f s t j  

st := g ( f s t ,  c ) ;  
if s t  = O then t e m p  := temp o [B: I]; 
if s t  f f ( s )  then { 

new := ns t ;  
n s t  := n s t  + I ;  
copy,subtree(s, new) ;  
g(r7 c )  := new;  
queue := qweue . 'new: 
$(nett,) := st; 
owt(new) := t e m p  

)else ( 
g j r , c )  := s 

1 



procedure copy -subtree(stl,  s t 2 )  : 

i 
queue2 := { [ s t l ,  s t2 ) ) ;  
while qzteue2 # empty d o  { 

let queue2 = ( a l ,  r2 )  - tail 
queve2 := t a i l ;  
lei o u t ( ~ l )  = [K, nl] and out(r2) = [M, nzj 
if nz > nl then oui(r2) := out(a1); 
for VX E A ii 2 ssch that g(r1,  X )  = s # fail d o  { 

if g(r2,  X )  = fail then ( 
st  := n s t ;  
n s t  := ns t  + 1: 
~ ( ~ 2 ~ x 1  := st 

)else ( 
st  := g(7-2, X ) ;  
queue2 := queue2 - (s, s t )  

1 

The goto and failure functions are the same as those of the Arikav~a-Shiraishi. HOTTI- 
ever, the output filnction should be different because each edge may be Labeled by 
two or more characters. Suppose that AVl is in state 3 and the next character is ~ o t  

numeric. Then, fails to  0 by the failure fxoction f, but the string to be emitted 

cannot be determined withuizt knowing the character causing the transition from 3 
to 4. Hence, we shall use a cyclic buffer, from which we read the characters required 



AZgorithna 6 Pattern matching machine for replacing strings 
input: A text string T = a [ l  : nj and a pattern matching machine 4 ~ 1  

v;i% functions g,  f and out .  
ot~tput :  A replaced text string Ti. 
method: 

i 
stute  := 0;  
for q := i t o  n do ( 

while g(s tu te ,  a[qj)  = fail d o  ( 
priazt-owtpui(q - I ,  s ta te ) ;  
s tate  := f ( s ta te  j 

1 
state  := g(statel  a[qj>; 
if state  = 0 then print aiq] 

i 
while state  # 6) d o  ( 

pri~zi-outpzit(n; s tu te ) ;  
s tate  := * f ( s t a t e )  

procedure pri~zt-output(p,  s tate):  

i 
let s . u t ( s t ~ t e j  = [B: il ] o [K; nl ] o . . . o [B. i, 1 o [K, n, ] o [B, 7 
I := p - d e p t / ~ ( s i a t e ) ;  
for j := I to m d o  ( 

print a[l  + 1 : Z +- ij]; 
I := I" + i i ;  



to emit the output strings. 
The output function may have a linked-list structure sucll as 

state 

Here, B means %bufferi and K means 'keywordi. The entire list represents as follosr-s: 
Emit 4 cllaracters fro111 the buffer, replace the occurrence of 7 ; ~  by the corres2ondins 
string and emit 5 characzers again. The algoritlim to make the obtaizled nracl~ine 
run on a texx is surmxarized in Algorithm 6. 

TVe shall mention the properties of our machine. Define sets r/VV S and a mapping 
state as in Section 4. This time tile mapping state from I/V illto S is not a bijection, 
then let 

repjs)  = ( u E l V  1 s t a te j u )  = s  ). 

Then, tlre following lemma holds for the failure function j" and the output fxnction 
out produced by Algorithm 4; 5. 

Lemma 3. Let s; t E Si s # 0, f ( s )  = t .  Then, for any u in r;ePjs), the bllo~ving 
holds: 

Suppose that the r-factorization of u on I< is 

U = :i'l~a.l-cc2-a2e.. . -z,,=a;y-2: (sn 2 0). 

Then, 
v E r e p ( t )  

and outjs)  equals to 

Proof. Similar to the proof of Lemma 2. 

6. Conclusions 

TVe have proved tlie validity of the multiple key replacernelit algorithm by Arilcawa- 
shiraishi[2j. and have nlodified the algorithm by using tlie idea of patterns with 



pictures. The obtained algorithm replaces the longest first found pattern by the 
corresponding word. I;Cihen the patterns have intersections, Like aA and Aa, re- 
placement will be done according to their priorities given by the user. 

Our algorithm requires as input the list of pairs (lil ; yl\, (az ,  9z) ,  . . . . ( x k ,  vk), 
where each .ir, is a pattern and y,  is a mapping from T ,  in50 C*. It is most suited 
when each T~ contains pictures and p,(xj  can be simply expressed with x7 such as 

and so on. If there is 110 apparent way to describe yz other than to  store for each 
z E T, the ~7alue 4 c j ~ ) ,  then; the Arilcawa-Sliiraishi method would be applied for 
the input 1T = {(z;y(x))/z E I<), where K = U . . . ?J TI, and p is defined by 
Eq~iation (1) in Section 5 .  EIoixrever, our metilod is possibly sitbstituted h r  it 
iittie loss of the running speed. 
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